Science.gov

Sample records for feed conversion efficiency

  1. Effects of feed intake and genetics on tissue nitrogen-15 enrichment and feed conversion efficiency in sheep.

    PubMed

    Cheng, L; Logan, C M; Dewhurst, R J; Hodge, S; Zhou, H; Edwards, G R

    2015-12-01

    This study investigated the effects of sheep genetics and feed intake on nitrogen isotopic fractionation (ΔN) and feed conversion efficiency (FCE; live weight gain/DMI), using a 2 × 2 factorial design, with 2 levels of genetic merit for growth (high vs. low) and 2 levels of feed intake (110 vs. 170% of ME for maintenance [MEm]). No effect of genetic merit was detected for live weight gain ( = 0.64), FCE ( = 0.46), plasma urea nitrogen ( = 0.52), plasma glucose ( = 0.78), and ΔN of wool ( = 0.45), blood ( = 0.09), and plasma ( = 0.51). Sheep receiving 170% of MEm had 175% higher live weight gain ( < 0.001) and 77% higher FCE ( < 0.001) than sheep receiving 110% of MEm. There was no difference among treatments at the beginning of the study for either blood or plasma ∆N, but the treatment groups started to diverge in blood and plasma ∆N at 21 and 7 d, respectively. Blood, plasma, and wool samples were enriched in N compared with feed. There was a higher blood, plasma, and wool ∆N for the low feed intake group than the high feed intake group ( < 0.001 in all cases). Across the 4 treatment groups, higher FCE in sheep was associated with lower ∆N for plasma, blood, and wool. Overall, the results are consistent with the potential of ∆N as a rapid, low-cost biomarker of FCE in sheep, despite there being no effects of genetic treatment on FCE and ∆N.

  2. The genetics of feed conversion efficiency traits in a commercial broiler line

    PubMed Central

    Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus

    2015-01-01

    Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583

  3. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes

    NASA Astrophysics Data System (ADS)

    Shepon, A.; Eshel, G.; Noor, E.; Milo, R.

    2016-10-01

    Feeding a growing population while minimizing environmental degradation is a global challenge requiring thoroughly rethinking food production and consumption. Dietary choices control food availability and natural resource demands. In particular, reducing or avoiding consumption of low production efficiency animal-based products can spare resources that can then yield more food. In quantifying the potential food gains of specific dietary shifts, most earlier research focused on calories, with less attention to other important nutrients, notably protein. Moreover, despite the well-known environmental burdens of livestock, only a handful of national level feed-to-food conversion efficiency estimates of dairy, beef, poultry, pork, and eggs exist. Yet such high level estimates are essential for reducing diet related environmental impacts and identifying optimal food gain paths. Here we quantify caloric and protein conversion efficiencies for US livestock categories. We then use these efficiencies to calculate the food availability gains expected from replacing beef in the US diet with poultry, a more efficient meat, and a plant-based alternative. Averaged over all categories, caloric and protein efficiencies are 7%–8%. At 3% in both metrics, beef is by far the least efficient. We find that reallocating the agricultural land used for beef feed to poultry feed production can meet the caloric and protein demands of ≈120 and ≈140 million additional people consuming the mean American diet, respectively, roughly 40% of current US population.

  4. Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna

    NASA Astrophysics Data System (ADS)

    Jusup, Marko; Klanjšček, Tin; Matsuda, Hiroyuki

    2014-11-01

    We present a numerical approach that, in conjunction with a fully set up Dynamic Energy Budget (DEB) model, aims at consistently approximating the feeding history of cultivated fish from the commonly measured aquaculture data (body length, body mass, or the condition factor). We demonstrate the usefulness of the approach by performing validation of a DEB-based model for Pacific bluefin tuna (Thunnus orientalis) on an independent dataset and exploring the implied bioenergetics of this species in captivity. In the context of validation, the results indicate that the model successfully accounts for more than 75% of the variance in actual fish feed. At the 5% significance level, predictions do not underestimate nor overestimate observations and there is no bias. The overall model accuracy of 87.6% is satisfactory. In the context of tuna bioenergetics, we offer an explanation as to why the first reproduction in the examined case occurred only after the fish reached seven years of age, whereas it takes five years in the wild and sometimes as little as three years in captivity. Finally, we calculate energy conversion efficiencies and the supply stress throughout the entire lifetime to theoretically underpin the relatively low contribution of growth to aerobic metabolism implied by respirometry and high feed conversion ratio observed in bluefin tuna aquaculture.

  5. Broiler ascites syndrome: collateral damage from efficient feed to meat conversion.

    PubMed

    Kalmar, Isabelle D; Vanrompay, Daisy; Janssens, Geert P J

    2013-08-01

    Chickens have been raised as food for human consumption for over 4000 years. Over this time they have been continuously selected for specific desirable characteristics by active selection of parents to produce birds which fit perceived needs. Despite this long history of selective breeding and improvements in rearing techniques, the efficiency with which broiler meat is produced has shown a remarkable leap in recent decades. Persistent selection for rapid growth, high feed utilisation efficiency and large cut yield has resulted in modern meat-type poultry lines with superior genetic potential with regard to productivity. However, mortality and the incidence of metabolic diseases has increased in parallel with growth rate. One such disease is broiler ascites syndrome, which has been shown to be closely associated with the fast growth and high meat yield resulting from intense selection and with modern rearing techniques. The review is focused on the historical background, pathogenesis, epidemiology and prevention of broiler ascites syndrome in modern broiler production. PMID:23628419

  6. Effect of Corncob bedding on feed conversion efficiency in a high-fat diet-induced prediabetic model in C57Bl/6J mice.

    PubMed

    Ambery, Ashley G; Tackett, Lixuan; Penque, Brent A; Hickman, Debra L; Elmendorf, Jeffrey S

    2014-09-01

    Laboratory facilities use many varieties of contact bedding, including wood chips, paper products, and corncob, each with its own advantages and disadvantages. Corncob bedding, for example, is often used because of its high absorbency, ability to minimize detectable ammonia, and low cost. However, observations that mice eat the corncob lead to concerns that its use can interfere with dietary studies. We evaluated the effect of corncob bedding on feed conversion (change in body weight relative to the apparent number of kcal consumed over 7 d) in mice. Four groups of mice (6 to 12 per group) were housed in an individually ventilated caging system: (1) low-fat diet housed on recycled paper bedding, (2) low-fat diet housed on corncob bedding, (3) high-fat diet housed on recycled paper bedding, and (4) high-fat diet housed on corncob bedding. After 4 wk of the high-fat diet, feed conversion and percentage body weight change both were lower in corncob-bedded mice compared with paper-bedded mice. Low-fat-fed mice on corncob bedding versus paper bedding did not show statistically significant differences in feed conversion or change in percentage body weight. Average apparent daily feed consumption did not differ among the 4 groups. In conclusion, these data suggest that corncob bedding reduces the efficiency of feed conversion in mice fed a high-fat diet and that other bedding choices should be favored in these models. PMID:25255066

  7. Effects of dietary levels of carbohydrate, lipid, phosphorus and zinc on the growth, feed conversion and protein efficiency ratio of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Lei, Wu; Yang, Yunxia; Ye, Jun

    1993-09-01

    A 54-day feeding experiment was conducted on juvenile Nile tilapia using isonitrogenous, isocaloric semipurified diets. The carbohydrate content in the diet was 9%, 32% and 50%; the corresponding lipid content was 22.2%, 12%, and 4%. The diets were supplemented with 0.85% or 1.5% phosphorus and 40 mg/kg or 100 mg/kg zinc. The experiment was carried out in flow-through aquaria using dechlorinated tap water at 23 26°C. The experiment showed that the increase of the carbohydrate content in the diets resulted in a 43 249% increase in weight gain, a 27 59% decrease in feed conversion ratio, and a 65 121% increase in protein efficiency ratio. In fish fed diets containing 36 50% carbohydrate, an increase in supplemented phosphorus to 1.5% greatly increased the weight gain. On the contrary, a high content of supplemented zinc (100 mg/kg) inhibited growth and increased feed conversion ratio.

  8. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A

    2015-06-01

    The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in

  9. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  10. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  11. ADEPT: Efficient Power Conversion

    SciTech Connect

    2011-01-01

    ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

  12. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent.

  13. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent. PMID:25576652

  14. Effects of growth hormone-releasing factor on growth hormone response, growth and feed conversion efficiency in buffalo heifers (Bubalus bubalis).

    PubMed

    Haldar, A; Prakash, B S

    2007-09-01

    The aim of this study was to determine the benefits of growth hormone-releasing factor (GRF) on growth and feed conversion efficiency (FCE) in buffaloes. Twelve Murrah buffalo heifers (Bubalus bubalis) of mean age 24.8 months and mean body weight 302.4kg were divided into two groups (treatment and control) with six animals in each group. The buffaloes were given intravenous injections of bovine GRF (bGRF) at a dose rate of 10microg/100kg body weight or an equal volume of saline at 15-day intervals for a period of 9 months. Plasma growth hormone (GH) responses to bGRF challenge were measured in blood samples collected at 90-day intervals on days 1, 90, 180 and 270 and samples were taken at -60, -30, 0, +10, +20, +30, +60, +120 and +180min relative to bGRF injection. Blood samples were also collected weekly by jugular venepuncture for the quantification of plasma GH. The average growth rate (AGR) and FCE of all animals were recorded at 15-day intervals. Plasma GH concentrations increased (P=0.001) steadily following bGRF challenge, peaking 10-20min after challenge and declining to baseline by 180min. In the treatment group, there were no significant differences (P>0.05) in either the peak heights of the GH response or the area under the curve (AUC) of the GH response after bGRF challenge on any of the four occasions of intensive bleeding. There were overall increases in plasma GH concentrations (P<0.01), AGR (P<0.01) and FCE (P=0.05) in the treatment group compared with the control animals. The study showed that GH responsiveness to administration of bGRF at 15-day intervals over 9 months of treatment remained unchanged in buffalo heifers. Exogenous bGRF treatment for a long period can therefore enhance GH release leading to higher growth rates and better feed conversion efficiency in buffalo heifers. PMID:17113797

  15. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster

  16. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster.

  17. The genetic parameters of feed efficiency and its component traits in the turkey (Meleagris gallopavo).

    PubMed

    Case, Lindsay A; Wood, Benjamin J; Miller, Stephen P

    2012-01-23

    Residual feed intake (RFI) and feed conversion ratio (FCR) can be incorporated into a breeding program as traits to select for feed efficiency. Alternatively, the direct measures used to calculate RFI and FCR can be analyzed to determine the underlying variation in the traits that impact overall efficiency. These constituent traits can then be appropriately weighted in an index to achieve genetic gain. To investigate feed efficiency in the turkey, feed intake and weight gain were measured on male primary breeder line turkeys housed in individual feeding cages from 15 to 19 weeks of age. The FCR and RFI showed moderate heritability values of 0.16 and 0.21, respectively. Feed intake, body weight, and weight gain were also moderately heritable (0.25, 0.35, and 0.18, respectively). Weight gain was negatively correlated to feed conversion ratio and was not genetically correlated to RFI. Body weight had a small and positive genetic correlation to RFI (0.09) and FCR (0.12). Feed intake was positively genetically correlated to RFI (0.62); however, there was no genetic correlation between feed intake and FCR. These estimates of heritability and the genetic correlations can be used in the development of an index to improve feed efficiency and reduce the cost of production.

  18. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio.

    PubMed

    Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W

    2015-02-01

    When fed human-edible feeds, such as grains and pulses, dairy cows are very inefficient in transforming them into animal products. Therefore, strategies to reduce human-edible inputs in dairy cow feeding are needed to improve food efficiency. The aim of this feeding trial was to analyze the effect of the full substitution of a common concentrate mixture with a by-product concentrate mixture on milk production, feed intake, blood values, and the edible feed conversion ratio (eFCR), defined as human-edible output per human edible input. The experiment was conducted as a change-over design, with each experimental period lasting for 7wk. Thirteen multiparous and 5 primiparous Holstein cows were randomly assigned to 1 of 2 treatments. Treatments consisted of a grass silage-based forage diet supplemented with either conventional ingredients or solely by-products from the food processing industry (BP). The BP mixture had higher contents of fiber and ether extract, whereas starch content was reduced compared with the conventional mixture. Milk yield and milk solids were not affected by treatment. The eFCR in the BP group were about 4 and 2.7 times higher for energy and protein, respectively. Blood values did not indicate negative effects on cows' metabolic health status. Results of this feeding trial suggest that by-products could replace common concentrate supplements in dairy cow feeding, resulting in an increased eFCR for energy and protein which emphasizes the unique role of dairy cows as net food producers.

  19. Frequency doubling conversion efficiencies for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Shelton, R. L.

    1987-01-01

    The theory of optical frequency doubling conversion efficiency is analyzed for the small signal input case along with the strong signal depleted input case. Angle phase matching and beam focus spot size are discussed and design trades are described which maximize conversion efficiency. Experimental conversion efficiencies from the literature, which are less than theoretical results at higher input intensities due to saturation, reconversion, and higher order processes, are applied to a case study of an optical communications link from Saturn. Double pass conversion efficiencies as high as 45 percent are expected. It is believed that even higher conversion efficiencies can be obtained using multipass conversion.

  20. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products.

    PubMed

    Oonincx, Dennis G A B; van Broekhoven, Sarah; van Huis, Arnold; van Loon, Joop J A

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food. PMID:26699129

  1. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products

    PubMed Central

    Oonincx, Dennis G. A. B.; van Broekhoven, Sarah; van Huis, Arnold; van Loon, Joop J. A.

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food. PMID:26699129

  2. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products.

    PubMed

    Oonincx, Dennis G A B; van Broekhoven, Sarah; van Huis, Arnold; van Loon, Joop J A

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food.

  3. A high-efficiency mode coupler autotracking feed

    NASA Astrophysics Data System (ADS)

    Cipolla, Frank; Seck, Gerry

    The design, construction, and installation of high-efficiency autotracking feeds using a tracking mode coupler at both S, C, and X band are presented. These feeds have shown greater than 65 percent efficiencies when mounted in a doubly shaped dual reflector antenna. The mode coupler feed attributes include high-efficiency in both the data and track channels, full waveguide bandwidth operation, good feed error gradients, high-power handling, and active cross talk correction.

  4. Photovoltaic panel having enhanced conversion efficiency stability

    SciTech Connect

    Cannella, V. D.

    1985-10-01

    A photovoltaic panel for converting light into electrical energy has enhanced energy conversion efficiency stability. The panel includes a photovoltaic device having an active region formed from a semiconductor material which exhibits an energy conversion efficiency stability directly related to the operating temperature of the device. The panel also includes means for maintaining the operating temperature of the device upon exposure to light at an elevated temperature above the ambient temperature external to the device. The active region semiconductor material is preferably an amorphous semiconductor alloy such as, for example, an amorphous silicon alloy. The operating temperature elevating means can include a thermal insulating material such as glass wool, styrofoam, or cork applied to the back side of the device to minimize heat conduction from the device. The panel can also include an enclosure for enclosing the device having a transparent cover overlying the device to seal the enclosure and provide a still air space adjacent the device. The panel is thereby arranged to maintain the operating temperature of the device at a temperature which is from about twenty degrees Centigrade to about one hundred and fifty degrees Centigrade above the ambient temperature external to the device.

  5. Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle.

    PubMed

    Sherman, E L; Nkrumah, J D; Li, C; Bartusiak, R; Murdoch, B; Moore, S S

    2009-01-01

    Feed intake and feed efficiency are economically important traits in beef cattle because feed is the greatest variable cost in production. Feed efficiency can be measured as feed conversion ratio (FCR, intake per unit gain) or residual feed intake (RFI, measured as DMI corrected for BW and growth rate, and sometimes a measure of body composition, usually carcass fatness, RFI(bf)). The goal of this study was to fine map QTL for these traits in beef cattle using 2,194 markers on 24 autosomes. The animals used were from 20 half-sib families originating from Angus, Charolais, and University of Alberta Hybrid bulls. A mixed model with random sire and fixed QTL effect nested within sire was used to test each location (cM) along the chromosomes. Threshold levels were determined at the chromosome and genome levels using 20,000 permutations. In total, 4 QTL exceeded the genome-wise threshold of P < 0.001, 3 exceeded at P < 0.01, 17 at P < 0.05, and 30 achieved significance at the chromosome-wise threshold level (at least P < 0.05). No QTL were detected on BTA 8, 16, and 27 above the 5% chromosome-wise significance threshold for any of the traits. Nineteen chromosomes contained RFI QTL significant at the chromosome-wise level. The RFI(bf) QTL results were generally similar to those of RFI, the positions being similar, but occasionally differing in the level of significance. Compared with RFI, fewer QTL were detected for both FCR and DMI, 12 and 4 QTL, respectively, at the genome-wise thresholds. Some chromosomes contained FCR QTL, but not RFI QTL, but all DMI QTL were on chromosomes where RFI QTL were detected. The most significant QTL for RFI was located on BTA 3 at 82 cM (P = 7.60 x 10(-5)), for FCR on BTA 24 at 59 cM (P = 0.0002), and for DMI on BTA 7 at 54 cM (P = 1.38 x 10(-5)). The RFI QTL that showed the most consistent results with previous RFI QTL mapping studies were on BTA 1, 7, 18, and 19. The identification of these QTL provides a starting point to identify

  6. Novel processes for high-efficiency biodigestion of particulate feeds

    SciTech Connect

    Ghosh, S.

    1984-01-01

    The development, application, and advantages of three advanced anaerobic digestion processes utilizing phase-separated fermentation and novel upflow digesters are described in this paper. The three processes described are (1) continuously stirred tank reactor (CSTR) two-phase digestion, (2) upflow two-phase digestion, and (3) leach-bed two-phase digestion. Unlike single-stage conventional digestion, these processes are suitable for the digestion of solid and concentrated semi-solid feeds, which are by far the largest biomass and waste resources available for simultaneous stabilization and energy production. All novel processes were significantly superior to conventional single-stage digestion in terms of methane yield and production rate, solids conversion efficiency, and net energy production. The upflow and the leach-bed two-phase digestion processes effected virtually complete conversion of the biodegradable fraction of the feed; the leach-bed process could accomplish this with a nutritionally deficient, highly cellulosic, refuse-derived substrate. 16 references, 5 figures, 5 tables.

  7. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  8. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture. PMID:19502252

  9. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

  10. Impact of Feed Injection Strategies on Fluidization Dynamics for Biomass Thermochemical Conversion

    SciTech Connect

    Malhotra, K. N.; Pepiot, P.; Capecelatro, J. S.; Desjardins, O.; Grout, R.; Nimlos, M. R.

    2012-01-01

    To better understand some of the key parameters that control biomass conversion processes in dense granular beds, an efficient computational framework for large-scale simulations of dense, reactive particulate flows using a Lagrange-Euler approach has been developed. This framework is applied here to the investigation of feed injection in a hot fluidized bed reactor, and how it may impact the biomass conversion dynamics. A simple, pseudo-two dimensional configuration is adopted to facilitate the parametric study. Chemical processes are modeled using global kinetics that accurately reproduce particle mass loss and gas release. A posteriori analysis of particle heating rate, mixing and segregation, along with products distribution and residence time inside the reactor is performed for different injection strategies, and compared to non-reactive cases. Results highlight some non-trivial coupling between chemistry and flow dynamics.

  11. High-efficiency K-band tracking antenna feed

    NASA Technical Reports Server (NTRS)

    Beavin, R. L.; Simanyi, A. I.

    1975-01-01

    Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.

  12. Leptin mediates discriminate response to feed restriction in feed efficient pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic mechanisms that control feed efficiency (FE) and feed intake are not well understood. Residual feed intake (RFI) is a measure of FE, in which low RFI designates high FE. Transcriptional profiling coupled with serum metabolite analyses were used to identify genes and pathways that respond to ...

  13. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  14. A review of feed efficiency in swine: biology and application.

    PubMed

    Patience, John F; Rossoni-Serão, Mariana C; Gutiérrez, Néstor A

    2015-01-01

    Feed efficiency represents the cumulative efficiency with which the pig utilizes dietary nutrients for maintenance, lean gain and lipid accretion. It is closely linked with energy metabolism, as the oxidation of carbon-containing components in the feed drive all metabolic processes. While much is known about nutrient utilization and tissue metabolism, blending these subjects into a discussion on feed efficiency has proven to be difficult. For example, while increasing dietary energy concentration will almost certainly increase feed efficiency, the correlation between dietary energy concentration and feed efficiency is surprisingly low. This is likely due to the plethora of non-dietary factors that impact feed efficiency, such as the environment and health as well as individual variation in maintenance requirements, body composition and body weight. Nonetheless, a deeper understanding of feed efficiency is critical at many levels. To individual farms, it impacts profitability. To the pork industry, it represents its competitive position against other protein sources. To food economists, it means less demand on global feed resources. There are environmental and other societal implications as well. Interestingly, feed efficiency is not always reported simply as a ratio of body weight gain to feed consumed. This review will explain why this arithmetic calculation, as simple as it initially seems, and as universally applied as it is in science and commerce, can often be misleading due to errors inherent in recording of both weight gain and feed intake. This review discusses the importance of feed efficiency, the manner in which it can be measured and reported, its basis in biology and approaches to its improvement. It concludes with a summary of findings and recommendations for future efforts.

  15. Feed efficiency and the microbiota of the alimentary tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable variation in the efficiency that cattle convert feed for maintenance and product (body weight gain, milk, and conceptus). Both intake and gain are polygenic traits and to better understand factors that contribute to variation in feed efficiency more defined phenotypes are need...

  16. Management factors affecting mortality, feed intake and feed conversion ratio of grow-finishing pigs.

    PubMed

    Agostini, P S; Fahey, A G; Manzanilla, E G; O'Doherty, J V; de Blas, C; Gasa, J

    2014-08-01

    The aim of this study was to determine the effect of animal management and farm facilities on total feed intake (TFI), feed conversion ratio (FCR) and mortality rate (MORT) of grower-finishing pigs. In total, 310 batches from 244 grower-finishing farms, consisting of 454 855 Pietrain sired pigs in six Spanish pig companies were used. Data collection consisted of a survey on management practices (season of placement, split-sex by pens, number of pig origins, water source in the farm, initial or final BW) and facilities (floor, feeder, ventilation or number of animals placed) during 2008 and 2009. Results indicated that batches of pigs placed between January and March had higher TFI (P=0.006), FCR (P=0.005) and MORT (P=0.03) than those placed between July and September. Moreover, batches of pigs placed between April and June had lower MORT (P=0.003) than those placed between January and March. Batches which had split-sex pens had lower TFI (P=0.001) and better FCR (P<0.001) than those with mixed-sex in pens; pigs fed with a single-space feeder with incorporated drinker also had the lowest TFI (P<0.001) and best FCR (P<0.001) in comparison to single and multi-space feeders without a drinker. Pigs placed in pens with <50% slatted floors presented an improvement in FCR (P<0.05) than pens with 50% or more slatted floors. Batches filled with pigs from multiple origins had higher MORT (P<0.001) than those from a single origin. Pigs housed in barns that performed manual ventilation control presented higher MORT (P<0.001) in comparison to automatic ventilation. The regression analysis also indicated that pigs which entered to grower-finisher facilities with higher initial BW had lower MORT (P<0.05) and finally pigs which were sent to slaughterhouse with a higher final BW presented higher TFI (P<0.001). The variables selected for each dependent variable explained 61.9%, 24.8% and 20.4% of the total variability for TFI, FCR and MORT, respectively. This study indicates that

  17. Cambridge journals blog: Improving feed efficiency in dairy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because the cost of feeding animals is one of the greatest expenses in dairy production (40-60% of production costs), research focused on ways to identify and select for animals that are the most efficient at converting feed into milk has greatly expanded during the last decade. The animal Article o...

  18. Small intestine histomorphometry of beef cattle with divergent feed efficiency

    PubMed Central

    2013-01-01

    Background The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency. Methods From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®. Results Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency. Conclusion

  19. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.

    PubMed

    Saintilan, R; Brossard, L; Vautier, B; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H

    2015-01-01

    Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the

  20. Association analysis between feed efficiency studies and expression of hypothalamic neuropeptide genes in laying ducks.

    PubMed

    Zeng, T; Chen, L; Du, X; Lai, S J; Huang, S P; Liu, Y L; Lu, L Z

    2016-10-01

    Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real-time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (P < 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (P < 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (P < 0.05). The mRNA expression of gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML. PMID:27329478

  1. Association analysis between feed efficiency studies and expression of hypothalamic neuropeptide genes in laying ducks.

    PubMed

    Zeng, T; Chen, L; Du, X; Lai, S J; Huang, S P; Liu, Y L; Lu, L Z

    2016-10-01

    Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real-time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (P < 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (P < 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (P < 0.05). The mRNA expression of gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML.

  2. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    SciTech Connect

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-10-21

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.

  3. Conversion efficiency of high-Z backlighter materials

    SciTech Connect

    Keiter, Paul A.; Tierney, Heidi; Workman, Jonathan; Comely, Andrew; Morton, John; Taylor, Mark

    2008-10-15

    High-Z backlighter materials are commonly used as x-ray sources for diagnosing laser-driven experiments. In order to properly plan for experiments and analyze the data, it is important to understand both the number and distribution of photons emitted by the x-ray source when it is irradiated by a laser. The conversion efficiency of L-shell and M-shell emitters is not as well understood as K-shell emitters. The conversion efficiency of the former is typically presented in terms of the entire L- or M-shell spectral region. However, for some applications, one may only want to use a subset of this spectral region. Laser conversion efficiency for L-shell and M-shell emitters suitable for high-energy (>3 keV) absorption spectroscopy is presented at multiple laser intensities. The measured conversion efficiency of the materials ranges from 0.2% to 0.6%.

  4. Cecum microbial communities from steers differing in feed efficiency.

    PubMed

    Myer, P R; Wells, J E; Smith, T P L; Kuehn, L A; Freetly, H C

    2015-11-01

    Apart from the rumen, limited knowledge exists regarding the structure and function of bacterial communities within the gastrointestinal tract and their association with beef cattle feed efficiency. The objective of this study was to characterize the microbial communities of the cecum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual feed intake and BW gain were determined from animals fed the same diet. Within both of 2 contemporary groups, BW was regressed on feed intake and 4 steers within each Cartesian quadrant were sampled ( = 16/group). Bacterial 16S rRNA gene amplicons were sequenced from the cecal content using next-generation sequencing technology. No significant changes in diversity or richness were detected among quadrants, and UniFrac principal coordinate analysis did not show any differences among quadrants for microbial communities within the cecum. The relative abundances of microbial populations and operational taxonomic units revealed significant differences among feed efficiency groups ( < 0.05). Firmicutes was the dominant cecal phylum in all groups and accounted for up to 81% of the populations among samples. Populations were also dominated by families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae, with significant shifts in the relative abundance of taxa among feed efficiency groups, including families Ruminococcaceae ( = 0.040), Lachnospiraceae ( = 0.020), Erysipelotrichaceae ( = 0.046), and Clostridiaceae ( = 0.043) and genera ( = 0.049), ( = 0.044), ( = 0.042), ( = 0.040), ( = 0.042), and ( = 0.042). The study identified cecal microbial associations with feed efficiency, ADG, and ADFI. This study suggests an association of the cecum microbial community with bovine feed efficiency at the 16S level. PMID:26641052

  5. Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle.

    PubMed

    Nkrumah, J D; Crews, D H; Basarab, J A; Price, M A; Okine, E K; Wang, Z; Li, C; Moore, S S

    2007-10-01

    Feeding behavior and temperament may be useful in genetic evaluations either as indicator traits for other economically relevant traits or because the behavior traits may have a direct economic value. We determined the variation in feeding behavior and temperament of beef cattle sired by Angus, Charolais, or Hybrid bulls and evaluated their associations with performance, efficiency, and carcass merit. The behavior traits were daily feeding duration, feeding head down (HD) time, feeding frequency (FF), and flight speed (FS, as a measure of temperament). A pedigree file of 813 animals forming 28 paternal half-sib families with about 20 progeny per sire was used. Performance, feeding behavior, and efficiency records were available on 464 animals of which 381 and 302 had records on carcass merit and flight speed, respectively. Large SE reflect the number of animals used. Direct heritability estimates were 0.28 +/- 0.12 for feeding duration, 0.33 +/- 0.12 for HD, 0.38 +/- 0.13 for FF, and 0.49 +/- 0.18 for FS. Feeding duration had a weak positive genetic (r(g)) correlation with HD (r(g) = 0.25 +/- 0.32) and FS (r(g) = 0.42 +/- 0.26) but a moderate negative genetic correlation with FF (r(g) = -0.40 +/- 0.30). Feeding duration had positive phenotypic (r(p)) and genetic correlations with DMI (r(p) = 0.27; r(g) = 0.56 +/- 0.20) and residual feed intake (RFI; r(p) = 0.49; r(g) = 0.57 +/- 0.28) but was unrelated phenotypically with feed conversion ratio [FCR; which is the reciprocal of the efficiency of growth (G:F)]. Feeding duration was negatively correlated with FCR (r(g) = -0.25 +/- 0.29). Feeding frequency had a moderate to high negative genetic correlation with DMI (r(g) = -0.74 +/- 0.15), FCR (r(g) = -0.52 +/- 0.21), and RFI (r(g) = -0.77 +/- 0.21). Flight speed was negatively correlated phenotypically with DMI (r(p) = -0.35) but was unrelated phenotypically with FCR or RFI. On the other hand, FS had a weak negative genetic correlation with DMI (r(g) = -0.11 +/- 0

  6. Efficient frequency conversion based on local optimization theory

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Changshui; Zhao, Xiangyang; Liu, Tuo; Hu, Hui

    2015-12-01

    We discuss theoretically a robustness of the difference frequency conversion method and demonstrate it by numerical simulation. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance called ‘local optimization’, can keep the intermediate frequency fixed and make the counterintuitive ordering emerge automatically. Here we show an efficient frequency conversion in two-process three wave mixing (TWM). And because the local optimization method is a well-defined, automated computational procedure, we think it would be very useful in the efficient conversion of complicated multi-process TWM, which is a difficult subject in STIRAP.

  7. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    SciTech Connect

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-11-23

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at several different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.

  8. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  9. Genetic associations between feed efficiency measured in a performance test station and performance of growing cattle in commercial beef herds.

    PubMed

    Crowley, J J; Evans, R D; Mc Hugh, N; Pabiou, T; Kenny, D A; McGee, M; Crews, D H; Berry, D P

    2011-11-01

    Interest in selection for improved feed efficiency is increasing, but before any steps are taken toward selecting for feed efficiency, correlations with other economically important traits must first be quantified. The objective of this study was to quantify the genetic associations between feed efficiency measured during performance testing and linear type traits, BW, live animal value, and carcass traits recorded in commercial herds. Feed efficiency data were available on 2,605 bulls from 1 performance test station. There were between 10,384 and 93,442 performance records on type traits, BW, animal value, or carcass traits from 17,225 commercial herds. (Co)variance components were estimated using linear mixed animal models. Genetic correlations between the muscular type traits in commercial animals and feed conversion ratio (-0.33 to -0.25), residual feed intake (RFI; -0.33 to -0.22), and residual BW gain (RG; 0.24 to 0.27) suggest that selection for improved feed efficiency should increase muscling. This is further evidenced by the genetic correlations between carcass conformation of commercial animals and feed conversion ratio (-0.46), RFI (-0.37), and residual BW gain (0.35) measured in performance-tested animals. Furthermore, the genetic correlations between RFI and both ultrasonic fat depth and carcass fat score (0.39 and 0.33, respectively) indicated that selection for improved RFI will result in leaner animals. It can be concluded from the genetic correlations estimated in this study that selection for feed efficiency will have no unfavorable effects on the performance traits measured in this study and will actually lead to an improvement in performance for some traits, such as muscularity, animal price, and carcass conformation. Conversely, this suggests that genetic selection for traits such as carcass quality, muscling traits, and animal value might also be indirectly selecting for more efficient animals.

  10. Evaluation of feed conversion in steers from a diallel of Simmental, Limousin, Polled Hereford, and Brahman beef cattle.

    PubMed

    Comerford, J W; Cooper, J B; Benyshek, L L; Bertrand, J K

    1991-07-01

    A total of 269 steers produced in a four-breed diallel mating design of Simmental, Limousin, Polled Hereford, and Brahman breeds were evaluated for the unadjusted and maintenance-adjusted total feed intake to total weight gain ratio. Time on feed ranged from 184 to 251 d. Covariate adjustments were made separately for age- and 12th rib fat-constant end points. Purebred, general combining ability, and maternal effects and heterosis were estimated. Effects of year, breed of dam, slaughter group, and days on feed accounted for most of the variation in feed conversion. Significantly higher unadjusted cumulative feed/gain ratios were found for steers from Brahman sires and for those from Simmental, Limousin, and Brahman dams. Adjustment to either fat- or age-constant values did not rerank breed groups, but a small reduction in the differences between these groups was detected for fat-constant efficiency. For maintenance-adjusted feed intake, progeny of Simmental and Limousin dams were less efficient than those of Polled Hereford and Brahman dams. Negative values for general combining ability, maternal effects, and heterosis would indicate less feed required per unit of weight gain. General combining ability for Polled Hereford crosses was negative and significant for cumulative feed/gain ratios, but no difference among dam breeds was found for the maintenance-adjusted ratio. Maternal effects for Limousin dams were positive and significant for all maintenance-adjusted ratios. Heterosis estimates for specific breed crosses were generally negative and ranged from -.87 to .22. PMID:1885389

  11. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  12. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics.

    PubMed

    Drouilhet, L; Achard, C S; Zemb, O; Molette, C; Gidenne, T; Larzul, C; Ruesche, J; Tircazes, A; Segura, M; Bouchez, T; Theau-Clément, M; Joly, T; Balmisse, E; Garreau, H; Gilbert, H

    2016-01-01

    To get insights into selection criteria for feed efficiency, 2 rabbit lines have been created: the ConsoResidual line was selected for residual feed intake (RFI) with ad libitum feeding and the ADGrestrict line was selected for ADG under restricted feeding (-20% of voluntary intake). The first objective of this study was to evaluate, after 9 generations of selection, the direct and correlated responses to selection on production traits in the 2 lines for traits recorded during growth. Second, applying the 2 feeding conditions used for selection to both selected lines plus the control unselected line (generation 0, G0) in a 2 × 3 factorial trial, the line performances were compared and the gut microbiota of the lines was characterized. The correlated responses in feed conversion ratio (FCR) were remarkably equivalent in both selected lines (-2.74 genetic σ) but correlated responses in other traits were notably different. In the ConsoResidual line, selection for decreased RFI resulted in a small negative correlated response in BW at 63 d old (BW63) and in a null response in ADG. In the ADGrestrict line, on the contrary, the correlated response in BW63 was substantial (+1.59 σ). The 2 selected lines had a FCR reduced by 0.2 point compared with the G0 line, and the same difference was found in both feeding regimens ( < 0.001). Indeed, selection on ADG would lead to heavier animals with no significant reduction of feed costs, whereas selection on RFI leads to lower feed costs and no increase of animal BW under ad libitum feeding. Altogether, our results do not suggest any genotype × environment interaction in the response to feeding regimens. The intestinal microbial communities from efficient rabbits differed from their unselected counterparts in terms of fermentation end products and microbial phylotypes, suggesting a central role of these microbes in the better feed efficiency of the rabbits.

  13. High efficiency in mode-selective frequency conversion.

    PubMed

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC.

  14. High efficiency in mode-selective frequency conversion.

    PubMed

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC. PMID:26766715

  15. Comparative effects of constant versus fluctuating thermal regimens on yellow perch growth, feed conversion and survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fluctuating or constant thermal regimens on growth, mortality, and feed conversion were determined for juvenile yellow perch (Perca flavescens). Yellow perch averaging 156mm total length and 43g body weight were held in replicate 288L circular tanks for 129 days under: 1) a diel therm...

  16. Efficient broadband third harmonic frequency conversion via angular dispersion

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-07-18

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3{omega}) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than {approximately}60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1{omega} input intensity of {approximately} 4 GW/cm{sup 2} for near optimal dispersion for phase matching, 5.2 {mu}rad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 {mu}rad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360{degrees} about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%.

  17. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass.

    PubMed

    Marcial, José; Chun, Jaehun; Hrma, Pavel; Schweiger, Michael

    2014-10-21

    Nuclear-waste melter feeds are slurry mixtures of wastes with glass-forming and glass-modifying additives (unless prefabricated frits are used), which are converted to molten glass in a continuous electrical glass-melting furnace. The feeds gradually become continuous glass-forming melts. Initially, the melts contain dissolving refractory feed constituents that are suspended together with numerous gas bubbles. Eventually, the bubbles escape, and the melts homogenize and equilibrate. Knowledge of various physicochemical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion that occurs during melting. We studied the melter feed viscosity during heating and correlated it with the volume fractions of dissolving quartz (SiO2) particles and the gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between the logarithm of viscosity and the volume fractions of suspended phases.

  18. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass.

