Science.gov

Sample records for feed conversion efficiency

  1. Growth and feed conversion efficiency of Dorper and Rambouillet lambs.

    PubMed

    Yeaman, J C; Waldron, D F; Willingham, T D

    2013-10-01

    Data from Dorper and Rambouillet ram lambs (n = 79) were used to estimate breed means for postweaning growth rate, feed intake, feed conversion efficiency (kilograms of gain divided by kilograms of feed consumed), and residual feed intake on a high concentrate diet during the typical age and weight range for U.S. lamb production. Lambs were progeny of 6 unrelated sires/breed and were born over a 2-yr period. Dams of the lambs were a representative sample of Dorper ewes in the United States and Rambouillet ewes in Texas. Data were analyzed using SAS PROC MIXED with a model that included year, breed, birth type, and feeder pen as fixed effects and sire as a random effect. The mean BW at the start of the feeding trial was 31.4 ± 3.7 kg at a mean age of 92.7 ± 9.2 d. Electronic feeders were used to record individual animal feed intake. Growth rate and feed intake were measured for 77 d during the postweaning growth period. Mean ADG was 340 ± 9.2 g for Dorper lambs and 346 ± 8.6 g for Rambouillet lambs. The mean final bodyweight was 58.1 ± 4.8 kg when the mean age was 170 d. Average daily feed intake was 2,223 ± 50 g for Dorper lambs and 2,215 ± 48 g for Rambouillet lambs. Feed conversion efficiency was 0.153 ± 0.003 for Dorper lambs and 0.158 ± 0.003 for Rambouillet lambs. No significant differences were observed between Dorper and Rambouillet lambs for weaning weight, postweaning gain, final weight, feed intake, feed conversion efficiency, or residual feed intake. Growth rate, feed intake, and feed conversion efficiency were similar for Dorper and Rambouillet ram lambs fed from a mean of 31 kg BW and 93 d of age to a mean BW of 58 kg and a mean age of 170 d.

  2. Effects of maternal energy efficiency on broiler chicken growth, feed conversion, residual feed intake, and residual maintenance metabolizable energy requirements.

    PubMed

    Romero, L F; Zuidhof, M J; Renema, R A; Naeima, A; Robinson, F E

    2011-12-01

    This study investigated the effect of maternal energy efficiency on broiler chicken growth and energy efficiency from 7 to 40 d of age. Residual feed intake (RFI) and residual maintenance ME requirement (RME) were used to measure energetic efficiency. Residual feed intake was defined as the difference between observed and predicted ME intake, and RME(m) as the difference between observed and predicted maintenance ME requirements. A total of 144 Ross-708 broiler breeder pullets were placed in individual laying cages at 16 wk of age. Hens with the greatest RFI (n = 32) and lowest RFI (n = 32) values from 20 to 56 wk of age were selected (maternal RFI; RFI(mat)). Selected hens were retrospectively assigned to a high- or low-RME(m) category (maternal RME(m); RME(mmat)). At 59 wk, eggs were collected for 8 d and pedigree hatched. A total of 338 broilers grouped by dam and sex were raised in 128 cages where feed intake, BW, and temperature were recorded from 7 to 40 d to calculate broiler feed conversion ratios, RFI, and RME(m). The design was a 2 × 2 × 2 factorial with 2 levels of RFI(mat), 2 levels of RME(mmat), and 2 sexes. Neither the RFI(mat) nor RME(mmat) category affected broiler offpring BW or total conversion ratio. The high-RFI(mat) × low-RME(mmat) broilers had decreased growth to 40 d. Low-RFI(mat) × low-RME(mmat) broilers had a lower RME(m) (-5.93 kcal of ME/kg(0.60) per day) and RFI (-0.86 kcal of ME/d) than high-RFI(mat) × low-RME(mmat) broilers (RME(m) = 1.70 kcal of ME/kg(0.60) per day; RFI = 0.38 kcal of ME/d). Overall, hens with low maintenance requirements (low RME(m)) produced more efficient broilers when other efficiency related traits, represented in a lower RFI, were present. Exclusion of high-RFI × low-RME(m) hens from selection programs may improve energy efficiency at the broiler level. The RME(m) methodology is a viable alternative to evaluate energy efficiency in broilers because it avoids confounding environmental effects and allows

  3. Effects of feed intake and genetics on tissue nitrogen-15 enrichment and feed conversion efficiency in sheep.

    PubMed

    Cheng, L; Logan, C M; Dewhurst, R J; Hodge, S; Zhou, H; Edwards, G R

    2015-12-01

    This study investigated the effects of sheep genetics and feed intake on nitrogen isotopic fractionation (ΔN) and feed conversion efficiency (FCE; live weight gain/DMI), using a 2 × 2 factorial design, with 2 levels of genetic merit for growth (high vs. low) and 2 levels of feed intake (110 vs. 170% of ME for maintenance [MEm]). No effect of genetic merit was detected for live weight gain ( = 0.64), FCE ( = 0.46), plasma urea nitrogen ( = 0.52), plasma glucose ( = 0.78), and ΔN of wool ( = 0.45), blood ( = 0.09), and plasma ( = 0.51). Sheep receiving 170% of MEm had 175% higher live weight gain ( < 0.001) and 77% higher FCE ( < 0.001) than sheep receiving 110% of MEm. There was no difference among treatments at the beginning of the study for either blood or plasma ∆N, but the treatment groups started to diverge in blood and plasma ∆N at 21 and 7 d, respectively. Blood, plasma, and wool samples were enriched in N compared with feed. There was a higher blood, plasma, and wool ∆N for the low feed intake group than the high feed intake group ( < 0.001 in all cases). Across the 4 treatment groups, higher FCE in sheep was associated with lower ∆N for plasma, blood, and wool. Overall, the results are consistent with the potential of ∆N as a rapid, low-cost biomarker of FCE in sheep, despite there being no effects of genetic treatment on FCE and ∆N.

  4. The genetics of feed conversion efficiency traits in a commercial broiler line

    PubMed Central

    Reyer, Henry; Hawken, Rachel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus

    2015-01-01

    Individual feed conversion efficiency (FCE) is a major trait that influences the usage of energy resources and the ecological footprint of livestock production. The underlying biological processes of FCE are complex and are influenced by factors as diverse as climate, feed properties, gut microbiota, and individual genetic predisposition. To gain an insight to the genetic relationships with FCE traits and to contribute to the improvement of FCE in commercial chicken lines, a genome-wide association study was conducted using a commercial broiler population (n = 859) tested for FCE and weight traits during the finisher period from 39 to 46 days of age. Both single-marker (generalized linear model) and multi-marker (Bayesian approach) analyses were applied to the dataset to detect genes associated with the variability in FCE. The separate analyses revealed 22 quantitative trait loci (QTL) regions on 13 different chromosomes; the integration of both approaches resulted in 7 overlapping QTL regions. The analyses pointed to acylglycerol kinase (AGK) and general transcription factor 2-I (GTF2I) as positional and functional candidate genes. Non-synonymous polymorphisms of both candidate genes revealed evidence for a functional importance of these genes by influencing different biological aspects of FCE. PMID:26552583

  5. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes

    NASA Astrophysics Data System (ADS)

    Shepon, A.; Eshel, G.; Noor, E.; Milo, R.

    2016-10-01

    Feeding a growing population while minimizing environmental degradation is a global challenge requiring thoroughly rethinking food production and consumption. Dietary choices control food availability and natural resource demands. In particular, reducing or avoiding consumption of low production efficiency animal-based products can spare resources that can then yield more food. In quantifying the potential food gains of specific dietary shifts, most earlier research focused on calories, with less attention to other important nutrients, notably protein. Moreover, despite the well-known environmental burdens of livestock, only a handful of national level feed-to-food conversion efficiency estimates of dairy, beef, poultry, pork, and eggs exist. Yet such high level estimates are essential for reducing diet related environmental impacts and identifying optimal food gain paths. Here we quantify caloric and protein conversion efficiencies for US livestock categories. We then use these efficiencies to calculate the food availability gains expected from replacing beef in the US diet with poultry, a more efficient meat, and a plant-based alternative. Averaged over all categories, caloric and protein efficiencies are 7%-8%. At 3% in both metrics, beef is by far the least efficient. We find that reallocating the agricultural land used for beef feed to poultry feed production can meet the caloric and protein demands of ≈120 and ≈140 million additional people consuming the mean American diet, respectively, roughly 40% of current US population.

  6. Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna

    NASA Astrophysics Data System (ADS)

    Jusup, Marko; Klanjšček, Tin; Matsuda, Hiroyuki

    2014-11-01

    We present a numerical approach that, in conjunction with a fully set up Dynamic Energy Budget (DEB) model, aims at consistently approximating the feeding history of cultivated fish from the commonly measured aquaculture data (body length, body mass, or the condition factor). We demonstrate the usefulness of the approach by performing validation of a DEB-based model for Pacific bluefin tuna (Thunnus orientalis) on an independent dataset and exploring the implied bioenergetics of this species in captivity. In the context of validation, the results indicate that the model successfully accounts for more than 75% of the variance in actual fish feed. At the 5% significance level, predictions do not underestimate nor overestimate observations and there is no bias. The overall model accuracy of 87.6% is satisfactory. In the context of tuna bioenergetics, we offer an explanation as to why the first reproduction in the examined case occurred only after the fish reached seven years of age, whereas it takes five years in the wild and sometimes as little as three years in captivity. Finally, we calculate energy conversion efficiencies and the supply stress throughout the entire lifetime to theoretically underpin the relatively low contribution of growth to aerobic metabolism implied by respirometry and high feed conversion ratio observed in bluefin tuna aquaculture.

  7. Effect of Corncob bedding on feed conversion efficiency in a high-fat diet-induced prediabetic model in C57Bl/6J mice.

    PubMed

    Ambery, Ashley G; Tackett, Lixuan; Penque, Brent A; Hickman, Debra L; Elmendorf, Jeffrey S

    2014-09-01

    Laboratory facilities use many varieties of contact bedding, including wood chips, paper products, and corncob, each with its own advantages and disadvantages. Corncob bedding, for example, is often used because of its high absorbency, ability to minimize detectable ammonia, and low cost. However, observations that mice eat the corncob lead to concerns that its use can interfere with dietary studies. We evaluated the effect of corncob bedding on feed conversion (change in body weight relative to the apparent number of kcal consumed over 7 d) in mice. Four groups of mice (6 to 12 per group) were housed in an individually ventilated caging system: (1) low-fat diet housed on recycled paper bedding, (2) low-fat diet housed on corncob bedding, (3) high-fat diet housed on recycled paper bedding, and (4) high-fat diet housed on corncob bedding. After 4 wk of the high-fat diet, feed conversion and percentage body weight change both were lower in corncob-bedded mice compared with paper-bedded mice. Low-fat-fed mice on corncob bedding versus paper bedding did not show statistically significant differences in feed conversion or change in percentage body weight. Average apparent daily feed consumption did not differ among the 4 groups. In conclusion, these data suggest that corncob bedding reduces the efficiency of feed conversion in mice fed a high-fat diet and that other bedding choices should be favored in these models.