    PubMed

    Marcial, José; Chun, Jaehun; Hrma, Pavel; Schweiger, Michael

    2014-10-21

    Nuclear-waste melter feeds are slurry mixtures of wastes with glass-forming and glass-modifying additives (unless prefabricated frits are used), which are converted to molten glass in a continuous electrical glass-melting furnace. The feeds gradually become continuous glass-forming melts. Initially, the melts contain dissolving refractory feed constituents that are suspended together with numerous gas bubbles. Eventually, the bubbles escape, and the melts homogenize and equilibrate. Knowledge of various physicochemical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion that occurs during melting. We studied the melter feed viscosity during heating and correlated it with the volume fractions of dissolving quartz (SiO2) particles and the gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between the logarithm of viscosity and the volume fractions of suspended phases. PMID:25229521

  19. Relationship between thermoelectric figure of merit and energy conversion efficiency

    PubMed Central

    Kim, Hee Seok; Liu, Weishu; Chen, Gang; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    The formula for maximum efficiency (ηmax) of heat conversion into electricity by a thermoelectric device in terms of the dimensionless figure of merit (ZT) has been widely used to assess the desirability of thermoelectric materials for devices. Unfortunately, the ηmax values vary greatly depending on how the average ZT values are used, raising questions about the applicability of ZT in the case of a large temperature difference between the hot and cold sides due to the neglect of the temperature dependences of the material properties that affect ZT. To avoid the complex numerical simulation that gives accurate efficiency, we have defined an engineering dimensionless figure of merit (ZT)eng and an engineering power factor (PF)eng as functions of the temperature difference between the cold and hot sides to predict reliably and accurately the practical conversion efficiency and output power, respectively, overcoming the reporting of unrealistic efficiency using average ZT values. PMID:26100905

  20. Relationship between thermoelectric figure of merit and energy conversion efficiency.

    PubMed

    Kim, Hee Seok; Liu, Weishu; Chen, Gang; Chu, Ching-Wu; Ren, Zhifeng

    2015-07-01

    The formula for maximum efficiency (ηmax) of heat conversion into electricity by a thermoelectric device in terms of the dimensionless figure of merit (ZT) has been widely used to assess the desirability of thermoelectric materials for devices. Unfortunately, the ηmax values vary greatly depending on how the average ZT values are used, raising questions about the applicability of ZT in the case of a large temperature difference between the hot and cold sides due to the neglect of the temperature dependences of the material properties that affect ZT. To avoid the complex numerical simulation that gives accurate efficiency, we have defined an engineering dimensionless figure of merit (ZT)eng and an engineering power factor (PF)eng as functions of the temperature difference between the cold and hot sides to predict reliably and accurately the practical conversion efficiency and output power, respectively, overcoming the reporting of unrealistic efficiency using average ZT values.

  1. Solar power conversion efficiency in modulated silicon nanowire photonic crystals

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    It is suggested that using only 1 μm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power conversion efficiency in the range of 15%-20% can be achieved. Choosing a specific modulation profile provides antireflection, light trapping, and back-reflection over broad angles in targeted spectral regions for high efficiency power conversion without solar tracking. Solving both Maxwell's equations in the 3D photonic crystal and the semiconductor drift-diffusion equations in each nanowire, we identify optimal junction and contact geometries and study the influence of the nanowire surface curvature on solar cell efficiency. We demonstrate that suitably modulated nanowires enable 20% efficiency improvement over their straight counterparts made of an equivalent amount of silicon. We also discuss the efficiency of a tandem amorphous and crystalline silicon nanowire photonic crystal solar cell. Opportunities for "hot carrier" collection and up-conversion of infrared light, enhanced by photonic crystal geometry, facilitate further improvements in power efficiency.

  2. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  3. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  4. Rumen microbiome from steers differing in feed efficiency.

    PubMed

    Myer, Phillip R; Smith, Timothy P L; Wells, James E; Kuehn, Larry A; Freetly, Harvey C

    2015-01-01

    The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency. PMID:26030887

  5. Rumen Microbiome from Steers Differing in Feed Efficiency

    PubMed Central

    2015-01-01

    The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency. PMID:26030887

  6. Feeding methods and efficiencies of selected frugivorous birds

    USGS Publications Warehouse

    Foster, M.S.

    1987-01-01

    I report on handling methods and efficiencies of 26 species of Paraguayan birds freeding on fruits of Allophyllus edulis (Sapindaceae). A bird may swallow fruits whole (Type I: pluck and swallow feeders), hold a fruit and cut the pulp from the seed with the edge of the bill, swallowing the pulp but not the seed (Type II: cut or mash feeders), or take bites of pulp from a fruit that hangs from the tree or that is held and manipulated against a branch (Type III: push and bite feeders). In terms of absolute amount of pulp obtained from a fruit, and amount obtained per unit time. Type I species are far more efficient than Type II and III species. Bill morphology influences feeding methods but is not the only important factor. Diet breadth does not appear to be significant. Consideration of feeding efficiency relative to the needs of the birds indicates that these species need to spend relatively little time feeding to meet their estimated energetic needs, and that handling time has a relatively trivial effect on the time/energy budges of the bird species observed.

  7. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  8. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows.

    PubMed

    Hurley, A M; López-Villalobos, N; McParland, S; Kennedy, E; Lewis, E; O'Donovan, M; Burke, J L; Berry, D P

    2016-01-01

    International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n=709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n=709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with

  9. Saturation and energy-conversion efficiency of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  10. Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating.

    PubMed

    Chausse, Bruno; Solon, Carina; Caldeira da Silva, Camille C; Masselli Dos Reis, Ivan G; Manchado-Gobatto, Fúlvia B; Gobatto, Claudio A; Velloso, Licio A; Kowaltowski, Alicia J

    2014-07-01

    Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake. PMID:24797627

  11. Photon energy conversion efficiency in gamma-ray spectrometry.

    PubMed

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  12. Analytic scaling analysis of high harmonic generation conversion efficiency.

    PubMed

    Falcão-Filho, E L; Gkortsas, M; Gordon, Ariel; Kärtner, Franz X

    2009-06-22

    Closed form expressions for the high harmonic generation (HHG) conversion efficiency are obtained for the plateau and cutoff regions. The presented formulas eliminate most of the computational complexity related to HHG simulations, and enable a detailed scaling analysis of HHG efficiency as a function of drive laser parameters and material properties. Moreover, in the total absence of any fitting procedure, the results show excellent agreement with experimental data reported in the literature. Thus, this paper opens new pathways for the global optimization problem of extreme ultraviolet (EUV) sources based on HHG.

  13. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits.

    PubMed

    Hernandez-Sanabria, Emma; Guan, Le Luo; Goonewardene, Laksiri A; Li, Meiju; Mujibi, Denis F; Stothard, Paul; Moore, Stephen S; Leon-Quintero, Monica C

    2010-10-01

    The influence of rumen microbial structure and functions on host physiology remains poorly understood. This study aimed to investigate the interaction between the ruminal microflora and the host by correlating bacterial diversity with fermentation measurements and feed efficiency traits, including dry matter intake, feed conversion ratio, average daily gain, and residual feed intake, using culture-independent methods. Universal bacterial partial 16S rRNA gene products were amplified from ruminal fluid collected from 58 steers raised under a low-energy diet and were subjected to PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Multivariate statistical analysis was used to relate specific PCR-DGGE bands to various feed efficiency traits and metabolites. Analysis of volatile fatty acid profiles showed that butyrate was positively correlated with daily dry matter intake (P < 0.05) and tended to have higher concentration in inefficient animals (P = 0.10), while isovalerate was associated with residual feed intake (P < 0.05). Our results suggest that particular bacteria and their metabolism in the rumen may contribute to differences in host feed efficiency under a low-energy diet. This is the first study correlating PCR-DGGE bands representing specific bacteria to metabolites in the bovine rumen and to host feed efficiency traits.

  14. Half-Heusler Alloys for Efficient Thermoelectric Power Conversion

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zeng, Xiaoyu; Tritt, Terry M.; Poon, S. Joseph

    2016-07-01

    Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ˜ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n-p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZT p-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.

  15. Half-Heusler Alloys for Efficient Thermoelectric Power Conversion

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zeng, Xiaoyu; Tritt, Terry M.; Poon, S. Joseph

    2016-11-01

    Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit ( ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ˜ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n-p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high- ZT p-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.

  16. De novo transcriptome assembly and identification of genes associated with feed conversion ratio and breast muscle yield in domestic ducks.

    PubMed

    Zhu, Feng; Yuan, Jian-Ming; Zhang, Zhen-He; Hao, Jin-Ping; Yang, Yu-Ze; Hu, Shen-Qiang; Yang, Fang-Xi; Qu, Lu-Jiang; Hou, Zhuo-Cheng

    2015-12-01

    Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome. PMID:26545935

  17. De novo transcriptome assembly and identification of genes associated with feed conversion ratio and breast muscle yield in domestic ducks.

    PubMed

    Zhu, Feng; Yuan, Jian-Ming; Zhang, Zhen-He; Hao, Jin-Ping; Yang, Yu-Ze; Hu, Shen-Qiang; Yang, Fang-Xi; Qu, Lu-Jiang; Hou, Zhuo-Cheng

    2015-12-01

    Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome.

  18. Feed Efficiency: An Assessment of Current Knowledge from a Voluntary Subsample of the Swine Industry

    ERIC Educational Resources Information Center

    Flohr, Josh R.; Tokach, Mike D.; DeRouchey, Joel M.; Goodband, Robert D.; Dritz, Steve S.; Nelssen, Jim L.; Patience, John F.

    2014-01-01

    A voluntary sample of pork producers and advisers to the swine industry were surveyed about feed efficiency. The questionnaire was designed to accomplish three objectives: (a) determine the level of knowledge related to feed efficiency topics, (b) identify production practices used that influence feed efficiency, and (c) identify information gaps…

  19. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  20. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  1. Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers.

    PubMed

    Singh, K M; Shah, T M; Reddy, Bhaskar; Deshpande, S; Rank, D N; Joshi, C G

    2014-02-01

    Individual weight gain in broiler growers appears to vary, which may in part be due to variation in their gut microbiota. In this paper we analyse the fecal microbiota of low and high feed conversion ratio (FCR) broilers. After shotgun sequencing of the fecal microbiome, we used the SEED database to identify the microbial diversity and metabolic potential in low and high FCR birds. The domain-level breakdown of our samples was bacteria (>95 %), eukaryotes (>2 %), archaea (>0.2 %), and viruses (>0.2 %). At the phylum level, Proteobacteria (78.83 % in low and 52.04 % in high FCR), Firmicutes (11.97 % in low and 27.53 % in high FCR) and Bacteroidetes (7.10 % in low FCR and 17.53 % in high FCR) predominated in the fecal microbial community. Poultry fecal metagenomes revealed the sequences related to 33 genera in both low and high FCR with significantly different proportion. Functional analysis revealed that genes for the metabolism of carbohydrates, amino acids and derivatives and protein metabolism were most abundant in SEED subsystem in both samples. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Indeed, genes associated with sulphur assimilation, flagellum and flagellar motility were over represented in low FCR birds. This information could help in developing strategies to improve feed efficiency and feed formulation for broiler chickens.

  2. Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers

    SciTech Connect

    Van Eester, D.; Lerche, E.; Ongena, J.; Mayoral, M.-L.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Coffey, I.; Coyne, A.; Felton, R.; Giroud, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Monakhov, I.; Noble, C.; Pangioni, L.

    2011-12-23

    The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ({sup 3}He)-D plasmas [2] and was recently tested in ({sup 3}He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ({sup 3}He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority {sup 3}He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower {sup 3}He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of {sup 4}He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with {sup 3}He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[{sup 3}He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.

  3. Conversion efficiency of skutterudite-based thermoelectric modules.

    PubMed

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used. PMID:24830880

  4. Relationship among performance, carcass, and feed efficiency characteristics, and their ability to predict economic value in the feedlot.

    PubMed

    Retallick, K M; Faulkner, D B; Rodriguez-Zas, S L; Nkrumah, J D; Shike, D W

    2013-12-01

    A 4-yr study was conducted using 736 steers of known Angus, Simmental, or Simmental × Angus genetics to determine performance, carcass, and feed efficiency factors that explained variation in economic performance. Steers were pen fed and individual DMI was recorded using a GrowSafe automated feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada). Steers consumed a similar diet and received similar management each year. The objectives of this study were to: 1) determine current economic value of feed efficiency and 2) identify performance, carcass, and feed efficiency characteristics that predict: carcass value, profit, cost of gain, and feed costs. Economic data used were from 2011 values. Feed efficiency values investigated were: feed conversion ratio (FCR; feed to gain), residual feed intake (RFI), residual BW gain (RG), and residual intake and BW gain (RIG). Dependent variables were carcass value ($/steer), profit ($/steer), feed costs ($/steer • d(-1)), and cost of gain ($/kg). Independent variables were year, DMI, ADG, HCW, LM area, marbling, yield grade, dam breed, and sire breed. A 10% improvement in RG (P < 0.05) yielded the lowest cost of gain at $0.09/kg and highest carcass value at $17.92/steer. Carcass value increased (P < 0.05) as feed efficiency improved for FCR, RG, and RIG. Profit increased with a 10% improvement in feed efficiency (P < 0.05) with FCR at $34.65/steer, RG at $31.21/steer, RIG at $21.66/steer, and RFI at $11.47/steer. The carcass value prediction model explained 96% of the variation among carcasses and included HCW, marbling score, and yield grade. Average daily gain, marbling score, yield grade, DMI, HCW, and year born constituted 81% of the variation for prediction of profit. Eighty-five percent of the variation in cost of gain was explained by ADG, DMI, HCW, and year. Prediction equations were developed that excluded ADG and DMI, and included feed efficiency values. Using these equations, cost of gain was explained

  5. Detailed balance limit of power conversion efficiency for organic photovoltaics

    SciTech Connect

    Seki, Kazuhiko; Furube, Akihiro; Yoshida, Yuji

    2013-12-16

    A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

  6. Comparative feed efficiency of Holstein and Jersey cows.

    PubMed

    Blake, R W; Custodio, A A; Howard, W H

    1986-05-01

    Feed efficiency measures, gross energy (solids-corrected milk/estimated energy intake), N (milk N/N intake) utilization, and apparent digestibilities of ration dry matter and N were calculated for 34 daughters of 21 Holstein and 29 daughters of 18 Jersey sires in first and second trimesters of lactation. Cows were studied in N balance trials and were fed ad libitum corn silage-based, complete rations formulated to meet average nutrient requirements. The objective was to determine whether these breeds differ in rates of converting dietary protein or energy to milk protein or milk energy. Holstein and Jersey did not differ for digestibility of ration dry matter in either trimester of lactation. They also converted dietary protein to milk protein at similar rates. Energy efficiencies of Holstein and Jersey did not differ in first trimester, but Holstein exceeded Jersey in second trimester. Because intake of dry matter by Jersey increased about 4% from first to second trimester (opposite of Holstein) and N balance was higher than for Holstein, Jersey cows may have been repleting more adipose tissue. We suggest no comparative advantage for Jersey in spite of higher ratios of milk to body weight and feed intake less than Holstein.

  7. Ternary blend polymer solar cells with enhanced power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Xu, Tao; Chen, Wei; Landry, Erik S.; Yu, Luping

    2014-09-01

    The use ternary organic components is currently being pursued to enhance the power conversion efficiency of bulk heterojunction solar cells by expanding the spectral range of light absorption. Here, we report a ternary blend polymer solar cell containing two donor polymers, poly-3-oxothieno[3,4-d]isothiazole-1,1-dioxide/benzodithiophene (PID2), polythieno[3,4-b]-thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as an acceptor. The resulting ternary solar cell delivered a power conversion efficiency of 8.22% with a short-circuit current density Jsc of 16.8 mA cm-2, an open-circuit voltage Voc of 0.72 V and a fill factor of 68.7%. In addition to extended light absorption, we show that Jsc is improved through improved charge separation and transport and decreased charge recombination, resulting from the cascade energy levels and optimized device morphology of the ternary system. This work indicates that ternary blend solar cells have the potential to surpass high-performance binary polymer solar cells after further device engineering and optimization.

  8. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Davidson, J.; Bebak, J.; Mazik, P.

    2009-01-01

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are within the range of fish hearing, but species-specific effects of aquaculture production noise are not well defined. Field and laboratory studies have shown that fish behavior and physiology can be negatively impacted by intense sound. Therefore, chronic exposure to aquaculture production noise could cause increased stress, reduced growth rates and feed conversion efficiency, and decreased survival. The objective of this study was to provide an in-depth evaluation of the long term effects of aquaculture production noise on the growth, condition factor, feed conversion efficiency, and survival of cultured rainbow trout, Oncorhynchus mykiss. Rainbow trout were cultured in replicated tanks using two sound treatments: 117??dB re 1????Pa RMS which represented sound levels lower than those recorded in an intensive recycle system and 149??dB re 1????Pa RMS, representing sound levels near the upper limits known to occur in recycle systems. To begin the study mean fish weights in the 117 and 149??dB tanks were 40 and 39??g, respectively. After five months of exposure no significant differences were identified between treatments for mean weight, length, specific growth rates, condition factor, feed conversion, or survival (n = 4). Mean final weights for the 117 and 149??dB treatments were 641 ?? 3 and 631 ?? 10??g, respectively. Overall specific growth rates were equal, i.e. 1.84 ?? 0.00 and 1.84 ?? 0.01%/day. Analysis of growth rates of individually tagged rainbow trout indicated that fish from the 149??dB tanks grew slower during the first month of noise exposure (p < 0.05); however, fish acclimated to the noise thereafter. This study further suggests that rainbow trout growth

  9. A TEG Efficiency Booster with Buck-Boost Conversion

    NASA Astrophysics Data System (ADS)

    Wu, Hongfei; Sun, Kai; Zhang, Junjun; Xing, Yan

    2013-07-01

    A thermoelectric generator (TEG) efficiency booster with buck-boost conversion and power management is proposed as a TEG battery power conditioner suitable for a wide TEG output voltage range. An inverse-coupled inductor is employed in the buck-boost converter, which is used to achieve smooth current with low ripple on both the TEG and battery sides. Furthermore, benefiting from the magnetic flux counteraction of the two windings on the coupled inductor, the core size and power losses of the filter inductor are reduced, which can achieve both high efficiency and high power density. A power management strategy is proposed for this power conditioning system, which involves maximum power point tracking (MPPT), battery voltage control, and battery current control. A control method is employed to ensure smooth switching among different working modes. A modified MPPT control algorithm with improved dynamic and steady-state characteristics is presented and applied to the TEG battery power conditioning system to maximize energy harvesting. A 500-W prototype has been built, and experimental tests carried out on it. The power efficiency of the prototype at full load is higher than 96%, and peak efficiency of 99% is attained.

  10. Identification of genomic regions associated with feed efficiency in Nelore cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed efficiency is jointly determined by productivity and feed requirements, both of which are economically relevant traits in beef cattle production systems. The objective of this study was to identify genes/QTLs associated with components of feed efficiency in Nelore cattle using Illumina BovineHD...

  11. Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock.

    PubMed

    Kebreab, Ermias; Hansen, Anja V; Strathe, Anders B

    2012-12-01

    Phosphorus (P) is an essential nutrient for livestock but its efficiency of utilization is below 40%, contributing to environmental issues. In this review, we summarize recent approaches to optimize P availability in livestock diets and improve its utilization efficiency. Phase feeding could potentially reduce P excretion by 20%. Addition of phytase enzymes to diets increased P availability from 42 to 95%. Low phytate transgenic plants and transgenic animals increased P availability by 14% and 52-99%, respectively. In practice, a combination of phase feeding and enzymes has the highest potential for P reduction but legislation and ethics implications will prevent using transgenic animals in the short term. Functional and nutritional genomics may provide tools to improve efficiency in the future. PMID:22796051

  12. Feed efficiency - how should it be used for the cow herd?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cows, the most critical factor influencing the output component of efficiency is reproductive rate, and not necessarily weight gain. Thus benefits of selecting animals with desirable measures of feed efficiency on cow efficiency remain to be determined. The feed input component of cow efficiency...

  13. Nutrient conversions by photosynthetic bacteria in a concentrated animal feeding operation lagoon system.

    PubMed

    Sund, J L; Evenson, C J; Strevett, K A; Nairn, R W; Athay, D; Trawinski, E

    2001-01-01

    A diurnal examination was conducted to determine the effect of photosynthetic bacteria on nutrient conversions in a two-stage concentrated animal feeding operation (CAFO) lagoon system in west-central Oklahoma. Changes in nutrients, microbial populations, and physical parameters were examined at three depths (0, 1.5, and 3.0 m) every 3 h over a 36-h period. The south lagoon (SL) was anaerobic (dissolved oxygen [DO] = 0.09 +/- 0.12 mg/L) while the north lagoon (NL) was facultative (DO ranged from 4.0-0.1 mg/L over 36-h period). Negative sulfide-sulfate (-0.85) and bacteriochlorophyll a (bchl a)-sulfate (-0.83) correlations, as well as positive bchl a-sulfide (0.87) and light intensity (I)-bchl a (0.89) correlations revealed that the SL was dominated by sulfur conversions driven by the photosynthetic purple sulfur bacteria (PSB). The correlation data was supported by diurnal trends for sulfate, sulfide, and bchl a. Both nitrogen and sulfur conversions played a role in the NL; however, nitrogen conversions appeared to dominate this system because of the activity of cyanobacteria. This was shown by positive chlorophyll a (chl a)-I (0.91) and chl a-nitrate (0.98) correlations and the negative correlation between ammonium and nitrite (-0.88). Correlation data was further supported by diurnal trends observed for chl a, DO, and ammonium. For both lagoons, the dominant photosynthetic microbial species determined which nutrient conversion processes were most important. PMID:11285928

  14. Model for the conversion of nuclear waste melter feed to glass

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the feed, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  15. Efficient computerized model for dynamic analysis of energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.; Lansing, F. L.; Khan, I. R.

    1983-01-01

    In searching for the optimum parameters that minimize the total life cycle cost of an energy conversion system, various combinations of components are examined and the resulting system performance and associated economics are studied. The systems performance and economics simulation computer program (SPECS) was developed to fill this need. The program simulates the fluid flow, thermal, and electrical characteristics of a system of components on a quasi-steady state basis for a variety of energy conversion systems. A unique approach is used in which the set of characteristic equations is solved by the Newton-Raphson technique. This approach eliminates the tedious iterative loops which are found in comparable programs such as TRNSYS or SOLTES-1. Several efficient features were also incorporated such as the centralized control and energy management scheme, and analogous treatment of energy flow in electrical and mechanical components, and the modeling of components of similar fundamental characteristics using generic subroutines. Initial tests indicate that this model can be used effectively with a relatively small number of time steps and low computer cost.

  16. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  17. Genetic analysis of production and feed efficiency traits in an Orlopp turkey line (Meleagris gallopavo).

    PubMed

    Willems, O W; Buddiger, N J H; Wood, B J

    2014-01-01

    1. Genetic parameters for production and feed efficiency traits in the Orlopp line of turkeys were estimated to determine breeding goals and future potential of the line in a long-term genetic improvement programme. 2. Body weight, egg production and fertility traits were recorded and feed conversion ratio (FCR) was assessed from 16-20 weeks of age. 3. Moderate heritabilities were found for feed intake and body weight gain (0.25 to 0.31). Average FCR was 3.14, with heritability of 0.10. Body weight, breast conformation score and egg production traits showed moderate heritabilities (0.22 to 0.52), while both fertility and hatch of fertile eggs were low (0.04 and 0.09, respectively). 4. Genetic correlations between breast confirmation score, 10- and 18-week body weights were moderate, 0.50 and 0.45, respectively. Average egg weight also showed moderate genetic correlations with 10- and 18-week body weights (0.59 and 0.42).

  18. Riverbed methanotrophy sustained by high carbon conversion efficiency

    PubMed Central

    Trimmer, Mark; Shelley, Felicity C; Purdy, Kevin J; Maanoja, Susanna T; Chronopoulou, Panagiota-Myrsini; Grey, Jonathan

    2015-01-01

    Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. PMID:26057842

  19. Effects of direct-fed Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed conversion, and health condition of pre- and postpartum Holstein cows.

    PubMed

    Luan, S; Duersteler, M; Galbraith, E A; Cardoso, F C

    2015-09-01

    The usage of direct-fed microbials (DFM) has become common in the dairy industry, but questions regarding choice of strain, mode of action, and efficacy remain prevalent. The objective of this study was to evaluate the effects of a DFM (Bacillus pumilus 8G-134) on pre- and postpartum performance and incidence of subclinical ketosis in early lactation. Forty-three multiparous Holstein cows were assigned to 2 treatments in a randomized complete block design; cows in the direct-fed microbial treatment (DFMt, n=21) received 5.0×10(9) cfu/cow of B. pumilus in 28 g of a maltodextrin carrier, whereas cows in the control treatment (CON, n=22) received 28 g of maltodextrin carrier alone. Treatments were top-dressed on the total mixed ration daily. Treatments were applied from 21 d before expected calving date to 154 d after calving. Cows on treatment DFMt tended to have lower serum haptoglobin concentration than CON cows on d 14. Cows on treatment DFMt had higher IgA concentrations in milk than CON cows during the first week after calving. Cows fed DFMt had higher yields of milk, fat-corrected milk, energy-corrected milk, milk fat, and milk protein during the second week of lactation than CON; however, we found no differences between treatments on milk yield and milk components overall. Cows on DFMt tended to have higher feed conversion and to have lower prevalence of subclinical ketosis (beta-hydroxybutyrate >1.2 mmol/L) on d 5 than cows fed CON. Dry matter intake, body weight, and body condition score were not affected by DFMt supplementation. Milk production efficiencies (calculated based on fat-corrected milk and energy-corrected milk) were higher by 0.1 kg of milk per kilogram of dry matter intake in cows that received DFMt compared with cows that received CON. In conclusion, cows receiving DFMt tended to have lower incidence of subclinical ketosis than cows receiving CON. Cows fed DFMt tended to have higher feed conversion and evidence for greater immunity than CON

  20. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. PMID:27564854

  1. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  2. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  3. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    PubMed Central

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  4. Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics

    SciTech Connect

    2012-02-23

    Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

  5. Efficiency evaluation of oxygen enrichment in energy conversion processes

    SciTech Connect

    Bomelburg, H.J.

    1983-12-01

    The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

  6. Model for the conversion of nuclear waste melter feed to glass

    NASA Astrophysics Data System (ADS)

    Pokorny, Richard; Hrma, Pavel

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the melt, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  7. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%.

    PubMed

    Chen, Chun-Chao; Chang, Wei-Hsuan; Yoshimura, Ken; Ohya, Kenichiro; You, Jingbi; Gao, Jing; Hong, Zirou; Yang, Yang

    2014-08-27

    Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%.

  8. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%.

    PubMed

    Chen, Chun-Chao; Chang, Wei-Hsuan; Yoshimura, Ken; Ohya, Kenichiro; You, Jingbi; Gao, Jing; Hong, Zirou; Yang, Yang

    2014-08-27

    Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%. PMID:25043698

  9. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  10. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  11. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  12. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  13. Survival, growth, food conversion efficiency and plasma osmolality of juvenile Siganus guttatus (Bloch, 1787): experimental analyses of salinity effects.

    PubMed

    Zhao, Feng; Wang, Yu; Zhang, Longzhen; Zhuang, Ping; Liu, Jianyi

    2013-08-01

    We studied the effects of salinity on survival, growth, food conversion efficiency and plasma osmolality of juvenile Siganus guttatus in two independent experiments. In the first experiment, fish were transferred from 30 ‰ salinity to freshwater, 5, 10, 20 and 30‰ salinities for 192 h. No fish died when transferred directly from 30‰ to salinities >5‰. However, all fish died in the freshwater treatment. In the second experiment, survival, growth, feeding rate, food conversion efficiency and plasma osmolality of fish were analyzed during 6 weeks in salinities of 5, 10, 20 and 30‰ (control). At the end of this experiment, the final weight and the specific growth rate of fish were significantly greater at 10‰ than fish in all other treatments. Feeding rate increased significantly with decreasing salinity: 10‰ > 20‰ > 30‰. However, the food conversion efficiency was not significantly different between fish in any treatment. Plasma osmolality of fish in 20 and 30‰ salinity was significantly greater than fish reared at 10 or 5‰. A salinity of 13.95‰ (411.88 mOsmol/kg) was the point of isosmolality for juvenile S. guttatus.

  14. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    PubMed

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.

  15. Methane emissions from cattle differing in feed intake and feed efficiency fed a high concentrate diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas released by cattle is a product of fermentation of feed in the digestive tract and represents a loss of feed energy. In addition to being a dietary energy loss, methane is considered a greenhouse gas. Developing strategies to reduce methane emissions from cattle have the potential to i...

  16. Differential expression of genes in the jejunum of steers with feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small intestine is an important site of digestion and absorption of nutrients in cattle, and has the potential to significantly impact feed efficiency. We hypothesized that the differences in feed efficiency phenotypes of beef cattle can be partially explained by the differences in gene expressi...

  17. Enteric methane production from beef cattle that vary in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that CH4 production will decrease with increased feed efficiency. Two experiments were conducted to determine CH4 production of cattle that differed in feed efficiency. Cattle in both studies were selected from larger contemporary groups. Animals furthest from the confidence ellip...

  18. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  19. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE PAGES

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspondmore » to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies

  20. Photonic design for efficient solid state energy conversion

    NASA Astrophysics Data System (ADS)

    Agrawal, Mukul

    The efficiency of conversion between electrical and photonic energy in optoelectronic devices such as light-emitting diodes, photodetectors and solar cells is strongly affected by the photonic modes supported by the device structure. In this thesis, we show how tuning of the local photon density of states in subwavelength structures can be used to optimize device performance. The first part of the thesis is focused on organic light emitting diodes (OLEDs), a candidate technology for next-generation displays and solid-state lighting. An important unsolved problem in OLEDs is to ensure that a significant fraction of photons emitted by the organic emissive layer couple out of the device structure instead of remaining trapped in the device. It is shown using modeling and experiments that optimized non-periodic dielectric multilayer stacks can significantly increase the photon outcoupling while maintaining display quality brightness uniformity over the viewing cone. In the second part, we discuss the theoretical limits to broadband light harvesting in photovoltaic cells. First, it is shown that the extent to which one-dimensional optical cavities can be used to enhance light absorption over a broad spectral range is limited by the requirement that the cavity mirrors have a causal response. This result is used as a guide to design practical dielectric structures that enhance light harvesting in planar thin-film organic solar cells. Finally, we consider the enhancement of optical absorption in two- and three-dimensional structures in which incident light is scattered into quasi-trapped modes for more effective utilization of solar radiation. It is shown that there is an upper bound to the degree to which optical absorption can be enhanced that is identical to the limit found in the geometric optics regime. Rigorous optical simulations are used to show that an optical structure consisting of a two-dimensional array of inverted pyramids comes close to this limit. Before

  1. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.

    PubMed

    VandeHaar, M J; Armentano, L E; Weigel, K; Spurlock, D M; Tempelman, R J; Veerkamp, R

    2016-06-01

    Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for

  2. Effects of feeding tryptophan-limiting diets on the conversion ratio of tryptophan to niacin in rats.

    PubMed

    Shibata, K; Shimada, H; Kondo, T

    1996-10-01

    We investigated the effects of feeding various types of nicotinic acid-free, tryptophan-limiting diets on the conversion ratio of tryptophan to niacin in rats. Various tryptophan-limiting diets were made by adding zein, gelatin, glycine, threonine, methionine, or glycine + threonine + methionine to a nicotinic acid-free, 9% casein diet. When the rats were fed with the tryptophan-limiting diets, the conversion ratio of tryptophan to niacin was markedly decreased. However, the ratio recovered after the addition of tryptophan to the tryptophan-limiting diets. These results clearly prove that the conversion was lowest when the rats were fed with the tryptophan-limiting diets. Therefore, we think that the pellagragenic factor of corn is simply due to a low content of tryptophan, but the adverse effect is due to a low conversion ratio of tryptophan to niacin.

  3. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet

  4. The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers

    PubMed Central

    Eeckhaut, Venessa; Wang, Jun; Van Parys, Alexander; Haesebrouck, Freddy; Joossens, Marie; Falony, Gwen; Raes, Jeroen; Ducatelle, Richard; Van Immerseel, Filip

    2016-01-01

    Probiotics which do not result in the development and spread of microbial resistance are among the candidate replacements for antibiotics previously used as growth promotors. In this study the effect of in-feed supplementation of the butyrate producing Butyricicoccus pullicaecorum strain 25-3T on performance, intestinal microbiota and prevention of necrotic enteritis (NE), a disease caused by Clostridium perfringens was evaluated in broilers. For the performance study, day old Ross 308 chicks were randomly allocated into two treatment groups and fed either a non-supplemented diet or a diet supplemented with 109 cfu lyophilized B. pullicaecorum per kg feed for 40 days. On day 40 broilers administered B. pullicaecorum had a significant lower bodyweight (2675 g vs. 2762 g; p = 0.0025) but supplementation of B. pullicaecorum decreased the feed conversion ratio significantly (1.518 vs. 1.632; p < 0.0001). Additionally, ingestion of the Butyricicoccus strain significantly lowered the abundance of Campylobacter spp. in the caecum and Enterococcus and Escherichia/Shigella spp. in the ileum at day 40. In feed supplementation of B. pullicaecorum in the NE trials resulted in a significant decrease in the number of birds with necrotic lesions compared with the untreated control group. These studies show that supplementation of B. pullicaecorum is able to improve feed conversion, to reduce the abundance of some potentially important pathogens in the caeca and ileum and to contribute to the prevention of NE in broilers, making the strain a potential valuable probiotic. PMID:27708624

  5. Genetic architecture of feed efficiency in mid-lactation Holstein dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to explore the genetic architecture and biological basis of feed efficiency in lactating Holstein cows. In total, 4,918 cows with actual or imputed genotypes for 60,671 SNP had individual feed intake, milk yield, milk composition, and body weight records. Cows were ...

  6. Factors influencing feed efficiency for beef cows of varying proportion of Brahman influence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed constitutes the greatest proportion of costs in cow-calf production. Therefore, genetic merit for feed efficiency has received interest from producers, but has generally been assessed in growing animals. The objectives of this study were to determine the main factors that contribute to variance...

  7. A prototype national cattle evaluation for feed intake and efficiency of Angus cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent development of technologies for measuring individual feed intake has made possible the collection of data suitable for breed-wide genetic evaluation. Goals of this research were to estimate genetic parameters for components of feed efficiency and develop a prototype system for conducting a ge...

  8. Invited review: improving feed efficiency in dairy production: challenges and possibilities.

    PubMed

    Connor, E E

    2015-03-01

    Despite substantial advances in milk production efficiency of dairy cattle over the last 50 years, rising feed costs remain a significant threat to producer profitability. There also is a greater emphasis being placed on reducing the negative impacts of dairy production on the environment; thus means to lower greenhouse gas (GHG) emissions and nutrient losses to the environment associated with cattle production are being sought. Improving feed efficiency among dairy cattle herds offers an opportunity to address both of these issues for the dairy industry. However, the best means to assess feed efficiency and make genetic progress in efficiency-related traits among lactating cows without negatively impacting other economically important traits is not entirely obvious. In this review, multiple measurements of feed efficiency for lactating cows are described, as well as the heritability of the traits and their genetic and phenotypic correlations with other production traits. The measure of feed efficiency, residual feed intake is discussed in detail in terms of the benefits for its selection, how it could be assessed in large commercial populations, as well as biological mechanisms contributing to its variation among cows, as it has become a commonly used method to estimate efficiency in the recent scientific literature.

  9. Invited review: improving feed efficiency in dairy production: challenges and possibilities.

    PubMed

    Connor, E E

    2015-03-01

    Despite substantial advances in milk production efficiency of dairy cattle over the last 50 years, rising feed costs remain a significant threat to producer profitability. There also is a greater emphasis being placed on reducing the negative impacts of dairy production on the environment; thus means to lower greenhouse gas (GHG) emissions and nutrient losses to the environment associated with cattle production are being sought. Improving feed efficiency among dairy cattle herds offers an opportunity to address both of these issues for the dairy industry. However, the best means to assess feed efficiency and make genetic progress in efficiency-related traits among lactating cows without negatively impacting other economically important traits is not entirely obvious. In this review, multiple measurements of feed efficiency for lactating cows are described, as well as the heritability of the traits and their genetic and phenotypic correlations with other production traits. The measure of feed efficiency, residual feed intake is discussed in detail in terms of the benefits for its selection, how it could be assessed in large commercial populations, as well as biological mechanisms contributing to its variation among cows, as it has become a commonly used method to estimate efficiency in the recent scientific literature. PMID:25482927

  10. Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru

    2015-10-01

    Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.

  11. Single-cell concepts for obtaining photovoltaic conversion efficiency over 30 percent

    NASA Technical Reports Server (NTRS)

    Fan, John C. C.

    1985-01-01

    Although solar photovoltaic conversion efficiencies over 30 percent (one sun, AM1) can be expected for multiple-cell configurations using spectral splitting techniques, the highest practical single-cell conversion efficiency that can be attained using present concepts is estimated to be about 27-28 percent. To achieve conversion efficiencies above 30 percent using single-cell configurations it will be necessary to employ different concepts, such as spectral compression and broad-band detection. The implementation of these concepts would require major breakthroughs that are not anticipated in the near future.

  12. Hierarchical Bayesian inference on genetic and non-genetic components of partial efficiencies determining feed efficiency in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cattle feed efficiency (FE) can be defined as the ability to convert DMI into milk energy (MILKE) and maintenance or metabolic body weight (MBW). In other words, DMI is conditional on MILKE and MBW (DMI|MILKE,MBW). These partial regressions or partial efficiencies (PE) of DMI on MILKE and MBW ...

  13. A comparison of crossbred and straightbred cow-calf pairs. I. Heterosis effects on total feed efficiency.

    PubMed

    Urick, J J; Pahnish, O F; Richardson, G V; Blackwell, R L

    1984-05-01

    Records of 104 crossbred and 33 straightbred individually fed cow-calf units were used to study the effects of heterosis on total cow-calf feed efficiency in the production of weight of calf at weaning, 168 d postweaning, slaughter and in the carcass. The cows were Angus, Hereford, Charolais and reciprocal crosses of these breeds. The calves were straightbred and all possible two-breed backcrosses and three-breed crosses produced from first cross cows. The efficiency of the cow-calf unit was defined as kg of calf produced per kg of total TDN (total digestible nutrients) consumed by the cow-calf pair. Total feed consumed by the cows was for an average period of 315 d, from approximately November 21 to October 2. Total calf TDN consisted of creep to weaning and feed during the postweaning fattening period to slaughter. For all measures of cow-calf unit efficiency studied, the heterosis estimates were small but generally positive, ranging from -.8 to 2.1%. The average advantage of all crosses over the straightbred parents for the conversion of total feed consumed by cow-calf pair to calf weight at weaning was 2%. Heterosis effects, individual and maternal combined, on the average, among two-breed backcrosses and the three-breed crosses were essentially the same. Among the three groups of first-cross cows compared, the study indicated that a slight advantage in total cow-calf efficiency was exhibited by the Angus X Hereford cross.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Microbial community profiles of the jejunum from steers differing in feed efficiency.

    PubMed

    Myer, P R; Wells, J E; Smith, T P L; Kuehn, L A; Freetly, H C

    2016-01-01

    Research regarding the association between the microbial community and host feed efficiency in cattle has primarily focused on the rumen. However, the various microbial populations within the gastrointestinal tract as a whole are critical to the overall well-being of the host and need to be examined when determining the interplay between host and nonhost factors affecting feed efficiency. The objective of this study was to characterize the microbial communities of the jejunum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual ADFI and ADG were determined from animals fed the same diet. At the end of each feeding period, steers were ranked based on their standardized distance from the bivariate mean (ADG and ADFI). Four steers with the greatest deviation within each Cartesian quadrant were sampled ( = 16/group; 2 groups). Bacterial 16S rRNA gene amplicons were sequenced from the jejunum content using next-generation sequencing technology. The phylum Firmicutes accounted for up to 90% of the populations within all samples and was dominated by the families Clostridiaceae and Ruminococcaceae. UniFrac principal coordinate analyses did not indicate any separation of microbial communities within the jejunum based on feed efficiency phenotype, and no significant changes were indicated by bacterial diversity or richness metrics. The relative abundances of microbial populations and operational taxonomic units did reveal significant differences between feed efficiency groups ( < 0.05), including the phylum Proteobacteria ( = 0.030); the families Lachnospiraceae ( = 0.035), Coriobacteriaceae ( = 0.012), and Sphingomonadaceae ( = 0.035); and the genera ( = 0.019), ( = 0.018), and ( = 0.022). The study identified jejunal microbial associations with feed efficiency, ADG, and ADFI. This study suggests the association of the jejunum microbial community as a factor influencing feed efficiency at the 16S level.

  15. Residual feed intake as a feed efficiency selection tool and its relationship with feed intake, performance and nutrient utilization in Murrah buffalo calves.

    PubMed

    Subhashchandra Bose, Bisitha Kattiparambil; Kundu, Shivlal Singh; Tho, Nguyen Thi Be; Sharma, Vijay Kumar; Sontakke, Umesh Balaji

    2014-04-01

    Residual feed intake (RFI) is the difference between the actual and expected feed intake of an animal based on its body weight and growth rate over a specific period. The objective of this study was to determine the RFI of buffalo calves using residuals from appropriate linear regression models involving dry matter intake (DMI), average daily gain (ADG) and mid-test metabolic body weight. Eighteen male Murrah buffalo calves of 5-7 months were selected and fed individually. A feeding trial using ad libitum feeding of total mixed ration (TMR, concentrate/roughage = 40:60) was conducted for 52 days in which the daily DMI, weekly body weight (BW) and growth rate of the calves were monitored. RFI of calves ranged from -0.20 to +0.23 kg/day. Mean DMI (in grams per kilogram of BW(0.75)) during the feeding trial period was significantly (P < 0.05) lower in low RFI group (79.66 g/kg BW(0.75)) compared to high RFI (87.74 g/kg BW(0.75)). Average initial BW, final BW and mid-test BW(0.75) did not differ (P > 0.05) between low and high RFI groups. Over the course of a trial period, low RFI group animals consumed 10% less feed compared to high RFI group of animals, yet performed in a comparable manner in terms of growth rate. Metabolizable energy for maintenance (MEm) was found to be significantly (P < 0.05) lower in low RFI group (13.54 MJ/100 kg BW) as compared to that of high RFI group (15.56 MJ/100 kg BW). The present study indicates that RFI is a promising selection tool for the selection of buffaloes for increased feed efficiency. PMID:24563229

  16. Efficiency dilution: long-term exergy conversion trends in Japan.

    PubMed

    Williams, Eric; Warr, Benjamin; Ayres, Robert U

    2008-07-01

    This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution. PMID:18678034

  17. Efficiency dilution: long-term exergy conversion trends in Japan

    SciTech Connect

    Eric Williams; Benjamin Warr; Robert U. Ayres

    2008-07-01

    This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution. 30 refs., 4 figs., 1 tab.

  18. Effects of zilpaterol hydrochloride on growth rates, feed conversion, and carcass traits in calf-fed Holstein steers.

    PubMed

    Beckett, J L; Delmore, R J; Duff, G C; Yates, D A; Allen, D M; Lawrence, T E; Elam, N

    2009-12-01

    Two experiments were conducted to evaluate the effectiveness of zilpaterol hydrochloride (ZH) to enhance growth performance and carcass characteristics in calf-fed Holstein steers. In Exp. 1, Holstein steers (n = 2,311) were fed in a large-pen trial in 2 phases at a commercial feed yard in the desert Southwest. In Exp. 2, a total of 359 steers were fed in a small-pen university study. In Exp. 1 and 2, cattle were implanted with a combination trenbolone acetate-estradiol implant approximately 120 d before slaughter. Cattle were fed ZH for 0, 20, 30, or 40 d before slaughter at a rate of 8.3 mg/kg (DM basis). A 3-d withdrawal was maintained immediately before slaughter. Cattle within an experiment were fed to a common number of days on feed. During the last 120 d before slaughter, ADG was not enhanced by feeding ZH for 20 d (P = 0.33 in Exp. 1, and P = 0.79 in Exp. 2). Gain-to-feed conversion was increased by feeding ZH for all durations in Exp. 1 (P < 0.05). Feeding ZH increased HCW by 9.3 (Exp. 2) to 11.6 (Exp. 1) kg at 20 d compared with the control groups. Across both experiments, dressing percent was increased for all durations of feeding ZH (P < 0.05). Although skeletal maturity score, liver integrity, lean color, fat thickness, and KPH were not affected by feeding ZH for 20 d in either experiment (P >or= 0.6), LM area was increased for all durations of feeding ZH (P < 0.05). The percentage of carcasses identified as USDA Choice was reduced (P < 0.01) for all durations of feeding ZH in Exp. 1. This effect was not observed in Exp. 2. Holstein steers clearly respond to the beta-agonist ZH, and 20 d of feeding ZH with a 3-d withdrawal significantly increased carcass weights, muscling, and carcass leanness.

  19. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    SciTech Connect

    Prinz, Friedrich B.; Bent, Stacey F.

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  20. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.

    PubMed

    Basarab, J A; Beauchemin, K A; Baron, V S; Ominski, K H; Guan, L L; Miller, S P; Crowley, J J

    2013-06-01

    Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFI fat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFI fat (efficient, -RFI fat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFI fat cattle (inefficient; +RFI fat). Few antagonistic effects have been reported for the relationships of RFI fat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFI fat cattle also produce 15% to 25% less enteric CH4 than +RFI fat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in -RFI fat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFI fat cattle. Rate

  1. Buckled graphene for efficient energy harvest, storage and conversion

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2016-10-01

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  2. Buckled graphene for efficient energy harvest, storage and conversion.

    PubMed

    Jiang, Jin-Wu

    2016-10-01

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy. PMID:27581194

  3. Buckled graphene for efficient energy harvest, storage and conversion.

    PubMed

    Jiang, Jin-Wu

    2016-10-01

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  4. Genomic Regions Associated with Feed Efficiency Indicator Traits in an Experimental Nellore Cattle Population

    PubMed Central

    Olivieri, Bianca Ferreira; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely dos Santos Gonçalves; Branco, Renata Helena; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão; Silva, Rafael Medeiros de Oliveira; Baldi, Fernando

    2016-01-01

    The objective of this study was to identify genomic regions and metabolic pathways associated with dry matter intake, average daily gain, feed efficiency and residual feed intake in an experimental Nellore cattle population. The high-density SNP chip (Illumina High-Density Bovine BeadChip, 777k) was used to genotype the animals. The SNP markers effects and their variances were estimated using the single-step genome wide association method. The (co)variance components were estimated by Bayesian inference. The chromosome segments that are responsible for more than 1.0% of additive genetic variance were selected to explore and determine possible quantitative trait loci. The bovine genome Map Viewer was used to identify genes. In total, 51 genomic regions were identified for all analyzed traits. The heritability estimated for feed efficiency was low magnitude (0.13±0.06). For average daily gain, dry matter intake and residual feed intake, heritability was moderate to high (0.43±0.05; 0.47±0.05, 0.18±0.05, respectively). A total of 8, 17, 14 and 12 windows that are responsible for more than 1% of the additive genetic variance for dry matter intake, average daily gain, feed efficiency and residual feed intake, respectively, were identified. Candidate genes GOLIM4, RFX6, CACNG7, CACNG6, CAPN8, CAPN2, AKT2, GPRC6A, and GPR45 were associated with feed efficiency traits. It was expected that the response to selection would be higher for residual feed intake than for feed efficiency. Genomic regions harboring possible QTL for feed efficiency indicator traits were identified. Candidate genes identified are involved in energy use, metabolism protein, ion transport, transmembrane transport, the olfactory system, the immune system, secretion and cellular activity. The identification of these regions and their respective candidate genes should contribute to the formation of a genetic basis in Nellore cattle for feed efficiency indicator traits, and these results would support

  5. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  6. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...

  7. Passive solar energy effects on egg production and feed efficiency phase II

    SciTech Connect

    MacDougall, E.A.

    1981-01-01

    The production efficiency of a small solar heated hen house are compared to those of a large commercial operation. The solar hen house proved to give higher egg production than the larger commercial operation. Feed efficiencies for the commercial operation are better than the solar hen house in reporting grain used per dozen eggs. 6 refs.

  8. Weak-signal conversion from 1550 to 532  nm with 84% efficiency.

    PubMed

    Samblowski, Aiko; Vollmer, Christina E; Baune, Christoph; Fiurášek, Jaromír; Schnabel, Roman

    2014-05-15

    We report on the experimental frequency conversion of a dim, coherent continuous-wave light field from 1550 to 532 nm with an external photon-number conversion efficiency of (84.4±1.5)%. In contrast to previous works, our conversion efficiency value incorporates all losses before the photoelectric detection, including those introduced by frequency filters. We used sum-frequency generation, which was realized in a standing-wave cavity built around a periodically poled type I potassium titanyl phosphate (PPKTP) crystal, pumped by an intense field at 810 nm. Our result is in full agreement with a numerical model. For optimized cavity coupler reflectivities, it predicts a conversion efficiency of up to 93% using the same PPKTP crystal.

  9. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  10. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Astrophysics Data System (ADS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-12-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  11. Multiscale-tailored bioelectrode surfaces for optimized catalytic conversion efficiency.

    PubMed

    Bon Saint Côme, Yémima; Lalo, Hélène; Wang, Zhijie; Etienne, Mathieu; Gajdzik, Janine; Kohring, Gert-Wieland; Walcarius, Alain; Hempelmann, Rolf; Kuhn, Alexander

    2011-10-18

    We describe the elaboration of a multiscale-tailored bioelectrocatalytic system. The combination of two enzymes, D-sorbitol dehydrogenase and diaphorase, is studied with respect to the oxidation of D-sorbitol as a model system. The biomolecules are immobilized in an electrodeposited paint (EDP) layer. Reproducible and efficient catalysis of D-sorbitol oxidation is recorded when this system is immobilized on a gold electrode modified by a self-assembled monolayer of 4-carboxy-(2,5,7-trinitro-9-fluorenylidene)malonitrile used as a mediator. The insertion of mediator-modified gold nanoparticles into the EDP film increases significantly the active surface area for the catalytic reaction, which can be further enhanced when the whole system is immobilized in macroporous gold electrodes. This multiscale architecture finally leads to a catalytic device with optimized efficiency for potential use in biosensors, bioelectrosynthesis, and biofuel cells.

  12. An efficient algorithm for geocentric to geodetic coordinate conversion

    SciTech Connect

    Toms, R.M.

    1995-09-01

    The problem of performing transformations from geocentric to geodetic coordinates has received an inordinate amount of attention in the literature. Numerous approximate methods have been published. Almost none of the publications address the issue of efficiency and in most cases there is a paucity of error analysis. Recently there has been a surge of interest in this problem aimed at developing more efficient methods for real time applications such as DIS. Iterative algorithms have been proposed that are not of optimal efficiency, address only one error component and require a small but uncertain number of relatively expensive iterations for convergence. In this paper a well known rapidly convergent iterative approach is modified to eliminate intervening trigonometric function evaluations. A total error metric is defined that accounts for both angular and altitude errors. The initial guess is optimized to minimize the error for one iteration. The resulting algorithm yields transformations correct to one centimeter for altitudes out to one million kilometers. Due to the rapid convergence only one iteration is used and no stopping test is needed. This algorithm is discussed in the context of machines that have FPUs and legacy machines that utilize mathematical subroutine packages.

  13. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    SciTech Connect

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1996-12-31

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}.

  14. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  15. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  16. Axicons for power conversion efficiency enhancement in solar cells for the visible spectrum

    NASA Astrophysics Data System (ADS)

    Podlipnov, V. V.; Porfirev, A. P.; Khonina, S. N.

    2016-08-01

    We investigate the possibility of using diffractive microaxicons with different periods for power conversion efficiency enhancement in solar cells. The microaxicons were manufactured by using electron beam lithography. The parameters of the manufactured microaxicons were measured using scanning electron microscopy (SEM). For imitation of solar light, we utilised a tunable laser (the used wavelength range is from 400 nm to 800 nm). Experimentally measured dependence of solar cell efficiency for the case of a combination of a solar cell and microaxicons of various types demonstrates a power conversion efficiency enhancement in the case of using such structures.

  17. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies.

    PubMed

    Zhou, Mi; Hernandez-Sanabria, Emma; Guan, Le Luo

    2009-10-01

    Cattle with high feed efficiencies (designated "efficient") produce less methane gas than those with low feed efficiencies (designated "inefficient"); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using approximately 800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, as revealed by the diversity indices of 0.84 and 0.42, respectively. Differences at the strain and genotype levels were also observed and found to be associated with feed efficiency in the host. No difference was detected in the total population of methanogens, but the prevalences of Methanosphaera stadtmanae and Methanobrevibacter sp. strain AbM4 were 1.92 (P < 0.05) and 2.26 (P < 0.05) times higher in inefficient animals, while Methanobrevibacter sp. strain AbM4 was reported for the first time to occur in the bovine rumen. Our data indicate that the methanogenic ecology at the species, strain, and/or genotype level in the rumen may play important roles in contributing to the difference in methane gas production between cattle with different feed efficiencies.

  18. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage. PMID:27394100

  19. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  20. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  1. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  2. Improved nutrient digestibility and retention partially explains feed efficiency gains in pigs selected for low residual feed intake.

    PubMed

    Harris, A J; Patience, J F; Lonergan, S M; J M Dekkers, C; Gabler, N K

    2012-12-01

    Residual feed intake (RFI) is a unique measure of feed efficiency (FE) and an alternative to traditional measures. The RFI is defined as the difference between the actual feed intake of a pig and its expected feed intake based on a given amount of growth and backfat. Therefore, selecting pigs with a low RFI (LRFI) results in a more feed-efficient animal for a given rate of growth. Our objective was to determine the extent to which apparent total tract digestibility of nutrients and energy use and retention may explain FE differences between pigs divergently selected for LRFI or high RFI (HRFI). After 7 generations of selection, 12 HRFI and 12 LRFI pigs (62 ± 3 kg BW) were randomly assigned to metabolism crates. Pigs had free access to a standard diet based on corn (Zea mays) and soybean (Glycine max) meal containing 0.4% TiO(2), an exogenous digestibility marker. After a 7-d acclimation, total urine and feces were collected for 72 h. Nutrient and energy digestibility, P digestibility, and N balance were then measured and calculated to determine differences between the RFI lines. As expected, ADFI was lower (2.0 vs. 2.6 kg; P < 0.01), ADG did not differ, and FE was higher in the LRFI (P < 0.001) compared to the HRFI pigs. The digestibility values for DM (87.3 vs. 85.9%), N (88.3 vs. 86.1%), and GE (86.9 vs. 85.4%) were higher (P ≤ 0.003) in the LRFI vs. HRFI pigs, respectively. The DE (16.59 vs. 16.32 MJ/kg DM) and ME (15.98 vs. 15.72 MJ/kg DM) values were also greater (P < 0.001) in LRFI pigs. When correcting for ADFI, P digestibility did not differ between the lines. However, the LRFI pigs tended to have improved N retention (P = 0.08) compared to HRFI pigs (36.9 vs. 32.1 g/d). In conclusion, the higher energy and nutrient digestibility, use, and retention may partially explain the superior FE seen in pigs selected for LRFI. PMID:23365317

  3. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  4. Systems Biology Analysis Merging Phenotype, Metabolomic and Genomic Data Identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and Cellular Maintenance Processes as Major Contributors to Genetic Variability in Bovine Feed Efficiency

    PubMed Central

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  5. Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and cellular maintenance processes as major contributors to genetic variability in bovine feed efficiency.

    PubMed

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  6. Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and cellular maintenance processes as major contributors to genetic variability in bovine feed efficiency.

    PubMed

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  7. Growth performance, nutrient utilization, and feed efficiency in broilers fed Tithonia diversifolia leaf meal as substitute of conventional feed ingredients in Mizoram

    PubMed Central

    Buragohain, Rajat

    2016-01-01

    Aim: The study was for assessment of growth performance, nutrient utilization, and feed efficiency in broilers fed rations with varying levels of Tithonia diversifolia leaf meal (TDLM) as a substitute of conventional feed ingredients in Mizoram. Materials and Methods: A total of 180, 1-day-old broiler chicks were randomly divided into six homogeneous groups and fed rations incorporated with TDLM (TDLM at 0% [TDLM-0], 2% [TDLM-2], 4% [TDLM-4], 6% [TDLM-6], 8% [TDLM-8], and 10% [TDLM-10] level as substitute of conventional feed ingredients) for 6 weeks. The chicks were reared in battery brooders for the first 2 weeks, and thereafter, in well-ventilated deep litter house following standard management protocols. Feed and drinking water were provided ad libitum to all the groups throughout the experiment. The daily feed intake and weekly body weight gain were recorded, and a metabolic trial for 3 days was conducted at the end of the 6th week. Results: Feed consumption decreased for inclusion of TDLM but without any significant differences, except during the 3rd week where it reduced significantly (p<0.05) at and above 6% TDLM in the ration. The average body weight gain decreased significantly (p<0.05) above 6% TDLM inclusion. The average body weights at 7th, 14th, and 21st day of age reduced significantly (p<0.05) from 4% to 10% TDLM inclusion level but was statistically non-significant up to 4% TDLM at 28th, 35th, and 42nd day of age. Body weight at 42nd day of age was 1624.72±30.52, 1616.66±17.84, 1592.60±19.24, 1404.61±17.76, 1188.29±17.67, and 1054.33±18.81 gin TDLM-0, TDLM-2, TDLM-4, TDLM-6, TDLM-8, and TDLM-10, respectively. The digestibility of nutrients decreased with increased inclusion level of TDLM. The digestibility coefficient of dry matter, crude protein, ether extract, and nitrogen free extract were significantly higher in TDLM-0, but crude fiber digestibility was comparable without any significant difference among the groups. Feed conversion ratio

  8. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  9. Efficient conversion of solar energy to biomass and electricity.

    PubMed

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  10. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  11. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels.

  12. Turbot Scophthalmus maximus: stocking density on growth, pigmentation and feed conversion

    NASA Astrophysics Data System (ADS)

    Ma, Aijun; Chen, Chao; Lei, Jilin; Chen, Siqing; Zhuang, Zhimeng; Wang, Yingeng

    2006-09-01

    Juvenile turbot ( Scophthalmus maximus) were reared in five different experiment groups in the initial stock densities at 0.28, 0.87, 1.12, 1.16, 2.75 kg/m2 respectively for the study of the density effect on growth, pigmentation and feed coefficient rate. The experiment lasted for 60 days with final stock densities at 1.91, 6.31, 8.86, 11.97, 17.67 kg/m2 respectively. Result showed that, in the same experiment condition, the stocking density has a positive effect on growth in low density and negative in high density. The SGR (special growth rate) was 3.189, 3.304, 3.447, 3.341, and 3.087 respectively. The uniformity of weight distributing among experiment groups decreased with increasing density. The stocking density had positive effect on feed coefficient rate. Group 1 had the least feed coefficient rate 0.96, and highest at 1.25 in Group 5, the highest density group. High stocking density inhibited the growth and increased the feed coefficient rate. The stocking density had negative relationship to pigmentation improvement for whitened fish.

  13. Effects of dietary biotin and avidin on growth, survival, feed conversion, biotin status and gene expression of zebrafish Danio rerio.

    PubMed

    Yossa, Rodrigue; Sarker, Pallab K; Karanth, Santhosh; Ekker, Marc; Vandenberg, Grant W

    2011-12-01

    A study was conducted to investigate the effects of dietary avidin on growth, survival, food conversion, biotin status and gene expression of zebrafish (Danio rerio Hamilton-Buchanan) juveniles (average wet mass 0.178 g) fed 7 purified diets for 12 weeks. Experimental diets were formulated to provide 0×, 1×, 15×, 30×, 60× and 120× excess avidin versus biotin kg(-1) diet, on a molar basis; a control diet contained neither supplemental biotin nor avidin. Fish fed the control diet had the lowest percentage weight gain and the highest mortality, while the highest percentage weight gain and the lowest mortality was observed with the 0× diet (P<0.05). A linear relationship was observed between feed conversion ratio (FCR) and dietary avidin (r=0.876; P<0.0001). Fish fed diets with 120× more avidin than biotin had the highest whole-body biotin content, while the lowest value was obtained with the control and avidin-free diets (P<0.05). Elevated levels of acetyl CoA carboxylase-A (acca), methylcrotonyl CoA carboxylase (mcc) and propionyl CoA carboxylase-A (pcca) transcripts were recorded in fish fed the control diet, in comparison to the other diets. A broken-line analysis indicated that feeding zebrafish a diet with 60 times more avidin than the dietary biotin requirement level will cause biotin deficiency signs.

  14. I. Evaluation of the impact of alternative light technology on male broiler chicken growth, feed conversion, and allometric characteristics.

    PubMed

    Rogers, Allison G; Pritchett, Elizabeth M; Alphin, Robert L; Brannick, Erin M; Benson, Eric R

    2015-03-01

    This study evaluates the impact of light-emitting diode (LED), cold cathode fluorescent (CCFL), and incandescent lamps on broiler performance. Male Ross 708 broilers (n=672) were raised to 6 wk age in 8 black-out modified large colony houses, under identical intermittent lighting conditions using 4 unique types of lamps, which were gradually dimmed throughout the study. Incandescent lamps served as the control; experimental technologies tested included CCFL and 2 different LED lamps. Each technology was tested in duplicate for each of 4 trials (8 replications total per technology) conducted across the course of one year to account for seasonal variance. Live performance for each technology was evaluated using live broiler body weight (BW), weight gain, feed conversion, and mortality. Birds were removed from each house at 7, 14, 35, and 42 d to be humanely euthanized, weighed, and necropsied for allometric tissue sample analysis. Relative to the technologies tested, results indicate that birds raised under incandescent lamps had significantly higher BW by 42 d, compared to birds raised under CCFL lamps, which had poorer BW performance (P=0.03). Birds raised under both LED technologies grew to final BWs similar to those raised under incandescent light, with significant differences in neither feed conversion nor mortality.

  15. Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows.

    PubMed

    Pryce, J E; Gonzalez-Recio, O; Nieuwhof, G; Wales, W J; Coffey, M P; Hayes, B J; Goddard, M E

    2015-10-01

    A new breeding value that combines the amount of feed saved through improved metabolic efficiency with predicted maintenance requirements is described. The breeding value includes a genomic component for residual feed intake (RFI) combined with maintenance requirements calculated from either a genomic or pedigree estimated breeding value (EBV) for body weight (BW) predicted using conformation traits. Residual feed intake is only available for genotyped Holsteins; however, BW is available for all breeds. The RFI component of the "feed saved" EBV has 2 parts: Australian calf RFI and Australian lactating cow RFI. Genomic breeding values for RFI were estimated from a reference population of 2,036 individuals in a multi-trait analysis including Australian calf RFI (n=843), Australian lactating cow RFI (n=234), and UK and Dutch lactating cow RFI (n=958). In all cases, the RFI phenotypes were deviations from a mean of 0, calculated by correcting dry matter intake for BW, growth, and milk yield (in the case of lactating cows). Single nucleotide polymorphism effects were calculated from the output of genomic BLUP and used to predict breeding values of 4,106 Holstein sires that were genotyped but did not have RFI phenotypes themselves. These bulls already had BW breeding values calculated from type traits, from which maintenance requirements in kilograms of feed per year were inferred. Finally, RFI and the feed required for maintenance (through BW) were used to calculate a feed saved breeding value and expressed as the predicted amount of feed saved per year. Animals that were 1 standard deviation above the mean were predicted to eat 66 kg dry matter less per year at the same level of milk production. In a data set of genotyped Holstein sires, the mean reliability of the feed saved breeding value was 0.37. For Holsteins that are not genotyped and for breeds other than Holsteins, feed saved is calculated using BW only. From April 2015, feed saved has been included as part of

  16. Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.

    1988-01-01

    The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.

  17. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

    NASA Astrophysics Data System (ADS)

    Majumder, Sagardip; Dhar, Jayabrata; Chakraborty, Suman

    2015-10-01

    We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories.

  18. Conversion efficiency in the process of copolarized spontaneous four-wave mixing

    SciTech Connect

    Garay-Palmett, Karina; U'Ren, Alfred B.; Rangel-Rojo, Raul

    2010-10-15

    We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We present results of numerical simulations, and compare them to values obtained from our analytical expressions, for the conversion efficiency as a function of several key experimental parameters.

  19. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors

    PubMed Central

    Yuan, Quan; Zhang, Yunfei; Chen, Yan; Wang, Ruowen; Du, Chaoling; Yasun, Emir; Tan, Weihong

    2011-01-01

    Plasmonic near-field coupling can induce the enhancement of photoresponsive processes by metal nanoparticles. Advances in nanostructured metal synthesis and theoretical modeling have kept surface plasmons in the spotlight. Previous efforts have resulted in significant intensity enhancement of organic dyes and quantum dots and increased absorption efficiency of optical materials used in solar cells. Here, we report that silver nanostructures can enhance the conversion efficiency of an interesting type of photosensitive DNA nanomotor through coupling with incorporated azobenzene moieties. Spectral overlap between the azobenzene absorption band and plasmonic resonances of silver nanowires increases light absorption of photon-sensitive DNA motor molecules, leading to 85% close-open conversion efficiency. The experimental results are consistent with our theoretical calculations of the electric field distribution. This enhanced conversion of DNA nanomotors holds promise for the development of new types of molecular nanodevices for light manipulative processes and solar energy harvesting. PMID:21596999

  20. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    PubMed Central

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  1. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-10-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth.

  2. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

    PubMed Central

    Majumder, Sagardip; Dhar, Jayabrata; Chakraborty, Suman

    2015-01-01

    We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories. PMID:26437925

  3. Effects of prey type on specific dynamic action, growth, and mass conversion efficiencies in the horned frog, Ceratophrys cranwelli.

    PubMed

    Grayson, Kristine L; Cook, Leslie W; Todd, M Jason; Pierce, D; Hopkins, William A; Gatten, Robert E; Dorcas, Michael E

    2005-07-01

    To be most energetically profitable, predators should ingest prey with the maximal nutritional benefit while minimizing the cost of processing. Therefore, when determining the quality of prey items, both the cost of processing and nutritional content must be considered. Specific dynamic action (SDA), the increase in metabolic rate associated with feeding in animals, is a significant processing cost that represents the total cost of digestion and assimilation of nutrients from prey. We examined the effects of an invertebrate diet (earthworms) and a vertebrate diet (newborn mice) on mass conversion efficiencies, growth, and SDA in the Chacoan horned frog, Ceratophrys cranwelli. We found the earthworm diet to be significantly lower in lipid, protein, and energy content when compared to the diet of newborn mice. Growth and mass conversion efficiencies were significantly higher in frogs fed newborn mice. However, mean SDA did not differ between frogs fed the two diets, a finding that contradicts many studies that indicate SDA increases with the protein content of the meal. Together, our results indicate that future studies evaluating the effect of meal type on bioenergetics of herpetofauna are warranted and may provide significant insight into the underlying factors driving SDA. PMID:15985380

  4. Effects of dietary fiber concentrations supplied by corn bran on feed intake growth and feed efficiency of channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study examined the effects of dietary fiber and digestible energy on the feed intake, growth, and feed efficiency of juvenile channel catfish Ictalurus punctatus. Fish with an initial weight of 9.8 ± 0.1 g/fish (mean ± SD) were stocked in 110-L flow-through aquariums and fed for 9 weeks ...

  5. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    SciTech Connect

    Morace, A.; Bellei, C.; Patel, P. K.; Bartal, T.; Kim, J.; Beg, F. N.; Willingale, L.; Maksimchuk, A.; Krushelnick, K.; Wei, M. S.; Batani, D.; Piovella, N.; Stephens, R. B.

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  6. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask.

    PubMed

    Ropagnol, Xavier; Morandotti, Roberto; Ozaki, Tsuneyuki; Reid, Matt

    2011-07-15

    We demonstrate improved optical-to-terahertz (THz) conversion efficiency and THz pulse shaping from an interdigitated GaAs large area photoconductive antenna by using a binary phase mask. The binary phase mask results in a time-delayed excitation of the adjacent antennas, which allows subsequent antennas to produce an additive field, thus resulting in a quasi-single-cycle THz pulse. We demonstrate control over the temporal profile of the THz waveform to maximize optical-to-THz conversion efficiency. PMID:21765501

  7. Efficient and monolithic polarization conversion system based on a polarization grating.

    PubMed

    Kim, Jihwan; Komanduri, Ravi K; Lawler, Kristopher F; Kekas, D Jason; Escuti, Michael J

    2012-07-10

    We introduce a new polarization conversion system (PCS) based on a liquid-crystal polarization grating (PG) and louvered wave plate. A simple arrangement of these elements laminated between two microlens arrays results in a compact and monolithic element, with the ability to nearly completely convert unpolarized input into linearly polarized output across most of the visible bandwidth. In our first prototypes, this PG-PCS approach manifests nearly 90% conversion efficiency of unpolarized to polarized for ±11° input light divergence, leading to an energy efficient picoprojector that presents high efficacy (12 lm/W) with good color uniformity. PMID:22781264

  8. Microbial community profiles of the colon from steers differing in feed efficiency.

    PubMed

    Myer, Phillip R; Wells, James E; Smith, Timothy P L; Kuehn, Larry A; Freetly, Harvey C

    2015-01-01

    Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed efficiency, since it is critical to the health and nutrition of the host. The objective of this study was to characterize the microbial communities of the colon among steers differing in feed efficiency. Individual feed intake (FI) and body weight (BW) gain were determined from animals fed the same ration, within two contemporary groups of steers. Four steers from each contemporary group within each Cartesian quadrant were sampled (n = 16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the colon content using next-generation sequencing technology. Within the colon content, UniFrac principal coordinate analyses did not detect any separation of microbial communities, and bacterial diversity or richness did not differ between efficiency groups. Relative abundances of microbial populations and operational taxonomic units did reveal significant differences between efficiency groups. The phylum Firmicutes accounted for up to 70% of the populations within all samples, and families Ruminococcaceae and Clostridiaceae were highly abundant. Significant population shifts in taxa were detected, including the families Ruminococcaceae, Lachnospiraceae, and Sphingomonadaceae, and the genera Butyrivibrio, Pseudobutyrivibrio, Prevotella, Faecalibacterium and Oscillospira. This study suggests the association of the colon microbial communities as a factor influencing feed efficiency at the 16S level.

  9. Microbial community profiles of the colon from steers differing in feed efficiency.

    PubMed

    Myer, Phillip R; Wells, James E; Smith, Timothy P L; Kuehn, Larry A; Freetly, Harvey C

    2015-01-01

    Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed efficiency, since it is critical to the health and nutrition of the host. The objective of this study was to characterize the microbial communities of the colon among steers differing in feed efficiency. Individual feed intake (FI) and body weight (BW) gain were determined from animals fed the same ration, within two contemporary groups of steers. Four steers from each contemporary group within each Cartesian quadrant were sampled (n = 16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the colon content using next-generation sequencing technology. Within the colon content, UniFrac principal coordinate analyses did not detect any separation of microbial communities, and bacterial diversity or richness did not differ between efficiency groups. Relative abundances of microbial populations and operational taxonomic units did reveal significant differences between efficiency groups. The phylum Firmicutes accounted for up to 70% of the populations within all samples, and families Ruminococcaceae and Clostridiaceae were highly abundant. Significant population shifts in taxa were detected, including the families Ruminococcaceae, Lachnospiraceae, and Sphingomonadaceae, and the genera Butyrivibrio, Pseudobutyrivibrio, Prevotella, Faecalibacterium and Oscillospira. This study suggests the association of the colon microbial communities as a factor influencing feed efficiency at the 16S level. PMID:26322260

  10. Microbial community profiles of the jejunum from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research regarding the association between the microbiome and host feed efficiency in cattle has primarily focused on the rumen. However, the various microbial populations within the gastrointestinal tract as a whole are critical to the overall well-being of the host and need to be examined when de...

  11. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measure of flight speed for cattle has been shown to be a predictive indicator of temperament and has also been associated with feed efficiency phenotypes, thus, genetic markers associated with both traits may assist with the selection of animals with calmer disposition and economic value. Chrom...

  12. US consortium for the genetic improvement of feed efficiency in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection is the only technology proven to unabatedly increase the food produced per animal. However, the cost and difficulty of measurement of feed efficiency (FE) in cattle has constrained quantitative genetic improvement to primarily output traits such as growth, meat yield and quality. As the wo...

  13. Effect of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile sablefish were fed a low taurine, basal feed with seven graded levels of supplemental taurine to determine taurine requirements for growth and feed efficiency. The basal feed was plant based, formulated primarily with soy and corn proteins with a minimal (9%) amount of fishmeal. The unsuppl...

  14. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    NASA Astrophysics Data System (ADS)

    Li, Qing; Davanço, Marcelo; Srinivasan, Kartik

    2016-06-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint <0.5 × 10-4 cm2) Si3N4 microring resonators. We investigate three frequency conversion configurations: spectral translation over a few nanometres within the 980 nm band; upconversion from 1,550 nm to 980 nm and downconversion from 980 nm to 1,550 nm. With conversion efficiencies ranging from 25% for the first process to >60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of <60 mW and background noise levels between a few femtowatts and a few picowatts, these devices are suitable for quantum frequency conversion of single-photon states from InAs/GaAs quantum dots. Simulations based on coupled mode equations and the Lugiato-Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  15. Efficient ortho-para conversion of H2 on interstellar grain surfaces

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Le Petit, Franck; Le Bourlot, Jacques

    2016-04-01

    Context. Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and it has been proposed that this mechanism plays a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in photo-dissociation regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Aims: We aim to build an accurate model of ortho-para conversion on dust surfaces based on the most recent experimental and theoretical results, and to validate it by comparison to observations of H2 rotational lines in PDRs. Methods: We propose a statistical model of ortho-para conversion on dust grains with fluctuating dust temperatures. It is based on a master equation approach. This computation is then coupled to full PDR models and compared to PDR observations. Results: We show that the observations of rotational H2 lines indicate a high conversion efficiency on dust grains and that this high efficiency can be accounted for if taking dust temperature fluctuations into account with our statistical model of surface conversion. Simpler models that neglect the dust temperature fluctuations do not reach the high efficiency deduced from the observations. Moreover, this high efficiency induced by dust temperature fluctuations is very insensitive to the values of the model's microphysical parameters. Conclusions: Ortho-para conversion on grains is thus an efficient mechanism in most astrophysical conditions and can play a significant role in controlling the ortho-para ratio.

  16. Temporal feeding pattern may influence reproduction efficiency, the example of breeding mares.

    PubMed

    Benhajali, Haifa; Ezzaouia, Mohammed; Lunel, Christophe; Charfi, Faouzia; Hausberger, Martine

    2013-01-01

    Discomfort in farm animals may be induced by inappropriate types or timing of food supplies. Thus, time restriction of meals and lack of roughage have been shown to be one source of emergence of oral stereotypies and abnormal behaviour in horses which have evolved to eat high-fibre diets in small amounts over long periods of time. This feeding pattern is often altered in domestic environment where horses are often fed low fibre meals that can be rapidly consumed. This study aimed at determining the effect of the temporal pattern of feeding on reproductive efficiency of breeding mares, One hundred Arab breeding mares were divided into two groups that differed only in the temporal pattern of roughage availability: only at night for the standard feeding pattern group (SFP mares), night and day for the "continuous feeding" group (CF mares). The total amount of roughage provided was the same as the CF mares received half of the hay during the day while in paddock (haynets). Mares were tested for oestrus detection by teasing with one stallion and were then examined clinically by rectal palpations and ultrasound before being mated naturally or inseminated by fresh or frozen semen. Multivariate logistic regression was used to analyse data. The treatment affected significantly the reproductive efficiency of the mares with fewer oestrus abnormalities (p = 0.0002) and more fertility (p = 0.024) in CF mares (conception rate = 81% versus 55% in SFP mares). Ensuring semi-continous feeding by providing roughage may be a way of fulfilling the basic physiological needs of the horses' digestive system, reducing stress and associated inhibitors of reproduction. To our knowledge, this study provides the first evidence of an impact of temporal feeding patterns on reproductive success in a Mammal. Temporal patterns of feeding may be a major and underestimated factor in breeding.