  8. Effects of dietary levels of carbohydrate, lipid, phosphorus and zinc on the growth, feed conversion and protein efficiency ratio of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Lei, Wu; Yang, Yunxia; Ye, Jun

    1993-09-01

    A 54-day feeding experiment was conducted on juvenile Nile tilapia using isonitrogenous, isocaloric semipurified diets. The carbohydrate content in the diet was 9%, 32% and 50%; the corresponding lipid content was 22.2%, 12%, and 4%. The diets were supplemented with 0.85% or 1.5% phosphorus and 40 mg/kg or 100 mg/kg zinc. The experiment was carried out in flow-through aquaria using dechlorinated tap water at 23 26°C. The experiment showed that the increase of the carbohydrate content in the diets resulted in a 43 249% increase in weight gain, a 27 59% decrease in feed conversion ratio, and a 65 121% increase in protein efficiency ratio. In fish fed diets containing 36 50% carbohydrate, an increase in supplemented phosphorus to 1.5% greatly increased the weight gain. On the contrary, a high content of supplemented zinc (100 mg/kg) inhibited growth and increased feed conversion ratio.

  9. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A

    2015-06-01

    The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in

  10. Challenges in measuring feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term feed efficiency is vague, and is defined differently by people. Historically, feed efficiency has been defined as the feed:gain (F:G) ratio or the inverse (G:F). Indexes have been developed to rank animals for feed efficiency. These indexes include residual feed intake (RFI) and residual...

  11. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  12. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products.

    PubMed

    van Broekhoven, Sarah; Oonincx, Dennis G A B; van Huis, Arnold; van Loon, Joop J A

    2015-02-01

    Insects receive increasing attention as an alternative protein-rich food source for humans. Producing edible insects on diets composed of organic by-products could increase sustainability. In addition, insect growth rate and body composition, and hence nutritional quality, can be altered by diet. Three edible mealworm species Tenebrio molitor L., Zophobas atratus Fab. and Alphitobius diaperinus Panzer were grown on diets composed of organic by-products originating from beer brewing, bread/cookie baking, potato processing and bioethanol production. Experimental diets differed with respect to protein and starch content. Larval growth and survival was monitored. Moreover, effects of dietary composition on feed conversion efficiency and mealworm crude protein and fatty acid profile were assessed. Diet affected mealworm development and feed conversion efficiency such that diets high in yeast-derived protein appear favourable, compared to diets used by commercial breeders, with respect to shortening larval development time, reducing mortality and increasing weight gain. Diet also affected the chemical composition of mealworms. Larval protein content was stable on diets that differed 2-3-fold in protein content, whereas dietary fat did have an effect on larval fat content and fatty acid profile. However, larval fatty acid profile did not necessarily follow the same trend as dietary fatty acid composition. Diets that allowed for fast larval growth and low mortality in this study led to a comparable or less favourable n6/n3 fatty acid ratio compared to control diets used by commercial breeders. In conclusion, the mealworm species used in this study can be grown successfully on diets composed of organic by-products. Diet composition did not influence larval protein content, but did alter larval fat composition to a certain extent.

  13. Effects of growth hormone-releasing factor on growth hormone response, growth and feed conversion efficiency in buffalo heifers (Bubalus bubalis).

    PubMed

    Haldar, A; Prakash, B S

    2007-09-01

    The aim of this study was to determine the benefits of growth hormone-releasing factor (GRF) on growth and feed conversion efficiency (FCE) in buffaloes. Twelve Murrah buffalo heifers (Bubalus bubalis) of mean age 24.8 months and mean body weight 302.4kg were divided into two groups (treatment and control) with six animals in each group. The buffaloes were given intravenous injections of bovine GRF (bGRF) at a dose rate of 10microg/100kg body weight or an equal volume of saline at 15-day intervals for a period of 9 months. Plasma growth hormone (GH) responses to bGRF challenge were measured in blood samples collected at 90-day intervals on days 1, 90, 180 and 270 and samples were taken at -60, -30, 0, +10, +20, +30, +60, +120 and +180min relative to bGRF injection. Blood samples were also collected weekly by jugular venepuncture for the quantification of plasma GH. The average growth rate (AGR) and FCE of all animals were recorded at 15-day intervals. Plasma GH concentrations increased (P=0.001) steadily following bGRF challenge, peaking 10-20min after challenge and declining to baseline by 180min. In the treatment group, there were no significant differences (P>0.05) in either the peak heights of the GH response or the area under the curve (AUC) of the GH response after bGRF challenge on any of the four occasions of intensive bleeding. There were overall increases in plasma GH concentrations (P<0.01), AGR (P<0.01) and FCE (P=0.05) in the treatment group compared with the control animals. The study showed that GH responsiveness to administration of bGRF at 15-day intervals over 9 months of treatment remained unchanged in buffalo heifers. Exogenous bGRF treatment for a long period can therefore enhance GH release leading to higher growth rates and better feed conversion efficiency in buffalo heifers.

  14. The breast-feeding conversation: a philosophic exploration of support.

    PubMed

    Grassley, Jane S; Nelms, Tommie P

    2008-01-01

    Nurses play a vital role in mothers' early experiences with breast-feeding. Literature enumerates both supportive and nonsupportive behaviors, as well as the "interpersonal" aspect of breast-feeding support, although little direction is given to nurses about how to facilitate the relationship. This article conceptualizes breast-feeding support within Gadamerian hermeneutics as a conversation among nurses, mothers, and their newborns. Hermeneutically, breast-feeding conversation encompasses a text (a particular feeding at the breast), conversational partners (a mother, her newborn, and a nurse), and a dialogue that facilitates effective breast-feeding and maternal breast-feeding confidence through interpretation or understanding of the text. History and language are essential as a partnership is formed.

  15. Perspectives for feed-efficient animal production.

    PubMed

    Niemann, H; Kuhla, B; Flachowsky, G

    2011-12-01

    Modern animal breeding programs are largely based on biotechnological procedures, including AI and embryo transfer technology. Recent breakthroughs in reproductive technologies, such as somatic cell nuclear transfer and in vitro embryo production, and their combination with the emerging molecular genetic tools, will further advance progress and provide new opportunities for livestock breeding. This is urgently needed in light of the global challenges such as the ever-increasing human population, the limited resources of arable land, and the urgent environmental problems associated with farm animal production. Here, we focus on genomic breeding strategies and transgenic approaches for making farm animals more feed efficient. Based on studies in the mouse and rat model, we have identified a panel of genes that are critically involved in the regulation of feed uptake and that could contribute toward future breeding of farm animals with reduced environmental impact. We anticipate that genetically modified animals will play a significant role in shaping the future of feed-efficient and thus sustainable animal production, but will develop more slowly than the biomedical applications because of the complexity of the regulation of feed intake and metabolism.

  16. Identifying differences in feed efficiency among group-fed cattle.

    PubMed

    Tedeschi, L O; Fox, D G; Baker, M J; Kirschten, D P

    2006-03-01

    Identification of efficient animals in the postweaning growth phase for use in selection for improved feed efficiency is important to improve the economic and environmental sustainability of the beef cattle industry. Progeny testing using group-fed animals in commercial feedlots is the most common and practical method used to evaluate postweaning growth on large numbers of animals. We developed the Cornell Value Discovery System (CVDS) to dynamically predict growth rate, accumulated weight, days required to reach target body composition, carcass weight, and composition of individual beef cattle fed in group pens. Observed BW, ADG, BW at 28% empty body fat (EBF), breed type, environmental conditions, and dietary ME concentration are used by the CVDS to predict, for each animal in a pen, the feed DM required for maintenance (FFM), the feed DM required for gain, and the total DM required for maintenance and gain (DMR). The CVDS then computes DMR-to-ADG ratio (DMR:ADG), which is a feed conversion measure, and ADG-to-DMR ratio (ADG:DMR), which is a feed efficiency measure, for each animal. This study used the observed F:G ratio of 362 individually fed steers to evaluate CVDS-predicted indicators of feed efficiency and the Kleiber ratio. A subset of 37 data points was used to evaluate residual feed intake (RFI) as an indicator of feed efficiency. The database included 4 published studies, each with detailed individual animal description, environment, diet, and body composition information. The CVDS-predicted DMR:ADG accounted for 84% of the variation in the actual F:G ratio with a mean bias of 1.94% (P = 0.20). The predicted FFM to actual DMI ratio had a high correlation with actual ADG (R2 = 0.76), and indicated a decay-type nonlinear dilution of FFM as ADG increased. The CVDS-predicted ADG:DMR and the Kleiber ratio had a significant (R2 = 0.88) logarithmic relationship. In an analysis of a contemporary group within the database, RFI was highly correlated with the F

  17. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products

    PubMed Central

    Oonincx, Dennis G. A. B.; van Broekhoven, Sarah; van Huis, Arnold; van Loon, Joop J. A.

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food. PMID:26699129

  18. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products.

    PubMed

    Oonincx, Dennis G A B; van Broekhoven, Sarah; van Huis, Arnold; van Loon, Joop J A

    2015-01-01

    A large part of the environmental impact of animal production systems is due to the production of feed. Insects are suggested to efficiently convert feed to body mass and might therefore form a more sustainable food and/or feed source. Four diets were composed from by-products of food manufacturing and formulated such as to vary in protein and fat content. These were offered to newly hatched Argentinean cockroaches, black soldier flies, yellow mealworms, and house crickets. The first two species are potentially interesting as a feed ingredient, while the latter two are considered edible for humans. Feed conversion efficiency, survival, development time, as well as chemical composition (nitrogen, phosphorus, and fatty acids), were determined. The Argentinean cockroaches and the black soldier flies converted feed more efficiently than yellow mealworms, and house crickets. The first two were also more efficient than conventional production animals. On three of the four diets yellow mealworms and house crickets had a feed conversion efficiency similar to pigs. Furthermore, on the most suitable diet, they converted their feed as efficiently as poultry, when corrected for edible portion. All four species had a higher nitrogen-efficiency than conventional production animals, when corrected for edible portion. Offering carrots to yellow mealworms increased dry matter- and nitrogen-efficiency and decreased development time. Diet affected survival in all species but black soldier flies, and development time was strongly influenced in all four species. The chemical composition of Argentinean cockroaches was highly variable between diets, for black soldier flies it remained similar. The investigated species can be considered efficient production animals when suitable diets are provided. Hence, they could form a sustainable alternative to conventional production animals as a source of feed or food.

  19. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  20. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

  1. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  2. Leptin mediates discriminate response to feed restriction in feed efficient pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic mechanisms that control feed efficiency (FE) and feed intake are not well understood. Residual feed intake (RFI) is a measure of FE, in which low RFI designates high FE. Transcriptional profiling coupled with serum metabolite analyses were used to identify genes and pathways that respond to ...