  17. Power conversion efficiency of semiconductor injection lasers and laser arrays in CW operation

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    The problem of optimizing power conversion efficiency of semiconductor lasers and laser arrays and minimizing efficiency degradation due to temperature effects is treated. A method for calculating this efficiency is described and some calculated results are presented and discussed. Under some conditions, a small increase in the thermal resistance of the device can result in a large reduction of its efficiency. Temperature effects are important in high-power semiconductor laser, and in particular in laser arrays, where low thermal resistance heat sinking may be crucial to the device operation.

  18. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq.

    PubMed

    Yi, Guoqiang; Yuan, Jingwei; Bi, Huijuan; Yan, Wei; Yang, Ning; Qu, Lujiang

    2015-01-01

    Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens. PMID:26418546

  19. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources.

    PubMed

    Detrain, Claire; Prieur, Jacques

    2014-05-01

    Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose.

  20. In-Depth Duodenal Transcriptome Survey in Chickens with Divergent Feed Efficiency Using RNA-Seq

    PubMed Central

    Yan, Wei; Yang, Ning; Qu, Lujiang

    2015-01-01

    Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens. PMID:26418546

  1. Is sequential feeding of whole wheat more efficient than ground wheat in laying hens?

    PubMed

    Umar Faruk, M; Bouvarel, I; Mallet, S; Ali, M N; Tukur, H M; Nys, Y; Lescoat, P

    2011-02-01

    The impact of sequential feeding of whole or ground wheat on the performance of layer hen was investigated using ISABROWN hens from 19 to 42 weeks of age. In addition, the effect of reduced dietary energy content of a complete diet was also investigated. Four treatments were tested. Whole wheat was alternated with a protein-mineral concentrate (balancer diet) in a treatment (sequential whole wheat: SWW), while another treatment alternated ground wheat (sequential ground wheat: SGW) with the same balancer diet. The control (C) was fed a complete layer diet conventionally. Another treatment (low energy: LE) was fed a complete diet conventionally. The diet contained lower energy (10.7 v. 11.6 MJ/kg) compared to the C. Each treatment was allocated 16 cages and each cage contained five birds. Light was provided 16 h daily (0400 to 2000 h). Feed offered was controlled (121 g/bird per day) and distributed twice (2 × 60.5 g) at 4 and 11 h after lights on. In the sequential treatment, only wheat (whole or ground) was fed during the first distribution and the balancer diet during the second distribution. Left over feed was always removed before the next distribution. The total feed intake was not different between SWW and SGW, but the two were lower than C (P < 0.05). Wheat intake was however, lowered with SGW compared to SWW (P < 0.05). Egg production and egg mass (EM) were not different between treatments. Egg weight was lower with SGW than with SWW (P < 0.05), but the two were similar to C. Body weight (BW) was lowered (P < 0.01) with SGW relative to SWW and C, SWW BW being also lower than the C one. The efficiency of egg production was increased (P < 0.01) with the SWW and SGW relative to the control. Birds fed LE had higher feed intake (P < 0.05) but they had similar egg production and EM compared to the two sequential treatments. The efficiency of feed utilization was also reduced (P < 0.01) with LE compared to SWW and SGW. It was concluded that sequential feeding is

  2. Basic limit for the efficiency of coherence-limited solar power conversion.

    PubMed

    Mashaal, Heylal; Gordon, Jeffrey M

    2014-09-01

    A basic upper bound for the efficiency of solar power conversion (generally, from any blackbody source) is derived, generalizing the Landsberg limit to arbitrary solar and sky view factors (e.g., arbitrary concentration or angular confinement), and to coherence-limited devices such as rectifying aperture antennas.

  3. Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency.

    PubMed

    Qiu, Longbin; He, Sisi; Yang, Jiahua; Deng, Jue; Peng, Huisheng

    2016-05-01

    A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications.

  4. Hybrid organic/inorganic thin-film multijunction solar cells exceeding 11% power conversion efficiency.

    PubMed

    Roland, Steffen; Neubert, Sebastian; Albrecht, Steve; Stannowski, Bernd; Seger, Mark; Facchetti, Antonio; Schlatmann, Rutger; Rech, Bernd; Neher, Dieter

    2015-02-18

    Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given.

  5. Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency.

    PubMed

    Qiu, Longbin; He, Sisi; Yang, Jiahua; Deng, Jue; Peng, Huisheng

    2016-05-01

    A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications. PMID:27002590

  6. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    SciTech Connect

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs.

  7. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  8. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  9. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    SciTech Connect

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  10. General Law of Electromagnetic Radiation Conversion Efficiency in Systems with Linear and Non-Linear Irreversibility

    NASA Astrophysics Data System (ADS)

    Chukova, Yu. P.

    2011-12-01

    It is shown, that the efficiency of conversion of solar radiation obeys the same law in alive and nonliving (technical) systems. For different processes in alive systems the evolution has selected different ranges of solar intensity and different conditions of irreversibility.

  11. The influence of particle size of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Liu, Yong; Liu, Xinfu; Tang, Oisheng

    2010-06-01

    The Eggers model was used to study the influence of two particle sizes of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus, in continuous flow-through seawater in 2.5-m 3 tanks in the laboratory. The sand lances (average body weight 0.85 ± 0.21 g) were fed larval (average body length 0.56 ± 0.08 mm) or adult (average body length 10.12 ± 1.61 mm) Artemia salina. The gastric evacuation rate of the fish feeding on larval Artemia was 0.214, higher than that of those feeding on adult Artemia (0.189). The daily food consumption of the fish feeding on larval Artemia was 60.14 kJ/100 g in terms of energy content, higher than that of the fish feeding on adult Artemia (51.69 kJ/100 g), but the daily growth rate of fish feeding on larval Artemia was 14.86 kJ/100 g, significantly lower than that of the fish feeding on adult Artemia (19.50 kJ/100 g), indicating that less energy was used for growth when the food particles were smaller. Slow growth of sand lances preying on larval Artemia was probably due to the high energy consumption during predation, consistent with the basic suppositions of optimal foraging theory.

  12. Protein requirements of bobwhite chicks for survival, growth and efficiency of feed utilization

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.; McClure, H.E.

    1942-01-01

    During the summer and fall of 1939 four experiments were conducted at the Patuxent Research Refuge, Bowie, Maryland, to determine the protein requirements of bobwhite chicks. A total of 816 chicks were used to compare six levels of protein, namely, 22,24,26, 28, 30, and 32 per cent.....From the three standpoints of survival, rate of growth, and efficiency of feed utilization for the first ten weeks of life, the 28 per cent level of protein gave the best results. During the ninth and tenth weeks, the highest efficiency of feed utilization was obtained on the 22 per cent level. The results indicate that after the birds have reached about twothirds of their mature weight, the difference in efficiency between a diet containing 28 per cent of protein and one containing 22 per cent may be small enough to justify, in the interest of economy, the use of a diet containing the lower percentage of protein.

  13. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOEpatents

    Wang, Yong , Liu; Wei

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  14. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle

    PubMed Central

    2014-01-01

    Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs. PMID:24476087

  15. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study.

    PubMed

    Llonch, Pol; Somarriba, Miguel; Duthie, Carol-Anne; Haskell, Marie J; Rooke, John A; Troy, Shane; Roehe, Rainer; Turner, Simon P

    2016-01-01

    The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower

  16. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study

    PubMed Central

    Llonch, Pol; Somarriba, Miguel; Duthie, Carol-Anne; Haskell, Marie J.; Rooke, John A.; Troy, Shane; Roehe, Rainer; Turner, Simon P.

    2016-01-01

    The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower

  17. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study.

    PubMed

    Llonch, Pol; Somarriba, Miguel; Duthie, Carol-Anne; Haskell, Marie J; Rooke, John A; Troy, Shane; Roehe, Rainer; Turner, Simon P

    2016-01-01

    The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower

  18. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Residual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and relevant to human health benefits such as longevity and cancer prevention. We generated transcript profiles of ...

  19. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%.

    PubMed

    Zhang, Maojie; Gu, Yu; Guo, Xia; Liu, Feng; Zhang, Shaoqing; Huo, Lijun; Russell, Thomas P; Hou, Jianhui

    2013-09-20

    A new copolymer PBDTP-DTBT based on benzothiadiazole and alkylphenyl substituted benzodithiophene is synthesized and characterized. The correlation of the evolution of the morphology and photovoltaic performance is investigated. The power conversion efficiency of the polymer solar cells based on PBDTP-DTBT/PC71 BM (1:1.5, w/w) reaches up to 8.07%, under the irradiation of AM 1.5G, 100 mW/cm(2) .

  20. RNA-Seq detection of differential gene expression in the rumen of beef steers associated with feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient utilization of feedstuffs is an economically important trait in beef production. The rumen is important to the digestive process of steers interacting with feed, microbial populations, and volatile fatty acids indicating it may play a critical role in feed efficiency. To gain an unders...

  1. In vitro ruminal fermentation of treated alfalfa silage using ruminal inocula from high and low feed-efficient lactating cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the effect of two additives on alfalfa silage and on in vitro ruminal fermentation when using ruminal inocula prepared from high feed-efficient (HE) and low feed-efficient (LE) lactating cows. Second and third cut alfalfa was harvested at 40% bloom stage, treated with con...

  2. DBD in burst mode: solution for more efficient CO2 conversion?

    NASA Astrophysics Data System (ADS)

    Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.

    2016-10-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16-26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles  <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.

  3. Enteric methane production from beef cattle that vary in feed efficiency.

    PubMed

    Freetly, H C; Brown-Brandl, T M

    2013-10-01

    We hypothesized that CH4 production will decrease with increased feed efficiency. Two experiments were conducted to determine CH4 production of cattle that differed in feed efficiency. Cattle in both studies were selected from larger contemporary groups. Animals furthest from the confidence ellipse that resulted from regressing BW gain on DMI were selected. In the first experiment, 113 crossbred steers were evaluated for feed efficiency for 64 d. Steers were 355 ± 1 d of age and weighed 456 ± 10 kg when they began the study. Steers were fed a ration that consisted of (DM basis) 82.8% corn, 12.8% corn silage, and 4.5% supplement [contains 0.065% monensin, 32% CP (28% NPN), 7.5% Ca, 0.8% P, 4.8% NaCl, 1.8% K, and 55,116 IU/kg vitamin A]. Thirty-seven steers were selected to measure CH4 production. In the second experiment, 197 heifers were evaluated for feed efficiency for 64 d. Heifers were 286 ± 1 d of age and weighed 327 ± 2 kg when they began the study. Heifers were fed a ration that consisted of (DM basis) 60% corn silage, 30% alfalfa hay, and 10% wet distillers grains with solubles. Forty-seven heifers were selected to measure CH4 production. Methane production was measured with respiration calorimeters. In both experiments, cattle had ad libitum access to feed, and DMI consumed during the 24 h before CH4 production was measured. Methane production was collected for a 6-h period on untrained cattle. Consequently, methane production is not a quantitative measure of daily methane production; rather, it is an index value to rank cattle. Multiple regression analysis was used to determine the relationship between either BW gain:DMI ratio or residual feed intake (RFI) on CH4 production after adjusting for the previous 24-h DMI. In the steers, BW gain:DMI ratio and previous 24-h feed intake accounted for little of the variance in CH4 production (R(2) = 0.009), and neither did RFI and previous 24-h feed intake (R(2) = 0.001). In the heifers, the BW gain:DMI ratio

  4. [Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].

    PubMed

    Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian

    2011-07-01

    A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.

  5. High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    PubMed Central

    Lin, Chi-Feng; Zhang, Mi; Liu, Shun-Wei; Chiu, Tien-Lung; Lee, Jiun-Haw

    2011-01-01

    This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption. PMID:21339999

  6. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system

    SciTech Connect

    Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H.

    1996-10-01

    Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

  7. Conducting polymer soft actuators based on polypyrrole films—energy conversion efficiency

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiichi; Fujisue, Hisashi; Kunifusa, Masakatsu; Takashima, Wataru

    2007-04-01

    The electrochemomechanical deformation (ECMD) of conducting polymers can be used to create soft actuators or transducers for the conversion of electric power to mechanical work. Polypyrrole (PPy) films, which were electrodeposited from a methyl benzoate solution of tetrabutylammonium (TBA) trifluoromethansulfonate, TBACF3SO3, were used to investigate the energy conversion efficiency. The films are known to have high tensile strength and to produce large strain at high stress in ECMD. The current as a function of load stress under constant applied potentials versus a reference electrode was studied in various electrolytes. Reduction currents increased with increasing load stress for contraction of the film (lifting weights) as well as for the oxidation current (expansion), indicating that the electrical input was sensing the load hung on the actuators. During the contraction, the conversion efficiency was estimated from the mechanical work energy. The maximum work energy-per-cycle was 140 kJ m-3. It has been found that the energy conversion efficiencies are very small (<0.25%). Most of the input electrical energy is stored electrochemically, but a significant fraction is also dissipated.

  8. High conversion efficiency pumped-cavity second harmonic generation of a diode laser

    SciTech Connect

    Keicher, D.M.

    1994-01-01

    To investigate the feasibility of producing a compact, efficient blue laser source, pumped-cavity second harmonic generation of diode lasers was explored. It is desirable to have such lasers to increase optical disk storage density, for color displays and for under-the-sea green-blue optical signal transmission. Based on assumed cavity losses, a cavity was designed and numerical analysis predicted an overall conversion efficiency to the second harmonic wavelength of 76% from a 75 mW diode laser. The diode laser used in these experiments had a single longitudinal and a single transverse mode output at 860 nm. The best conversion efficiency obtained (26%) was less than optimum due to the 2.5% single-pass linear losses associated with the cavity. However, calculations based on these higher losses are in good agreement with the experimentally determined values. In additions, a factor of 1.65 increase in the second harmonic output power is anticipated by reducing the input mirror reflectivity to better impedance-match the cavity. With this relatively low second harmonic conversion, the power to light conversion is 7.8%.

  9. Artificial feeding Rice stripe virus enables efficient virus infection of Laodelphax striatellus.

    PubMed

    Huo, Yan; Chen, Liying; Su, Lei; Wu, Yao; Chen, Xiaoying; Fang, Rongxiang; Zhang, Lili

    2016-09-01

    Rice stripe virus (RSV), the causative agent of rice stripe disease, is transmitted by Laodelphax striatellus in a persistent-propagative manner. Efficient virus acquisition is primary for studies of virus transmission and virus-insect vector interactions. However, under greenhouse conditions, less than 30% of the L. striatellus population, on average, become viruliferous during feeding on RSV-infected plants. Here, we explored a method for efficient RSV acquisition by feeding the insects with a virus-containing artificial diet. Virus particles were partially purified from frozen infected rice leaves. A series of RSV concentrations in a 5% sucrose solution were tested in the feed of L. striatellus nymphs. The percentage of infected insects increased along with the increasing viral concentration, and the highest infection percentage 96% was achieved using a 1200ngμL(-1) crude RSV suspension after 48h feeding. RSV particles acquired in this manner were able to spread to L. striatellus salivary glands. This improved method of obtaining viruliferous insects should assist the study of RSV transmission mechanisms in L. striatellus. PMID:27283882

  10. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows.

    PubMed

    Manafiazar, G; Goonewardene, L; Miglior, F; Crews, D H; Basarab, J A; Okine, E; Wang, Z

    2016-03-01

    The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width

  11. New method to increase the energy conversion efficiency of thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Kido, Aiko; Sakamoto, Shin-ichi; Taga, Kazusa; Watanabe, Yoshiaki

    2015-10-01

    Many researches have been reported to improve an energy conversion efficiency of thermoacoustic engine. Proposed improvement methods by our group were a phase adjuster (PA) and expanding phase adjuster (EPA) devices. They act as the amplifier and stabilizer of the system oscillation. However, there are some problems for these devices. Because of the solidified device and located in the thermoacoustic tube, it is difficult to tune and move them to the best setting position during system operation. Therefore, it is necessary to find more easy methods that produce the same amplifier and stabilizer effects of the PA and EPA. In this report, we propose the local heating method. Experiments are carried out using the loop-tube-type thermoacoustic system. Two electric heaters are set on the system, one is for the PM stack and the other is for the proposed heater HPA. The setting position of the HPA is easily changed, and then the HPA is moved to the various positions from the PM stack along the system. Resonant mode was changed depending on the setting position of HPA. As the result of the change of resonant mode, energy conversion efficiency is also changed. Especially the resonant mode is realized in the single wavelength mode, it is confirmed that, the energy conversion efficiency in substantially increased compare with the system without the HPA. These observed phenomena are similar to the behavior of EPA. Therefore, the presented method can be performed as an easier method to perform a high efficiency and stable oscillation.

  12. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. PMID:27430171

  13. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    PubMed

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales. PMID:21147977

  14. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    PubMed

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales.

  15. Conversion efficiency limits and bandgap designs for multi-junction solar cells with internal radiative efficiencies below unity.

    PubMed

    Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-05-16

    We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.

  16. Conversion efficiency limits and bandgap designs for multi-junction solar cells with internal radiative efficiencies below unity.

    PubMed

    Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-05-16

    We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles. PMID:27409948

  17. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light.

    PubMed

    Que, Meidan; Que, Wenxiu; Yin, Xingtian; Chen, Peng; Yang, Yawei; Hu, Jiaxing; Yu, Boyan; Du, Yaping

    2016-08-14

    Up-conversion β-NaYF4:Yb(3+),Tm(3+)/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as-fabricated devices were also investigated. The results indicate that the PCE of the optimized device achieves 16.9%, which is 20% higher than that of the device without introducing NYF NPs, and the steady-state PCE of the as-fabricated devices is close to its transient-state PCE. The up-conversion effect of NYF NPs is conducive to higher device performance rather than the nanoparticles as scattering centers to increase possible light absorption of the perovskite film or the electronic effect of the NaYF4 shell surface. These results can be further confirmed by finite-difference time-domain simulation. Photoluminescence results suggest that the multiphonon-assistance can accelerate the nonradiative recombination process at a lower temperature. Incorporating NYF NPs into the electron transporting layer opens a new approach to a promising family of electron transporting materials for mesoscopic perovskite solar cells. PMID:27406678

  18. An Oral Pressure Conversion Ratio as a Predictor of Vocal Efficiency.

    PubMed

    Titze, Ingo R; Maxfield, Lynn; Palaparthi, Anil

    2016-07-01

    Voice production is an inefficient process in terms of energy expended versus acoustic energy produced. A traditional efficiency measure, glottal efficiency, relates acoustic power radiated from the mouth to aerodynamic power produced in the trachea. This efficiency ranges between 0.0001% and 1.0%. It involves lung pressure and hence would appear to be a useful effort measure for a given acoustic output. Difficulty in the combined measurement of lung pressure and tracheal airflow, however, has impeded clinical application of glottal efficiency. This article uses the large data base from Schutte (1980) and a few new measurements to validate a pressure conversion ratio (PCR) as a substitute for glottal efficiency. PCR has the potential for wide application because of low cost and ease of use in clinics and vocal studios. PMID:26164123

  19. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  20. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  1. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  2. Efficient and high speed depth-based 2D to 3D video conversion

    NASA Astrophysics Data System (ADS)

    Somaiya, Amisha Himanshu; Kulkarni, Ramesh K.

    2013-09-01

    Stereoscopic video is the new era in video viewing and has wide applications such as medicine, satellite imaging and 3D Television. Such stereo content can be generated directly using S3D cameras. However, this approach requires expensive setup and hence converting monoscopic content to S3D becomes a viable approach. This paper proposes a depth-based algorithm for monoscopic to stereoscopic video conversion by using the y axis co-ordinates of the bottom-most pixels of foreground objects. This code can be used for arbitrary videos without prior database training. It does not face the limitations of single monocular depth cues nor does it combine depth cues, thus consuming less processing time without affecting the efficiency of the 3D video output. The algorithm, though not comparable to real-time, is faster than the other available 2D to 3D video conversion techniques in the average ratio of 1:8 to 1:20, essentially qualifying as high-speed. It is an automatic conversion scheme, hence directly gives the 3D video output without human intervention and with the above mentioned features becomes an ideal choice for efficient monoscopic to stereoscopic video conversion. [Figure not available: see fulltext.

  3. The effects of prey species on food conversion efficiency and growth of an insectivorous lizard.

    PubMed

    Rich, C Nelson; Talent, Larry G

    2008-05-01

    Little is known about the effects of different prey species on lizard growth. We conducted a 6-week study to determine the relative effects of prey species on growth parameters of hatchling western fence lizards, Sceloporus occidentalis. Lizards were fed house cricket nymphs, Acheta domesticus, or mealworm larvae, Tenebrio molitor. The effects of prey species on growth were determined by measuring prey consumption, gross conversion efficiency of food [gain in mass (g)/food consumed (g)], gain in mass, and gain in snout-vent length. Lizards grew well on both the prey species. However, lizards that fed on crickets consumed a significantly higher percentage of their body mass per day than those fed mealworms. Nevertheless, lizards that consumed mealworms ingested significantly more metabolizable energy, had significantly higher food conversion efficiencies, significantly higher daily gains in mass, and significantly greater total growth in mass than lizards that fed on crickets. PMID:19360616

  4. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors

    NASA Astrophysics Data System (ADS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-09-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT-graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT-graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene-CNT/Si solar cells reveal power conversion efficiencies up to 8.50%.

  5. 8.5 W VECSEL output at 1270 nm with conversion efficiency of 59%.

    PubMed

    Keller, S T; Sirbu, A; Iakovlev, V; Caliman, A; Mereuta, A; Kapon, E

    2015-06-29

    We report on 1270 nm vertical-external-cavity surface-emitting lasers (VECSELs) with up to 59% conversion efficiency and maximum output power of 8.5 W (pump limited), at 5°C heat sink temperature. These VECSELs comprised wafer-fused gain mirrors in the flip-chip (thin-disk) heat dissipation scheme. The reflected pump light from the gain mirror surface was found to depend considerably on temperature and pump power. PMID:26191752

  6. A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes.

    PubMed

    Jung, Je Won; Baeck, Seung-Jae; Perumalsamy, Haribalan; Hansson, Bill S; Ahn, Young-Joon; Kwon, Hyung Wook

    2015-08-26

    In mosquitoes, precise and efficient finding of a host animal is crucial for survival. One of the poorly understood aspects of mosquito blood-feeding behavior is how these insects target an optimal site in order to penetrate the skin and blood vessels without alerting the host animal. Here we provide new findings that a piercing structure of the mouthpart of the mosquitoes, the stylet, is an essential apparatus for the stage in blood feeding. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Inhibition of gene expression of these AaOrs delayed blood feeding behaviors of the mosquito. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal.

  7. A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes

    PubMed Central

    Won Jung, Je; Baeck, Seung-Jae; Perumalsamy, Haribalan; Hansson, Bill S.; Ahn, Young-Joon; Kwon, Hyung Wook

    2015-01-01

    In mosquitoes, precise and efficient finding of a host animal is crucial for survival. One of the poorly understood aspects of mosquito blood-feeding behavior is how these insects target an optimal site in order to penetrate the skin and blood vessels without alerting the host animal. Here we provide new findings that a piercing structure of the mouthpart of the mosquitoes, the stylet, is an essential apparatus for the stage in blood feeding. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Inhibition of gene expression of these AaOrs delayed blood feeding behaviors of the mosquito. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal. PMID:26306800

  8. Season of testing and its effect on feed intake and efficiency in growing beef cattle.

    PubMed

    Mujibi, F D N; Moore, S S; Nkrumah, D J; Wang, Z; Basarab, J A

    2010-12-01

    feed efficiency.

  9. Improvement of proton exchange membrane fuel cell overall efficiency by integrating heat-to-electricity conversion

    NASA Astrophysics Data System (ADS)

    Xie, Chungang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    Proton exchange membrane fuel cells (PEMFCs) have shown to be well suited for distributed power generation due to their excellent performance. However, a PEMFC produces a considerable amount of heat in the process of electrochemical reaction. It is desirable to use thermal energy for electricity generation in addition to heating applications. Based on the operating characteristics of a PEMFC, an advanced thermal energy conversion system using "ocean thermal energy conversion" (OTEC) technology is applied to exploit the thermal energy of the PEMFC for electricity generation. Through this combination of technology, this unique PEMFC power plant not only achieves the combined heat and power efficiency, but also adequately utilizes heat to generate more valuable electricity. Exergy analysis illustrates the improvement of overall efficiency and energy flow distribution in the power plant. Analytical results show that the overall efficiency of the PEMFC is increased by 0.4-2.3% due to the thermal energy conversion (TEC) system. It is also evident that the PEMFC should operate within the optimal load range by balancing the design parameters of the PEMFC and of the TEC system.

  10. Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories.

    PubMed

    Wobbe, Lutz; Remacle, Claire

    2015-05-10

    Microalgae represent promising organisms for the sustainable production of commodities, chemicals or fuels. Future use of such systems, however, requires increased productivity of microalgal mass cultures in order to reach an economic viability for microalgae-based production schemes. The efficiency of sunlight-to-biomass conversion that can be observed in bulk cultures is generally far lower (35-80%) than the theoretical maximum, because energy losses occur at multiple steps during the light-driven conversion of carbon dioxide to organic carbon. The light-harvesting system is a major source of energy losses and thus a prime target for strain engineering. Truncation of the light-harvesting antenna in the algal model organism Chlamydomonas reinhardtii was shown to be an effective way of increasing culture productivity at least under saturating light conditions. Furthermore engineering of the Calvin-Benson cycle or the creation of photorespiratory bypasses in A. thaliana proved to be successful in terms of achieving higher biomass productivities. An efficient generation of novel microalgal strains with improved sunlight conversion efficiencies by targeted engineering in the future will require an expanded molecular toolkit. In the meantime random mutagenesis coupled to high-throughput screening for desired phenotypes can be used to provide engineered microalgae.

  11. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency.

    PubMed

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho

    2015-12-01

    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device.

  12. Enhanced conversion efficiency in dye-sensitized solar cells with nanocomposite photoanodes

    NASA Astrophysics Data System (ADS)

    Jin, X. Y.; Liu, Z. Y.; Lu, Y. M.; Wang, X. Q.; Cai, C. B.; Hu, L. H.; Dai, S. Y.

    2011-06-01

    Nanocomposite architectures consisting of conductive carbon nanotubes (CNTs) and nanocrystalline TiO2 films are prepared as photoanodes of dye-sensitized solar cells (DSCs). It is observed that both the electron transport time and electron lifetime decrease with CNT addition, implying that its incorporation is effective in enhancing the electro-conductivity of mesoscopic TiO2 contacts. To rectify CNT orientations, a parallel electric field is applied during the sample preparation, which gives rise to a significant enhancement in the energy conversion efficiency of resultant DSCs. Electrochemical impedance spectroscopy clarifies the photoelectrochemical processes, with enhanced contribution to the efficient electron transport, arising from the increased CNT orientation.

  13. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  14. A polymer tandem solar cell with 10.6% power conversion efficiency

    PubMed Central

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  15. X-ray conversion efficiency measurements for CsI and Sn

    NASA Astrophysics Data System (ADS)

    Benage, John; Keiter, Paul; Lanier, Nick

    2009-11-01

    We measured the absolute conversion efficiency of Sn and CsI in the energy range of 3900 to 5600 eV using the Omega laser at the Laboratory for Laser Energetics. The laser intensity was varied from 2x10^15 W/cm^2 to 2x10^16 W/cm^2. The efficiency measurements were for 1 ns laser pulse widths and were determined based on previous calibration measurements for several x-ray films. To obtain the efficiencies, we measured absolute film exposures in several energy bands by employing different x-ray filters. The overall efficiency was then determined by calibrating these individual band measurements to the overall spectrum. One band was used as a high energy background measurement. Our results indicate the overall conversion efficiency was relatively insensitive to intensity in this regime and in general was of order 0.1-1%. We conclude with a discussion of the usefulness of such broadband backlighters for HED experiments.

  16. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  17. Breeding salmonids for feed efficiency in current fishmeal and future plant-based diet environments.

    PubMed

    Quinton, Cheryl D; Kause, Antti; Koskela, Juha; Ritola, Ossi

    2007-01-01

    The aquaculture industry is increasingly replacing fishmeal in feeds for carnivorous fish with soybean meal (SBM). This diet change presents a potential for genotype-environment (G x E) interactions. We tested whether current salmonid breeding programmes that evaluate and select within fishmeal diets also improve growth and efficiency on potential future SBM diets. A total of 1680 European whitefish from 70 families were reared with either fishmeal- or SBM-based diets in a split-family design. Individual daily gain (DG), daily feed intake (DFI) and feed efficiency (FE) were recorded. Traits displayed only weak G x E interactions as variances and heritabilities did not differ substantially between the diets, and cross-diet genetic correlations were near unity. In both diets, DFI exhibited moderate heritability and had very high genetic correlation with DG whereas FE had low heritability. Predicted genetic responses demonstrated that selection to increase DG and FE on the fishmeal diet lead to favourable responses on the SBM diet. Selection for FE based on an index including DG and DFI achieved at least double FE gain versus selection on DG alone. Therefore, current breeding programmes are improving the biological ability of salmonids to use novel plant-based diets, and aiding the aquaculture industry to reduce fishmeal use.

  18. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  19. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

    PubMed Central

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154

  20. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion.

    PubMed

    Schaller, R D; Klimov, V I

    2004-05-01

    We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

  1. Temperature responses of substrate carbon conversion efficiencies and growth rates of plant tissues.

    PubMed

    Hansen, Lee D; Thomas, Nathan R; Arnholdt-Schmitt, Birgit

    2009-12-01

    Growth rates of plant tissues depend on both the respiration rate and the efficiency with which carbon is incorporated into new structural biomass. Calorespirometric measurement of respiratory heat and CO2 rates, from which both efficiency and growth rate can be calculated, is a well established method for determining the effects of rapid temperature changes on the respiratory and growth properties of plant tissues. The effect of the alternative oxidase/cytochrome oxidase activity ratio on efficiency is calculated from first principles. Data on the temperature dependence of the substrate carbon conversion efficiency are tabulated. These data show that epsilon is maximum and approximately constant through the optimum growth temperature range and decreases rapidly as temperatures approach temperature limits to growth. The width of the maximum and the slopes of decreasing epsilon at high and low temperatures vary greatly with species, cultivars and accessions.

  2. Efficient powder blending in support of plutonium conversion for mixed oxide fuel

    SciTech Connect

    Dennison, D.K.; Brucker, J.P.; Martinez, H.E.

    1999-06-07

    This paper describes a unique system that is used to mix and blend multiple batches of plutonium oxide powder of various consistencies into an equivalent number of identical and homogeneously mixed batches. This system is being designed and built to support the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos TA-55 Plutonium Facility. The ARIES program demonstrates dismantlement of nuclear pits, retrieval of the plutonium components, and conversion of the plutonium into an oxide for eventual use in mixed oxide (MOX) fuel for nuclear reactors. The purpose of this powder blending work is to assure that ARIES oxide is converted into an unclassified homogeneous mixture and that consistent feed material is available for MOX fuel assembly. This blending system is being assembled in a selected glovebox a TA-55 using an LANL designed split/combine apparatus, a commercial Turbula blending unit, and several additional supporting hardware components.

  3. Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed "typical" 1957 and 1991 broiler diets.

    PubMed

    Havenstein, G B; Ferket, P R; Scheideler, S E; Larson, B T

    1994-12-01

    The relative contributions of genetic selection and dietary regimen on the performance of broilers was assessed. Body weight, feed consumption, mortality (M), and the degree of tibial dyschondroplasia (TD) were measured in the 1957 Athens-Canadian Randombred Control (ACRBC) strain of broilers and in the 1991 Arbor Acres (AA) feather-sexable strain when fed "typical" 1957 and 1991 diets. Energy and protein levels, vitamin and mineral packs, and the coccidiostats used in the two dietary regimens were chosen to be representative of those in use by the industry for the two time periods. Eight treatment groups, i.e., two strains, two sexes, and two dietary regimens, were assigned into four blocks of eight litter floor pens for grow out. The 1957 diets were fed as mash, and the 1991 starter and grower diets were fed as crumbles and pellets, respectively. Feed consumption and BW were recorded at 21, 42, 56, 70, and 84 d of age, a period covering the normal marketing ages for the two broilers. Mortality and the cause of death was recorded daily. The incidence and severity of TD was assessed using a Lixiscope at 42 d of age. Average BW were 190, 508, 790, 1,087, and 1,400 g for the ACRBC on the 1957 diets vs 700, 2,132, 3,108, 3,812, and 4,498 g for the AA on the 1991 diets at 21, 42, 56, 70, and 84 d of age, respectively. The 1991 diets increased the BW of the AA by an average of 14% (20% at 42 d, but only 8% at 84 d) and of the ACRBC by 22%. The BW advantage for the 1991 diet over the 1957 diet for the AA was less for males than for females after 42 d of age, and the advantage decreased with age, probably due to the increasing incidence of leg problems. The M for AA was 9.1% vs 3.3% for the ACRBC at 42 d. Most of the ACRBC M occurred before 21 d, whereas M occurred throughout for the AA, with most after 21 d due to flip-overs and ascites. The feed conversion at 42 d for the ACRBC on the 1957 diet was 3.00 vs 2.04 for the AA on the 1991 diet. The AA on the 1991 diet had a

  4. Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion.

    PubMed

    Chen, Wei; Qiu, Yongcai; Yang, Shihe

    2012-08-21

    ZnO nanotetrapods are distinguished by their unique nanocrystalline geometric form with four tetrahedrally directed arms, which endows them the ability to handily assemble three-dimensional network structures. Such network structures, coupled with the intrinsically excellent electronic properties of the semiconducting ZnO, have proved advantageous for building photoelectrodes in energy conversion devices since they allow fast vectorial electron transport. In this review article, we summarize recent efforts, with partial emphasis on our own, in the development of ZnO nanotetrapod-based devices for solar energy conversion, including dye-sensitized solar cells and photoelectrochemical cells for water splitting. A pure ZnO nanotetrapod network was firstly demonstrated to have excellent charge collection properties even with just physical contacts. Composition design of ZnO nanotetrapods/SnO(2) nanoparticles yielded a high efficiency of 4.91% in flexible DSSCs. More significantly, by secondary branching and nitrogen doping, a record performance for water splitting has been achieved. A perspective on future research directions in ZnO nanotetrapod-based solar energy conversion devices is also discussed together with possible strategies of pursuit. It is hoped that the results obtained so far with the ZnO nanotetrapods could inspire and catalyze future developments of solar energy conversion systems based on branched nanostructural materials, contributing to solving global energy and environmental issues.

  5. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-01

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency.

  6. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-01

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. PMID:23716123

  7. Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator

    NASA Astrophysics Data System (ADS)

    Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.; Akbashev, Andrew R.; Polemi, Alessia; Qi, Yubo; Gu, Zongquan; Young, Steve M.; Hawley, Christopher J.; Imbrenda, Dominic; Xiao, Geoffrey; Bennett-Jackson, Andrew L.; Johnson, Craig L.

    2016-09-01

    Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley-Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm2) capable of generating a current density of 17 mA cm-2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.

  8. Modeling recombination processes and predicting energy conversion efficiency of dye sensitized solar cells from first principles

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Meng, Sheng

    2014-03-01

    We present a set of algorithms based on solo first principles calculations, to accurately calculate key properties of a DSC device including sunlight harvest, electron injection, electron-hole recombination, and open circuit voltages. Two series of D- π-A dyes are adopted as sample dyes. The short circuit current can be predicted by calculating the dyes' photo absorption, and the electron injection and recombination lifetime using real-time time-dependent density functional theory (TDDFT) simulations. Open circuit voltage can be reproduced by calculating energy difference between the quasi-Fermi level of electrons in the semiconductor and the electrolyte redox potential, considering the influence of electron recombination. Based on timescales obtained from real time TDDFT dynamics for excited states, the estimated power conversion efficiency of DSC fits nicely with the experiment, with deviation below 1-2%. Light harvesting efficiency, incident photon-to-electron conversion efficiency and the current-voltage characteristics can also be well reproduced. The predicted efficiency can serve as either an ideal limit for optimizing photovoltaic performance of a given dye, or a virtual device that closely mimicking the performance of a real device under different experimental settings.

  9. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator

    NASA Astrophysics Data System (ADS)

    Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.; Akbashev, Andrew R.; Polemi, Alessia; Qi, Yubo; Gu, Zongquan; Young, Steve M.; Hawley, Christopher J.; Imbrenda, Dominic; Xiao, Geoffrey; Bennett-Jackson, Andrew L.; Johnson, Craig L.

    2016-09-01

    Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley–Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm2) capable of generating a current density of 17 mA cm–2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.

  10. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  11. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  12. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    PubMed

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-01

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW. PMID:27137588

  13. A meta-analysis of nutrient intake, feed efficiency and performance in cattle grazing on tropical grasslands.

    PubMed

    Boval, M; Edouard, N; Sauvant, D

    2015-06-01

    It is essential to quantify the potential of tropical grasslands to allow significant feed efficiency for grazing livestock in controlled conditions such as at pasture. We conducted a quantitative analysis of published studies reporting the experimental results of average daily gains (ADG) and diet characteristics obtained specifically under grazing conditions (17 publications and 41 experiments), which have been less studied compared with controlled conditions in stalls. The database was analyzed to determine the average and range of values obtained for ADG (g/kg BW), dry matter digestibility, intake (DMI) and digestible DMI (DDMI, g/kg BW) and feed conversion efficiencies (FCE), as well as to predict the response of these parameters to the main strategies investigated in the literature - that is, mainly the stocking rate (SR) and the concentrate intake (CI). The ADG reached 1.2 kg BW per day and was directly linked to DDMI (ADG=-1.63+0.42 DDMI -0.0084 DDMI2, n=90, r.m.s.e=0.584, R 2=0.93). The DDMI, which was representative of the nutrient input, was driven mainly by DMI rather than dry matter digestibility, whereas these two parameters did not correlate (r=0.068, P=0.56). The average global FCE (0.11 g ADG/g DDMI) showed a greater association with the metabolic FCE (0.17 g ADG/g DMI) than the digestive FCE (0.62). The CI (g DM/kg BW) increased ADG (ADG=2376+CI 56.1, n=16, r.m.s.e.=441, R 2=0.95). The SR expressed as kg BW/ha decreased the individual ADG by 1.19 g/kg BW per additional ton of BW/ha, whereas the global ADG calculated per ha increased by 0.57 per additional ton BW/ha. When the SR was expressed as kg BW/ton DM and per ha rather than as kg BW/ha, the impact on the individual ADG decreased by 0.18 or 0.86 g per additional ton BW/ha, depending on the initial BW of the cattle. These results provide a better view of the potential performance and feeding of cattle in tropical grasslands. The results provide an improved quantification of the relationships

  14. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    PubMed

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.

  15. Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls.

    PubMed

    Fontoura, A B P; Montanholi, Y R; Diel de Amorim, M; Foster, R A; Chenier, T; Miller, S P

    2016-01-01

    The beef industry has emphasized the improvement of feed utilization, as measured by modeling feed intake through performance traits to calculate residual feed intake (RFI). Evidence supports an inverse relationship between feed efficiency and reproductive function. The objective of this study was to determine the relationship of reproductive assessments and RFI unadjusted (RFI(Koch)) or adjusted for body composition (RFI(us)) and the relationship among fertility-related parameters. In total, 34 crossbred bulls were housed together for 112 days of performance evaluation, followed by assessment of scrotum IR imaging, scrotal circumference, testes ultrasonography and semen quality parameters at 377±33.4 days of age. Bulls were slaughtered at 389±34.0 days of age, and analyses of carcass composition, biometrics and histomorphometry of the testis and epididymis were conducted. Bulls were grouped into two subpopulations based on divergence of RFI, and within each RFI model either by including 50% of the population (Halves, high and low RFI, n=17) or 20.6% extremes of the population (Tails, high and low RFI, n=7). The means of productive performance and fertility-related measures were compared through these categories. Pearson's correlation was calculated among fertility-related measures. In the Halves subpopulation of the RFI(us), sperm of low-RFI bulls had decreased progressive motility (47.30% v. 59.90%) and higher abundance of tail abnormalities (4.30% v. 1.80%) than that of high-RFI bulls. In the Tails subpopulation of the RFI(Koch), low RFI displayed less variation in the scrotum surface temperature (0.62°C v. 1.16°C), decreased testis echogenicity (175.50 v 198.00 pixels) and larger (60.90 v. 56.80 mm(2)) but less-developed seminiferous tubules than high-RFI bulls. The evaluation of fertility-related parameters indicated that a higher percentage of immature seminiferous tubules was correlated with occurrence of sperm with distal droplets (r=0.59), a larger

  16. Influence of feed efficiency classification on diet digestibility and growth performance of beef steers.

    PubMed

    Russell, J R; Minton, N O; Sexten, W J; Kerley, M S; Hansen, S L

    2016-04-01

    The diet digestibility and feed efficiency (FE) relationship is not well characterized in cattle. The study objective was to determine effects of growing phase FE and diet as well as finishing phase diet on diet digestibility and finishing phase FE. Two groups, totaling 373 crossbred steers, were fed for 70 d at the University of Missouri for the growing phase and then shipped to Iowa State University (ISU) for finishing. GrowSafe feed bunks were used during both the growing and the finishing phases. Steers were fed either growing phase whole shell corn (G-Corn) or growing phase roughage-based (G-Rough) diets. Within each group, the 12 greatest and 12 least feed efficient steers from each growing diet ( = 96 total; 48 steers/group; 488 ± 5 kg) were selected for further evaluation. At ISU, steers were fed an average of 10 g TiO/steer daily in receiving phase diets similar to growing diets for 15 d, with fecal grab samples collected on d 14 and 15 to determine diet DM digestibility during receiving (GDMdig). For finishing, steers were transitioned to byproduct-based diets (F-Byp) or corn-based diets (F-Corn) with 12 steers per growing-finishing diet combination per group. Optaflexx (200 mg/d) was fed for 28 d before harvest, and the TiO protocol was repeated immediately before introducing Optaflexx to determine diet DM digestibility during finishing (FDMdig). Data from the 2 groups (96 steers) were pooled, and steers were ranked by growing phase G:F and then classified as the 24 greatest feed efficient (HFE) or 24 least feed efficient (LFE) steers from each growing diet. Data were analyzed using PROC MIXED of SAS with group applied as a fixed effect. There was a positive correlation between GDMdig and FDMdig for steers fed nutritionally similar diets during both feeding phases, G-Rough/F-Byp steers ( = 0.68, < 0.01) and G-Corn/F-Corn steers ( = 0.49, = 0.02), but a negative correlation for G:F between phases in G-Rough/F-Corn steers ( = -0.57, < 0.01). Finishing G

  17. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light

    NASA Astrophysics Data System (ADS)

    Que, Meidan; Que, Wenxiu; Yin, Xingtian; Chen, Peng; Yang, Yawei; Hu, Jiaxing; Yu, Boyan; Du, Yaping

    2016-07-01

    Up-conversion β-NaYF4:Yb3+,Tm3+/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as-fabricated devices were also investigated. The results indicate that the PCE of the optimized device achieves 16.9%, which is 20% higher than that of the device without introducing NYF NPs, and the steady-state PCE of the as-fabricated devices is close to its transient-state PCE. The up-conversion effect of NYF NPs is conducive to higher device performance rather than the nanoparticles as scattering centers to increase possible light absorption of the perovskite film or the electronic effect of the NaYF4 shell surface. These results can be further confirmed by finite-difference time-domain simulation. Photoluminescence results suggest that the multiphonon-assistance can accelerate the nonradiative recombination process at a lower temperature. Incorporating NYF NPs into the electron transporting layer opens a new approach to a promising family of electron transporting materials for mesoscopic perovskite solar cells.Up-conversion β-NaYF4:Yb3+,Tm3+/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as

  18. Bivariate Genome-Wide Association Analysis of the Growth and Intake Components of Feed Efficiency

    PubMed Central

    Beever, Jonathan E.; Bollero, Germán A.; Southey, Bruce R.; Faulkner, Daniel B.; Rodriguez-Zas, Sandra L.

    2013-01-01

    Single nucleotide polymorphisms (SNPs) associated with average daily gain (ADG) and dry matter intake (DMI), two major components of feed efficiency in cattle, were identified in a genome-wide association study (GWAS). Uni- and multi-SNP models were used to describe feed efficiency in a training data set and the results were confirmed in a validation data set. Results from the univariate and bivariate analyses of ADG and DMI, adjusted by the feedlot beef steer maintenance requirements, were compared. The bivariate uni-SNP analysis identified (P-value <0.0001) 11 SNPs, meanwhile the univariate analyses of ADG and DMI identified 8 and 9 SNPs, respectively. Among the six SNPs confirmed in the validation data set, five SNPs were mapped to KDELC2, PHOX2A, and TMEM40. Findings from the uni-SNP models were used to develop highly accurate predictive multi-SNP models in the training data set. Despite the substantially smaller size of the validation data set, the training multi-SNP models had slightly lower predictive ability when applied to the validation data set. Six Gene Ontology molecular functions related to ion transport activity were enriched (P-value <0.001) among the genes associated with the detected SNPs. The findings from this study demonstrate the complementary value of the uni- and multi-SNP models, and univariate and bivariate GWAS analyses. The identified SNPs can be used for genome-enabled improvement of feed efficiency in feedlot beef cattle, and can aid in the design of empirical studies to further confirm the associations. PMID:24205251

  19. A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.

  20. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.

    PubMed

    Cushing, Scott K; Bristow, Alan D; Wu, Nianqiang

    2015-11-28

    Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.

  1. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  2. Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma

    SciTech Connect

    Cummins, Thomas; Li Bowen; O'Gorman, Colm; Dunne, Padraig; Sokell, Emma; O'Sullivan, Gerry; Otsuka, Takamitsu; Yugami, Noboru; Higashiguchi, Takeshi; Jiang Weihua; Endo, Akira

    2012-02-06

    We have demonstrated an efficient extreme ultraviolet (EUV) source at 6.7 nm by irradiating Gd targets with 0.8 and 1.06 {mu}m laser pulses of 140 fs to 10 ns duration. Maximum conversion efficiency of 0.4% was observed within a 0.6% bandwidth. A Faraday cup observed ion yield and time of flight signals for ions from plasmas generated by each laser. Ion kinetic energy was lower for shorter pulse durations, which yielded higher electron temperatures required for efficient EUV emission, due to higher laser intensity. Picosecond laser pulses were found to be the best suited to 6.7 nm EUV source generation.

  3. The Upper Bound on Solar Power Conversion Efficiency Through Photonic Engineering

    NASA Astrophysics Data System (ADS)

    Xu, Yunlu; Munday, Jeremy

    The power conversion efficiency is a key parameter by which different photovoltaic devices are compared. The maximum value can be calculated under steady-state conditions where the photon flux absorbed by the device equals the outgoing flux of particles (also known as the principle of detailed balance). The photonic engineering of a solar cell offers a new alternative for boosting efficiency. We show that, for an ideally photonic engineered solar cell, its efficiency is subject to an upper bound dictated by a generalized form of detailed balance equation where nano-concentration is taken into account. Results under realistic operating conditions and recent experimental studies will also be discussed. Authors acknowledge the University of Maryland for startup funds to initiate this project and support by the National Science Foundation under Grant CBET-1335857.

  4. Microporous polyvinylidene fluoride film with dense surface enables efficient piezoelectric conversion

    NASA Astrophysics Data System (ADS)

    Chen, Dajing; Zhang, John X. J.

    2015-05-01

    We demonstrate that asymmetric porous polyvinylidene fluoride (PVDF) film, with pores mostly distributed in the bulk but not at the surfaces, can be used as a highly efficient piezoelectric energy generation device. For such microporous PVDF film with dense or pore-free surface, piezoelectric theory shows the efficiency of energy conversion by piezoelectric device depends upon the structure compressibility. Film mechanical properties can be controlled by dispersing micro-scale pores in a polymer matrix with a dense top layer. Piezoelectric output is enhanced by optimization of PVDF micro-structure and electromechanical coupling efficiency. The power output increased three folds with a designed three-dimensional asymmetric porous structure as compared to solid film.

  5. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications. PMID:27427668

  6. Enhanced Solar Cell Conversion Efficiency Using Birefringent Liquid Crystal Polymer Homeotropic Films from Reactive Mesogens

    PubMed Central

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  7. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    PubMed

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  8. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2016-08-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  9. Enhanced solar cell conversion efficiency using birefringent liquid crystal polymer homeotropic films from reactive mesogens.

    PubMed

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  10. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters.

    PubMed

    Yang, M D; Liu, Y K; Shen, J L; Wu, C H; Lin, C A; Chang, W H; Wang, H H; Yeh, H I; Chan, W H; Parak, W J

    2008-09-29

    We studied the photoluminescence (PL) and photovoltaic current-voltage characteristics of the three-junction InGaP/InGaAs/Ge solar cells by depositing Au nanoclusters on the cell surface. The increases of the PL intensity and short-circuit current after incorporation of Au nanoclusters are evident. An increase of 15.3% in energy conversion efficiency (from 19.6 to 22.6%) is obtained for the three-junction solar cells in which Au nanoclusters have been incorporated. We suggest that the increased light trapping due to radiative scattering from Au nanoclusters is responsible for improving the performance of the three-junction solar cells.

  11. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  12. First-Generation Subporphyrinatoboron(III) Sensitizers Surpass the 10 % Power Conversion Efficiency Threshold.

    PubMed

    Copley, Graeme; Hwang, Daesub; Kim, Dongho; Osuka, Atsuhiro

    2016-08-22

    Subporphyrinatoboron(III) (SubB) sensitizers were synthesized for use in dye-sensitized solar cells (DSSCs). The prototype, which comprises a sterically demanding 3,5-di-tert-butylphenyl scaffold, a meso-ethynylphenyl spacer, and a cyanoacrylic acid anchoring group, achieved an open-circuit voltage VOC of 836 mV, short-circuit current density JSC of 15.3 mA cm(-2) , fill factor of 0.786, and a photon-to-current conversion efficiency of 10.1 %. Such astonishing figures suggest that a bright future lies ahead for SubB in the realm of DSSCs. PMID:27482949

  13. PAR (photosynthetically active radiation) conversion efficiencies of a tropical rain forest

    SciTech Connect

    Luxmoore, R.J.; Saldarriaga, J.G.

    1988-01-01

    The mean annual quantities of photosynthetically active radiation (PAR) absorbed during various stage of regeneration of a tropical rain forest in the upper Rio Negro region of Colombia and Venezuela were estimated for the intervals between clearcut and 1, 3, 10, 20, 35, 60, 80, and 200 years of growth. The forest phytomass and litterfall at each storage were from previous studies, and the data were used to calculate the mean annual quantity of net dry matter production per unit of absorbed PAR, the PAR conversion efficiency. 7 refs., 2 figs., 1 tab.

  14. Efficient conversion of allitol to D-psicose by Bacillus pallidus Y25.

    PubMed

    Poonperm, Wayoon; Takata, Goro; Ando, Yasuyo; Sahachaisaree, Verasak; Lumyong, Pipob; Lumyong, Saisamorn; Izumori, Ken

    2007-03-01

    An efficient method for conversion of allitol to D-psicose was achieved by a resting cell reaction of Bacillus pallidus Y25 for the first time. Notably, it was possible to produce D-allose and D-altrose from allitol directly via D-psicose by prolonging the reaction time. This method was applied for the preparation of D-psicose using the extract of Itea virginica as a starting material in this study. D-Psicose which is the absolutely key precursor for the production of other six carbon sugars could be obtained as the sole product at high yield.

  15. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  16. Analysis of the acoustic conversion efficiency for infrasound from atmospheric entry of NEO`s

    SciTech Connect

    Whitaker, R.W.; ReVelle, D.O.

    1996-02-01

    ReVelle (1995) has recently presented a summary of available infrasonic signals from near earth objects (NEO`s) that entered the earth`s atmosphere between 1960-1980. We will analyze these signals using a formalism developed by Cox (1958) to calculate the energy of explosive sources in the atmosphere. For each source we will calculate the acoustic conversion efficiency for each source, i.e., the fraction of the original source energy that is available to couple into an acoustic wave. Based on results in Cox with conventional explosions, this quantity is expected to depend weakly on the range from the source. Since this quantity is difficult to estimate using fundamental blast wave theories, we instead use well-known, and independently calibrated, semi-empirical source energy-wave period (at maximum amplitude) scaling relations developed in the 1960-1975 period by the U.S. Air Force to determine the source energy, E{sub s}, from observations. Using E{sub s} and range to the source along with various observed signal and atmospheric properties, the efficiency can be computed, similar calculations have been done for other relevant atmospheric phenomena for low altitude sources. For example, thunder observations at relatively close range have been used by Few and co-workers to determine an acoustic conversion efficiency of about 0.4%. The only previous estimation for meteors was made by Astapovich (1946) who determined the acoustic efficiency to be less than 0.01%. By computing this efficiency factor we hope to predict the expected detection rate of large NEO`s for the proposed CTBT global scale infrasonic array systems, and to establish the rate of false alarms due to natural atmospheric explosions.

  17. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    PubMed

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.

  18. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth

    PubMed Central

    Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-01-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573

  19. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    PubMed

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573

  20. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  1. Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage

    SciTech Connect

    Kekuda, Dhananjaya; Chu, Chih-Wei

    2011-10-20

    We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

  2. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    SciTech Connect

    E.J. Brown; C.T. Ballinger; S.R. Burger; G.W. Charache; L.R. Danielson; D.M. DePoy; T.J. Donovan; M. LoCascio

    2000-05-30

    The performance of a 1 cm{sup 2} thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage.

  3. Power conversion efficiency enhancement in OPV devices using spin 1/2 molecular additives

    NASA Astrophysics Data System (ADS)

    Basel, Tek; Vardeny, Valy; Yu, Luping

    2014-03-01

    We investigated the power conversion efficiency of bulk heterojunction OPV cells based on the low bandgap polymer PTB7, blend with C61-PCBM. We also employed the technique of photo-induced absorption, PA; electrical and magneto-PA (MPA) techniques to understand the details of the photocurrent generation process in this blend. We found that spin 1/2 molecular additives, such as Galvinoxyl (Gxl) radicals dramatically enhance the cell efficiency; we obtained 20% increase in photocurrent upon Gxl doping with 2% weight. We explain our finding by the ability of the spin 1/2 radicals to interfere with the known major loss mechanism in the cell due to recombination of charge transfer exciton at the D-A interface via triplet excitons in the polymer donors. Supported by National Science Foundation-Material Science & Engineering Center (NSF-MRSEC), University of Utah.

  4. The atomistic origin of interface confinement and enhanced conversion efficiency in Si nanowire solar cells.

    PubMed

    He, Yan; Quan, Jun; Ouyang, Gang

    2016-03-14

    The photoelectric properties of Si nanowires (SiNWs) under interface confinement are investigated based on the atomic-bond-relaxation consideration and the detailed balance principle. An analytical model is developed to elucidate the interface confinement and power conversion efficiency (PCE). It is found that the band curvature and surface barrier height decrease with decreasing size. The interface recombination rate and PCE can be determined by the size, shell thickness and local interface conditions. Our theoretical results show evident improvement in the PCE of SiNWs under interface confinement compared to that of a bare nanowire, highlighting the feasibility of the epitaxial layer as a booster for highly efficient SiNW solar cells.

  5. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes

    PubMed Central

    Akizuki, Naoto; Aota, Shun; Mouri, Shinichiro; Matsuda, Kazunari; Miyauchi, Yuhei

    2015-01-01

    Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100–200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range. PMID:26568250

  6. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Akizuki, Naoto; Aota, Shun; Mouri, Shinichiro; Matsuda, Kazunari; Miyauchi, Yuhei

    2015-11-01

    Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100-200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range.

  7. The atomistic origin of interface confinement and enhanced conversion efficiency in Si nanowire solar cells.

    PubMed

    He, Yan; Quan, Jun; Ouyang, Gang

    2016-03-14

    The photoelectric properties of Si nanowires (SiNWs) under interface confinement are investigated based on the atomic-bond-relaxation consideration and the detailed balance principle. An analytical model is developed to elucidate the interface confinement and power conversion efficiency (PCE). It is found that the band curvature and surface barrier height decrease with decreasing size. The interface recombination rate and PCE can be determined by the size, shell thickness and local interface conditions. Our theoretical results show evident improvement in the PCE of SiNWs under interface confinement compared to that of a bare nanowire, highlighting the feasibility of the epitaxial layer as a booster for highly efficient SiNW solar cells. PMID:26883245

  8. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  9. Manipulating grain processing method and roughage level to improve feed efficiency in feedlot cattle.

    PubMed

    Turgeon, O A; Szasz, J I; Koers, W C; Davis, M S; Vander Pol, K J

    2010-01-01

    The effects of feeding finishing diets containing whole corn with no roughage on performance and carcass characteristics of feedlot steers were evaluated in 6 trials conducted at commercial research facilities (Bos Technica Research Services Inc., Salina, KS) in the Southern Plains of the United States. One hundred and two feedlot pens containing 6,895 steers were represented. All trials were designed as randomized complete blocks with pen serving as the experimental unit. Steers were fed and managed similarly across all trials. Treatments consisted of a typical control finishing diet with various grain sources and processing methods that contained roughage and a finishing diet containing whole corn (8 to 23% of diet DM) but without added roughage. Final BW was greater (P < 0.1) for steers fed typical finishing diets than for steers fed whole corn diets without roughage in 5 of the 6 trials. Feeding finishing diets containing whole corn but without roughage resulted in decreased (P < 0.1) ADG and carcass ADG in 5 of the 6 trials. However, DMI also was less (P < 0.1) for steers fed whole corn finishing diets without roughage in all trials such that feeding whole corn diets without roughage improved (P < 0.05) G:F (BW basis) in 2 of the 6 trials, and improved (P < 0.1) G:F based on carcass weight in 5 of the 6 trials. Dry matter intake as a percentage of BW daily across trials was well predicted from percentage of dietary NDF from roughage, being 1.906 + 0.0199 (+/-0.0012) NDF (P < 0.05). Performance-based NE(g) content of the diet was greater (P < 0.07) for steers fed whole corn diets without roughage. Differences in USDA yield and quality grades were inconsistent. Results indicate that feeding diets containing whole corn with no added roughage tends to decrease DMI and ADG in finishing steers, but improves feed efficiency and performance-calculated dietary NE(g).

  10. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas.

    PubMed

    Krupová, Z; Krupa, E; Michaličková, M; Wolfová, M; Kasarda, R

    2016-01-01

    Economic values of clinical mastitis, claw disease, and feed efficiency traits along with 16 additional production and functional traits were estimated for the dairy population of the Slovak Pinzgau breed using a bioeconomic approach. In the cow-calf population (suckler cow population) of the same breed, the economic values of feed efficiency traits along with 15 further production and functional traits were calculated. The marginal economic values of clinical mastitis and claw disease incidence in the dairy system were -€ 70.65 and -€ 26.73 per case per cow and year, respectively. The marginal economic values for residual feed intake were -€ 55.15 and -€ 54.64/kg of dry matter per day for cows and breeding heifers in the dairy system and -€ 20.45, -€ 11.30, and -€ 6.04/kg of dry matter per day for cows, breeding heifers, and fattened animals in the cow-calf system, respectively, all expressed per cow and year. The sums of the relative economic values for the 2 new health traits in the dairy system and for residual feed intake across all cattle categories in both systems were 1.4 and 8%, respectively. Within the dairy production system, the highest relative economic values were for milk yield (20%), daily gain of calves (20%), productive lifetime (10%), and cow conception rate (8%). In the cow-calf system, the most important traits were weight gain of calves from 120 to 210 d and from birth to 120 d (19 and 14%, respectively), productive lifetime (17%), and cow conception rate (13%). Based on the calculation of economic values for traits in the dual-purpose Pinzgau breed, milk production and growth traits remain highly important in the breeding goal, but their relative importance should be adapted to new production and economic conditions. The economic importance of functional traits (especially of cow productive lifetime and fertility) was sufficiently high to make the inclusion of these traits into the breeding goal necessary. An increased interest

  11. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas.

    PubMed

    Krupová, Z; Krupa, E; Michaličková, M; Wolfová, M; Kasarda, R

    2016-01-01

    Economic values of clinical mastitis, claw disease, and feed efficiency traits along with 16 additional production and functional traits were estimated for the dairy population of the Slovak Pinzgau breed using a bioeconomic approach. In the cow-calf population (suckler cow population) of the same breed, the economic values of feed efficiency traits along with 15 further production and functional traits were calculated. The marginal economic values of clinical mastitis and claw disease incidence in the dairy system were -€ 70.65 and -€ 26.73 per case per cow and year, respectively. The marginal economic values for residual feed intake were -€ 55.15 and -€ 54.64/kg of dry matter per day for cows and breeding heifers in the dairy system and -€ 20.45, -€ 11.30, and -€ 6.04/kg of dry matter per day for cows, breeding heifers, and fattened animals in the cow-calf system, respectively, all expressed per cow and year. The sums of the relative economic values for the 2 new health traits in the dairy system and for residual feed intake across all cattle categories in both systems were 1.4 and 8%, respectively. Within the dairy production system, the highest relative economic values were for milk yield (20%), daily gain of calves (20%), productive lifetime (10%), and cow conception rate (8%). In the cow-calf system, the most important traits were weight gain of calves from 120 to 210 d and from birth to 120 d (19 and 14%, respectively), productive lifetime (17%), and cow conception rate (13%). Based on the calculation of economic values for traits in the dual-purpose Pinzgau breed, milk production and growth traits remain highly important in the breeding goal, but their relative importance should be adapted to new production and economic conditions. The economic importance of functional traits (especially of cow productive lifetime and fertility) was sufficiently high to make the inclusion of these traits into the breeding goal necessary. An increased interest

  12. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    NASA Astrophysics Data System (ADS)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  13. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    NASA Astrophysics Data System (ADS)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  14. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  15. Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Juan; Li, Chong; Zhou, Hong-Yi; Wu, Hua; Luan, Xin-Xin; Shi, Lei; Guo, Xia

    2015-02-01

    The maximum power conversion efficiencies of the top-emitting, oxide-confined, two-dimensional integrated 2×2 and 4×4 vertical-cavity surface-emitting laser (VCSEL) arrays with the oxide-apertures of 6 μm, 16 μm, 19 μm, 26 μm, 29 μm, 36 μm, 39 μm, and 46 μm are fabricated and characterized, respectively. The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly. A maximum value of 27.91% at an oxide-aperture of 18.6 μm is achieved by simulation. The experimental data are well consistent with the simulation results, which are analyzed by utilizing an empirical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501 and 61335004) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019)

  16. [Research practices of conversion efficiency of resources utilization model of castoff from Chinese material medica industrialization].

    PubMed

    Duan, Jin-Ao; Su, Shu-Lan; Guo, Sheng; Liu, Pei; Qian, Da-Wei; Jiang, Shu; Zhu, Hua-Xu; Tang, Yu-Ping; Wu, Qi-Nan

    2013-12-01

    The industrialization chains and their products, which were formed from the process of the production of medicinal materials-prepared drug in pieces and deep processed product of Chinese material medica (CMM) resources, have generated large benefits of social and economic. However, The large of herb-medicine castoff of "non-medicinal parts" and "rejected materials" produced inevitably during the process of Chinese medicinal resources produce and process, and the residues, waste water and waste gas were produced during the manufactured and deep processed product of CMM. These lead to the waste of resources and environmental pollution. Our previous researches had proposed the "three utilization strategies" and "three types of resources models" of herb-medicine castoff according to the different physicochemical property of resources constitutes, resources potential and utility value of herb-medicine castoff. This article focus on the conversion efficiency of resources model and analysis the ways, technologies, practices, and application in herb-medicine cast off of the conversion efficiency of resources model based on the recycling economy theory of resources and thoughts of resources chemistry of CMM. These data may be promote and resolve the key problems limited the industrialization of Chinese material medica for long time and promote the realization of herb-medicine castoff resources utilization.

  17. 15% Power Conversion Efficiency from a Gated Nanotube/Silicon Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-03-01

    Despite their enhanced light trapping ability the performance of silicon nanowire array solar cells have, been stagnant with power conversion efficiencies barely breaking 10%. The problem is understood to be the consequence of a high photo-carrier recombination at the large surface area of the Si nanowire sidewalls. Here, by exploiting 1) electronic gating via an ionic liquid electrolyte to induce inversion in the n-type Si nanowires and 2) using a layer of single wall carbon nanotubes engineered to contact each nanowire tip and extract the minority carriers, we demonstrate silicon nanowire array solar cells with power conversion efficiencies of 15%. Our results allow for discrimination between the two principle means of avoiding front surface recombination: surface passivation and the use of local fields. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue a non-encapsulation based solution is also described. We gratefully acknowledge support from the National Science Foundation under ECCS-1232018.

  18. Pilot-scale bioelectrochemical system for efficient conversion of 4-chloronitrobenzene.

    PubMed

    Yuan, Yuan; You, Shi-Jie; Zhang, Jin-Na; Gong, Xiao-Bo; Wang, Xiu-Heng; Ren, Nan-Qi

    2015-01-01

    4-Chloronitrobenzene (4-CNB) is one of the highly toxic contaminants that may lead to acute, chronic or persistent physiological toxicity to ecology and environment. Conventional methods for removing 4-CNB from aquatic environment may be problematic due to inefficiency, high cost and low sustainability. This study develops a pilot-scale bioelectrochemical system (BES, effective volume of 18 L) and examines its performance of bioelectrochemical transformation of 4-CNB to 4-chloroaniline (4-CAN) under continuous operation. The results demonstrate that the initial 4-CNB concentration in the influent and hydraulic retention time (HRT) has a significant impact on 4-CNB reduction and 4-CAN formation. Compared with the conventional anaerobic process in the absence of external power supplied, the 4-CNB conversion efficiency can be enhanced with power supplied due to microbial-mediated electron transfer at the negative cathode potential. At a voltage of 0.4 V and HRT of 48 h, the 4-CNB reduction and 4-CAN formation efficiency reached 99% and 94.1%, respectively. Based on a small external voltage applied, the pilot-scale BES is effective in the conversion of 4-CNB to 4-CAN, an intermediate that is of less toxicity and higher bioavailability for subsequent treatment. This study provides a new strategy and methods for eliminating 4-CNB, making wastewater treatment more economical and more sustainable. PMID:25650667

  19. Feed efficiency effects on barrow and gilt behavioral reactivity to novel stimuli tests.

    PubMed

    Colpoys, J D; Abell, C E; Gabler, N K; Keating, A F; Millman, S T; Siegford, J M; Young, J M; Johnson, A K

    2015-03-01

    Increasing feed efficiency is an important goal for improving sustainable pork production and profitability for producers. To study feed efficiency, genetic selection based on residual feed intake (RFI) was used to create 2 divergent lines. Low-RFI pigs consume less feed for equal weight gain compared to their less efficient, high-RFI counterparts. Therefore, our objective was to assess how a pig's behavioral reactivity toward fear-eliciting stimuli related to RFI selection and improvement of feed efficiency. In this study, behavioral reactivity of pigs divergently selected for RFI was evaluated using human approach (HAT) and novel object (NOT) tests. Forty low-RFI and 40 high-RFI barrows and gilts ( = 20 for each genetic line; 101 ± 9 d old) from ninth-generation Yorkshire RFI selection lines were randomly selected and evaluated once using HAT and once using NOT over a 2-wk period utilizing a crossover experimental design. Each pig was individually tested within a 4.9 × 2.4 m test arena for 10 min; behavior was evaluated using live and video observations. The test arena floor was divided into 4 zones; zone 1 being oral, nasal, and/or facial contact with the human (HAT) or orange traffic cone (NOT) and zone 4 being furthest from the human or cone and included the point where the pig entered the arena. During both HAT and NOT, low-RFI pigs entered zone 1 less frequently compared to high-RFI pigs ( ≤ 0.03). During NOT, low-RFI pigs changed head orientation more frequently ( = 0.001) but attempted to escape less frequently (low-RFI = 0.97 ± 0.21 vs. high-RFI = 2.08 ± 0.38; = 0.0002) and spent 2% less time attempting to escape compared to high-RFI pigs ( = 0.04). Different barrow and gilt responses were observed during HAT and NOT. During HAT, barrows spent 2% more time within zone 1 ( = 0.03), crossed fewer zone lines ( < 0.0001), changed head orientation less frequently ( = 0.002), and froze less frequently compared to gilts ( = 0.02). However, during NOT

  20. Investigation on the influence of BBO thermal-induced phase mismatching in 266nm UV laser conversion efficiency

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Jin, Guangyong; Yu, Miao; Huang, Zhulong; Zhai, Ruizhi; Wang, Lei

    2014-12-01

    266nm UV laser has a wide range of applications in many fields, such as laser medical treatment, laser processing, precision measure and other applications for the reason of its advantages in wavelength, small diffraction effects, high single-photon energy, and high resolution and so on. BBO crystals absorb parts of the fundamental laser energy and second harmonic laser energy are unavoidable, and thus the temperature raise, so that the existing crystal phase matching conditions change, resulting in phase mismatching in the high-power frequency doubling, greatly influence the 266nm UV laser conversion efficiency. To further study the effect of phase mismatching to conversion efficiency, and improve the conversion efficiency, output power and other output characteristics of 266nm laser, the article mainly describe from the following three aspects. Firstly, took the use of three-dimensional nonlinear crystal temperature distribution which is obtained, the process of BBO crystal thermal-induced phase mismatching is analyzed. Secondly, based on frequency doubling theory, the effects of the thermal-induced phase mismatching affected of conversion in crystals are analyzed. Combining with the phase mismatching of the three-dimensional distributions, the fourth harmonic conversion efficiency with thermal phase mismatching changes of BBO 266nm UV laser are simulated for the first time. Thirdly, by using MATLAB software, the effects of phase mismatching to conversion efficiency in crystal for different waist radius, 532nm laser power and the fundamental beam quality are simulated. The results indicate a good physical interpretation of reasons of high power laser frequency doubling system. It shows that the model established explains the reason of the reduction of conversion efficiency, output power and the beam quality excellently. All results make a leading sense to the research on the compensating of the phase mismatching and on the improvement of conversion efficiency.

  1. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: II. Carcass and meat quality.

    PubMed

    Molette, C; Gilbert, H; Larzul, C; Balmisse, E; Ruesche, J; Manse, H; Tircazes, A; Theau-Clément, M; Joly, T; Gidenne, T; Garreau, H; Drouilhet, L

    2016-01-01

    To get insights into selection criteria for feed efficiency, 2 rabbit lines have been created: the ConsoResidual line was selected for residual feed intake (RFI) with ad libitum feeding and the ADGrestrict line was selected for ADG under restricted feeding. The aim of the present study was to evaluate the impact on carcass and meat quality of the genetic selections. This comparison was performed using 2 different feeding strategies corresponding to the selection design. Carcass and meat quality traits were recorded for the 3 lines (ConsoResidual, ADGrestrict, and an unselected control [generation 0 {G0}]) in the 2 feeding systems (ad libitum and restricted) for 163 animals. Concerning the line effect, the BW at 63 d old was higher for the ADGrestrict line compared with the G0 and ConsoResidual lines ( < 0.0001). There was no line effect on the gastrointestinal tract. The rabbits did not exhibit a different carcass yield but showed different carcass traits. Indeed, the ConsoResidual rabbits had a higher hind leg yield ( < 0.0001) but no difference in the meat-to-bone ratio of the hind leg. On the contrary, the ADGrestrict line had a higher proportion of forelegs plus thoracic cage ( = 0.03). We also found lower perirenal ( < 0.0001) and scapular fat yields ( < 0.0001) in ConsoResidual rabbits. The ADGrestrict line had an intermediate perirenal fat yield compared with the other 2 lines. The G0 line always exhibited higher fat yields. Concerning meat quality, the ConsoResidual rabbits showed a lower ultimate pH ( < 0.0001) and higher water loss (drip and cooking loss; < 0.002) compared with the G0 and ADGrestrict rabbits. The feeding level had a strong effect on the gastrointestinal tract ( = 0.0004) and the carcass yield ( = 0.001). The latter was decreased in restricted rabbits. The effects of feeding strategy on meat quality were detrimental in the case of restricted feeding. Even if the ultimate pH was slightly higher in restricted rabbits ( = 0.0002), the carcass

  2. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer.

    PubMed

    Inada, Natsumi; Asakawa, Hitoshi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid. PMID:27335733

  3. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.

    PubMed

    Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-01-01

    The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs.

  4. Microarray studies in high and low RFI cattle reveal a potential role for gonadotropin releasing hormone (GnRH) in regulating feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Residual feed intake (RFI) is a heritable feed efficiency measure. Mechanisms underlying variation in feed efficiency are currently poorly understood. To address this issue, two divergent cohorts consisting of High (H) and Low (L) RFI individuals were created by assessing RFI in forty-eight Angus-si...

  5. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells

    PubMed Central

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702

  6. Genetic parameters and genotype x environment interaction for feed efficiency traits in steers fed grower and finisher diets.

    PubMed

    Durunna, O N; Plastow, G; Mujibi, F D N; Grant, J; Mah, J; Basarab, J A; Okine, E K; Moore, S S; Wang, Z

    2011-11-01

    The objective of this study was to examine the genetic parameters and genetic correlations of feed efficiency traits in steers (n = 490) fed grower or finisher diets in 2 feeding periods. A bivariate model was used to estimate phenotypic and genetic parameters using steers that received the grower and finisher diets in successive feeding periods, whereas a repeated animal model was used to estimate the permanent environmental effects. Genetic correlations between the grower-fed and finisher-fed regimens were 0.50 ± 0.48 and 0.78 ± 0.43 for residual feed intake (RFI) and G:F, respectively. The moderate genetic correlation between the 2 feeding regimens may indicate the presence of a genotype × environment interaction for RFI. Permanent environmental effects (expressed in percentage of phenotypic variance) were detected in the grower-fed steers for ADG (38%), DMI (30%), RFI (18%), and G:F (40%) and also in the finisher-fed steers for ADG (28%), DMI (35%), metabolic mid-weight (23%), and RFI (10%). Heritability estimates were 0.08 ± 0.10 and 0.14 ± 0.15 for the grower-fed steers and 0.42 ± 0.16 and 0.40 ± 17 for the finisher-fed steers for RFI and G:F, respectively. The dependency of the RFI on the feeding regimen may have serious implications when selecting animals in the beef industry. Because of the higher cost of grains, feed efficiency in the feedlot might be overemphasized, whereas efficiency in the cow herd and the backgrounding segments may have less emphasis. These results may also favor the retention (for subsequent breeding) of cows whose steers were efficient in the feedlot sector. Therefore, comprehensive feeding trials may be necessary to provide more insight into the mechanisms surrounding genotype × environment interaction in steers. PMID:21622886

  7. Food, feeding and absorption efficiencies of the sand dollar, Mellita quinquiesperforata (Leske)

    NASA Astrophysics Data System (ADS)

    Lane, Jacqueline M.; Lawrence, John M.

    1982-04-01

    The sand dollar, Melitta quinquiesperforata, is a ciliary-mucoid feeder, selective for <62 μm (silt-clay) size fraction of surface sediments. Lipid is the primary component of the organic fraction of silt-clay; levels were highest in May and June (17%) and lowest in December and January (8%). Mellita absorbed primarily lipid from the silt-clay; absorption efficiency of all biochemical components was highest in May and June (67 and 61%) and lowest in December and January (negative values). M. quinquiesperforata fed almost continuously with rate of feeding being higher in small animals and at warmer, summer water temperatures. There was significantly more food in the gut at night than in the day.