  3. Feed efficiency and the microbiota of the alimentary tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is considerable variation in the efficiency that cattle convert feed for maintenance and product (body weight gain, milk, and conceptus). Both intake and gain are polygenic traits and to better understand factors that contribute to variation in feed efficiency more defined phenotypes are need...

  4. Systems genetics and genome-wide association approaches for analysis of feed intake, feed efficiency, and performance in beef cattle.

    PubMed

    Santana, M H A; Freua, M C; Do, D N; Ventura, R V; Kadarmideen, H N; Ferraz, J B S

    2016-10-17

    Feed intake, feed efficiency, and weight gain are important economic traits of beef cattle in feedlots. In the present study, we investigated the physiological processes underlying such traits from the point of view of systems genetics. Firstly, using data from 1334 Nellore (Bos indicus) cattle and 943,577 single nucleotide polymorphisms (SNPs), a genome-wide association analysis was performed for dry matter intake, average daily weight gain, feed conversion ratio, and residual feed intake with a Bayesian Lasso procedure. Genes within 50-kb SNPs, most relevant for explaining the genomic variance, were annotated and the biological processes underlying the traits were inferred from Database for Annotation, Visualization and Integrated Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our results indicated several putative genomic regions associated with the target phenotypes and showed that almost all genomic variances were in the SNPs located in the intergenic and intronic regions. We further identified five main metabolic pathways related to ion transport, body composition, and feed intake control, which influenced the four phenotypes simultaneously. The systems genetics approach used in this study revealed novel pathways related to feed efficiency traits in beef cattle.

  5. Dual-frequency feed system for 26-meter antenna conversion

    NASA Technical Reports Server (NTRS)

    Hartop, R. W.

    1977-01-01

    New cassegrain feed cone assemblies were designed as part of the upgrade of three 26-meter diameter antennas to 34-meter diameter with improved performance. The new dual-frequency feed cone (SXD) will provide both S- and X-band feed systems and traveling wave masers, with a reflex reflector system to permit simultaneous operation analogous to the 64-meter antennas. Tasks involved in adding the X-band receiving capability and improving the S-band feed performance in support of Voyager and later missions described in.

  6. Cecum microbial communities from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To characterize the microbial communities of the cecum among steers differing in feed efficiency. Methods and Results: Individual feed intake (FI) and body weight (BW) gain were determined from animals fed the same ration, within two contemporary groups of steers. BW gain was regressed on F...

  7. Cambridge journals blog: Improving feed efficiency in dairy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because the cost of feeding animals is one of the greatest expenses in dairy production (40-60% of production costs), research focused on ways to identify and select for animals that are the most efficient at converting feed into milk has greatly expanded during the last decade. The animal Article o...

  8. Small intestine histomorphometry of beef cattle with divergent feed efficiency

    PubMed Central

    2013-01-01

    Background The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency. Methods From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®. Results Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency. Conclusion

  9. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.

    PubMed

    Saintilan, R; Brossard, L; Vautier, B; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H

    2015-01-01

    Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the

  10. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  11. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    SciTech Connect

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-10-21

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.

  12. Structural network efficiency predicts conversion to dementia

    PubMed Central

    Tuladhar, Anil M.; van Uden, Ingeborg W.M.; Rutten-Jacobs, Loes C.A.; Lawrence, Andrew; van der Holst, Helena; van Norden, Anouk; de Laat, Karlijn; van Dijk, Ewoud; Claassen, Jurgen A.H.R.; Kessels, Roy P.C.; Markus, Hugh S.; Norris, David G.

    2016-01-01

    Objective: To examine whether structural network connectivity at baseline predicts incident all-cause dementia in a prospective hospital-based cohort of elderly participants with MRI evidence of small vessel disease (SVD). Methods: A total of 436 participants from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC), a prospective hospital-based cohort of elderly without dementia with cerebral SVD, were included in 2006. During follow-up (2011–2012), dementia was diagnosed. The structural network was constructed from baseline diffusion tensor imaging followed by deterministic tractography and measures of efficiency using graph theory were calculated. Cox proportional regression analyses were conducted. Results: During 5 years of follow-up, 32 patients developed dementia. MRI markers for SVD were strongly associated with network measures. Patients with dementia showed lower total network strength and global and local efficiency at baseline as compared with the group without dementia. Lower global network efficiency was independently associated with increased risk of incident all-cause dementia (hazard ratio 0.63, 95% confidence interval 0.42–0.96, p = 0.032); in contrast, individual SVD markers including lacunes, white matter hyperintensities volume, and atrophy were not independently associated. Conclusions: These results support a role of network disruption playing a pivotal role in the genesis of dementia in SVD, and suggest network analysis of the connectivity of white matter has potential as a predictive marker in the disease. PMID:26888983

  13. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  14. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    SciTech Connect

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-11-23

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at several different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.

  15. Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids.

    PubMed

    Montanholi, Y R; Swanson, K C; Palme, R; Schenkel, F S; McBride, B W; Lu, D; Miller, S P

    2010-05-01

    A better understanding of the factors regulating feed efficiency and their potential as predictors of feed efficiency in cattle is needed. Therefore, the potential of three classes of traits, namely, feeding behavior characteristics: daily time at feeder (TF; min/day), time per meal (TM; min), meal size (MS; g DM), eating rate (ER; g DM/min), number of daily meals (NM) and daily visits to the feeder (VF); infrared (IR) thermography traits (°C): eye (EY), cheek (CK), snout (SN), ribs (RB) and hind area (HA); and glucocorticoid levels: fecal cortisol metabolites (FCM; ng/g) and plasma cortisol (PC; ng/ml) as predictors of efficiency were evaluated in 91 steers (436 ± 37 kg) over 2 years (Y1 = 46; Y2 = 45). Additionally, the individual traits of each of these three classes were combined to define three single traits. Individual daily feed intake of a corn silage and high-moisture corn-based diet was measured using an automated feeding system. Body weight and thermographs were taken every 28 days over a period of 140 days. Four productive performance traits were calculated: daily dry matter intake (DMI), average daily gain (ADG), feed to gain ratio (F : G) and residual feed intake (RFI). Steers were also classified into three RFI categories (low-, medium- and high-RFI). Among the feeding behavior characteristics, MS and ER were correlated with all efficiency traits (range: 0.26 to 0.75). Low-RFI (more efficient steers) had smaller MS, lower ER and fewer VF in comparison to high-RFI steers. Less efficient steers (high-RFI) performed more VF during the nocturnal period than more efficient steers. More efficient steers had lower CK and SN temperatures than less efficient steers (28.1°C v. 29.2°C and 30.0°C v. 31.2°C), indicating greater energetic efficiency for low-RFI steers. In terms of glucocorticoids, PC was not correlated with efficiency traits. In contrast, more efficient steers had higher FCM in comparison to less efficient steers (51.1 v. 31.2 ng

  16. High efficiency in mode-selective frequency conversion.

    PubMed

    Quesada, Nicolás; Sipe, J E

    2016-01-15

    Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this Letter, we argue that these limits can be understood as time-ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore, using a simple scaling argument, we show that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as "attenuators" of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric downconversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode-selective FC.

  17. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics.

    PubMed

    Drouilhet, L; Achard, C S; Zemb, O; Molette, C; Gidenne, T; Larzul, C; Ruesche, J; Tircazes, A; Segura, M; Bouchez, T; Theau-Clément, M; Joly, T; Balmisse, E; Garreau, H; Gilbert, H

    2016-01-01

    To get insights into selection criteria for feed efficiency, 2 rabbit lines have been created: the ConsoResidual line was selected for residual feed intake (RFI) with ad libitum feeding and the ADGrestrict line was selected for ADG under restricted feeding (-20% of voluntary intake). The first objective of this study was to evaluate, after 9 generations of selection, the direct and correlated responses to selection on production traits in the 2 lines for traits recorded during growth. Second, applying the 2 feeding conditions used for selection to both selected lines plus the control unselected line (generation 0, G0) in a 2 × 3 factorial trial, the line performances were compared and the gut microbiota of the lines was characterized. The correlated responses in feed conversion ratio (FCR) were remarkably equivalent in both selected lines (-2.74 genetic σ) but correlated responses in other traits were notably different. In the ConsoResidual line, selection for decreased RFI resulted in a small negative correlated response in BW at 63 d old (BW63) and in a null response in ADG. In the ADGrestrict line, on the contrary, the correlated response in BW63 was substantial (+1.59 σ). The 2 selected lines had a FCR reduced by 0.2 point compared with the G0 line, and the same difference was found in both feeding regimens ( < 0.001). Indeed, selection on ADG would lead to heavier animals with no significant reduction of feed costs, whereas selection on RFI leads to lower feed costs and no increase of animal BW under ad libitum feeding. Altogether, our results do not suggest any genotype × environment interaction in the response to feeding regimens. The intestinal microbial communities from efficient rabbits differed from their unselected counterparts in terms of fermentation end products and microbial phylotypes, suggesting a central role of these microbes in the better feed efficiency of the rabbits.

  18. Conversion efficiency and nutrient digestibility of certain seaweed diets by laboratory reared Labeo rohita (Hamilton).

    PubMed

    Bindu, M S; Sobha, V

    2004-12-01

    Impact of three different types of seaweed diets on growth, feed utilization and nutrient digestibility of L. rohita was studied for 120 days. The seaweed diet fed fishes, especially Ulva based diet showed comparatively higher growth and weight increment. Good food conversion ratio, food assimilation efficiency, protein efficiency ratio and better nutrient digestibility were recorded for seaweed diet fed fishes. The results suggests the suitability of utilizing seaweeds, Ulva fasciata, Spyridia insignis and Sargassum wightii as partial substitute for fishmeal in formulated diets of L. rohita.

  19. Relationship between thermoelectric figure of merit and energy conversion efficiency

    PubMed Central

    Kim, Hee Seok; Liu, Weishu; Chen, Gang; Chu, Ching-Wu; Ren, Zhifeng

    2015-01-01

    The formula for maximum efficiency (ηmax) of heat conversion into electricity by a thermoelectric device in terms of the dimensionless figure of merit (ZT) has been widely used to assess the desirability of thermoelectric materials for devices. Unfortunately, the ηmax values vary greatly depending on how the average ZT values are used, raising questions about the applicability of ZT in the case of a large temperature difference between the hot and cold sides due to the neglect of the temperature dependences of the material properties that affect ZT. To avoid the complex numerical simulation that gives accurate efficiency, we have defined an engineering dimensionless figure of merit (ZT)eng and an engineering power factor (PF)eng as functions of the temperature difference between the cold and hot sides to predict reliably and accurately the practical conversion efficiency and output power, respectively, overcoming the reporting of unrealistic efficiency using average ZT values. PMID:26100905

  20. Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Sanders, Barry C.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2017-03-01

    We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n -photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1 ≤n ≤5 , after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.

  1. Experiments to Determine the Efficiency of Various Energy Conversions.

    ERIC Educational Resources Information Center

    Curtis, D.; Goodwin, R. D.