  8. Utilization of macrominerals and trace elements in pregnant heifers with distinct feed efficiencies.

    PubMed

    Dias, R S; Montanholi, Y R; Lopez, S; Smith, B; Miller, S P; France, J

    2016-07-01

    The objective of the study was to evaluate utilization of dietary minerals and trace elements in pregnant heifers with distinct residual feed intakes (RFI). Feed intake, body weight (BW), and body composition traits were recorded in 36 crossbred heifers over a period of 37 wk, starting shortly after weaning at 8.3 (0.10; standard deviation) mo of age with an average BW of 276 (7.8) kg. Both BW and body composition were monitored regularly throughout the study, whereas individual feed intake was assessed during the last 84 d of the trial. Data recorded were used to calculate RFI for each heifer. Heifers were ranked based on RFI and assigned to high (n=14) or low (n=10) RFI groups. After the RFI study, 24 selected heifers [age 18.2 (0.14) mo; 87.5 (4.74) d in gestation; 497 (8.5) kg of BW] were used in an indirect digestibility trial (lignin as internal marker). Heifers were fed a ration containing corn silage, haylage, and a mineral premix in which Ca, P, K, Na, Mg, S, Cu, Fe, Mn, Mo, Se, Zn, and Co were provided in the diet according to National Research Council requirements of pregnant replacement heifers. The digestibility trial lasted 1 wk, during which samples of feces were gathered twice daily, and blood and liver biopsy samples were collected on the last day. We noted no significant differences between low- and high-RFI heifers in dry matter digestibility. Apparent absorption of Cu, Zn, and Mn was increased in heifers with low RFI, and apparent absorption of Co tended to be greater for these animals. Concentrations of macrominerals and trace elements in serum of pregnant heifers were similar for both groups except for Se, which was increased in the serum of low-RFI heifers. Liver concentrations of Cu, Fe, Mn, Mo, Se, and Zn did not differ between low- and high-RFI heifers. In conclusion, whereas improved absorption of some trace elements (Cu, Zn, Mn, and Co) and increased Se serum concentration appear to be associated with superior feed efficiency in pregnant

  9. Photovoltaics: reviewing the European Feed-in-Tariffs and changing PV efficiencies and costs.

    PubMed

    Zhang, H L; Van Gerven, T; Baeyens, J; Degrève, J

    2014-01-01

    Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future.

  10. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    PubMed Central

    Zhang, H. L.; Van Gerven, T.; Baeyens, J.; Degrève, J.

    2014-01-01

    Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future. PMID:24959614

  11. Seminal plasma protein concentrations vary with feed efficiency and fertility-related measures in young beef bulls.

    PubMed

    Montanholi, Y R; Fontoura, A B P; Diel de Amorim, M; Foster, R A; Chenier, T; Miller, S P

    2016-06-01

    Fertility-associated proteins (FAP) found in seminal plasma indicate sexual maturity, which appears to be influenced by feed efficiency in cattle. This study characterized FAP via proteomics and verified associations of these proteins with feed efficiency, body composition and fertility-related measures in yearling beef bulls. Assessments including testicular ultrasonography, infrared thermography, seminal quality, seminal plasma proteomics, carcass composition, and reproductive organ biometry were obtained. From a population of 31 bulls, the seven most and least feed efficient (efficient, inefficient) bulls were used for categorical comparisons. Correlations between FAP, productive performance and fertility-related measures were determined. These traits were also correlated with orthogonal factors summarized from the FAP. Efficient bulls had increased epididymal sperm-binding protein-1 and decreased concentration of protein-C inhibitor compared to inefficient bulls. Correlations between FAP with age, body size, body composition, reproductive organ biometry, scrotal temperature, and seminiferous tubule maturity are reported. Acrosin and cathepsin D increased with development of the testes and osteopontin increased with greater numbers of mature seminiferous tubules. Phosphoglycerate kinase-2 was higher in animals with a higher scrotum temperature and a higher prevalence of sperm morphology defects. The principal factor indicated that FAP variability concentrations were positively correlated with age, reproductive organ biometry, body size and composition. Our results indicate that FAP changes with body size and sexual development, and demonstrates differences in the proteomics of bulls with diverging feed efficiency. This is related to the delay in the sexual maturity of efficient young bulls.

  12. Seminal plasma protein concentrations vary with feed efficiency and fertility-related measures in young beef bulls.

    PubMed

    Montanholi, Y R; Fontoura, A B P; Diel de Amorim, M; Foster, R A; Chenier, T; Miller, S P

    2016-06-01

    Fertility-associated proteins (FAP) found in seminal plasma indicate sexual maturity, which appears to be influenced by feed efficiency in cattle. This study characterized FAP via proteomics and verified associations of these proteins with feed efficiency, body composition and fertility-related measures in yearling beef bulls. Assessments including testicular ultrasonography, infrared thermography, seminal quality, seminal plasma proteomics, carcass composition, and reproductive organ biometry were obtained. From a population of 31 bulls, the seven most and least feed efficient (efficient, inefficient) bulls were used for categorical comparisons. Correlations between FAP, productive performance and fertility-related measures were determined. These traits were also correlated with orthogonal factors summarized from the FAP. Efficient bulls had increased epididymal sperm-binding protein-1 and decreased concentration of protein-C inhibitor compared to inefficient bulls. Correlations between FAP with age, body size, body composition, reproductive organ biometry, scrotal temperature, and seminiferous tubule maturity are reported. Acrosin and cathepsin D increased with development of the testes and osteopontin increased with greater numbers of mature seminiferous tubules. Phosphoglycerate kinase-2 was higher in animals with a higher scrotum temperature and a higher prevalence of sperm morphology defects. The principal factor indicated that FAP variability concentrations were positively correlated with age, reproductive organ biometry, body size and composition. Our results indicate that FAP changes with body size and sexual development, and demonstrates differences in the proteomics of bulls with diverging feed efficiency. This is related to the delay in the sexual maturity of efficient young bulls. PMID:27288339

  13. Enhanced power conversion efficiency of dye-sensitized solar cells using nanoparticle/nanotube double layered film.

    PubMed

    Sun, Kyung Chul; Yun, Sung Hoon; Yoon, Chang Hyun; Ko, Hwan Ho; Yi, Sung; Jeong, Sung Hoon

    2013-12-01

    To enhance the power conversion efficiency of dye-sensitized solar cell, a new type of double layered photoanode was prepared using TiO2 nanoparticle in under layer and TiO2 nanotube in upper layer. TiO2 nanotubes were synthesized by hydrothermal polymerization. The morphology and the properties were investigated and characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), Field Emission-Transmission Electron Microscopy (FE-TEM), Wide Angle X-ray Diffraction (WAXD), Thermogravimetric analysis (TGA) and, Brunauer-Emmett-Teller test (BET). The light-to-electricity conversion efficiency was improved with the double-layered TiO2 film, which in turn, significantly increases the power conversion efficiency of dye-sensitized solar cells (DSSCs). This is due to large dye adsorption of light-scatters as well as TiO2 main layer. Moreover, rapid electron transport and light-havesting efficiency contributed to high conversion efficiency. The power conversion efficiency of an optimized cell (photoanode consisting of 13-15 microm main-layer and TNT over-layer) was 8.06% under simulated Air mass 1.5 (AM 1.5) global sunlight (1 Sun, 100 mW/cm2).

  14. Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle.

    PubMed

    Snelling, W M; Allan, M F; Keele, J W; Kuehn, L A; Thallman, R M; Bennett, G L; Ferrell, C L; Jenkins, T G; Freetly, H C; Nielsen, M K; Rolfe, K M

    2011-06-01

    The effects of individual SNP and the variation explained by sets of SNP associated with DMI, metabolic midtest BW, BW gain, and feed efficiency, expressed as phenotypic and genetic residual feed intake, were estimated from BW and the individual feed intake of 1,159 steers on dry lot offered a 3.0 Mcal/kg ration for at least 119 d before slaughter. Parents of these F(1) × F(1) (F(1)(2)) steers were AI-sired F(1) progeny of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental bulls mated to US Meat Animal Research Center Angus, Hereford, and MARC III composite females. Steers were genotyped with the BovineSNP50 BeadChip assay (Illumina Inc., San Diego, CA). Effects of 44,163 SNP having minor allele frequencies >0.05 in the F(1)(2) generation were estimated with a mixed model that included genotype, breed composition, heterosis, age of dam, and slaughter date contemporary groups as fixed effects, and a random additive genetic effect with recorded pedigree relationships among animals. Variance in this population attributable to sets of SNP was estimated with models that partitioned the additive genetic effect into a polygenic component attributable to pedigree relationships and a genotypic component attributable to genotypic relationships. The sets of SNP evaluated were the full set of 44,163 SNP and subsets containing 6 to 40,000 SNP selected according to association with phenotype. Ninety SNP were strongly associated (P < 0.0001) with at least 1 efficiency or component trait; these 90 accounted for 28 to 46% of the total additive genetic variance of each trait. Trait-specific sets containing 96 SNP having the strongest associations with each trait explained 50 to 87% of additive variance for that trait. Expected accuracy of steer breeding values predicted with pedigree and genotypic relationships exceeded the accuracy of their sires predicted without genotypic information, although gains in accuracy were not sufficient to encourage that

  15. Impacts of kafirin allelic diversity, starch content, and protein digestibility on ethanol conversion efficiency in grain sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed protein and starch composition determines the efficiency of ethanol conversion in the production of grain-based biofuels. Sorghum, highly water- and nutrient-efficient, has the potential to replace fuel crops with greater irrigation and fertiliser requirements, such as maize. However, sorghum g...

  16. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOEpatents

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter; Messerly, Michael J.; Pax, Paul H.

    2016-09-20

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  17. Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame

    NASA Astrophysics Data System (ADS)

    Gu, Feng; Huang, Wenjuan; Wang, Shufen; Cheng, Xing; Hu, Yanjie; Li, Chunzhong

    2014-12-01

    The charge losses as a result of recombination to redox electrolyte and dye cation make tin oxide (SnO2)-based dye-sensitized solar cells (DSSCs) particularly inferior when compared with its titanium oxide (TiO2) counterpart. In this article, TiO2 nanocrystal is sealed in SnO2 by a modified flame spray pyrolysis (FSP) approach and the recombination losses to dye cation of SnO2 photoanode are effectively suppressed due to the negatively shifted Fermi level with the formation of bandedge-engineered core/shell structure. The fabricated TiO2@SnO2 (TSN)-device shows an open circuit voltage of 0.59 V and an efficiency of 3.82%, significantly better than those of the TiO2-, and SnO2-DSSCs devices. After surface modification, the conversion efficiency could be further improved to 7.87% while the open circuit voltage reaches 0.70 V. The higher efficiency of the TSN-based device is attributed to the enhanced electron injection arising from decreased interfacial charge recombination losses and improved electron transport. This strategy renders a new concept for further improvement of photovoltaic performance by engineering the dynamics of electron transport and recombination in DSSCs.

  18. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    PubMed

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-01

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  19. Selective Emitters for High Efficiency TPV Conversion: Materials Preparation and Characterisation

    NASA Astrophysics Data System (ADS)

    Diso, D.; Licciulli, A.; Bianco, A.; Leo, G.; Torsello, G.; Tundo, S.; De Risi, A.; Mazzer, M.

    2003-01-01

    Optimising the spectral emissivity of the IR radiation source in a TPV generator is one of the crucial steps towards high efficiency TPV conversion. In this paper we present different approaches to the preparation of selective emitters to be coupled to high efficiency photovoltaic cells. The emitters are designed to work at a temperature of about 1500K and they have been prepared to be used either as external coatings for the burner or as a structural material for the burner itself. Composite ceramics containing rare earth cations, prepared by slip-casting, with various concentration of rare earths were prepared by Slip Casting and Slurry Coating. Rare earth oxides have been incorporated into different oxide matrices, namely Silica, Alumina, Zirconia and their combination. The final aim was to find the material that exhibits the best performance in terms of both high selective power emission, good efficiency along with acceptable thermo-structural properties (high temperature thermal shock resistance, good strength, no creep). The power density emitted by samples as function of the temperature has been tested in the range 1000nm-5000nm. The high temperature emission measurements and the structural tests indicate that a good compromise between the functional and the thermo-structural properties may be reached. The results of the tests on the emitter coatings carried out in a TPV generator at the operating conditions are also presented in this paper.

  20. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    PubMed Central

    Hernández-Martínez, Angel Ramon; Estévez, Miriam; Vargas, Susana; Rodríguez, Rogelio

    2013-01-01

    Dye-Sensitized Solar Cells (DSSCs), based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE) with Tetraethylorthosilicate (TEOS), are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time. PMID:23429194

  1. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    PubMed

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-11-28

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  2. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  3. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    SciTech Connect

    Eimerl, D.

    1985-10-28

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology.

  4. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products. PMID:26961750

  5. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.

  6. Report of feasibility study on international-cooperation in high efficient energy conversion technology

    NASA Astrophysics Data System (ADS)

    1993-03-01

    With regard to accelerated introduction of high efficient energy conversion technology to developing countries, the paper investigates the countries' thoughts of the introduction of the technology and the status of the introduction bases. The countries for survey are the Philippines, Indonesia, Malaysia and Thailand. The Philippine government expects to develop cogeneration as well as large power sources and to widen effective use of natural energy. In Indonesia, they largely expect effective use of biomass energy using Stirling engines by international cooperation and the promoted local electrification using standalone distributed fuel cells. In Malaysia, they have great expectations of the introduction of air conditioning facilities using Stirling engines and the use of standalone distributed fuel cells for promotion of local electrification. Thailand hopes for the use of Stirling engines to air conditioning systems, and the development of solar Stirling generators with solar energy as a heat source and electric vehicles.

  7. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency

    NASA Astrophysics Data System (ADS)

    Funde, Adinath M.; Nasibulin, Albert G.; Gufran Syed, Hashmi; Anisimov, Anton S.; Tsapenko, Alexey; Lund, Peter; Santos, J. D.; Torres, I.; Gandía, J. J.; Cárabe, J.; Rozenberg, A. D.; Levitsky, Igor A.

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  8. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

    PubMed

    Tsai, Hung-Wei; Thomas, Stuart R; Chen, Chia-Wei; Wang, Yi-Chung; Tsai, Hsu-Sheng; Yen, Yu-Ting; Hsu, Cheng-Hung; Tsai, Wen-Chi; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-01

    Defect control in Cu(In,Ga)Se2 (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley-Read-Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent J-V characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%.

  9. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency

    PubMed Central

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; (Michael) Yang, Yang; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-01-01

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm−2). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells. PMID:24285006

  10. Conservation laws and conversion efficiency in ultraintense laser-overdense plasma interactions

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Wilks, S. C.; Tabak, M.; Baring, M. G.

    2013-10-01

    Particle coupling to the oscillatory and steady-state nonlinear force of an ultraintense laser is studied through analytic modeling and particle-in-cell simulations. The complex interplay between these absorption mechanisms—corresponding, respectively, to "hot" electrons and "hole punching" ions—is central to the viability of many ultraintense laser applications. Yet, analytic work to date has focused only on limiting cases of this key problem. In this paper, we develop a fully relativistic model in 1-D treating both modes of ponderomotive light absorption on equitable theoretical footing for the first time. Using this framework, analytic expressions for the conversion efficiencies into hole punching ions and into hot electrons are derived. Solutions for the relativistically correct hole punching velocity and the hot electron Lorentz factor are also calculated. Excellent agreement between analytic predictions and particle-in-cell simulations is demonstrated, and astrophysical analogies are highlighted.

  11. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-sections

    NASA Astrophysics Data System (ADS)

    He, Yan; Yu, Wangbing; Ouyang, Gang

    2016-06-01

    A deeper insight into shape-dependent power conversion efficiency (PCE) of Si nanowire (SiNW) solar cells with polygonal cross-sectional shapes, including trigon, tetragon, hexagon, and circle, has been explored based on the atomic-bond-relaxation approach and detailed balance principle. It has been found that the surface effect induced by the loss-coordination atoms located at edges and surfaces, as well as the thermal effect, plays the dominant roles for the band shift and PCE of SiNWs due to the lattice strain occurrence at the self-equilibrium state. Our predictions are consistent with the available evidences, providing an important advance in the development of Si-based nanostructures for the desirable applications.

  12. Conservation laws and conversion efficiency in ultraintense laser-overdense plasma interactions

    SciTech Connect

    Levy, M. C.; Wilks, S. C.; Tabak, M.; Baring, M. G.

    2013-10-15

    Particle coupling to the oscillatory and steady-state nonlinear force of an ultraintense laser is studied through analytic modeling and particle-in-cell simulations. The complex interplay between these absorption mechanisms—corresponding, respectively, to “hot” electrons and “hole punching” ions—is central to the viability of many ultraintense laser applications. Yet, analytic work to date has focused only on limiting cases of this key problem. In this paper, we develop a fully relativistic model in 1-D treating both modes of ponderomotive light absorption on equitable theoretical footing for the first time. Using this framework, analytic expressions for the conversion efficiencies into hole punching ions and into hot electrons are derived. Solutions for the relativistically correct hole punching velocity and the hot electron Lorentz factor are also calculated. Excellent agreement between analytic predictions and particle-in-cell simulations is demonstrated, and astrophysical analogies are highlighted.

  13. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    PubMed

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. PMID:23541891

  14. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process

    PubMed Central

    2013-01-01

    Background Microbial lipid production by using lignocellulosic biomass as the feedstock holds a great promise for biodiesel production and biorefinery. This usually involves hydrolysis of biomass into sugar-rich hydrolysates, which are then used by oleaginous microorganisms as the carbon and energy sources to produce lipids. However, the costs of microbial lipids remain prohibitively high for commercialization. More efficient and integrated processes are pivotal for better techno-economics of microbial lipid technology. Results Here we describe the simultaneous saccharification and enhanced lipid production (SSELP) process that is highly advantageous in terms of converting cellulosic materials into lipids, as it integrates cellulose biomass hydrolysis and lipid biosynthesis. Specifically, Cryptococcus curvatus cells prepared in a nutrient-rich medium were inoculated at high dosage for lipid production in biomass suspension in the presence of hydrolytic enzymes without auxiliary nutrients. When cellulose was loaded at 32.3 g/L, cellulose conversion, cell mass, lipid content and lipid coefficient reached 98.5%, 12.4 g/L, 59.9% and 204 mg/g, respectively. Lipid yields of the SSELP process were higher than those obtained by using the conventional process where cellulose was hydrolyzed separately. When ionic liquid pretreated corn stover was used, both cellulose and hemicellulose were consumed simultaneously. No xylose was accumulated over time, indicating that glucose effect was circumvented. The lipid yield reached 112 mg/g regenerated corn stover. This process could be performed without sterilization because of the absence of auxiliary nutrients for bacterial contamination. Conclusions The SSELP process facilitates direct conversion of both cellulose and hemicellulose of lignocellulosic materials into microbial lipids. It greatly reduces time and capital costs while improves lipid coefficient. Optimization of the SSELP process at different levels should further

  15. Power conversion and luminous efficiency performance of nanophosphor quantum dots on color-conversion LEDs for high-quality general lighting

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Nizamoglu, Sedat; Demir, Hilmi Volkan

    2012-03-01

    For high-quality general lighting, a white light source is required to exhibit good photometric and colorimetric performance along with a high level of electrical efficiency. For example, a warm white shade is desirable for indoors, corresponding to correlated color temperatures >=4000 K, together with color rendering indices >=90. Additionally, the luminous efficacy of optical radiation (LER) should be high, preferably >=380 lm/Wopt. Conventional white LEDs cannot currently satisfy these requirements simultaneously. On the other hand, color-conversion white LEDs (WLEDs) integrated with quantum dots (QDs) can simultaneously reach such high levels of photometric and colorimetric performance. However, their electrical efficiency performance and limits have been unknown. To understand their potential of luminous efficiency (lm/Welect), we modeled and studied different QD-WLED architectures based on layered QD films and QD blends, all integrated on blue LED chips. The architecture of red, yellow and green emitting QD films (in this order from the chip outwards) is demonstrated to outperform the rest. In this case, for photometrically efficient spectra, the maximum achievable LE is predicted to be 327 lm/Welect. Using a state-of-the-art blue LED reported with a power conversion efficiency (PCE) of 81.3%, the overall WLED PCE is shown to be 69%. To achieve LEs of 100, 150 and 200 lm/Welect, the required minimum quantum efficiencies of the color-converting QDs are found to be 39, 58 and 79%, respectively.

  16. Elevated soil nitrogen pools after conversion of turfgrass to water-efficient residential landscapes

    NASA Astrophysics Data System (ADS)

    Heavenrich, Hannah; Hall, Sharon J.

    2016-08-01

    As a result of uncertain resource availability and growing populations, city managers are implementing conservation plans that aim to provide services for people while reducing household resource use. For example, in the US, municipalities are incentivizing homeowners to replace their water-intensive turfgrass lawns with water-efficient landscapes consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). While these strategies are likely to reduce water demand, the consequences for other ecosystem services are unclear. Previous studies in controlled, experimental landscapes have shown that conversion from turfgrass to shrubs may lead to high rates of nutrient leaching from soils. However, little is known about the long-term biogeochemical consequences of this increasingly common land cover change across diverse homeowner management practices. We explored the fate of soil nitrogen (N) across a chronosequence of land cover change from turfgrass to water-efficient landscapes in privately owned yards in metropolitan Phoenix, Arizona, in the arid US Southwest. Soil nitrate ({{{{NO}}}3}--N) pools were four times larger in water-efficient landscapes (25 ± 4 kg {{{{NO}}}3}--N/ha 0-45 cm depth) compared to turfgrass lawns (6 ± 7 kg {{{{NO}}}3}--N/ha). Soil {{{{NO}}}3}--N also varied significantly with time since landscape conversion; the largest pools occurred at 9-13 years after turfgrass removal and declined to levels comparable to turfgrass thereafter. Variation in soil {{{{NO}}}3}--N with landscape age was strongly influenced by management practices related to soil water availability, including shrub cover, sub-surface plastic sheeting, and irrigation frequency. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of {{{{NO}}}3}--N that may be lost from the plant rooting zone over time following irrigation or

  17. Elevated soil nitrogen pools after conversion of turfgrass to water-efficient residential landscapes

    NASA Astrophysics Data System (ADS)

    Heavenrich, Hannah; Hall, Sharon J.

    2016-08-01

    As a result of uncertain resource availability and growing populations, city managers are implementing conservation plans that aim to provide services for people while reducing household resource use. For example, in the US, municipalities are incentivizing homeowners to replace their water-intensive turfgrass lawns with water-efficient landscapes consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). While these strategies are likely to reduce water demand, the consequences for other ecosystem services are unclear. Previous studies in controlled, experimental landscapes have shown that conversion from turfgrass to shrubs may lead to high rates of nutrient leaching from soils. However, little is known about the long-term biogeochemical consequences of this increasingly common land cover change across diverse homeowner management practices. We explored the fate of soil nitrogen (N) across a chronosequence of land cover change from turfgrass to water-efficient landscapes in privately owned yards in metropolitan Phoenix, Arizona, in the arid US Southwest. Soil nitrate ({{{{NO}}}3}-–N) pools were four times larger in water-efficient landscapes (25 ± 4 kg {{{{NO}}}3}-–N/ha 0–45 cm depth) compared to turfgrass lawns (6 ± 7 kg {{{{NO}}}3}-–N/ha). Soil {{{{NO}}}3}-–N also varied significantly with time since landscape conversion; the largest pools occurred at 9–13 years after turfgrass removal and declined to levels comparable to turfgrass thereafter. Variation in soil {{{{NO}}}3}-–N with landscape age was strongly influenced by management practices related to soil water availability, including shrub cover, sub-surface plastic sheeting, and irrigation frequency. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of {{{{NO}}}3}-–N that may be lost from the plant rooting zone over time following

  18. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight

    PubMed Central

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  19. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight.

    PubMed

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely Dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  20. Feeding protein supplements in alfalfa hay-based lactation diets improves nutrient utilization, lactational performance, and feed efficiency of dairy cows.

    PubMed

    Neal, K; Eun, J-S; Young, A J; Mjoun, K; Hall, J O

    2014-12-01

    Due to the increasing cost of soybean meal and concerns of excess N being excreted into the environment, new protein supplements have been developed. Two products that have shown potential in increasing N utilization efficiency are slow-release urea (SRU; Optigen; Alltech Inc., Nicholasville, KY) and ruminal-escape protein derived from yeast (YMP; DEMP; Alltech Inc.). The objective of this study was to assess the effects of feeding these 2 supplements in alfalfa hay-based [45.7% of forage dietary dry matter (DM)] dairy diets on nutrient utilization, feed efficiency, and lactational performance of dairy cows. Twelve multiparous dairy cows were used in a triple 4 × 4 Latin square design with one square consisting of ruminally cannulated cows. Treatments included (1) control, (2) SRU-supplemented total mixed ration (SRUT), (3) YMP-supplemented total mixed ration (YMPT), and (4) SRU- and YMP-supplemented total mixed ration (SYT). The control consisted only of a mixture of soybean meal and canola meal in a 50:50 ratio. The SRU and the YMP were supplemented at 0.49 and 1.15% DM, respectively. The experiment consisted of 4 periods lasting 28 d each (21 d of adaptation and 7 d of sampling). Cows fed YMPT and SYT had decreased intake of DM, and all supplemented treatments had lower crude protein intake compared with those fed the control. Milk yield tended to have the greatest increase in YMPT compared with the control (41.1 vs. 39.7 kg/d) as well as a tendency for increased milk fat and protein yields. Feed efficiencies based on yields of milk, 3.5% fat-corrected milk, and energy-corrected milk increased at 10 to 16% due to protein supplementation. Cows fed protein supplements partitioned less energy toward body weight gain, but tended to partition more energy toward milk production. Efficiency of use of feed N to milk N increased by feeding SRUT and YMPT, and milk N-to-manure N ratio increased with YMPT. Overall results from this experiment indicate that replacing the

  1. Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations.

    PubMed

    McHenry, Mark P

    2010-01-30

    There is considerable interest in reliable and practical methods to sequester carbon (C) into agricultural soils to both reduce atmospheric greenhouse gas concentrations and improve conventional productivity. This article outlines a research methodology to refine the efficacy and economics of using long-lived C species (biochars) as stock feed additives, produced from farm waste biomass, for ecologically delivered soil biosequestration, while generating renewable bioenergy. This article also draws attention to potential parallel outputs including annual feed use efficiency, fodder species expansion, soil nutrient retention, aquatic habitat protection, and forestry revegetation, using nitrogen-fixing perennial fodder plant species. A methodology to generate parallel results including standing fodder tree C sequestration, optimised production of Acacia spp. biochar, animal growth on high-tannin fodder with biochar feed additives, soil nutrient and stable C fractions, and economics of Acacia spp. bioenergy production. This form of research is contextually dependent on the regional agricultural production system, legislation, and surrounding ecosystem. Therefore, this article suggests the use of a scenario approach to include regionally specific levels of biochar integration with respect to the local prices for C, fossil fuels, meat and livestock, fertilisers, fodder, feed additives, water, renewable energy, revegetation and capital.

  2. Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use.

    PubMed

    Yang, W Z; Beauchemin, K A

    2006-07-01

    Barley silages varying in theoretical chop length were used to evaluate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets on nutrient intakes, site and extent of digestion, microbial protein synthesis, and milk production. The experiment was designed as a replicated 3 x 3 Latin square using 6 lactating dairy cows with ruminal and duodenal cannulas. During each of 3 periods, cows were offered 1 of 3 diets (low, medium, and high peNDF) obtained using barley silage that varied in particle length: fine (theoretical chop length of 4.8 mm), medium (equal proportions of long and fine silages), and long (theoretical chop length of 9.5 mm). The peNDF contents were determined by multiplying the proportion (dry matter basis) of feed retained on the 2 screens (8 and 19 mm) of the Penn State Particle Separator by the NDF content of the diet, and were 10.5, 11.8, and 13.8% for the low, medium, and high diets, respectively. Increased forage particle length linearly increased intake of peNDF but intakes of dry matter, organic matter, starch, and N were highest for cows fed the medium peNDF diet. Digestibilities of organic matter, NDF, and acid detergent fiber in the total tract were linearly decreased with increasing dietary peNDF, although total digestibility of starch and N was not affected by the treatments. Nevertheless, decreased digestibility due to increased dietary peNDF did not reduce milk production or milk composition because the cows were in mid to late lactation. Ruminal microbial protein synthesis and microbial efficiency were numerically higher with the low peNDF than with the medium or high peNDF diets. These results indicate that increasing the peNDF content of a diet containing barley silage decreases fiber digestibility in the total tract and lowers microbial efficiency. Therefore, the benefits of increasing dietary particle size, expressed as peNDF, on reducing the risk of ruminal acidosis should be weighed

  3. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  4. Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora.

    PubMed

    Fahey, Jed W; Wehage, Scott L; Holtzclaw, W David; Kensler, Thomas W; Egner, Patricia A; Shapiro, Theresa A; Talalay, Paul

    2012-04-01

    Plant-based diets rich in crucifers are effective in preventing cancer and other chronic diseases. Crucifers contain very high concentrations of glucosinolates (GS; β-thioglucoside-N-hydroxysulfates). Although not themselves protective, GS are converted by coexisting myrosinases to bitter isothiocyanates (ITC) which defend plants against predators. Coincidentally, ITC also induce mammalian genes that regulate defenses against oxidative stress, inflammation, and DNA-damaging electrophiles. Consequently, the efficiency of conversion of GS to ITC may be critical in controlling the health-promoting benefits of crucifers. If myrosinase is heat-inactivated by cooking, the gastrointestinal microflora converts GS to ITC, a process abolished by enteric antibiotics and bowel cleansing. When single oral doses of GS were administered as broccoli sprout extracts (BSE) to two dissimilar populations (rural Han Chinese and racially mixed Baltimoreans) patterns of excretions of urinary dithiocarbamates (DTC) were very similar. Individual conversions in both populations varied enormously, from about 1% to more than 40% of dose. In contrast, administration of ITC (largely sulforaphane)-containing BSE resulted in uniformly high (70%-90%) conversions to urinary DTC. Despite the remarkably large range of conversion efficiencies between individuals, repeated determinations within individuals were much more consistent. The rates of urinary excretion (slow or fast) were unrelated to the ultimate magnitudes (low or high) of these conversions. Although no demographic factors affecting conversion efficiency have been identified, there are clearly diurnal variations: conversion of GS to DTC was greater during the day, but conversion of ITC to DTC was more efficient at night. PMID:22318753

  5. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Ziang; Sun, Shuren; Yan, Yu; Wang, Wei; Qin, Laixiang; Qin, G. G.

    2016-07-01

    For a novel kind of solar cell (SC) material, it is critical to estimate how far the power conversion efficiencies (PCEs) of the SCs made of it can go. In 2010 Han and Chen proposed the equation for the ultimate efficiency of SCs without considering the carrier recombination η un. η un is capable of estimating the theoretical upper limits of the SC efficiencies and has attracted much attention. However, carrier recombination, which is one of the key factors influencing the PCEs of the SCs, is ignored in the equation for η un. In this paper, we develop a novel equation to calculate the ultimate efficiency for the SCs, η ur, which considers both the bulk and the surface carrier recombinations. The novel equation for η ur can estimate how much the bulk and the surface carrier recombinations influence the PCEs of the SCs. Moreover, with η ur we can estimate how much PCE improvement space can be gained only by reducing the influence of the carrier recombination to the least. The perovskite organometal trihalide SCs have attracted tremendous attention lately. For the planar CH3NH3PbI3 SCs, in the material depth range from 31.25–2000 nm, we apply the equation of η ur to investigate how the bulk and the surface carrier recombinations affect PCE. From a typically reported PCE of 15% for the planar CH3NH3PbI3 SC, using the equation of η ur, it is concluded that by reducing the influence of carrier recombination to the least the improvement of PCE is in the range of 17–30%.

  6. Genome-wide association analyses for growth and feed efficiency traits in beef cattle.

    PubMed

    Lu, D; Miller, S; Sargolzaei, M; Kelly, M; Vander Voort, G; Caldwell, T; Wang, Z; Plastow, G; Moore, S

    2013-08-01

    A genome-wide association study using the Illumina 50K BeadChip included 38,745 SNP on 29 BTA analyzed on 751 animals, including 33 purebreds and 718 crossbred cattle. Genotypes and 6 production traits: birth weight (BWT), weaning weight (WWT), ADG, DMI, midtest metabolic BW (MMWT), and residual feed intake (RFI), were used to estimate effects of individual SNP on the traits. At the genome-wide level false discovery rate (FDR < 10%), 41 and 5 SNP were found significantly associated with BWT and WWT, respectively. Thirty-three of them were located on BTA6. At a less stringent significance level (P < 0.001), 277 and 27 SNP were in association with single traits and multiple traits, respectively. Seventy-three SNP on BTA6 and were mostly associated with BW-related traits, and heavily located around 30 to 50Mb. Markers that significantly affected multiple traits appeared to impact them in same direction. In terms of the size of SNP effect, the significant SNP (P < 0.001) explained between 0.26 and 8.06% of the phenotypic variation in the traits. Pairs of traits with low genetic correlation, such as ADG vs. RFI or DMI vs. BWT, appeared to be controlled by 2 groups of SNP; 1 of them affected the traits in same direction, the other worked in opposite direction. This study provides useful information to further assist the identification of chromosome regions and subsequently genes affecting growth and feed efficiency traits in beef cattle.

  7. Proceedings of the conference on Coal Feeding Systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.

  8. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  9. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  10. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures. PMID:25169852

  11. Unexpected Morphological Traits of Bulk Heterojunction Organic Solar Cells with Exceptional Power Conversion Efficiencies

    NASA Astrophysics Data System (ADS)

    Tumbleston, John; Collins, Brian; Stuart, Andrew; Li, Zhe; Yan, Hongping; McNeill, Christopher; You, Wei; Ade, Harald

    2012-02-01

    The synthesis of new polymers for polymer/fullerene bulk heterojunction solar cells has boosted the power conversion efficiency (PCE) of these devices to levels now exceeding 5%. Even with these advancements in efficiency, relatively little is known of the morphological characteristics of the active layer including domain size and purity, material crystallization and orientation, and miscibility of the bulk heterojunction components. Herein, we employ a suite of soft and hard x-ray scattering and microscopy techniques to probe defining traits of the morphology for the high-performing polymers, poly[4,8-(3-butylnonyl)benzo[1,2-b:4,5-b']dithiophene-alt-2-(2-butyloctyl)-5,6-difluoro-2H-benzo[d][1,2,3]triazole] (BnDT-FTAZ) and thieno[3,4-b]thiophene-alt-benzodithiophene (PTB7) blended with phenyl-C61-butyric acid methyl ester (PC61BM) and PC71BM, respectively. PCEs of 7.4% for BnDT-FTAZ and 5.3% for PTB7 based solar cells are achieved when processing methods result in smaller, more mixed polymer/fullerene phases where non-zero miscibility is measured for each system. Furthermore, the polymers do not strongly crystallize in the active layer and average domain sizes larger than 50 nm are noted for both systems.

  12. Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency.

    PubMed

    Haldrup, Sofie; Catalano, Jacopo; Hinge, Mogens; Jensen, Grethe V; Pedersen, Jan S; Bentien, Anders

    2016-02-23

    The electrokinetic energy conversion (EKEC) of hydraulic work directly into electrical energy has been investigated in charged polymeric membranes with different pore charge densities and characteristic diameters of the nanoporous network. The membranes were synthesized from blends of nitrocellulose and sulfonated polystyrene (SPS) and were comprehensively characterized with respect to structure, composition, and transport properties. It is shown that the SPS can be used as a sacrificial pore generation medium to tune the pore size and membrane porosity, which in turn highly affects the transport properties of the membranes. Furthermore, it is shown that very high EKEC efficiencies (>35%) are encountered in a rather narrow window of the properties of the nanoporous membrane network, that is, with pore diameters of ca. 10 nm and pore charge densities of 4.6 × 10(2) to 1.5 × 10(3) mol SO3(-) m(-3) for dilute solutions (0.03 M LiCl). The high absolute value of the efficiency combined with the determination of the optimal membrane morphology makes membrane-based EKEC devices a step closer to practical applications and high-performance membrane design less empirical.

  13. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency.

    PubMed

    Menke, S Matthew; Luhman, Wade A; Holmes, Russell J

    2013-02-01

    Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (L(D)) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer L(D) by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride into a wide-energy-gap host material, we optimize the degree of interaction between donor molecules and observe a ~50% increase in L(D). Using this approach, we construct planar-heterojunction OPVs with a power conversion efficiency of (4.4 ± 0.3)%, > 30% larger than the case of optimized devices containing an undiluted donor layer. The underlying correlation between L(D) and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.

  14. A thin-film polycrystalline photoelectrochemical cell with 8% solar conversion efficiency

    NASA Astrophysics Data System (ADS)

    Hodes, G.

    1980-05-01

    A thin-film polycrystalline CdSe(0.65)Te(0.35)/polysulfide-based photoelectrochemical solar cell with an energy conversion efficiency of up to 8% is presented. Cell electrodes were prepared by painting a slurry of sintered CdSe(0.65)Te(0.35) powder onto a Ti substrate and then annealing in an inert atmosphere and etching by various means. Solar efficiencies of the electrodes immersed in an aqueous electrolyte 1 M in KOH, Na2S and S with a counter electrode of sulfide brass gauze of up to 5% were obtained following a HCl:HNO3 etch, up to 5.5% following etching in dilute aqueous CrO3 and up to 8.0% following photoetching and K2CrO4 treatment. The spectral response of the anode in polysulfide solution exhibits a short-wavelength cutoff due to electrolyte absorption, a flat plateau region, and a fairly sharp long-wavelength cut-off indicating an effective band gap of about 1.45 eV, similar to that of CdTe. Output stability has been found to decrease with increasing output current, remaining stable for more than 21 h at a current of 20 mA/sq cm.

  15. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    SciTech Connect

    Mohamed, Norani Muti; Zaine, Siti Nur Azella

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  16. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  17. The liquid droplet radiator - An ultralightweight heat rejection system for efficient energy conversion in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1981-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.

  18. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  19. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.

    PubMed

    Dau, Holger; Zaharieva, Ivelina

    2009-12-21

    Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation

  20. Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers.

    PubMed

    Russell, J R; Sexten, W J; Kerley, M S; Hansen, S L

    2016-07-01

    Feed efficiency (FE) can vary between individuals but sources of variation are not well characterized. Oxidative stress is among the biological mechanisms believed to contribute to variation. The objective of this study was to evaluate the relationship between FE, antioxidant activity, and oxidative stress in feedlot steers representing phenotypic extremes for FE. Crossbred beef steers ( = 181) fed 70-d growing phase (GP) whole-shell corn-based (G-Corn) or rye baleage and soybean hull-based (G-Rough) diets in GrowSafe bunks at the University of Missouri were shipped to Iowa State University where the 12 most feed efficient (HFE) and 12 least feed efficient (LFE) steers from each diet (n = 48; 467 kg [SD 51]) were selected for evaluation. Steers received diets similar to GP diets, and 3 d after arrival, blood was sampled to evaluate antioxidant activity and oxidative stress markers for the GP following transit. Steers were transitioned to finishing phase (FP) cracked corn-based (F-Corn) or dried distillers' grains and soybean hull-based (F-Byp) diets, and on FP d 97, blood samples for the FP were collected. Data for the GP were analyzed as a 2 × 2 factorial, and data for the FP were analyzed as a 2 × 2 × 2 factorial using PROC MIXED of SAS. No GP diet × FP diet, FP diet × FE group, or 3-way interactions were noted ( ≥ 0.11) for FP measures. Steers fed the G-Rough diet had greater ( = 0.04) GP plasma protein carbonyl concentrations. During the GP, HFE steers had greater ( ≤ 0.04) protein carbonyl and ratio of oxidized:reduced blood lysate glutathione concentrations than LFE steers. There were GP diet × FE group interactions ( ≤ 0.03) during the GP and FP. During the GP, total blood lysate superoxide dismutase (SOD) activity was greater ( ≤ 0.03) in G-Rough/LFE steers than in G-Rough/HFE and G-Corn/LFE steers; G-Corn/HFE steers were intermediate. The G-Rough/LFE steers had greater ( < 0.04) glutathione peroxidase (GPX) activity than other groups and

  1. Genetics of osteochondral disease and its relationship with meat quality and quantity, growth, and feed conversion traits in pigs.

    PubMed

    Kadarmideen, H N; Schwörer, D; Ilahi, H; Malek, M; Hofer, A

    2004-11-01

    The main objective of this research was to estimate heritabilities of seven osteochondrosis (OC) lesions in station-tested pigs and their genetic and phenotypic correlations with four meat quality (MQ) traits, the percentage of premium cuts (PPC), daily weight gain (DWG), and feed conversion ratio (FCR). Observed OC lesions were on the head of humerus (HK), condylus medialis humeri (CMH), condylus lateralis humeri (CLH), radius and ulna proximal (RUP), distal epiphyseal cartilage of ulna (DEU), head of femur (FK), and condylus medialis femoris (CMF). Meat quality traits were i.m. fat (IMF), muscle pH at 1 h after slaughter (pH1), muscle pH at 30 h after slaughter (pH30), and light reflectance on muscle (H30). The data set comprised 2,710 animals, of which 1,291 animals had OC records. All traits were analyzed by multiple-trait linear mixed model, with the animal's genetic and common litter effects as random. Fixed effects in the model varied between traits. Each OC lesion was further analyzed by a univariate generalized linear mixed model or, equivalently, "threshold models," assuming logistic, probit (normal), and Poisson distributions of the underlying "liability" to the disease. For OC lesions, estimates of heritability were low on the original "incidence" scale (0.06 for HK to 0.16 for CLH) and moderate to high on the liability scale (0.08 to 0.42). Genetic correlations (r(g)) between OC lesions and most MQ traits and PPC were generally unfavorable. Significant r(g) were -0.44 for DWG-CMH, 0.31 for DWG-CMF, 0.40 for FCR-HK, 0.21 for PPC-CLH, 0.32 for PPC-RUP, 0.30 for PPC-CMF, -0.54 for pH1-CLH, 0.47 for pH1-DEU, -0.34 for pH30-CMH, 0.58 for pH30-DEU, -0.50 for H30-HK, -0.31 for H30-DEU, and 0.31 for H30-CMF. Genetic susceptibilities to some OC lesions within the front leg were positively related to each other (r(g) range = 0.57 to 0.69), but r(g) between front and hind leg OC lesions were mostly negative (range = -0.21 to -0.40). Estimated h2 was 0.60 for PPC

  2. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency.

    PubMed

    Blankenship, Kaley; Gilley, Alex; Piekarski, Alissa; Orlowski, Sara; Greene, Elizabeth; Bottje, Walter; Anthony, Nicholas; Dridi, Sami

    2016-08-01

    Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed

  3. Assessment of diffusion-bonded KTP crystals for efficient, low pulse energy conversion from 1 to 2 microm.

    PubMed

    Perrett, Brian J; Mason, Paul D; Orchard, David A

    2006-06-20

    Diffusion bonded (DB) walk-off compensated KTP crystals offer an alternative nonlinear medium for efficient 1 to 2 microm conversion within optical parametric oscillators (OPOs) at low pulse energies. Spatial variations in optical absorption and transmission values measured at 2 mum are reported for two DB-KTP crystals. Finally, a comparison is made between the conversion efficiency obtained from a degenerate 1 microm pumped OPO using a single 20 mm KTP crystal and an equivalent length DB-KTP crystal consisting of two bonded 10 mm crystals. PMID:16778951

  4. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  5. The relationship between parental yolk cholesterol and yolk fat concentration to abdominal fat content and feed conversion ratio of their respective offspring.

    PubMed

    Suk, Y O; Washburn, K W

    1998-03-01

    The correlation of yolk cholesterol and yolk fat concentrations of egg from the pedigreed Athens-Canadian Randombred control population with the percentage of abdominal fat (AF) and feed conversion ratio (FCR) of their progeny were studied. The average yolk cholesterol, yolk fat, and AF were 20.3 mg/g yolk, 244 mg/g yolk, and 1.64%, respectively. The phenotypic correlation of both yolk cholesterol and yolk fat content of eggs from the parental population with AF or FCR of their progeny were low and nonsignificant. PMID:9521446

  6. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle

    PubMed Central

    Hernandez-Sanabria, Emma; Goonewardene, Laksiri A.; Wang, Zhiquan; Durunna, Obioha N.; Moore, Stephen S.

    2012-01-01

    Limited knowledge of the structure and activities of the ruminal bacterial community prevents the understanding of the effect of population dynamics on functional bacterial groups and on host productivity. This study aimed to identify particular bacteria associated with host feed efficiency in steers with differing diets and residual feed intake (RFI) using culture-independent methods: PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis. PCR-DGGE profiles were generated from the ruminal fluid of 55 steers fed a low-energy-density diet and then switched to a high-energy-density diet. Bacterial profile comparisons by multivariate statistical analysis showed a trend only for RFI-related clusters on the high-energy diet. When steers (n = 19) belonging to the same RFI group under both diets were used to identify specific bacterial phylotypes related to feed efficiency traits, correlations were detected between dry matter intake, average daily gain, and copy numbers of the 16S rRNA gene of Succinivibrio sp. in low-RFI (efficient) steers, whereas correlations between Robinsoniella sp. and RFI (P < 0.05) were observed for high-RFI (inefficient) animals. Eubacterium sp. differed significantly (P < 0.05) between RFI groups that were only on the high-energy diet. Our work provides a comprehensive framework to understand how particular bacterial phylotypes contribute to differences in feed efficiency and ultimately influence host productivity, which may either depend on or be independent from diet factors. PMID:22156428

  7. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.

    PubMed

    Yue, Hairong; Ma, Xinbin; Gong, Jinlong

    2014-05-20

    Ethanol is an attractive end product and a versatile feedstock because a widespread market exists for its commercial use as a fuel additive or a potential substitute for gasoline. Currently, ethanol is produced primarily by fermentation of biomass-derived sugars, particularly those containing six carbons, but coproducts 5-carbon sugars and lignin remain unusable. Another major process for commercial production of ethanol is hydration of ethylene over solid acidic catalysts, yet not sustainable considering the depletion of fossil fuels. Catalytic conversion of synthetic gas (CO + H2) could produce ethanol in large quantities. However, the direct catalytic conversion of synthetic gas to ethanol remains challenging, and no commercial process exists as of today although the research has been ongoing for the past 90 years, since such the process suffers from low yield and poor selectivity due to slow kinetics of the initial C-C bond formation and fast chain growth of the C2 intermediates. This Account describes recent developments in an alternative approach for the synthesis of ethanol via synthetic gas. This process is an integrated technology consisting of the coupling of CO with methanol to form dimethyl oxalate and the subsequent hydrogenation to yield ethanol. The byproduct of the second step (methanol) can be separated and used in circulation as the feedstock for the coupling step. The coupling reaction of carbon monoxide for producing dimethyl oxalate takes place under moderate reaction conditions with high selectivity (∼95%), which ideally leads to a self-closing, nonwaste, catalytic cycling process. This Account also summarizes the progress on the development of copper-based catalysts for the hydrogenation reaction with remarkable efficiencies and stability. The unique lamellar structure and the cooperative effect between surface Cu(0) and Cu(+) species are responsible for the activity of the catalyst with high yield of ethanol (∼91%). The understanding of

  8. Genetic parameters for energy balance, feed efficiency, and related traits in Holstein cattle.

    PubMed

    Spurlock, D M; Dekkers, J C M; Fernando, R; Koltes, D A; Wolc, A

    2012-09-01

    Objectives of the current study were to estimate genetic parameters in Holstein cows for energy balance (EB) and related traits including dry matter intake (DMI), body weight (BW), body condition score (BCS), energy-corrected milk (ECM) production, and gross feed efficiency (GFE), defined as the ratio of total ECM yield to total DMI over the first 150 d of lactation. Data were recorded for the first half of lactation on 227 and 175 cows in their first or later lactation, respectively. Random regression models were fitted to longitudinal data. Also, each trait was averaged over monthly intervals and analyzed by single and multivariate animal models. Heritability estimates ranged from 0.27 to 0.63, 0.12 to 0.62, 0.12 to 0.49, 0.63 to 0.72, and 0.49 to 0.53 for DMI, ECM yield, EB, BW, and BCS, respectively, averaged over monthly intervals. Daily heritability estimates ranged from 0.18 to 0.30, 0.10 to 0.26, 0.07 to 0.22, 0.43 to 0.67, and 0.25 to 0.38 for DMI, ECM yield, EB, BW, and BCS, respectively. Estimated heritability for GFE was 0.32. The genetic correlation of EB at 10d in milk (DIM) with EB at 150 DIM was -0.19, suggesting the genetic regulation of this trait differs by stage of lactation. Positive genetic correlations were found among DMI, ECM yield, and BW averaged over monthly intervals, whereas correlations of these traits with BCS depended upon stage of lactation. Total ECM yield for the lactation was positively correlated with DMI, but a negative genetic correlation between total ECM yield and EB was found. However, the genetic correlation between total ECM yield and EB in the first month of lactation was -0.02, indicating that total production is not genetically correlated with EB during the first month of lactation, when negative EB is most closely associated with diminished fitness. The genetic correlation between GFE and EB ranged from -0.73 to -0.99, indicating that selection for more efficient cows would favor a lower energy status. However, the

  9. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    SciTech Connect

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  10. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  11. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis

    PubMed Central

    Pavlovič, Andrej; Krausko, Miroslav; Libiaková, Michaela; Adamec, Lubomír

    2014-01-01

    Backround and Aims It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. Methods Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). Key Results Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). Conclusions According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved

  12. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  13. Efficient conversion of myricetin from Ampelopsis grossedentata extracts and its purification by MIP-SPE.

    PubMed

    Zhong, Shian; Kong, Yanyue; Zhou, Ling; Zhou, Chengyun; Zhang, Xiaona; Wang, Yan

    2014-01-15

    In this study, we developed an efficient conversion process of dihydromyricetin to myricetin from Ampelopsis grossedentata extracts. The content of myricetin increased from 2.38% to 85.57%, demonstrating the successful dehydrogenation of dihydromyricetin. Molecularly imprinted polymers (MIPs) were prepared by surface imprinting method using silica microspheres as the support matrices and myricetin as template. The MIPs were applied for the selective adsorption of myricetin. The chemical structure of the MIPs was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Static, dynamic and selective adsorption experiments showed that the MIPs exhibited good adsorption ability, rather fast template rebinding kinetics, and appreciate selectivity over structurally related compounds. Accordingly, the MIPs were applied as the selective sorbent in SPE to purify myricetin obtained through dehydrogenation, followed by HPLC-UV analysis. The recoveries of myricetin and dihydromyricetin were 92.7% and 55.6%, respectively. This study demonstrates the feasibility of using the developed MIP-SPE method to purify and enrich myricetin in the natural products. PMID:24321759

  14. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    PubMed Central

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-01-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3−xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity. PMID:27431610

  15. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.

    PubMed

    Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun

    2015-07-10

    Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.

  16. Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yi, Chao; Hu, Rong; Ren, He; Hu, Xiaowen; Wang, Shu; Gong, Xiong; Cao, Yong

    2014-01-01

    In this study, two conjugated polyelectrolytes, polythiophene derivative (PTP) and poly[(9,9-bis [6‧-N, N, N-trimethylammonium] hexyl)-fluorenylene-phenylene] dibromide (PFP), are utilized to modify the surface properties of ZnO electron extraction layer (EEL) in the inverted polymer solar cells (PSCs). Both higher short-circuit current densities and larger open-circuit voltages were observed from the inverted PSCs with ZnO/PFP or ZnO/PTP as compared with those only with ZnO EEL. The protonation process for PTP and PFP in solution is distinguished. Overall, more than 40% enhanced power conversion efficiency (PCE) from the inverted PSCs with ZnO/PFP, in which the PFP could be fully ionized in deionized water, and more than 30% enhanced PCE from the inverted PSCs with ZnO/PTP, as the case that the PTP could not be fully ionized in deionized water, as compared with the inverted PSCs with ZnO EEL were observed, respectively. These results demonstrate that the conjugated polyelectrolytes play an important role in enhancement of device performance of inverted PSCs and that the protonation process of the conjugated polyelectrolytes is critical to the modification for EEL in PSCs.

  17. Feasibility survey on international cooperation for high efficiency energy conversion technology in fiscal 1993

    NASA Astrophysics Data System (ADS)

    1994-03-01

    Following cooperative researches on fuel cell jointly conducted by NEDO and EGAT (Electricity Generating Authority of Thailand), the survey on international cooperation relating to high efficiency energy conversion technology was carried out for the ASEAN countries. The paper summed up the results of the survey. The study of the international cooperation is made for the following three items: a program for periodical exchange of information with EGAT, a project for cooperative research on phosphoric acid fuel cell in Indonesia, and a project for cooperative research with EGAT on electric power storage by advanced battery. In Malaysia, which is small in scale of state, part of the Ministry of Energy, Telecommunication and Posts is only in charge of the energy issue. Therefore, the situation is that they cannot answer well to many items of research/development cooperation brought in from Japan. The item of medium- and long-term developmental research in the Philippines is about the problems which are seen subsequently in the Manila metropolitan area where the problem of outage is being settled. Accordingly, it is essential to promote the cooperative research, well confirming policies and systems of the Ministry of Energy and the national electricity corporation.

  18. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-07-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3‑xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity.

  19. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    PubMed

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux. PMID:25819465

  20. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    PubMed

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.

  1. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    PubMed Central

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans. PMID:27384922

  2. NASA-OAST/JPL high efficiency thermionic conversion studies. [nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Efforts were made to develop a thermionic energy conversion TEC technology appropriate for nuclear electric propulsion missions. This space TEC effort was complementary to the terrestrial TEC studies sponsored by the Department of Energy which had the goal of topping fossil fuel power plants. Thermionic energy conversion was a primary conversion option for space reactors because of its: (1) high operating temperature; (2) lack of moving parts; (3) modularity; (4) established technology; and (5) development potential.

  3. A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells.

    PubMed

    Yao, Zhaoyang; Zhang, Min; Li, Renzhi; Yang, Lin; Qiao, Yongna; Wang, Peng

    2015-05-11

    Reported are two highly efficient metal-free perylene dyes featuring N-annulated thienobenzoperylene (NTBP) and N-annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal-free organic dye derived from the NTCP segment was used for a dye-sensitized solar cell which attained a power conversion efficiency of 12% under an irradiance of 100 mW cm(-2), simulated air mass global (AM1.5G) sunlight.

  4. Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water.

    PubMed

    Xu, Lingli; Huo, Zhibao; Fu, Jun; Jin, Fangming

    2014-06-01

    The efficient conversion of biomass-derived glycolide into ethylene glycol over CuO in water was investigated. The reaction of glycolide was carried out with 25 mmol Zn and 6 mmol CuO with 25% water filling at 250 °C for 150 min, which yielded the desired ethylene glycol in 94% yield. PMID:24769741

  5. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    SciTech Connect

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  6. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation.

  7. The Care and Feeding of the Superintendent: A Candid Conversation about the Most Important Relationship in Your School District.

    ERIC Educational Resources Information Center

    Abrams, Marc; Canada, Benjamin O.

    2000-01-01

    Conversing about board-administrator foibles, a board member and the superintendent of the Portland (Oregon) School District reach agreement concerning essentials for working well together. They acknowledge the need for smaller, informal meetings; absolute and trust and communication; long-term commitment; and ideological understandings. (MLH)

  8. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  9. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  10. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    -hydroxybutyrate were not altered by the treatments. Results demonstrate that palmitic acid is more effective than stearic acid in improving milk fat concentration and yield as well as efficiency of feed conversion to milk. Responses were independent of production level and without changes in body condition score or body weight. Further studies are required to test the consistency of these responses across different types of diets.

  11. Influence of gas feed composition and pressure on the catalytic conversion of CO{sub 2} to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst

    SciTech Connect

    Robert W. Dorner; Dennis R. Hardy; Frederick W. Williams; Burtron H. Davis; Heather D. Willauer

    2009-08-15

    The hydrogenation of CO{sub 2} using a traditional Fischer-Tropsch Co-Pt/Al{sub 2}O{sub 3} catalyst for the production of valuable hydrocarbon materials is investigated. The ability to direct product distribution was measured as a function of different feed gas ratios of H{sub 2} and CO{sub 2} (3:1, 2:1, and 1:1) as well as operating pressures (ranging from 450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different active sites for methane and C2-C4 products. Furthermore, with decreasing pressure, the methane conversion drops slightly in favor of C{sub 2}-C{sub 4} paraffins. Even though under certain reaction conditions product distribution can be shifted slightly away from the formation of methane, the catalyst studied behaves like a methanation catalyst in the hydrogenation of CO{sub 2}. 36 refs., 2 figs., 4 tabs.

  12. [Efficacy of probiotic feed additives: guidelines for the evaluation of the efficiency of microorganisms in dogs, cats, and horses].

    PubMed

    Lahrssen, M; Zentek, J

    2002-01-01

    Probiotic microorganisms are frequently in use as feed additives for farm and pet animals. For admission for the common market products have to be tested according to the feed additive directive 70/524/EC. The dossier for admission has to comprise data of efficiency as laid down in the directive 87/153/EC. During the last years it became obvious after the evaluation of several dossiers, that no definitive criteria for the assessment of efficacy were available for dogs, cats and horses (84/153/EC). Aspects like the promotion of animal production are not relevant in this context. Therefore, the European commission launched the directive for the evaluation of efficacy of microorganisms for dogs, cats and horses, that supports the evaluation of microbial feed additives and which is described in this paper. PMID:11838292

  13. Effects of Natustat supplementation on performance, feed efficiency and intestinal lesion scores in broiler chickens challenged with Eimeria acervulina, Eimeria maxima and Eimeria tenella.

    PubMed

    Duffy, C F; Mathis, G F; Power, R F

    2005-06-30

    The effects of dietary supplementation of Natustat, a proprietary plant derived product (Alltech Inc., KY, USA) and Salinomycin, on performance, feed efficiency and intestinal lesion scores were observed during two Eimeria challenge trials in broiler chickens. In the first trial chickens were challenged with Eimeria sp. via infecting the litter with a known amount of Eimeria oocysts. In the second trial the source of the Eimeria challenge was the litter from the first trial and the same treatment groups were assigned to the same pens as in the initial trial. Birds were placed 55 per pen with seven pens per treatment. Performance parameters were recorded on days 21 and 42 during both trials. Intestinal lesion scores were assessed on days 14 and 21 during Trial 1 and on day 21 during Trial 2. Average weight gain and feed conversion ratios were significantly improved in the Natustat and Salinomycin treatment groups when compared to the non-supplemented infected group. Furthermore, lesion scores were lower on all sampling days in the Natustat and Salinomycin groups when compared to the non-supplemented group. However, only lesions associated with Eimeria tenella were significantly lowered by Natustat and Salinomycin supplementation. Natustat and Salinomycin were equivalent in alleviating the negative performance effects associated with coccidiosis challenge. In summary, Natustat has the potential to be used as a natural alternative to chemotherapeutic drugs for Eimeria control. PMID:15905033

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  15. A theoretical analysis of the current-voltage characteristics of solar cells. [and their energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.

  16. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes.

    PubMed

    Liu, Che-Yu; Chen, Tzu-Pei; Kao, Tsung Sheng; Huang, Jhih-Kai; Kuo, Hao-Chung; Chen, Yang-Fang; Chang, Chun-Yen

    2016-08-22

    A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources. PMID:27557273

  17. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  18. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    SciTech Connect

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-10-06

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed.

  19. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+

    NASA Astrophysics Data System (ADS)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Liu, Shiyou; E, Dong; Wang, Yanhao; Xu, Xijin; Zhu, Min; Cao, Bingqiang

    2014-12-01

    The down conversion (DC) material ZnO: Eu3+, Dy3+ are synthesized by precipitation method and used to prepare the photo anode of dye-sensitized solar cells (DSSCs). The effects of down conversion material on the photoelectric performance of the DSSC were characterized by the X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscope (SEM), current-voltage (I-V) curve, incident-photon-to-current conversion efficiency (IPCE) and UV-vis-NIR absorption spectroscopy. In this paper, Eu3+, Dy3+ codoped ZnO excited by from UV to blue light converts blue to red light emission, corresponding to the absorption region of the dye (N719). At the concentration 1.75% of ZnO: Eu3+, Dy3+ (weight ratio of DC to TiO2), the short-circuit current density and conversion efficiency of the DSSCs reached to the optimal values: 8.92 mA cm-2 and 4.48%, about 212% and 245% higher than with pure TiO2 and about 91.4% and 105% higher than with TiO2/graphene (G) structure, respectively. The research result reveals that the application of DC material can improve the efficiency of DSSCs.

  20. U-AVLIS feed conversion using continuous metallothermic reduction of UF{sub 4}: System description and cost estimate

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this document is to present a system description and develop baseline capital and operating cost estimates for commercial facilities which produced U-Fe feedstock for AVLIS enrichment plants using the continuous fluoride reduction (CFR) process. These costs can then be used together with appropriate economic assumptions to calculate estimated unit costs to the AVLIS plant owner (or utility customer) for such conversion services. Six cases are being examined. All cases assume that the conversion services are performed by a private company at a commercial site which has an existing NRC license to possess source material and which has existing uranium processing operations. The cases differ in terms of annual production capacity and whether the new process system is installed in a new building or in an existing building on the site. The six cases are summarized here.

  1. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria

    PubMed Central

    Stanley, Dragana; Hughes, Robert J.; Geier, Mark S.; Moore, Robert J.

    2016-01-01

    Identification of bacteria associated with desirable productivity outcomes in animals may offer a direct approach to the identification of probiotic bacteria for use in animal production. We performed three controlled chicken trials (n = 96) to investigate caecal microbiota differences between the best and poorest performing birds using four performance measures; feed conversion ratio (FCR), utilization of energy from the feed measured as apparent metabolisable energy, gain rate (GR), and amount of feed eaten (FE). The shifts in microbiota composition associated with the performance measures were very different between the three trials. Analysis of the caecal microbiota revealed that the high and low FCR birds had significant differences in the abundance of some bacteria as demonstrated by shifts in microbiota alpha and beta diversity. Trials 1 and 2 showed significant overall community shifts, however, the microbial changes driving the difference between good and poor performers were very different. Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families and genera Ruminococcus, Faecalibacterium and multiple lineages of genus Clostridium (from families Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae) were highly abundant in good FCR birds in Trial 1. Different microbiota was associated with FCR in Trial 2; Catabacteriaceae and unknown Clostridiales family members were increased in good FCR and genera Clostridium (from family Clostridiaceae) and Lactobacillus were associated with poor FCR. Trial 3 had only mild microbiota differences associated with all four performance measures. Overall, the genus Lactobacillus was correlated with feed intake which resulted in poor FCR performance. The genus Faecalibacterium correlated with improved FCR, increased GR and reduced FE. There was overlap in phylotypes correlated with improved FCR and GR, while different microbial cohorts appeared to be correlated with FE. Even under controlled conditions different

  2. Improvement of color conversion and efficiency droop in hybrid light-emitting diodes utilizing an efficient non-radiative resonant energy transfer

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhe; Dai, Jiangping; Liu, Bin; Guo, Xu; Li, Yi; Tao, Tao; Zhi, Ting; Zhang, Guogang; Xie, Zili; Ge, Haixiong; Shi, Yi; Zheng, Youdou; Zhang, Rong

    2016-10-01

    Blue InGaN/GaN nanohole light-emitting diodes have been fabricated by soft UV-curing nanoimprint lithography, filling with CdSe/ZnS core/shell nanocrystals (NCs) as color conversion mediums. The excitonic recombination dynamics of hybrid nanohole light-emitting diodes were investigated by time-resolved photoluminescence, observing a significant reduction in the decay lifetime of excitons as a result of an efficient non-radiative resonant energy transfer, which leads to the improvement of color conversion and efficiency droop in these hybrid nanohole light-emitting diodes compared to hybrid nanocrystals/standard planar light-emitting diodes. The color-conversion efficiency and effective quantum yield of hybrid nanohole light-emitting diodes were nearly twice as much as those of hybrid standard light-emitting diodes. A model on the excitonic recombination process was proposed to explore this situation, explaining the advantages of non-radiative resonant energy transfer that avoiding energy loss associated with the intermediate light emission and conversion steps and transferring energy non-radiatively and resonantly to NCs with a higher quantum yield. The efficiency droop of hybrid nanohole light-emitting diodes was validly suppressed compared to the bare ones, even better than that of hybrid standard light-emitting diodes. It mainly results from the extraction of excess carrier concentrations in InGaN/GaN multiple quantum wells via the rapid non-radiative resonant energy transfer process under the higher injection condition, revealing a great potential to realize efficient white light emitters in the future.

  3. Identification of single nucleotide polymorphisms in genes involved in digestive and metabolic processes associated with feed efficiency and performance traits in beef cattle.

    PubMed

    Abo-Ismail, M K; Kelly, M J; Squires, E J; Swanson, K C; Bauck, S; Miller, S P

    2013-06-01

    Discovery of genetic mutations that have a significant association with economically important traits would benefit beef cattle breeders. Objectives were to identify with an in silico approach new SNP in 8 genes involved in digestive function and metabolic processes and to examine the associations between the identified SNP and feed efficiency and performance traits. The association between SNP and daily DMI, ADG, midpoint metabolic weight (MMWT), residual feed intake (RFI), and feed conversion ratio (FCR; the ratio of average daily DMI to ADG) was tested in discovery and validation populations using a univariate mixed-inheritance animal model fitted in ASReml. Substitution effect of the T allele of SNP rs41256901 in protease, serine, 2 (trypsin 2; PRSS2) was associated with FCR (-0.293 ± 0.08 kg DMI kg(-1) BW gain; P < 0.001) and RFI (-0.199 ± 0.08 kg; P < 0.01) and although not significant in the validation population, the phase of association remained. In the cholecystokinin B receptor (CCKBR) gene, genotypes in rs42670351 were associated with RFI (P < 0.05) whereas genotypes in rs42670352 were associated with RFI (P = 0.002) and DMI (P < 0.05). Substitution of the G allele in rs42670352 was associated with DMI (-0.236 ± 0.12 kg; P = 0.055) and RFI (-0.175 ± 0.09 kg; P = 0.05). Substitution of the G allele of SNP rs42670353 was associated with ADG (0.043 ± 0.02 kg/d; P < 0.01) and FCR (0.114 ± 0.05 kg BW gain kg(-1) DMI; P < 0.05). In the validation dataset, SNP rs42670352 in gene CCKBR was significant for RFI and DMI and had the same phase of associations; SNP rs42670353 was significantly associated with FCR with same phase of association and the C allele in SNP rs42670351 was validated as decreasing DMI, RFI, and FCR. Substituting the G allele of SNP rs42670352 in CCKBR2 was associated with decreasing DMI and RFI in the validation study. New SNP were reported in genes PRSS2 and CCKBR, being associated with feed efficiency and performance traits in beef

  4. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    PubMed

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the

  5. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    PubMed

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the

  6. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.

    PubMed

    De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H

    2016-06-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers. PMID:27459770

  7. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do

  8. Colostrum replacer feeding regimen, addition of sodium bicarbonate, and milk replacer: the combined effects on absorptive efficiency of immunoglobulin G in neonatal calves.

    PubMed

    Cabral, R G; Cabral, M A; Chapman, C E; Kent, E J; Haines, D M; Erickson, P S

    2014-01-01

    Eighty Holstein and Holstein cross dairy calves were blocked by birth date and randomly assigned to 1 of 8 treatments within each block to examine the effect of a colostrum replacer (CR) feeding regimen, supplementation of CR with sodium bicarbonate (NaHCO3), and provision of a milk replacer (MR) feeding on IgG absorption. Calves were offered a CR containing 184.5g/L of IgG in either 1 feeding at 0h (within 30 min of birth), with or without 30g of NaHCO3, with or without a feeding of MR at 6h of age, or 2 feedings of CR (123g of IgG at 0h with or without 20g of NaHCO3 and 61.5g of IgG at 6h with or without 10g of NaHCO3), with or without a MR feeding at 12h. Therefore, treatments were (1) 1 feeding of CR; (2) 2 feedings of CR; (3) 1 feeding of CR + 30g of NaHCO3; (4) 2 feedings of CR + 30g of NaHCO3; (5) 1 feeding of CR + MR feeding; (6) 2 feedings of CR + MR feeding; (7) 1 feeding of CR + 30g NaHCO3 + MR feeding; and (8) 2 feedings of CR + 30g NaHCO3 + MR feeding. Blood samples were obtained at 0, 6, 12, 18, and 24h after birth and were analyzed for IgG via radial immunoassay. Results indicated that CR feeding schedule, MR feeding, and the interactions CR × Na, CR × MR, and CR × Na × MR were similar for 24-h serum IgG, apparent efficiency of absorption, or area under the curve. Serum IgG at 24h, apparent efficiency of absorption, and area under the curve were decreased with addition of NaHCO3 compared with calves not supplemented with NaHCO3. These data indicate that supplementation of CR with NaHCO3 is not beneficial to IgG absorption and feeding MR within 6h of CR feeding does not affect IgG absorption.

  9. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  10. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    PubMed

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. PMID:26252994

  11. Patterning ITO by Template-Assisted Colloidal-Lithography for Enhancing Power Conversion Efficiency in Organic Photovoltaic.

    PubMed

    Lee, Jin-Su; Yu, Jung-Hun; Hwang, Ki-Hwan; Nam, Sang-Hun; Boo, Jin-Hyo; Yun, Sang H

    2016-05-01

    Highly structured interfaces are very desirable in organic photovoltaic solar cells (OPVs), in order to enhance power conversion efficiency (PCE) by decreasing of the transport path for excited charge carriers in the absorber and increasing the optical path length for photon absorption. Many complicated, high-cost lithographic methods have been attempted to modify the surface of the absorber or substrate. However, solution-based colloidal-lithography processes are scalable and cost-effective, but generally result in non-uniform structured surfaces. In this report, we demonstrated an optimized silica-templated colloidal lithographical approach to create a well-defined and controlled transparent ITO layer for enhancing power conversion efficiency (PCE). Additionally, morphological effects of the patterned ITO on optical properties and PCE were analyzed in detail. PMID:27483864

  12. Improved conversion efficiency of Cr4+ ions in Cr: YAG transparent ceramics by optimization the particle sizes of sintering aids

    NASA Astrophysics Data System (ADS)

    Zhou, Tianyuan; Zhang, Le; Zhang, Jian; Yang, Hao; Liu, Peng; Chen, Yuanzhi; Qiao, Xuebin; Tang, Dingyuan

    2015-12-01

    In this study, fully dense chromium doped Y3Al5O12 ceramics with an average grain size of ∼3 μm were successfully fabricated by a solid state reactive sintering method under vacuum, and the effect of particle sizes of applied divalent dopants (CaO and MgO) on the optical properties, conversion efficiency of Cr4+ ions as well as microstructures of the fabricated Cr doped YAG ceramics were investigated. It was found that the conversion efficiency of Cr4+ ions in Cr: YAG ceramics depended strongly on the particle sizes of divalent dopants. For the sample doped with fine divalent dopants, the absorption coefficient at 1030 nm was 3.7 cm-1, which was 12 times higher than that of the sample doped with coarse divalent dopants.

  13. Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors

    NASA Astrophysics Data System (ADS)

    Chaouachi, A.; Chtourou, R.; M'nif, A.; Hamzaoui, A. H.

    2015-04-01

    The effect of using inverse opal photonic crystals as back reflectors on the power conversion efficiency of c-Si solar cells is investigated. The reflection spectra of inverse opal photonic crystals with different diameters of air spheres are simulated using the finite difference time domain (FDTD) method. The reflection peaks are correlated with photonic band gaps present in the photonic band gap diagram. Significant improvement in the optical absorption of the crystalline silicon layer is recorded when inverse opal photonic crystals are considered. Physical mechanisms which may contribute to the enhancement of the light absorption are underlined. With higher short-circuit current enhancement possible, and with no corresponding degradation in open-circuit voltage Voc or the fill factor, the power conversion efficiency is increased significantly when inverse opal photonic crystals are used as back reflectors with optimized diameter of air spheres.

  14. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    SciTech Connect

    Li, Xia; Bi, Wanjun; Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong; Gao, Weiqing

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  15. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    PubMed

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.

  16. Role of dc space charge field in the optimization of microwave conversion efficiency from a modulated intense relativistic electron beam

    SciTech Connect

    Xiao, Renzhen; Chen, Changhua; Wu, Ping; Song, Zhimin; Sun, Jun

    2013-12-07

    We demonstrate an efficiency of 70% with 5.1 GW microwave power for a diode voltage of 770 kV and a current modulation coefficient of 1.67 in a klystron-like relativistic backward wave oscillator. The device combines the advantages of reducing electron beam radius, adopting dual-cavity extractor, and introducing two pre-modulation cavities. A large dc space charge field is present due to the conversion of considerable potential energy to kinetic energy at the end of beam-wave interaction region. A nonlinear theory is developed to show that the dc space charge field can increase the current modulation coefficient and microwave conversion efficiency significantly.

  17. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    PubMed

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s. PMID:27433731

  18. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance

  19. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance

  20. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  1. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  2. Determining Suction Feeding Efficiency in the Bowfin fish (Amia) using Particle Image Velocimery and Computaional Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rua, Yenny; Kharbouch, Karim; Sanford, Christopher; Reckinger, Shanon

    2014-11-01

    Suction feeding is the most common form of prey capture in aquatic vertebrates. During the early evolution of fishes there was a major change in shape of the mouth, from a wedge shaped mouth opening in more primitive fishes to a more circular and planar mouth. This change in shape resulted from increased mobility of a key upper jaw bone, the maxilla. It has been suggested that this change in shape dramatically increased suction feeding efficiency. This study examines the hydrodynamic effects of these two mouth shapes in the same animal, the bowfin fish (Amia calva). 2D Particle Image Velocimetry (PIV) is used to analyze suction feeding events. Post-processing algorithms have been developed to determine the flow rate of water into the mouth of the fish; the area of fluid, the velocity of fluid and the volume of fluid affected by the fish; the velocity of the fluid at the mouth, as well as the velocity of the fluid as a function of the distance from the mouth, finally the force exerted on the fluid by the fish is also determined. Lastly, a numerical model has been developed for comparison using a non-uniform mesh, which adapts dynamically in space and time to the fish feeding event. The realistic geometry of the fish's head is modeled in CAD.

  3. Feeding, production, and efficiency of Holstein-Friesian, Jersey, and mixed-breed lactating dairy cows in commercial Danish herds.

    PubMed

    Kristensen, T; Jensen, C; Østergaard, S; Weisbjerg, M R; Aaes, O; Nielsen, N I

    2015-01-01

    The objective of this paper was to compare efficiency measures, milk production, and feed intake for lactating cows in commercial herds using different breeds and production and milking systems. To accomplish this, we used all feed evaluations made by the Danish extension service during the period November 2012 to April 2013 for 779 herds, of which 508 were Holstein-Friesian (HOL); 100 were Jersey (JER); and 171 herds were a mixture of these 2 breeds, other dairy breeds, and crossbreeds (OTH). The annually recorded, herd-average energy-corrected milk (ECM) yield was 8,716kg (JER) and 9,606kg (HOL); and average herd size was 197 cows (HOL) and 224 cows (JER). All cows were fed a total mixed or partial mixed ration supplemented with concentrate from feeding stations, housed in loose housing systems with a slatted floor, and milked in either a parlor milking unit or an automatic milking system. Energy efficiency was calculated as net energy efficiency defined as total energy demand as a percentage of energy intake and as residual feed intake defined as energy intake (net energy for lactation; NEL) minus energy requirement. Production efficiency was expressed as kilograms of ECM per kilogram of dry matter intake (DMI), kilograms of ECM per 10 MJ of net energy intake (NEL), kilograms of ECM per 100kg of BW, and kilograms of DMI per 100kg of BW. Environmental efficiency was expressed by the nitrogen efficiency calculated as N in milk and meat as a percentage of N in intake, and as enteric emission of methane expressed as kilograms of ECM per megajoule of CH4. Mean milk yield for lactating cows was 30.4kg of ECM in HOL and 3kg less in JER, with OTH herds in between. Mean NEL intake was 122 MJ in JER, increasing to 147 MJ in HOL, whereas ration energy density between breeds did not differ (6.4-6.5 MJ of NEL per kg of DMI). The NEL intake and DMI explained 56 and 47%, respectively, of variation in production (ECM) for HOL herds but only 44 and 27% for JER. Jersey had a

  4. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  5. Genetic architechture and biological basis for feed efficiency in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic architecture of residual feed intake (RFI) and related traits was evaluated using a dataset of 2,894 cows. A Bayesian analysis estimated that markers accounted for 14% of the variance in RFI, and that RFI had considerable genetic variation. Effects of marker windows were small, but QTL p...