    1980-01-01

    Described are experiments used in the "Physical Science and Man" course at Hartley CAE which enable determinations of efficiencies of two energy conversion processes, namely, electricity into heat and burning gas to produce heat. Activities for comparing the processes are suggested. (DS)

  2. Comparative effects of constant versus fluctuating thermal regimens on yellow perch growth, feed conversion and survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fluctuating or constant thermal regimens on growth, mortality, and feed conversion were determined for juvenile yellow perch (Perca flavescens). Yellow perch averaging 156mm total length and 43g body weight were held in replicate 288L circular tanks for 129 days under: 1) a diel therm...

  3. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  4. Efficiency of energy utilisation and voluntary feed intake in ruminants.

    PubMed

    Tolkamp, B J

    2010-07-01

    Energy requirements of animals are most readily expressed in terms of net energy (NE), while the energy yield of feed is, at least initially, expressed in terms of metabolisable energy (ME). Energy evaluation systems 'translate' NE requirements into ME requirements (ME systems) or assign NE values to feeds (NE systems). Efficiency of ME utilisation is higher for maintenance than for production and the NE yield of a feed varies, therefore, with ME intake. In addition, energetic efficiency for maintenance and production is thought to be different for lactating and non-lactating animals and to be affected by diet quality. As a result, there are currently many national energy evaluation systems that are complex, differ in their approach and are, as a result, difficult to compare. As ruminants in most production systems are fed ad libitum, this is also the most appropriate intake level at which to estimate energetic efficiency. Analyses of older as well as more recent data suggest that ad libitum feeding (i) abolishes the effects of diet quality on energetic efficiency (almost) completely, (ii) abolishes the differences between lactating and non-lactating animals (almost) entirely and (iii) results in overall energetic efficiencies that are always close to 0.6. The paper argues that there is now sufficient information to develop an international energy evaluation system for ad libitum fed ruminants. Such a system should (i) unify ME and NE systems, (ii) avoid the systematic bias and large errors that can be associated with current systems (iii) be simpler than current systems and (iv) have as a starting point a constant efficiency of ME utilisation, with a value of around 0.6. The remarkably constant efficiency of ME utilisation in ad libitum fed ruminants could be the result of energetic efficiency as well as feed intake regulation being affected by the same variables or of a direct role of energetic efficiency in feed intake regulation. Models to predict intake on the

  5. Effect of maternal feed efficiency as growing heifers and lactating cows on feed intake and performance of their suckling offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined whether suckling calf DMI and performance was associated with feed efficiency, feed intake, and performance of thier dam as a growing heifer or lactating cow. Feed efficiency was established in 74 growing heifers that subsequently gave birth to their second calf as 3-yr old cows. For t...

  6. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  7. Highly efficient frequency conversion with bandwidth compression of quantum light

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  8. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  9. Genetic relationships between feed efficiency in growing males and beef cow performance.

    PubMed

    Crowley, J J; Evans, R D; Mc Hugh, N; Kenny, D A; McGee, M; Crews, D H; Berry, D P

    2011-11-01

    Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.

  10. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).

    PubMed

    Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari

    2016-11-01

    In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.

  11. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  12. High efficiency GaP power conversion for Betavoltaic applications

    NASA Astrophysics Data System (ADS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-09-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  13. Saturation and energy-conversion efficiency of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  14. Photon energy conversion efficiency in gamma-ray spectrometry.

    PubMed

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  15. Feeding methods and efficiencies of selected frugivorous birds

    USGS Publications Warehouse

    Foster, M.S.

    1987-01-01

    I report on handling methods and efficiencies of 26 species of Paraguayan birds freeding on fruits of Allophyllus edulis (Sapindaceae). A bird may swallow fruits whole (Type I: pluck and swallow feeders), hold a fruit and cut the pulp from the seed with the edge of the bill, swallowing the pulp but not the seed (Type II: cut or mash feeders), or take bites of pulp from a fruit that hangs from the tree or that is held and manipulated against a branch (Type III: push and bite feeders). In terms of absolute amount of pulp obtained from a fruit, and amount obtained per unit time. Type I species are far more efficient than Type II and III species. Bill morphology influences feeding methods but is not the only important factor. Diet breadth does not appear to be significant. Consideration of feeding efficiency relative to the needs of the birds indicates that these species need to spend relatively little time feeding to meet their estimated energetic needs, and that handling time has a relatively trivial effect on the time/energy budges of the bird species observed.

  16. Individual efficiency for the use of feed resources in rabbits.

    PubMed

    Piles, M; García-Tomás, M; Rafel, O; Ramon, J; Ibañez-Escriche, N; Varona, L

    2007-11-01

    A Bayesian procedure, which allows consideration of the individual variation in the feed resource allocation pattern, is described and implemented in 2 sire lines of rabbit (Caldes and R). The procedure is based on a hierarchical Bayesian scheme, where the first stage of the model consists of a multiple regression model of feed intake on metabolic BW and BW gain. In a second stage, an animal model was assumed including batch, parity order, litter size, and common environmental litter effects. Animals were reared during the fattening period (from weaning at 32 d of age to 60 d of age) in individual cages on an experimental farm, and were fed ad libitum with a commercial diet. Body weight (g) and cumulative feed intake (g) were recorded weekly. Individual BW gain (g) and average BW (ABW, g) were calculated from these data for each 7-d period. Metabolic BW (g(0.75)) was estimated as ABW(0.75). The number of animals actually measured was 444 and 445 in the Caldes and R lines, respectively. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. Posterior means (posterior SD) for heritabilities for partial coefficients of regression of feed intake on metabolic BW and feed intake on BW gain were estimated to be 0.35 (0.17) and 0.40 (0.17), respectively, in the Caldes line and 0.26 (0.19) and 0.27 (0.14), respectively, in line R. The estimated posterior means (posterior SD) for the proportion of the phenotypic variance due to common litter environmental effects of the same coefficients of regression were respectively, 0.39 (0.14) and 0.28 (0.13) in the Caldes line and 0.44 (0.22) and 0.49 (0.14) in line R. These results suggest that efficiency of use of feed resources could be improved by including these coefficients in an index of selection.

  17. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows.

    PubMed

    Hurley, A M; López-Villalobos, N; McParland, S; Kennedy, E; Lewis, E; O'Donovan, M; Burke, J L; Berry, D P

    2016-01-01

    International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n=709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n=709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with

  18. Weather influences feed intake and feed efficiency in a temperate climate.

    PubMed

    Hill, Davina L; Wall, Eileen

    2017-03-01

    A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study

  19. Energy conversion approaches and materials for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Green, Martin A.; Bremner, Stephen P.

    2017-01-01

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  20. Half-Heusler Alloys for Efficient Thermoelectric Power Conversion

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zeng, Xiaoyu; Tritt, Terry M.; Poon, S. Joseph

    2016-11-01

    Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit ( ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ˜ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n-p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high- ZT p-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.

  1. Energy conversion approaches and materials for high-efficiency photovoltaics.

    PubMed

    Green, Martin A; Bremner, Stephen P

    2016-12-20

    The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley-Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.

  2. Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating.

    PubMed

    Chausse, Bruno; Solon, Carina; Caldeira da Silva, Camille C; Masselli Dos Reis, Ivan G; Manchado-Gobatto, Fúlvia B; Gobatto, Claudio A; Velloso, Licio A; Kowaltowski, Alicia J

    2014-07-01

    Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.

  3. Association of AMPK subunit gene polymorphisms with growth, feed intake, and feed efficiency in meat-type chickens.

    PubMed

    Jin, Sihua; Moujahid, El Mostafa El; Duan, Zhongyi; Zheng, Jiawei; Qu, Lujiang; Xu, Guiyun; Yang, Ning; Chen, Sirui

    2016-07-01

    Investigations on regulatory genes of feed intake will provide a rational scientific basis to improve future selection indices for more efficient chickens. In the present study, we investigated the association of 13 previously reported SNPs in the chicken adenosine monophosphate activated protein kinase (AMPK) subunits PRKAB1, PRKAG2, and PRKAG3 genes with body weight (BW), body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in two distinct yellow meat-type strains. Six SNPs with a very low minor allele frequency were removed by genotype quality control and data filtering. The experimental population comprised 796 pedigreed males from two strains with different genetic backgrounds, 335 chickens from N202 and 461 chickens from N301. BW at 49 (BW49) and 70 days of age (BW70) and FI (from 49 to 70 days of age) were determined individually. BWG and FCR were computed based on BW and FI in the interval between 49 to 70 days. The results indicated that PRKAB1 SNPs rs14094358 and rs14094362 were significantly associated with BW70, BWG, and FI in the N202 strain, and rs14094361 and rs14094363 were significantly associated with FI and FCR in the N301 strain (P < 0.05). In addition, the PRKAG2 SNP rs14133282 showed significant association with FI in N202, and rs13535812 was significantly associated with BW70 in N202 (P < 0.05). Moreover, the PRKAG3 SNP rs13595570 was significantly associated with BW in N202 (P < 0.05), and significantly associated with FI and FCR in N301 (P < 0.05). Additionally, a two-SNP haplotype comprising rs14094361 and rs14094362 in PRKAB1 was significantly associated with BWG in N202 (P < 0.05). Meanwhile, haplotypes based on two SNPs, rs14133282, and rs13535812, showed significant effects on FI in N202 (P < 0.05). Our findings therefore provide important evidence for association of AMPK subunits polymorphisms with body weight, feed intake, and feed efficiency that may be applied in meat-type chicken breeding programs.

  4. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion

    PubMed Central

    Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.; Ferretti, Marco; Thieme, Jos; Zigmantas, Donatas; van Grondelle, Rienk

    2014-01-01

    The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies. PMID:26870153

  5. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  6. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  7. Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Johnson, T.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Johnson, M. Gatu; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Y.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.

    2011-12-01

    The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in (3He)-D plasmas [2] and was recently tested in (3He)-H JET plasmas. The latter is an `inverted' scenario, which differs significantly from the (3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a `regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.

  8. Conversion efficiency of skutterudite-based thermoelectric modules.

    PubMed

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

  9. Efficiency of luminous-energy conversion in semiconducting photoelectrochemical converters

    SciTech Connect

    Kireev, V.B.; Trukhan, E.M.; Filimonov, D.A.

    1981-03-01

    Factors characterizing the conversion efficiency of luminous into chemical energy in semiconducting photoelectrochemical converters are examined. An expression for /gamma/sub //O is discussed in particular; /gamma/sub //O is the quantum yield of photocurrent of the minority carriers sustaining the reaction during which chemical energy is accumulated. The expression for /gamma/sub //O allows, both for the finite rate of electrode surface processes and for recombination in the semiconductor's space-charge layer. It is shown that over a wide range of converter parameters, recombination in the space-charge layer is one of the most important factors for the size of /gamma/sub //O. 17 refs.

  10. Detailed balance limit of power conversion efficiency for organic photovoltaics

    SciTech Connect

    Seki, Kazuhiko; Furube, Akihiro; Yoshida, Yuji

    2013-12-16

    A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

  11. Feed efficiency, blood parameters, and ingestive behavior of young Nellore males and females.

    PubMed

    Bonilha, Sarah Figueiredo Martins; Cyrillo, Joslaine Noely dos Santos Gonçalves; dos Santos, Guilherme Pinheiro; Branco, Renata Helena; Ribeiro, Enilson Geraldo; Mercadante, Maria Eugênia Zerlotti

    2015-10-01

    This study aimed to evaluate differences in efficiency of feed utilization between young Nellore males and females by comparing growth traits, feed intake, blood parameters, and ingestive behavior of the animals. Data from 768 Nellore males and females that participated in eight performance tests for individual feed intake evaluation were used. Performance and feed efficiency measures, efficiency-related hematological, metabolic and hormonal variables, and data regarding ingestive behavior were collected. Feed efficiency measures were defined by the relationship between performance and feed intake. Data were analyzed using mixed models that included the fixed effects of sex, herd, and the covariate age within sex and the random effects of facility within year, year, and residual. Significant differences between males and females were observed for traits related to weight gain and feed intake. Although individual dynamics of feed efficiency measures differed between males and females, no significant differences in residual feed intake, feed efficiency, or relative growth rate were observed between sexes. Significant differences between sexes were found for platelets, red blood cells, hemoglobin, creatinine, glucose, urea, triglycerides, insulin, cortisol, and IGF-I. Females spent more time feeding and less time ruminating when compared to males. However, males exhibited higher feeding efficiency and lower rumination efficiency than females. Growing Nellore males and females are efficient in feed utilization, and the differences in blood variables observed are probably due to differences in body size and feed intake. Males spend less time eating, consume more food, and spend more time ruminating than females.

  12. De novo transcriptome assembly and identification of genes associated with feed conversion ratio and breast muscle yield in domestic ducks.

    PubMed

    Zhu, Feng; Yuan, Jian-Ming; Zhang, Zhen-He; Hao, Jin-Ping; Yang, Yu-Ze; Hu, Shen-Qiang; Yang, Fang-Xi; Qu, Lu-Jiang; Hou, Zhuo-Cheng

    2015-12-01

    Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome.

  13. Feed Efficiency: An Assessment of Current Knowledge from a Voluntary Subsample of the Swine Industry

    ERIC Educational Resources Information Center

    Flohr, Josh R.; Tokach, Mike D.; DeRouchey, Joel M.; Goodband, Robert D.; Dritz, Steve S.; Nelssen, Jim L.; Patience, John F.

    2014-01-01

    A voluntary sample of pork producers and advisers to the swine industry were surveyed about feed efficiency. The questionnaire was designed to accomplish three objectives: (a) determine the level of knowledge related to feed efficiency topics, (b) identify production practices used that influence feed efficiency, and (c) identify information gaps…

  14. AMTEC: High efficiency static conversion for space power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.

    1986-01-01

    Future manned and unmanned space missions will require reliable, high efficiency energy conversion systems. For a manned Mars mission, power levels in the range of 10 to 100 kWe will be needed. The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion technology with the potential to meet these needs. The AMTEC is a thermally regenerative electrochemical device that derives its operation from the sodium ion conducting properties of beta-alumina solid electrolyte (BASE). To date, an efficiency of 19%, area power density of 1 W/sq cm, and a lifetime of 10,000 hours at high temperature were demonstrated in laboratory devices. Systems studies show that projected AMTEC systems equal or surpass the performance of other static or dynamic systems in applications of 1 kWe-1 MWe. Thus, the laboratory experiments and applications studies conducted to date have shown that the AMTEC posseses great potential. In order to bring this technology to the stage where prototype units can be built and operated, several technical issues must be addressed. These include the need for long life, high power electrodes, minimization of radiative parasitic losses, and high temperature seals. In summary, the evidence shows that if AMTEC is developed, it can play a significant role in future space power applications.

  15. Relationship among performance, carcass, and feed efficiency characteristics, and their ability to predict economic value in the feedlot.

    PubMed

    Retallick, K M; Faulkner, D B; Rodriguez-Zas, S L; Nkrumah, J D; Shike, D W

    2013-12-01

    A 4-yr study was conducted using 736 steers of known Angus, Simmental, or Simmental × Angus genetics to determine performance, carcass, and feed efficiency factors that explained variation in economic performance. Steers were pen fed and individual DMI was recorded using a GrowSafe automated feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada). Steers consumed a similar diet and received similar management each year. The objectives of this study were to: 1) determine current economic value of feed efficiency and 2) identify performance, carcass, and feed efficiency characteristics that predict: carcass value, profit, cost of gain, and feed costs. Economic data used were from 2011 values. Feed efficiency values investigated were: feed conversion ratio (FCR; feed to gain), residual feed intake (RFI), residual BW gain (RG), and residual intake and BW gain (RIG). Dependent variables were carcass value ($/steer), profit ($/steer), feed costs ($/steer • d(-1)), and cost of gain ($/kg). Independent variables were year, DMI, ADG, HCW, LM area, marbling, yield grade, dam breed, and sire breed. A 10% improvement in RG (P < 0.05) yielded the lowest cost of gain at $0.09/kg and highest carcass value at $17.92/steer. Carcass value increased (P < 0.05) as feed efficiency improved for FCR, RG, and RIG. Profit increased with a 10% improvement in feed efficiency (P < 0.05) with FCR at $34.65/steer, RG at $31.21/steer, RIG at $21.66/steer, and RFI at $11.47/steer. The carcass value prediction model explained 96% of the variation among carcasses and included HCW, marbling score, and yield grade. Average daily gain, marbling score, yield grade, DMI, HCW, and year born constituted 81% of the variation for prediction of profit. Eighty-five percent of the variation in cost of gain was explained by ADG, DMI, HCW, and year. Prediction equations were developed that excluded ADG and DMI, and included feed efficiency values. Using these equations, cost of gain was explained

  16. A TEG Efficiency Booster with Buck-Boost Conversion

    NASA Astrophysics Data System (ADS)

    Wu, Hongfei; Sun, Kai; Zhang, Junjun; Xing, Yan

    2013-07-01

    A thermoelectric generator (TEG) efficiency booster with buck-boost conversion and power management is proposed as a TEG battery power conditioner suitable for a wide TEG output voltage range. An inverse-coupled inductor is employed in the buck-boost converter, which is used to achieve smooth current with low ripple on both the TEG and battery sides. Furthermore, benefiting from the magnetic flux counteraction of the two windings on the coupled inductor, the core size and power losses of the filter inductor are reduced, which can achieve both high efficiency and high power density. A power management strategy is proposed for this power conditioning system, which involves maximum power point tracking (MPPT), battery voltage control, and battery current control. A control method is employed to ensure smooth switching among different working modes. A modified MPPT control algorithm with improved dynamic and steady-state characteristics is presented and applied to the TEG battery power conditioning system to maximize energy harvesting. A 500-W prototype has been built, and experimental tests carried out on it. The power efficiency of the prototype at full load is higher than 96%, and peak efficiency of 99% is attained.

  17. Theoretical investigation of vacuum thermionic energy conversion devices for efficient conversion of solar to electrical energy

    NASA Astrophysics Data System (ADS)

    Smith, Joshua; Nemanich, Robert; Bilbro, Griff

    2007-03-01

    A vacuum thermionic energy conversion device (TEC) would offer the potential of efficiently converting solar energy directly to electrical work. These devices consist of a heated emitter electrode and a collector electrode separated by an evacuated interelectrode space. Models for such conceptual devices are developed, and efficiency is calculated by considering electron transport across the device as well as Stefan Boltzmann radiation. A device operating with an emitter and collector temperature of 775K and 375K, respectively is considered. The conceptual TEC features diamond materials having low emission barrier heights as electrodes. Hydrogen terminated diamond is known to have a negative electron affinity (NEA) and nitrogen or phosphorus doping introduces donor levels at 1.7eV and 0.6eV, respectively, below the conduction band minimum. For the devices considered, the barrier heights are 1.1eV and 0.5eV for the emitter and collector, respectively. The Richardson constant is 10A/cm^2K^2, consistant with experimental results. Assuming an emissivity of 0.5, the device has a Carnot efficiency of 0.52, and a calculated absolute efficiency of 0.17 at a maximum power of 0.25W/cm^2. The theory is extended to include the negative space charge effect, and the NEA properties of the materials are shown to mitigate the space charge effect and increase output power.

  18. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Davidson, J.; Bebak, J.; Mazik, P.

    2009-01-01

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are within the range of fish hearing, but species-specific effects of aquaculture production noise are not well defined. Field and laboratory studies have shown that fish behavior and physiology can be negatively impacted by intense sound. Therefore, chronic exposure to aquaculture production noise could cause increased stress, reduced growth rates and feed conversion efficiency, and decreased survival. The objective of this study was to provide an in-depth evaluation of the long term effects of aquaculture production noise on the growth, condition factor, feed conversion efficiency, and survival of cultured rainbow trout, Oncorhynchus mykiss. Rainbow trout were cultured in replicated tanks using two sound treatments: 117??dB re 1????Pa RMS which represented sound levels lower than those recorded in an intensive recycle system and 149??dB re 1????Pa RMS, representing sound levels near the upper limits known to occur in recycle systems. To begin the study mean fish weights in the 117 and 149??dB tanks were 40 and 39??g, respectively. After five months of exposure no significant differences were identified between treatments for mean weight, length, specific growth rates, condition factor, feed conversion, or survival (n = 4). Mean final weights for the 117 and 149??dB treatments were 641 ?? 3 and 631 ?? 10??g, respectively. Overall specific growth rates were equal, i.e. 1.84 ?? 0.00 and 1.84 ?? 0.01%/day. Analysis of growth rates of individually tagged rainbow trout indicated that fish from the 149??dB tanks grew slower during the first month of noise exposure (p < 0.05); however, fish acclimated to the noise thereafter. This study further suggests that rainbow trout growth

  19. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  20. Improve power conversion efficiency of slab coupled optical waveguide lasers.

    PubMed

    Fan, Jiahua; Zhu, Lin; Dogan, Mehmet; Jacob, Jonah

    2014-07-28

    The slab coupled optical waveguide laser (SCOWL) is a promising candidate for high power, single mode emitter for a number of reasons, including its near diffraction limited optical quality, large modal size and near circular output pattern. Current SCOWL designs have limited electrical-optical power conversion efficiency (PCE) around 40%, which is lower than conventional RWG laser and broad area laser that are known to have much higher PCEs. To improve the SCOWL PCE, we theoretically optimize its structure by reducing Al content, increasing doping concentration and introducing a GRIN layer to prevent carrier leakage. Numerical simulations predict that an optimized SCOWL design has a maximum PCE of about 57% at room temperature.

  1. Riverbed methanotrophy sustained by high carbon conversion efficiency

    PubMed Central

    Trimmer, Mark; Shelley, Felicity C; Purdy, Kevin J; Maanoja, Susanna T; Chronopoulou, Panagiota-Myrsini; Grey, Jonathan

    2015-01-01

    Our understanding of the role of freshwaters in the global carbon cycle is being revised, but there is still a lack of data, especially for the cycling of methane, in rivers and streams. Unravelling the role of methanotrophy is key to determining the fate of methane in rivers. Here we focus on the carbon conversion efficiency (CCE) of methanotrophy, that is, how much organic carbon is produced per mole of CH4 oxidised, and how this is influenced by variation in methanotroph communities. First, we show that the CCE of riverbed methanotrophs is consistently high (~50%) across a wide range of methane concentrations (~10–7000 nM) and despite a 10-fold span in the rate of methane oxidation. Then, we show that this high conversion efficiency is largely conserved (50%± confidence interval 44–56%) across pronounced variation in the key functional gene (70 operational taxonomic units (OTUs)), particulate methane monooxygenase (pmoA), and marked shifts in the abundance of Type I and Type II methanotrophs in eight replicate chalk streams. These data may suggest a degree of functional redundancy within the variable methanotroph community inhabiting these streams and that some of the variation in pmoA may reflect a suite of enzymes of different methane affinities which enables such a large range of methane concentrations to be oxidised. The latter, coupled to their high CCE, enables the methanotrophs to sustain net production throughout the year, regardless of the marked temporal and spatial changes that occur in methane. PMID:26057842

  2. Identification of genomic regions associated with feed efficiency in Nelore cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed efficiency is jointly determined by productivity and feed requirements, both of which are economically relevant traits in beef cattle production systems. The objective of this study was to identify genes/QTLs associated with components of feed efficiency in Nelore cattle using Illumina BovineHD...

  3. Effects of transportation duration on feeding behavior and feed efficiency of freshly-weaned Brahman x hereford calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was conducted to determine the effects of long (L; 25.5 h) versus short (S; 5.5 h) duration transport on the feeding behavior and feed efficiency of Brahman x Hereford calves. Calves (8.5±0.4 mo of age) from Overton, TX, were blocked by sex (n=18 steers; n=14 heifers), BW, and temper...

  4. Feed efficiency - how should it be used for the cow herd?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cows, the most critical factor influencing the output component of efficiency is reproductive rate, and not necessarily weight gain. Thus benefits of selecting animals with desirable measures of feed efficiency on cow efficiency remain to be determined. The feed input component of cow efficiency...

  5. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production.

    PubMed

    Coleman, J; Berry, D P; Pierce, K M; Brennan, A; Horan, B

    2010-09-01

    animals grouped on alternative definitions of feed efficiency showed that conventional definitions such as feed conversion efficiency or residual feed intake may be inappropriate measures of efficiency for lactating dairy cows. An alternative definition, residual solids production, is proposed. This definition of feed efficiency identifies animals that produce greater volumes of milk solids at similar levels of feed intake without excessive body tissue mobilization and with improved fertility performance. The results also suggest that although there are differences in feed efficiency between strains of Holstein-Friesian, there is also variation within genotypes so that improvements in feed efficiency can be realized if the appropriate definition of feed efficiency is incorporated into breeding programs.

  6. Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Krueger, R

    2000-08-10

    The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate

  7. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  8. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  9. Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics

    SciTech Connect

    2012-02-23

    Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

  10. Effects of direct-fed Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed conversion, and health condition of pre- and postpartum Holstein cows.

    PubMed

    Luan, S; Duersteler, M; Galbraith, E A; Cardoso, F C

    2015-09-01

    The usage of direct-fed microbials (DFM) has become common in the dairy industry, but questions regarding choice of strain, mode of action, and efficacy remain prevalent. The objective of this study was to evaluate the effects of a DFM (Bacillus pumilus 8G-134) on pre- and postpartum performance and incidence of subclinical ketosis in early lactation. Forty-three multiparous Holstein cows were assigned to 2 treatments in a randomized complete block design; cows in the direct-fed microbial treatment (DFMt, n=21) received 5.0×10(9) cfu/cow of B. pumilus in 28 g of a maltodextrin carrier, whereas cows in the control treatment (CON, n=22) received 28 g of maltodextrin carrier alone. Treatments were top-dressed on the total mixed ration daily. Treatments were applied from 21 d before expected calving date to 154 d after calving. Cows on treatment DFMt tended to have lower serum haptoglobin concentration than CON cows on d 14. Cows on treatment DFMt had higher IgA concentrations in milk than CON cows during the first week after calving. Cows fed DFMt had higher yields of milk, fat-corrected milk, energy-corrected milk, milk fat, and milk protein during the second week of lactation than CON; however, we found no differences between treatments on milk yield and milk components overall. Cows on DFMt tended to have higher feed conversion and to have lower prevalence of subclinical ketosis (beta-hydroxybutyrate >1.2 mmol/L) on d 5 than cows fed CON. Dry matter intake, body weight, and body condition score were not affected by DFMt supplementation. Milk production efficiencies (calculated based on fat-corrected milk and energy-corrected milk) were higher by 0.1 kg of milk per kilogram of dry matter intake in cows that received DFMt compared with cows that received CON. In conclusion, cows receiving DFMt tended to have lower incidence of subclinical ketosis than cows receiving CON. Cows fed DFMt tended to have higher feed conversion and evidence for greater immunity than CON

  11. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%.

    PubMed

    Chen, Chun-Chao; Chang, Wei-Hsuan; Yoshimura, Ken; Ohya, Kenichiro; You, Jingbi; Gao, Jing; Hong, Zirou; Yang, Yang

    2014-08-27

    Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%.

  12. Polymerization efficiency of curing lamps: a universal energy conversion relationship predictive of conversion of resin-based composite.

    PubMed

    Halvorson, Rolf H; Erickson, Robert L; Davidson, Carel L

    2004-01-01

    A universal energy-conversion relationship (ECRu) predictive of conversion of a resin-based composite (RBC) polymerized with any light source has been described. This relationship was derived from an energy conversion relationship for RBC polymerized with a tungsten-halogen lamp and the lamp's efficiency relative to a hypothetical standard lamp. The ECRu was then used to predict conversion throughout RBC polymerized with an LED lamp using the lamp's relative efficiency compared to the standard lamp. The universal energy scale has also been described as predictive of scrape-back lengths for this RBC family when polymerized with any light source. Despite a 31% greater relative efficiency, scrape-back lengths from RBC polymerized using the LED lamp were predicted to be only 6% greater than those polymerized with the tungsten-halogen lamp when RBC is polymerized on an equal energy basis. This result was experimentally verified.

  13. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    PubMed Central

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  14. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  15. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  16. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  17. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

    PubMed

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-04-21

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 10(7) M(-1) cm(-1)), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm(-2), 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm(-2). These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.

  18. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens

    PubMed Central

    Wang, Jie; Ma, Jie; Shu, Dingming; Lund, Mogens Sandø; Su, Guosheng; Qu, Hao

    2017-01-01

    Feed represents the major cost of chicken production. Selection for improving feed utilization is a feasible way to reduce feed cost and greenhouse gas emissions. The objectives of this study were to investigate the efficiency of genomic prediction for feed conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG) and average daily feed intake (ADFI) and to assess the impact of selection for feed efficiency traits FCR and RFI on eviscerating percentage (EP), breast muscle percentage (BMP) and leg muscle percentage (LMP) in meat-type chickens. Genomic prediction was assessed using a 4-fold cross-validation for two validation scenarios. The first scenario was a random family sampling validation (CVF), and the second scenario was a random individual sampling validation (CVR). Variance components were estimated based on the genomic relationship built with single nucleotide polymorphism markers. Genomic estimated breeding values (GEBV) were predicted using a genomic best linear unbiased prediction model. The accuracies of GEBV were evaluated in two ways: the correlation between GEBV and corrected phenotypic value divided by the square root of heritability, i.e., the correlation-based accuracy, and model-based theoretical accuracy. Breeding values were also predicted using a conventional pedigree-based best linear unbiased prediction model in order to compare accuracies of genomic and conventional predictions. The heritability estimates of FCR and RFI were 0.29 and 0.50, respectively. The heritability estimates of ADG, ADFI, EP, BMP and LMP ranged from 0.34 to 0.53. In the CVF scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR were slightly higher than those for RFI. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.360, 0.284, 0.574 and 0.520, respectively, and the model-based theoretical accuracies were 0.420, 0.414, 0.401 and 0.382, respectively. In the CVR scenario, the correlation

  19. Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori.

    PubMed

    Rahmathulla, V K; Suresh, H M

    2012-01-01

    Food consumption and utilization is influenced by various biotic and abiotic factors. Under different environmental, feeding, and nutritional conditions, and with ingestion of the same amount of mulberry leaves, the silkworm shows significant difference in its ability to digest, absorb, and convert food to body matter. Here, influences of season, temperature, and humidity on food intake, assimilation, and conversion efficiency of the Indian bivoltine hybrid (CSR2 × CSR4) Bombyx mori L. (Lepidoptera: Bombycidae) were studied. The results indicated that food ingestion and assimilation were significantly higher among silkworm batches where optimum temperature and humidity were maintained compared with silkworm batches exposed to natural climatic conditions of the respective season. However, during summer the nutritional efficiency parameters were significantly higher among silkworms reared under natural temperature and humidity conditions when compared with the control. During the winter and rainy season, the nutritional efficiency parameters were significantly higher in control batches, where optimum temperature and humidity were maintained. Ingesta and digesta required to produce one gram of cocoon/shell were also lower in control batches for all seasons except summer. This may be due to the physiological adaptation of silkworms to overcome stress during the summer season.

  20. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.

    PubMed

    Cheng, Jack Y K; Lo, Irene M C

    2016-04-01

    Food waste is the largest constituent of municipal solid waste in Hong Kong, but food waste recycling is still in its infancy. With the imminent saturation of all landfill sites by 2020, multiple technologies are needed to boost up the food waste recycling rate in Hong Kong. Conversion of food waste into animal feeds is prevalent in Japan, South Korea, and Taiwan, treating over 40 % of their recycled food waste. This direction is worth exploring in Hong Kong once concerns over food safety are resolved. Fortunately, while feeding food waste to pigs and chickens poses threats to public health, feeding it to fish is considered low risk. In order to examine the feasibility of converting food waste into fish feed in Hong Kong, this paper investigates the market demand, technical viability, feed quality, regulatory hurdles, and potential contribution. The results show that a significant amount of food waste can be recycled by converting it into fish feed due to the enormous demand from feed factories in mainland China. Two conversion technologies, heat drying and black soldier fly bioconversion, are studied extensively. Black soldier fly bioconversion is preferable because the end-product, insect powder, is anticipated to gain import approval from mainland China. The authors suggest further research efforts to speed up its application for food waste recycling in urban cities.

  1. Methane emissions from cattle differing in feed intake and feed efficiency fed a high concentrate diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas released by cattle is a product of fermentation of feed in the digestive tract and represents a loss of feed energy. In addition to being a dietary energy loss, methane is considered a greenhouse gas. Developing strategies to reduce methane emissions from cattle have the potential to i...

  2. Differential expression of genes in the jejunum of steers with feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small intestine is an important site of digestion and absorption of nutrients in cattle, and has the potential to significantly impact feed efficiency. We hypothesized that the differences in feed efficiency phenotypes of beef cattle can be partially explained by the differences in gene expressi...

  3. Enteric methane production from beef cattle that vary in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that CH4 production will decrease with increased feed efficiency. Two experiments were conducted to determine CH4 production of cattle that differed in feed efficiency. Cattle in both studies were selected from larger contemporary groups. Animals furthest from the confidence ellip...

  4. Efficient electrochemical CO2 conversion powered by renewable energy.

    PubMed

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  5. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE PAGES

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; ...

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspondmore » to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies

  6. Ecological conversion efficiency and its influencers in twelve species of fish in the Yellow Sea Ecosystem

    NASA Astrophysics Data System (ADS)

    Tang, Qisheng; Guo, Xuewu; Sun, Yao; Zhang, Bo

    2007-09-01

    The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy ( Engraulis japonicus), rednose anchovy ( Thrissa kammalensis), chub mackerel ( Scomber japonicus), halfbeak ( Hyporhamphus sajori), gizzard shad ( Konosirus punctatus), sand lance ( Ammodytes personatus), red seabream ( Pagrus major), black porgy ( Acanthopagrus schlegeli), black rockfish ( Sebastes schlegeli), finespot goby ( Chaeturichthys stigmatias), tiger puffer ( Takifugu rubripes), and fat greenling ( Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.

  7. Comparing Linguistic Complexity and Efficiency in Conversations from Stimulation and Conversation Therapy in Aphasia

    ERIC Educational Resources Information Center

    Savage, Meghan C.; Donovan, Neila J.

    2017-01-01

    Background: Efficacy studies have demonstrated the benefit of group conversation therapy for a person with aphasia (PWA). However, a PWA typically participates in individual therapy prior to group therapy. Stimulation therapy (ST) is the most common type of individual aphasia therapy. Ultimately, the outcome of therapy is to enable the PWA to…

  8. The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers

    PubMed Central

    Eeckhaut, Venessa; Wang, Jun; Van Parys, Alexander; Haesebrouck, Freddy; Joossens, Marie; Falony, Gwen; Raes, Jeroen; Ducatelle, Richard; Van Immerseel, Filip

    2016-01-01

    Probiotics which do not result in the development and spread of microbial resistance are among the candidate replacements for antibiotics previously used as growth promotors. In this study the effect of in-feed supplementation of the butyrate producing Butyricicoccus pullicaecorum strain 25-3T on performance, intestinal microbiota and prevention of necrotic enteritis (NE), a disease caused by Clostridium perfringens was evaluated in broilers. For the performance study, day old Ross 308 chicks were randomly allocated into two treatment groups and fed either a non-supplemented diet or a diet supplemented with 109 cfu lyophilized B. pullicaecorum per kg feed for 40 days. On day 40 broilers administered B. pullicaecorum had a significant lower bodyweight (2675 g vs. 2762 g; p = 0.0025) but supplementation of B. pullicaecorum decreased the feed conversion ratio significantly (1.518 vs. 1.632; p < 0.0001). Additionally, ingestion of the Butyricicoccus strain significantly lowered the abundance of Campylobacter spp. in the caecum and Enterococcus and Escherichia/Shigella spp. in the ileum at day 40. In feed supplementation of B. pullicaecorum in the NE trials resulted in a significant decrease in the number of birds with necrotic lesions compared with the untreated control group. These studies show that supplementation of B. pullicaecorum is able to improve feed conversion, to reduce the abundance of some potentially important pathogens in the caeca and ileum and to contribute to the prevention of NE in broilers, making the strain a potential valuable probiotic. PMID:27708624

  9. Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Ishida, Akihiro; Thao, Hoang Thi Xuan; Yamamoto, Hidenari; Kinoshita, Yohei; Ishikiriyama, Mamoru

    2015-10-01

    Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.

  10. Genetic architecture of feed efficiency in mid-lactation Holstein dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to explore the genetic architecture and biological basis of feed efficiency in lactating Holstein cows. In total, 4,918 cows with actual or imputed genotypes for 60,671 SNP had individual feed intake, milk yield, milk composition, and body weight records. Cows were ...

  11. A prototype national cattle evaluation for feed intake and efficiency of Angus cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent development of technologies for measuring individual feed intake has made possible the collection of data suitable for breed-wide genetic evaluation. Goals of this research were to estimate genetic parameters for components of feed efficiency and develop a prototype system for conducting a ge...

  12. Microbial community profiles of the colon from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed ef...

  13. Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds.

    PubMed

    Do, D N; Strathe, A B; Jensen, J; Mark, T; Kadarmideen, H N

    2013-09-01

    Residual feed intake (RFI) is commonly used as a measure of feed efficiency at a given level of production. A total of 16,872 pigs with their pedigree traced back as far as possible was used to estimate genetic parameters for RFI, growth performance, food conversion ratio (FCR), body conformation, and feeding behavior traits in 3 Danish breeds [Duroc (DD), Landrace (LL), and Yorkshire (YY)]. Two measures of RFI were considered: residual feed intake 1 (RFI1) was calculated based on regression of daily feed intake (DFI) from 30 to 100 kg on initial test weight and ADG from 30 to 100 kg (ADG2). Residual feed intake 2 (RFI2) was as RFI1, except it was also regressed with respect to backfat (BF). The estimated heritabilities for RFI1 and RFI2 were 0.34 and 0.38 in DD, 0.34 and 0.36 in LL, and 0.39 and 0.40 in YY, respectively. The heritabilities ranged from 0.32 (DD) to 0.54 (LL) for ADG2, from 0.54 (DD) to 0.67 (LL) for BF, and from 0.13 (DD) to 0.19 (YY) for body conformation. Feeding behavior traits including DFI, number of visits to feeder per day (NVD), total time spent eating per day (TPD), feed intake rate (FR), feed intake per visit (FPV), and time spent eating per visit (TPV) were moderately to highly heritable. Residual feed intake 2 was genetically independent of ADG2 and BF in all breeds, except it had low genetic correlation to ADG2 in YY (0.2). Residual feed intake 1 was also genetically independent of ADG2 in DD and LL. Both RFI traits had strong genetic correlations with DFI (0.85 to 0.96) and FCR (0.76 to 0.99). They had low or no genetic correlations with feeding behavior traits. Unfavorable genetic correlations were found between ADG2 and both BF and DFI. Among feeding behavior traits, DFI had low genetic correlations to other traits in all breeds. High and negative genetic correlations were also found between TPD with FR (-0.79 in YY to -0.88 in DD), NVD, and TPD (-0.91 in DD to -0.94 in YY) and between NVD and FPV (-0.83 in DD to -0.91 in YY) in all

  14. Note: Efficient diode laser line narrowing using dual, feed-forward + feed-back laser frequency control

    NASA Astrophysics Data System (ADS)

    Lintz, M.; Phung, D. H.; Coulon, J.-P.; Faure, B.; Lévèque, T.

    2017-02-01

    We have achieved distributed feedback laser diode line narrowing by simultaneously acting on the diode current via a feed-back loop and on an external electrooptic phase modulator in feed-forward actuator. This configuration turns out to be very efficient in reaching large bandwidth in the phase correction: up to 15 MHz with commercial laser control units. About 98% of the laser power undergoes narrowing. The full width at half maximum of the narrowed optical spectrum is of less than 4 kHz. This configuration appears to be very convenient as the delay in the feed-forward control electronics is easily compensated for by a 20 m optical fiber roll.

  15. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.

    PubMed

    Contestabile, G; Yoshida, Y; Maruta, A; Kitayama, K

    2012-12-03

    We report broadband, all-optical wavelength conversion over 100 nm span, in full S- and C-band, with positive conversion efficiency with low optical input power exploiting dual pump Four-Wave-Mixing in a Quantum Dot Semiconductor Optical Amplifier (QD-SOA). We also demonstrate by Error Vector Magnitude analysis the full transparency of the conversion scheme for coherent modulation formats (QPSK, 8-PSK, 16-QAM, OFDM-16QAM) in the whole C-band.

  16. Relationship of feed efficiency of replacement beef heifers to subsequent feed efficiency as 3-year old suckled beef cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the correlaton between Residual Feed Intake (RFI) measured as post-weaned growing heifers (phase 1) and RFI measured as lactating beef cows (phase 2) in the same cohort. Individual performance and daily DMI were evaluated in 74 yearling heifers, and were subsequently reevaluated upon t...

  17. Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle.

    PubMed

    Grion, A L; Mercadante, M E Z; Cyrillo, J N S G; Bonilha, S F M; Magnani, E; Branco, R H

    2014-03-01

    The objectives of this study were to estimate genetic parameters for indicator traits of feed efficiency and to recommend traits that would result in better responses to selection for increased weaning weight (weaning weight adjusted to 210 d of age [W210]), ADG, and metabolic BW (BW(0.75)) and lower DMI. Records of W210 from 8,004 Nellore animals born between 1978 and 2011 and postweaning performance test records from 678 males and females born between 2004 and 2011 were used. The following feed efficiency traits were evaluated: G:F, partial efficiency of growth (PEG), relative growth rate (RGR), Kleiber's ratio (KR), residual feed intake (RFI), residual weight gain (RWG), and residual intake and gain (RIG). Covariance and variance components were estimated by the restricted maximum likelihood method using multitrait analysis under an animal model. Estimates of genetic gain and correlated responses were obtained considering single-stage and 2-stage selection. Heritability estimates were 0.22 ± 0.03 (W210), 0.60 ± 0.08 (DMI), 0.42 ± 0.08 (ADG), 0.56 ± 0.06 (BW(0.75)), 0.19 ± 0.07 (G:F), 0.25 ± 0.09 (PEG), 0.19 ± 0.07 (RGR), 0.22 ± 0.07 (KR), 0.33 ± 0.10 (RFI), 0.13 ± 0.07 (RWG), and 0.19 ± 0.08 (RIG). The genetic correlations of DMI with W210 (0.64 ± 0.10), ADG (0.87 ± 0.06), and BW(0.75) (0.84 ± 0.05) were high. The only efficiency traits showing favorable responses to selection for lower DMI were G:F, PEG, RFI, and RIG. However, the use of G:F, PEG, or RFI as a selection criterion results in unfavorable correlated responses in some growth traits. The linear combination of RFI and RWG through RIG is the best selection criterion to obtain favorable responses in postweaning growth and feed intake of Nellore cattle in single-stage selection. Genetic gains in feed efficiency are expected even after preselection for W210 and subsequent feed efficiency testing of the preselected animals.

  18. Efficiency dilution: long-term exergy conversion trends in Japan.

    PubMed

    Williams, Eric; Warr, Benjamin; Ayres, Robert U

    2008-07-01

    This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.

  19. Invited review: improving feed efficiency in dairy production: challenges and possibilities.

    PubMed

    Connor, E E

    2015-03-01

    Despite substantial advances in milk production efficiency of dairy cattle over the last 50 years, rising feed costs remain a significant threat to producer profitability. There also is a greater emphasis being placed on reducing the negative impacts of dairy production on the environment; thus means to lower greenhouse gas (GHG) emissions and nutrient losses to the environment associated with cattle production are being sought. Improving feed efficiency among dairy cattle herds offers an opportunity to address both of these issues for the dairy industry. However, the best means to assess feed efficiency and make genetic progress in efficiency-related traits among lactating cows without negatively impacting other economically important traits is not entirely obvious. In this review, multiple measurements of feed efficiency for lactating cows are described, as well as the heritability of the traits and their genetic and phenotypic correlations with other production traits. The measure of feed efficiency, residual feed intake is discussed in detail in terms of the benefits for its selection, how it could be assessed in large commercial populations, as well as biological mechanisms contributing to its variation among cows, as it has become a commonly used method to estimate efficiency in the recent scientific literature.

  20. Hierarchical Bayesian inference on genetic and non-genetic components of partial efficiencies determining feed efficiency in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cattle feed efficiency (FE) can be defined as the ability to convert DMI into milk energy (MILKE) and maintenance or metabolic body weight (MBW). In other words, DMI is conditional on MILKE and MBW (DMI|MILKE,MBW). These partial regressions or partial efficiencies (PE) of DMI on MILKE and MBW ...

  1. Buckled graphene for efficient energy harvest, storage and conversion.

    PubMed

    Jiang, Jin-Wu

    2016-10-07

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  2. Buckled graphene for efficient energy harvest, storage and conversion

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2016-10-01

    Buckling is one of the most common phenomena in atom-thick layered structures like graphene. While the buckling phenomenon usually causes disaster for most nanodevices, we illustrate one positive application of buckled graphene for energy harvest, storage and conversion. More specifically, we perform molecular dynamical simulations to show that buckled graphene can be used to collect wasted mechanical energy and store the energy in the form of internal knotting potential. Through strain engineering, the knotting potential can be converted into useful kinetic (thermal) energy that is highly concentrated at the free edges of buckled graphene. The present study demonstrates potential applications of buckled graphene for converting dispersed wasted mechanical energy into concentrated useful kinetic (thermal) energy.

  3. A plasmonic liquid junction photovoltaic cell with greatly improved power conversion efficiency.

    PubMed

    Lee, Woo-Ram; Navarrete, Jose; Evanko, Brian; Stucky, Galen D; Mubeen, Syed; Moskovits, Martin

    2016-11-10

    A plasmonic liquid junction photovoltaic cell with greatly improved power conversion efficiency is described. When illuminated with simulated sunlight, the device (Au-TiO2/V(3+)(0.018 M), V(2+)(0.182 M)/Pt) reproducibly and sustainably produces an VOC of 0.50 V and a JSC of 0.5 mA cm(-2), corresponding to a power conversion efficiency of 0.095%.

  4. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    SciTech Connect

    Prinz, Friedrich B.; Bent, Stacey F.

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  5. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  6. Biomass accumulation and energy conversion efficiency in aromatic rice genotypes.

    PubMed

    Shahidullah, S M; Hanafi, M M; Ashrafuzzaman, M; Razi Ismail, M; Salam, M A; Khair, A

    2010-01-01

    A field experiment was conducted to evaluate photosynthetic efficiency along with different growth parameters of aromatic rice genotypes. Forty genotypes including three non-aromatic checks exhibited enormous variations for leaf area index (LAI), crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), grain yield, total dry matter, harvest index and photosynthetic efficiency or energy use efficiency (Emu) at panicle initiation and heading stages. Minimum LAI-value was 0.52 in Khazar at PI stage and maximum was 4.91 in Sakkor khora at heading stage. The CGR-value was in the range of 4.80-24.11 g m(-2) per day. The best yielder BR39 produced grain of 4.21 t ha(-1) and the worst yielder Khazar gave 1.42 t ha(-1). Total dry matter (TDM) yield varied from 4.04 to 12.26 t ha(-1) where genotypes proved their energy use efficiency a range between 0.58 to 1.65%. Emu showed a significant positive relation with TDM (r=0.80(**)), CGR (r=0.72(**)) and grain yield (r=0.66(**)). A negative correlation was established between TDM and harvest index and LAI and RGR. Path analysis result showed that NAR at heading stage exerted highest positive direct effect (0.70) on Emu.

  7. Residual feed intake as a feed efficiency selection tool and its relationship with feed intake, performance and nutrient utilization in Murrah buffalo calves.

    PubMed

    Subhashchandra Bose, Bisitha Kattiparambil; Kundu, Shivlal Singh; Tho, Nguyen Thi Be; Sharma, Vijay Kumar; Sontakke, Umesh Balaji

    2014-04-01

    Residual feed intake (RFI) is the difference between the actual and expected feed intake of an animal based on its body weight and growth rate over a specific period. The objective of this study was to determine the RFI of buffalo calves using residuals from appropriate linear regression models involving dry matter intake (DMI), average daily gain (ADG) and mid-test metabolic body weight. Eighteen male Murrah buffalo calves of 5-7 months were selected and fed individually. A feeding trial using ad libitum feeding of total mixed ration (TMR, concentrate/roughage = 40:60) was conducted for 52 days in which the daily DMI, weekly body weight (BW) and growth rate of the calves were monitored. RFI of calves ranged from -0.20 to +0.23 kg/day. Mean DMI (in grams per kilogram of BW(0.75)) during the feeding trial period was significantly (P < 0.05) lower in low RFI group (79.66 g/kg BW(0.75)) compared to high RFI (87.74 g/kg BW(0.75)). Average initial BW, final BW and mid-test BW(0.75) did not differ (P > 0.05) between low and high RFI groups. Over the course of a trial period, low RFI group animals consumed 10% less feed compared to high RFI group of animals, yet performed in a comparable manner in terms of growth rate. Metabolizable energy for maintenance (MEm) was found to be significantly (P < 0.05) lower in low RFI group (13.54 MJ/100 kg BW) as compared to that of high RFI group (15.56 MJ/100 kg BW). The present study indicates that RFI is a promising selection tool for the selection of buffaloes for increased feed efficiency.

  8. Estimation of collection efficiency depended on feed particle concentration for axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira

    1999-09-01

    A cyclone dust collector is applied in many industries. Especially the axial flow cyclone is the most simple construction and it keeps high reliability for maintenance. On the other hand, the collection efficiency of the cyclone depends not only on the inlet gas velocity but also on the feed particle concentration. The collection efficiency increases with increasing feed particle concentration. However until now the problem of how to estimate the collection efficiency depended on the feed particle concentration is remained except the investigation by Muschelknautz & Brunner[6]. Therefore in this paper one of the estimate method for the collection efficiency of the axial flow cyclones is proposed. The application to the geometrically similar type of cyclone of the body diameters D 1=30, 50, 69 and 99 mm showed in good agreement with the experimental results of the collection efficiencies which were described in detail in the paper by Ogawa & Sugiyama[8].

  9. An efficient algorithm for geocentric to geodetic coordinate conversion

    SciTech Connect

    Toms, R.M.

    1995-09-01

    The problem of performing transformations from geocentric to geodetic coordinates has received an inordinate amount of attention in the literature. Numerous approximate methods have been published. Almost none of the publications address the issue of efficiency and in most cases there is a paucity of error analysis. Recently there has been a surge of interest in this problem aimed at developing more efficient methods for real time applications such as DIS. Iterative algorithms have been proposed that are not of optimal efficiency, address only one error component and require a small but uncertain number of relatively expensive iterations for convergence. In this paper a well known rapidly convergent iterative approach is modified to eliminate intervening trigonometric function evaluations. A total error metric is defined that accounts for both angular and altitude errors. The initial guess is optimized to minimize the error for one iteration. The resulting algorithm yields transformations correct to one centimeter for altitudes out to one million kilometers. Due to the rapid convergence only one iteration is used and no stopping test is needed. This algorithm is discussed in the context of machines that have FPUs and legacy machines that utilize mathematical subroutine packages.

  10. Effects of zilpaterol hydrochloride on growth rates, feed conversion, and carcass traits in calf-fed Holstein steers.

    PubMed

    Beckett, J L; Delmore, R J; Duff, G C; Yates, D A; Allen, D M; Lawrence, T E; Elam, N

    2009-12-01

    Two experiments were conducted to evaluate the effectiveness of zilpaterol hydrochloride (ZH) to enhance growth performance and carcass characteristics in calf-fed Holstein steers. In Exp. 1, Holstein steers (n = 2,311) were fed in a large-pen trial in 2 phases at a commercial feed yard in the desert Southwest. In Exp. 2, a total of 359 steers were fed in a small-pen university study. In Exp. 1 and 2, cattle were implanted with a combination trenbolone acetate-estradiol implant approximately 120 d before slaughter. Cattle were fed ZH for 0, 20, 30, or 40 d before slaughter at a rate of 8.3 mg/kg (DM basis). A 3-d withdrawal was maintained immediately before slaughter. Cattle within an experiment were fed to a common number of days on feed. During the last 120 d before slaughter, ADG was not enhanced by feeding ZH for 20 d (P = 0.33 in Exp. 1, and P = 0.79 in Exp. 2). Gain-to-feed conversion was increased by feeding ZH for all durations in Exp. 1 (P < 0.05). Feeding ZH increased HCW by 9.3 (Exp. 2) to 11.6 (Exp. 1) kg at 20 d compared with the control groups. Across both experiments, dressing percent was increased for all durations of feeding ZH (P < 0.05). Although skeletal maturity score, liver integrity, lean color, fat thickness, and KPH were not affected by feeding ZH for 20 d in either experiment (P >or= 0.6), LM area was increased for all durations of feeding ZH (P < 0.05). The percentage of carcasses identified as USDA Choice was reduced (P < 0.01) for all durations of feeding ZH in Exp. 1. This effect was not observed in Exp. 2. Holstein steers clearly respond to the beta-agonist ZH, and 20 d of feeding ZH with a 3-d withdrawal significantly increased carcass weights, muscling, and carcass leanness.

  11. High efficiency in Mode Selective Frequency Conversion for Optical Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolas; Sipe, J. E.

    Mode selective Frequency conversion (FC) is an enabling process in many quantum information protocols. Recently, it has been observed that upconversion efficiencies in single-photon, mode-selective FC are limited to around 80%. In this contribution we show that these limits can be understood as time ordering corrections (TOCs) that modify the joint conversion amplitude of the process. Furthermore we show, using a simple scaling argument, that recently proposed cascaded FC protocols that overcome the aforementioned limitations act as ``attenuators'' of the TOCs. This observation allows us to argue that very similar cascaded architectures can be used to attenuate TOCs in photon generation via spontaneous parametric down-conversion. Finally, by using the Magnus expansion, we argue that the TOCs, which are usually considered detrimental for FC efficiency, can also be used to increase the efficiency of conversion in partially mode selective FC.

  12. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.

    PubMed

    