  6. Endocannabinoid concentrations in plasma associated with feed efficiency and carcass composition on crossbreed steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  7. Efficient and reliable protocols for the production of live feeds for larval Florida pompano

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As is the case with most marine finfish species, production of live feed organisms represents the majority of time and labor associated with larviculture operations. As a byproduct of establishing a reproduction and larviculture research program at our facility, procedures for the production and en...

  8. Theoretical investigation of the spectrum and conversion efficiency of short wavelength extreme-ultraviolet light sources based on terbium plasmas

    SciTech Connect

    Sasaki, Akira; Nishihara, Katsunobu; Sunahara, Atsushi; Furukawa, Hiroyuki; Nishikawa, Takeshi; Koike, Fumihiro

    2010-12-06

    The emission spectrum and conversion efficiency of laser-produced terbium plasmas are theoretically investigated on the basis of computational atomic data. The theoretically calculated spectrum reproduces the main peak of observed spectrum at {lambda}=6.5 nm, which originates from 4d-4f transitions of near palladiumlike ions (Tb{sup 19+}). A simple model of the isothermal expansion of terbium plasma suggests that efficient emission can be achieved by pumping the plasma with a laser pulse at an intensity of approximately one order of magnitude greater than that used with tin sources at {lambda}=13.5 nm.

  9. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  10. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production.

    PubMed

    Ju, Huiming; Zhang, Jiaqing; Bai, Lijing; Mu, Yulian; Du, Yutao; Yang, Wenxian; Li, Yong; Sheng, Anzhi; Li, Kui

    2015-01-01

    Sustained expression of the GH gene has been shown to have detrimental effects on the health of animals. In the current study, transgenic founder pigs, with controllable pig growth hormone (pGH) expression, were cloned via the handmade cloning method (HMC), and pGH expression levels were examined at the cellular and organismal levels. The serum pGH levels in 3 founder male pigs were found to be significantly higher after induction with intramuscular injection of doxycycline (DOX) compared to baseline. A daily dose of DOX was administered via feed to these animals for a period of 65 to 155 days. The growth rate, feed efficiency and pGH serum concentration increased in the DOX-induced transgenic group compared with the other groups. 8 numbers of animals were euthanized and the dressing percentage, loin muscle and lean meat percentage were significantly higher in the DOX-induced F1 transgenic group compared with the other groups. In this study a large population of transgenic pigs, with integrated controllable expression of a transgene, was obtained. The transgenic pigs were healthy and normal in terms of reproductive capability. At the same time, feed efficiency was improved, production processes were accelerated and meat yield was increased.

  11. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency.

    PubMed

    Jeong, Sangmoo; McGehee, Michael D; Cui, Yi

    2013-01-01

    Thinner Si solar cells with higher efficiency can make a Si photovoltaic system a cost-effective energy solution, and nanostructuring has been suggested as a promising method to make thin Si an effective absorber. However, thin Si solar cells with nanostructures are not efficient because of severe Auger recombination and increased surface area, normally yielding <50% EQE with short-wavelength light. Here we demonstrate >80% EQEs at wavelengths from 400 to 800 nm in a sub-10-μm-thick Si solar cell, resulting in 13.7% power conversion efficiency. This significant improvement was achieved with an all-back-contact design preventing Auger recombination and with a nanocone structure having less surface area than any other nanostructures for solar cells. The device design principles presented here balance the photonic and electronic effects together and are an important step to realizing highly efficient, thin Si and other types of thin solar cells.

  12. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.

    PubMed

    Li, Yanbo; Zhang, Li; Torres-Pardo, Almudena; González-Calbet, Jose M; Ma, Yanhang; Oleynikov, Peter; Terasaki, Osamu; Asahina, Shunsuke; Shima, Masahide; Cha, Dongkyu; Zhao, Lan; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2013-01-01

    Spurred by the decreased availability of fossil fuels and global warming, the idea of converting solar energy into clean fuels has been widely recognized. Hydrogen produced by photoelectrochemical water splitting using sunlight could provide a carbon dioxide lean fuel as an alternative to fossil fuels. A major challenge in photoelectrochemical water splitting is to develop an efficient photoanode that can stably oxidize water into oxygen. Here we report an efficient and stable photoanode that couples an active barium-doped tantalum nitride nanostructure with a stable cobalt phosphate co-catalyst. The effect of barium doping on the photoelectrochemical activity of the photoanode is investigated. The photoanode yields a maximum solar energy conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency of almost unity for 100 min.

  13. Effect of wheat dried distillers grains and enzyme supplementation on growth rates, feed conversion ratio and beef fatty acid profile in feedlot steers.

    PubMed

    He, Z X; He, M L; Zhao, Y L; Xu, L; Walker, N D; Beauchemin, K A; McAllister, T A; Yang, W Z

    2015-10-01

    The objectives of this study were to determine: (1) the effect of wheat dried distillers grain with solubles (DDGS) inclusion, and (2) dietary feed enzyme (FE; Econase XT) supplementation in a finishing diet containing wheat DDGS on fatty acid profile of the pars costalis diaphragmatis muscle of beef cattle. A total of 160 crossbred yearling steers with initial BW of 495 ± 38 kg were blocked by BW and randomized into 16 pens (10 head/pen). The pens were randomly assigned to one of the four treatments: (1) control (CON; 10% barley silage and 90% barley grain-based concentrate, dry matter (DM) basis); (2) diet containing 30% wheat DDGS in place of barley grain without FE (WDG); (3) WDG diet supplemented with low FE (WDGL; 1 ml FE/kg DM); and (4) WDG diet supplemented with high FE (2 ml FE/kg DM). The pars costalis diaphragmatis muscle samples were collected from cattle at slaughter at the end of the finishing period (120 days) with a targeted live weight of 650 kg. No differences in organic matter intake, final BW and average daily gain were observed among treatments. However, steers fed WDG had greater (P<0.01) feed conversion ratio than those fed CON, and increasing FE application in wheat DDGS-based diets tended (P<0.10) to linearly decrease feed conversion ratio. In assessing the effects of including WDG diets without FE, concentration of total polyunsaturated fatty acids (PUFA) in muscle tended to be greater (P<0.10) for steers fed WDG than steers fed CON. In addition, inclusion of wheat DDGS into the diet increased (P<0.05) concentration of CLA and vaccenic acid (VA) in muscle and also resulted in a higher (P<0.05) ratio of n-6/n-3 PUFA compared with that from steers fed CON diet. Increasing FE application in wheat DDGS-based diets did not modify the concentrations of individual or total fatty acids. These results suggest that inclusion of wheat DDGS in finishing diets may improve fatty acid profile of beef muscle which could benefit human health.

  14. Zilpaterol hydrochloride improves feed efficiency and changes body composition in nonimplanted Nellore heifers.

    PubMed

    Cônsolo, N R B; Rodriguez, F D; Goulart, R S; Frasseto, M O; Ferrari, V B; Silva, L F P

    2015-10-01

    % with ZH supplementation. There was no change on EBW composition after 30 d of ZH supplementation ( = 0.17). Regarding carcass gain composition, ZH increased EBW gain ( = 0.02) by 842 g/d from d 0 to d 30, EB protein gain by 221 g/d ( = 0.05) from d 0 to d 20, and by 180 g/d ( = 0.01) from d 0 to d 33. In conclusion, ZH supplementation in nonimplanted Nellore heifers altered the composition of body weight gain, promoting greater lean tissue deposition and improving feed efficiency. PMID:26523587

  15. Zilpaterol hydrochloride improves feed efficiency and changes body composition in nonimplanted Nellore heifers.

    PubMed

    Cônsolo, N R B; Rodriguez, F D; Goulart, R S; Frasseto, M O; Ferrari, V B; Silva, L F P

    2015-10-01

    % with ZH supplementation. There was no change on EBW composition after 30 d of ZH supplementation ( = 0.17). Regarding carcass gain composition, ZH increased EBW gain ( = 0.02) by 842 g/d from d 0 to d 30, EB protein gain by 221 g/d ( = 0.05) from d 0 to d 20, and by 180 g/d ( = 0.01) from d 0 to d 33. In conclusion, ZH supplementation in nonimplanted Nellore heifers altered the composition of body weight gain, promoting greater lean tissue deposition and improving feed efficiency.

  16. Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage.

    PubMed

    Yu, Minghao; Han, Yi; Cheng, Xinyu; Hu, Le; Zeng, Yinxiang; Chen, Meiqiong; Cheng, Faliang; Lu, Xihong; Tong, Yexiang

    2015-05-20

    Holey tungsten oxynitride nanowires with superior conductivity, good biocompatibility, and good stability achieve excellent performance as anodes for both asymmetric supercapacitors and microbial fuel cells. Moreover, an innovative system is devised based on these as-prepared tungsten oxynitride anodes, which can simultaneously realize both energy conversion from chemical to electric energy and its storage. PMID:25854325

  17. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as

  18. Modeling genetic and non-genetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed efficiency (FE), characterized as the ability to convert feed nutrients into saleable milk or meat directly affects the profitability of dairy production, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or pa...

  19. QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies a...

  20. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion.

    PubMed

    Erickson, S D; Smith, T J; Moses, L M; Watt, R K; Colton, J S

    2015-01-01

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

  1. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy.

    PubMed

    Liu, Xijian; Li, Bo; Fu, Fanfan; Xu, Kaibing; Zou, Rujia; Wang, Qian; Zhang, Bingjie; Chen, Zhigang; Hu, Junqing

    2014-08-14

    The semiconductor compounds have been proven to be promising candidates as a new type of photothermal therapy agent, but unsatisfactory photothermal conversion efficiencies limit their widespread application in photothermal therapy (PTT). Herein, we synthesized cysteine-coated CuS nanoparticles (Cys-CuS NPs) as highly efficient PTT agents by a simple aqueous solution method. The Cys-CuS NPs have a good biocompatibility owing to their biocompatible cysteine coating and exhibit a strong absorption in the near-infrared region due to the localized surface plasma resonances of valence-band free carriers. The photothermal conversion efficiency of Cys-CuS NPs reaches 38.0%, which is much higher than that of the recently reported Cu9S5 and Cu(2-x)Se nanocrystals. More importantly, tumor growth can be efficiently inhibited in vivo by the fatal heat arising from the excellent photothermal effect of Cys-CuS NPs at a low concentration under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm(-2). Therefore, the Cys-CuS NPs have great potential as ideal photothermal agents for cancer therapy. PMID:24950757

  2. Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths

    NASA Astrophysics Data System (ADS)

    Samir, E.; Shehata, N.; Aldacher, M.; Kandas, I.

    2016-06-01

    Up-conversion is a process of converting low energy light photons to higher energy ones, which can be extensively used in many applications. This paper presents a detailed parametric study of the up-conversion process under different wavelength excitations—780 nm and 980 nm—showing the optical conversion mechanisms that affect the emitted light quantum yield efficiencies. The studied material is erbium-doped β-NaYF4 material, which is one of the most recently studied materials due to its low phonon energy. The studied simulation considers most processes and possible transitions that can take place between Er3+ ions. Einstein coefficients, which are the main parameters that are responsible for the transitions probabilities, are discussed in detail using Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, showing their optimum values that could improve the quantum yield efficiency. This model is very promising, and generic, and can be applied for any host material under any excitation wavelengths by varying the material-dependent parameters.

  3. A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents.

    PubMed

    Toma, Maricela; Fukutomi, Satoshi; Asakura, Yoshiyuki; Koda, Shinobu

    2011-01-01

    It would seem that the economic viability is yet to be established for a great number of sonochemical processes, owning to their perfectible ultrasonic equipments. Industrial scale sonoreactors may become more important as a result of mastering the parameters with influence on their energy balance. This work related the solvent type to the energy efficiency as the first step of a complex study aiming to assess the energy balance of sonochemical reactors at 500 kHz. Quantitative measurements of ultrasonic power for water and 10 pure organic solvents were performed by calorimetry for a cylindrically shaped sonochemical reactor with a bottom mounted vibrating plate. It was found that the ultrasonic power is strongly related to the solvent, the energy conversion for organic liquids is half from that of water and there is a drop in energy efficiency for filling levels up to 250 mm organic solvents. Surface tension, viscosity and vapor pressure influence the energy conversion for organic solvents, but it is difficult explain these findings based on physical properties of solvents alone. The apparent intensity of the atomization process shows a good agreement with the experimentally determined values for energy conversion for water and the solvent group studied here. This study revealed that to attain the same ultrasonic power level, more electrical energy is need for organic solvents as compared to water. The energy balance equation has been defined based on these findings by considering an energy term for atomization. PMID:20655791

  4. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    PubMed

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles.

  5. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    PubMed

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles. PMID:25934629

  6. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency

    PubMed Central

    Jewell, Kelsea A.; McCormick, Caroline A.; Odt, Christine L.; Weimer, Paul J.

    2015-01-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles. PMID:25934629

  7. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  8. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  9. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  10. Limiting efficiencies of GaInP/GaAs/Ge up-conversion systems: Addressing the issue of radiative coupling

    NASA Astrophysics Data System (ADS)

    Lan, Dongchen; Green, Martin A.

    2016-09-01

    Recent work proposed up-conversion of sunlight through low-band-gap solar cells in combination with a large-band-gap light-emitting diode (LED), with one possibility being the use of a GaAs/Ge tandem photovoltaic device to drive a GaInP LED. One-sun limiting efficiencies for a GaInP bifacial solar cell with such an up-converter attached to its rear are reported for varying band-gap of GaInP junctions, both when there are radiative couplings between cells in the rear up-converter and when there are not. With a maximum theoretical efficiency of 44%, it is shown that the top cell's band-gap is a trade-off and radiative coupling in the rear up-converter reduces the efficiency, where physical reasons are given as is insight into the practice.

  11. Growth and feed efficiency of juvenile shrimp Litopenaeus vannamei fed formulated diets containing different levels of poultry by-product meal

    NASA Astrophysics Data System (ADS)

    Chi, Shuyan; Tan, Beiping; Mai, Kangsen; Zheng, Shixuan

    2009-12-01

    This feeding trial was conducted to evaluate the potential of poultry by-product meal (PBM) as a protein source in the culture of Litopenaeus vannamei. Seven isonitrogenous and isoenergetic diets were formulated to near to commercial diet with about 40% protein and 7.5% lipid. Fish meal was replaced by 0, 30%, 40%, 50%, 60%, 70% and 100% of PBM (diets 1-7). The diet with 100% fish meal was used as a control (diet 1). Post-larvae were reared in an indoor semi-closed re-circulating system. Each dietary treatment was tested in 4 replicate tanks (260 L) of 40 shrimp, arranged in a completely randomized design. The shrimps were hand-fed for three times a day to near-satiation (0700, 1200 and 1800) for 60 d. Percentage weight gain, survival, feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition of shrimps were measured. There were no significant differences ( P>0.05) in growth performance among shrimps fed diets 1-5 (0-60% fish meal replacement). However, shrimps fed diet 7 (100% fish meal replacement) had significantly lower ( P<0.05) growth than those fed diets 1-5 (0-60% fish meal replacement). Shrimp fed diets 2-4 (30%-50% fish meal replacement) showed significantly higher growth than those fed diets 6 and 7 (70% and 100% fish meal replacement, respectively). Survival ranged from 94.7% to 100.0% and did not differ significantly ( P>0.05) among different experimental diets. No differences in body composition were found among shrimps fed different diets. These results showed that up to 70% of fish meal protein can be replaced by PBM without adversely affecting the growth, survival, FCR, PER and body composition of Litop enaeus vannamei.

  12. Tandem concentrator solar cells with 30 percent (AMO) power conversion efficiency

    NASA Technical Reports Server (NTRS)

    Avery, J. E.; Fraas, L. M.; Sundaram, V. S.; Brinker, David J.; Gee, J. M.; Oneill, Mark J.

    1991-01-01

    Very high efficiency concentrator solar panels are envisioned as economical and reliable electrical power subsystems for space based platforms of the future. GaAs concentrator cells with very high efficiencies and good sub-bandgap transmissions can be fabricated on standard wafers. GaSb booster cell development is progressing very well; performance characteristics are still improving dramatically. Consistent GaAs/GaSb stacked cell AMO efficiencies greater than 30 percent are expected.

  13. Improved conversion efficiency of InN/p-GaN heterostructure solar cells with embedded InON quantum dots

    NASA Astrophysics Data System (ADS)

    Ke, Wen-Cheng; Liang, Zhong-Yi; Yang, Cheng-Yi; Chan, Yu-Teng; Jiang, Chi-Yung

    2016-02-01

    An indium oxynitride (InON) quantum dot (QD) layer was inserted between the indium nitride (InN) and p-type gallium nitride (GaN) films for improving the conversion efficiency of the heterostructure solar cells. The InN/InON QD/p-GaN heterostructure solar cells exhibited a high open-circuit voltage of 2.29 V, short-circuit current density of 1.64 mA/cm2, and conversion efficiency of 1.12% under AM 1.5G illumination. Compared with samples without InON QDs, the power conversion efficiency of sample with InON QDs increased twofold; this increase was attributed to the increase in short-current density. The external quantum efficiency of 250-nm-thick InN/p-GaN heterostructure solar cells has a highest value of 6.5% in the wavelength range of 700-1100 nm. The photogenerated holes separated in the depletion region of InN thin films is difficult to transport across the energy barrier between the InN and p-GaN layers. The oxygen vacancy assisted carrier transport in the InN/InON QD/p-GaN sample, which was evidenced in its current-voltage (I-V) and capacitance-voltage (C-V) characteristics. The dark I-V characteristic curves in the bias range of -2 to 2 V exhibited ohmic behavior, which indicated the absence of a transport barrier between the InN and p-GaN layers. In addition, a shoulder peak at -0.08 V was observed in the high-frequency (60-100 kHz) C-V characteristic curves corresponding to carrier capture and emission in the shallow defect state of oxygen vacancy in the InON QDs. The oxygen vacancy exists inside the InON QDs and generates the interface states in the InON QD/p-GaN interface to form a carrier transport path. Thus, more photogenerated holes can transport via the InON QDs into the p-GaN layer, contributing to the photocurrent and resulting in high conversion efficiency for the InN/InON QD/p-GaN heterostructure solar cells.

  14. Digestibility and effect of copra cake on rate of gain, feed efficiency and protein retention of fattening pigs.

    PubMed

    Lekule, F P; Homb, T; Kategile, J A

    1986-11-01

    Sixteen barrows and 16 gilts of average liveweight 40 kg were fed on diets containing 0, 10, 20 or 30% copra cake. The copra cake replaced an equal weight of soyabean-maize meal in the diet. The rates of gain were 705, 719, 543 and 438 g/day and the ratios of feed per unit of gain were 3.21, 3.11, 3.83 and 4.91 for 0, 10, 20 and 30% copra cake diets respectively. Feed intake was reduced when 20 and 30% levels of copra cake were included in the diet. Reduced consumption, digestibility and possibly poor lysine availability and protein digestibility of copra cake are advanced as the main contributing factors for decreased rate and efficiency of gain when copra cake was incorporated beyond 10%. In a second experiment 18 female pigs weighing between 40 and 60 kg were put into metabolism cages and fed diets containing five to 30% copra cake. The copra cake replaced an equal weight of wheat bran. Faeces and urine were collected and analysed. The digestibility of copra cake was found to be low especially for protein (56.3% for true protein) Protein retention was reduced by high levels of copra cake inclusion. It is concluded that high levels of copra cake reduce performance of fattening pigs due to reduced feed intake and poor protein digestibility. Ten % seems to be the optimum level of inclusion.

  15. Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacteria growth in steers

    SciTech Connect

    Firkins, J.L.; Lewis, S.M. Montgomery, L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.

    1987-11-01

    Four multiple-fistulated steers (340 kg) were fed a diet containing 50% ground grass hay, 20% dry distillers grains, and 30% concentrate at two intakes (7.2 or 4.8 kg DM/d). Urea (.4 or 1.2% of the diet) was infused continuously into the steers' rumens. The experimental design was a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Infusing urea at .4 or 1.2% of the diet resulted in ruminal NH/sub 3/ N concentration of 4.97 and 9.10 mg/dl, respectively. Feeding steers at high rather than low intake decreased ruminal and total tract digestibilities of organic matter, NDF, and ADF but did not increase ruminal escape of N. However, apparent N escape from the rumen calculated using purines, but not /sup 15/N, as a bacterial marker was higher when 1.2 vs. .4% urea was infused. Feeding at high rather than at low intake increased the total pool of viable bacteria per gram organic matter fermented in the rumen. Although ruminal fluid outflows and particulate dilution rates were greater when steers were fed at high than low intakes, efficiencies of bacterial protein synthesis were unaffected by intake. The possibility of increased N recycling within the rumen with feeding at the higher intake is discussed.

  16. On Training Efficiency and Computational Costs of a Feed Forward Neural Network: A Review

    PubMed Central

    Laudani, Antonino; Lozito, Gabriele Maria; Riganti Fulginei, Francesco; Salvini, Alessandro

    2015-01-01

    A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network mapping capabilities, the different choices that may lead to enhanced performances, in terms of training, generalization, or computational costs, are analyzed, both in general-purpose and in embedded computing environments. Finally, a strategy to convert a network configuration between different activation functions without altering the network mapping capabilities will be presented. PMID:26417368

  17. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Donglin; Su, Gang

    2014-11-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm-800 nm, the conversion efficiency of solar cells can be further enhanced.

  18. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable.

  19. Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Ajuria, Jon; Pacios, Roberto

    2015-01-01

    In spite of the impressive development achieved by organic photovoltaics throughout the last decades, especially in terms of reported power conversion efficiencies, there are still important technological and fundamental obstacles to circumvent before they can be implemented into reliable and long-lasting applications. Regarding device processing, the synthesis of highly soluble polymeric semiconductors first, and then fullerene derivatives, was initially considered as an important breakthrough that would definitely change the fabrication of photovoltaics once and for all. The potential and the expectation raised by this technology is such that it is very difficult to keep track of the most significant progresses being now published in different and even monographic journals. In this paper, we review the development of polymeric solar cells from its origin to the most efficient devices published to date. We separate these achievements into three different categories traditionally followed by the scientific community to push devices over 10% power conversion efficiency: active materials, strategies-fabrication/processing procedures-that can mainly modify the active film morphology, and all the different cell layout/architectures that have been used in order to extract as high a photocurrent as possible from the Sun. The synthesis of new donors, the use of additives and postprocessing techniques, buffer interlayers, inverted and tandem designs are some of the most important aspects that are reviewed in detail in this paper. All have equally contributed to develop this technology and bring it at the doors of commercialization.

  20. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable. PMID:25798659

  1. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    PubMed Central

    Wang, DongLin; Su, Gang

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477

  2. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    PubMed Central

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-01-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620

  3. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    NASA Astrophysics Data System (ADS)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  4. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure.

    PubMed

    May, Matthias M; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-01-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620

  5. Enhanced efficiency of feeding and mixing due to chaotic flow patterns around choanoflagellates.

    NASA Astrophysics Data System (ADS)

    Orme, B. A. A.; Otto, S. R.; Blake, J. R.

    2000-11-01

    The motion of particles and feeding currents created by micro-organisms due to a flagellum beating are considered. The calculations are pertinent to a range of sessile organisms, but we concentrate on a particular organism, namely Salpingoeca Amphoridium (SA) (a choanoflagellate); due to the availability of experimental data, Pettitt (2000). These flow fields are characterised as having very small Reynolds numbers, which implies that viscous forces dominate over inertial ones consistent with the Stokes flow limit. The flow generated by the flagella is modelled via consideration of a point force known as a stokeslet. The interaction between the boundary to which the organism is attached and its flagellum leads to toroidal eddies, which serve to transport particles towards the micro-organism; promoting filtering of nutrients by the microvilli which constitute the cell's collar (the filtering mechanism in SA). It is our conjecture that the interaction of multiple toroidal eddies will lead to chaotic advection and hence enhance the domain of feeding for these organisms. The degree of mixing in the region around SA is investigated using chaotic and statistical measures to study the influence the flagellum has on the surrounding fluid. Three-dimensional particle paths around such an organism are considered with the aim of showing the plane within which the stokeslets are situated is an attractor.

  6. Evaluation of tropically adapted straightbred and crossbred cattle: postweaning gain and feed efficiency when finished in a temperate climate.

    PubMed

    Coleman, S W; Chase, C C; Phillips, W A; Riley, D G; Olson, T A

    2012-06-01

    Beef cows in the subtropical USA must be adapted to the stressors of the environment, typically supplied by using Brahman (Br) breeding. Calves produced in the region, however, are usually grown and finished in more temperate regions, and have a perceived reputation for poor ADG and feed efficiency during finishing. Compromised fertility and carcass quality often associated with the Br have increased interest in tropically adapted Bos taurus breed types. The objective of this study was to evaluate 3 breeds [An = Angus (Bos taurus, temperate); Br (B. indicus, tropical); and Ro = Romosinuano (B. taurus, tropical)] and all possible crosses during various segments of post-weaning growth, and for feed efficiency during the finishing phase. Steer calves (n = 473) born over 3 yr were weaned in late September, backgrounded for at least 21 d (BKG), shipped 2,025 km to El Reno, OK, in October, fed a preconditioning diet for 28 d (RCV), grazed wheat (Triticum aestivum L.) pasture from November to May (WHT), finished on a conventional feedlot diet (FIN), and serially harvested after approximately 95, 125, and 150 d on feed. Body weight and ADG during each segment were tested using a mixed model that included calf age at weaning, year (Y), breed of sire (SB), breed of dam (DB), and interactions. In addition, winter treatment (continuous wheat or reduced grazing of wheat with supplement) was included for the wheat and feedlot phases. Sire within SB × SB [and pen (barn × year) for feedlot phase] were considered random. The SB × DB interaction was significant for all traits (P < 0.01) except exit velocity taken at weaning and ADG during FIN, but both traits were affected by 3-way interactions with Y or harvest group. Tropically-adapted purebred steers had greater (P < 0.01) ADG than AnAn through weaning and BKG in FL but the reverse was true during the RCV and WHT segments. Similar, but less pronounced results were noted for F(1) steers with 100% tropical influence compared

  7. The effect of breed and individual heterosis on the feed efficiency, performance, and carcass characteristics of feedlot steers.

    PubMed

    Retallick, K M; Faulkner, D B; Rodriguez-Zas, S L; Nkrumah, J D; Shike, D W

    2013-11-01

    This study was conducted to evaluate maternal breed effects, direct breed effects, and individual heterosis on subsequent steer performance, carcass, and feed efficiency traits. This was a consecutive 2-yr trial using 158 steers. The same dam breeds, Angus (AN) and purebred Simmental (SM), were used both years. Also, the same AN and SM sires (n=11) were used both years. Steers were AN, SM, or AN×SM breed composition. Steers were managed similarly before weaning and early weaned at 56±9 d of age. Steers were then randomly allotted to pens and fed a common finishing ration. Contrasts were written to evaluate direct and maternal breed effects and individual heterosis in the PROC MIXED procedure of SAS (SAS Inst. Inc., Cary, NC) using dam breed, sire breed, and year as fixed effects. Simmental direct breed effect resulted in a 26 kg heavier initial BW (P<0.05) and a 46 kg heavier final BW (P<0.05). Simmental maternal breed effect increased initial BW by 43.5 kg (P<0.05). Dry matter intake was not impacted by direct breed effects, maternal breed effects, or individual heterosis. Individual heterosis did improve G:F 3.4% (P<0.05) and residual BW gain 0.048 kg/d (P<0.05). Residual intake and BW gain tended (P=0.07) to improve as a result of individual heterosis. Residual feed intake (RFI) was impacted by direct breed effect with SM cattle having a more desirable RFI (P=0.05). Angus direct breed effect increased backfat (P<0.05) and improved marbling score by 126 units (P<0.05). Simmental direct breed effect increased LM area (P<0.05), had the highest HCW at 410 kg (P<0.05), and had the most desirable yield grade at 2.74 (P<0.05). Individual heterosis improved marbling score (P=0.05). Maternal breed effect increased HCW (P<0.05) as a result of the SM dam. Direct breed effects were present for performance, feed efficiency measures, and carcass traits. Overall, heterosis impacted feedlot performance, carcass characteristics, and feed efficiency, which impacts beef

  8. Evaluation of tropically adapted straightbred and crossbred cattle: postweaning gain and feed efficiency when finished in a temperate climate.

    PubMed

    Coleman, S W; Chase, C C; Phillips, W A; Riley, D G; Olson, T A

    2012-06-01

    Beef cows in the subtropical USA must be adapted to the stressors of the environment, typically supplied by using Brahman (Br) breeding. Calves produced in the region, however, are usually grown and finished in more temperate regions, and have a perceived reputation for poor ADG and feed efficiency during finishing. Compromised fertility and carcass quality often associated with the Br have increased interest in tropically adapted Bos taurus breed types. The objective of this study was to evaluate 3 breeds [An = Angus (Bos taurus, temperate); Br (B. indicus, tropical); and Ro = Romosinuano (B. taurus, tropical)] and all possible crosses during various segments of post-weaning growth, and for feed efficiency during the finishing phase. Steer calves (n = 473) born over 3 yr were weaned in late September, backgrounded for at least 21 d (BKG), shipped 2,025 km to El Reno, OK, in October, fed a preconditioning diet for 28 d (RCV), grazed wheat (Triticum aestivum L.) pasture from November to May (WHT), finished on a conventional feedlot diet (FIN), and serially harvested after approximately 95, 125, and 150 d on feed. Body weight and ADG during each segment were tested using a mixed model that included calf age at weaning, year (Y), breed of sire (SB), breed of dam (DB), and interactions. In addition, winter treatment (continuous wheat or reduced grazing of wheat with supplement) was included for the wheat and feedlot phases. Sire within SB × SB [and pen (barn × year) for feedlot phase] were considered random. The SB × DB interaction was significant for all traits (P < 0.01) except exit velocity taken at weaning and ADG during FIN, but both traits were affected by 3-way interactions with Y or harvest group. Tropically-adapted purebred steers had greater (P < 0.01) ADG than AnAn through weaning and BKG in FL but the reverse was true during the RCV and WHT segments. Similar, but less pronounced results were noted for F(1) steers with 100% tropical influence compared

  9. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors.

    PubMed

    Kuznetsov, A S; Tikhomirov, V K; Shestakov, M V; Moshchalkov, V V

    2013-11-01

    An ever growing demand for efficient energy conversion, for instance in luminescent lamps, flexible screens and solar cells, results in the current significant growth of research on functionalized nanomaterials for these applications. This paper reviews recent developments of a new class of optically active nanostructured materials based on glasses doped with luminescent Ag nanoclusters consisting of only a few Ag atoms, suitable for mercury-free white light generation and solar down-shifting. This new approach, based solely on Ag nanocluster doped glasses, is compared to other alternatives in the field of Ag and rare-earth ion co-doped materials.

  10. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons.

    PubMed

    Demmig-Adams, Barbara; Cohu, Christopher M; Muller, Onno; Adams, William W

    2012-09-01

    Modulation of the efficiency with which leaves convert absorbed light to photochemical energy [intrinsic efficiency of open photosystem II (PSII) centers, as the ratio of variable to maximal chlorophyll fluorescence] as well as leaf xanthophyll composition (interconversions of the xanthophyll cycle pigments violaxanthin and zeaxanthin) were characterized throughout single days and nights to entire seasons in plants growing naturally in contrasting light and temperature environments. All pronounced decreases of intrinsic PSII efficiency took place in the presence of zeaxanthin. The reversibility of these PSII efficiency changes varied widely, ranging from reversible-within-seconds (in a vine experiencing multiple sunflecks under a eucalypt canopy) to apparently permanently locked-in for entire seasons (throughout the whole winter in a subalpine conifer forest at 3,000 m). While close association between low intrinsic PSII efficiency and zeaxanthin accumulation was ubiquitous, accompanying features (such as trans-thylakoid pH gradient, thylakoid protein composition, and phosphorylation) differed among contrasting conditions. The strongest and longest-lasting depressions in intrinsic PSII efficiency were seen in the most stress-tolerant species. Evergreens, in particular, showed the most pronounced modulation of PSII efficiency and thermal dissipation, and are therefore suggested as model species for the study of photoprotection. Implications of the responses of field-grown plants in nature for mechanistic models are discussed.

  11. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats.

    PubMed

    Wideman, Cyrilla H; Murphy, Helen M

    2009-10-01

    Melatonin levels, metabolic parameters, circadian rhythm activity patterns, and behavior were observed in rats subjected to a 12-h/12-h light/dark cycle (LD) compared to animals exposed to continuous dark (DD) or continuous light (LL). LD and DD animals were similar in melatonin levels, food intake, relative food intake, feed efficiency, water intake, circadian activity levels, and behavior. LL animals had lower melatonin levels in the subjective dark compared to LD and DD animals. Food intake, relative food intake, and water intake values were lower and feed efficiency was more positive in LL animals compared to LD and DD animals. In addition, LL animals exhibited greater visceral adiposity than the other two groups. The circadian rhythmicity of activity became free-running in LL animals and there was a decrease in overall activity. Notable behavioral changes in LL animals were an increase in irritability and excitability. Results indicate that a decrease in melatonin levels and concomitant changes in metabolism, circadian rhythms, and behavior are consequences of exposure to constant light. PMID:19761654

  12. Design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility

    SciTech Connect

    Hibbard, R.L., LLNL

    1998-03-30

    A key design challenge for the National Ignition Facility (NIF), being constructed at Lawrence Livermore National Laboratory (LLNL), [Hibbard, R L , 1998], is the frequency converter consisting of two KDP crystals and a focusing lens Frequency conversion is a critical performance factor for NIF and the optical mount design for this plays a key role in meeting design specifications The frequency converter is a monolithic cell that mounts the optics and is the point on the beamline where the frequency conversion crystals are optimally aligned and the cell is focused on target The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1 053 {micro}m Sum frequency generation in a pair of conversion crystals (KDP/KD*P) produces 1 8 MJ of the third harmonic light (3{omega} or {lambda}=O 35 pm). The phase-matching scheme on NIF is type I second harmonic generation followed by type II sum-frequency-mixing of the residual fundamental and the second harmonic light This laser unlike previous laser system designs, must achieve high conversion efficiency, 85%, which is close to the 90 8% theoretical maximum As a result, this design is very sensitive to angular variations in beam propagation and in the crystal axes orientation. Factors that influence the phase matching angle include crystal inhomogeneity, residual and induced stress in the crystals, the crystals` natural and mounted surface figure, mounting imperfections and gravity sag These angular variations need to be controlled within a 40 {micro}rad error budget. The optical mount contributions to the angular error budget are 20 {micro}rad and are what make the frequency converter in the Final Optics Cell (FOC) such a challenging precision design. The premise of using full edge support in the FOC design is primarily driven by the spherical target chamber design that has optics mounted at multiple longitudinal angles and thus gravity sag in the crystals that needs to be minimized To meet

  13. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    PubMed Central

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C−C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion. PMID:23877200

  14. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water

    PubMed Central

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tatin, Arnaud

    2015-01-01

    Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid—a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO–H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator. PMID:26038542

  15. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-07-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  16. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion.

    PubMed

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite with N₂, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N₂ at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N₂ to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  17. Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Shinho; Kim, Kang Min; Tampo, Hitoshi; Shibata, Hajime; Niki, Shigeru

    2016-10-01

    We demonstrate the improved efficiency of a Cu2Zn(Sn1- x Ge x )Se4 (CZTGSe) thin-film solar cell with a conversion efficiency of 12.3%; this cell exhibits a greatly improved open-circuit voltage (V OC) deficit of 0.583 V and a fill factor (FF) of 0.73 compared with previously reported CZTGSe cells. The V OC deficit was found to be improved through a reduced band tailing via the control of the Ge/(Sn + Se) ratio. In addition, the high FF was mainly induced by a reduced carrier recombination at the absorber/buffer interface and/or in the space charge region, whereas parasitic resistive effects on FF were very small.

  18. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent

    NASA Astrophysics Data System (ADS)

    Fafard, S.; Proulx, F.; York, M. C. A.; Wilkins, M.; Valdivia, C. E.; Bajcsy, M.; Ban, D.; Jaouad, A.; Bouzazi, B.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-03-01

    A monolithic compound semiconductor phototransducer optimized for narrow-band light sources was designed for and has achieved conversion efficiencies exceeding 50%. The III-V heterostructure was grown by MOCVD, based on the vertical stacking of a number of partially absorbing GaAs n/p junctions connected in series with tunnel junctions. The thicknesses of the p-type base layers of the diodes were engineered for optimal absorption and current matching for an optical input with wavelengths centered in the 830 nm to 850 nm range. The device architecture allows for improved open-circuit voltage in the individual base segments due to efficient carrier extraction while simultaneously maintaining a complete absorption of the input photons with no need for complicated fabrication processes or reflecting layers. Progress for device outputs achieving in excess of 12 V is reviewed in this study.

  19. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion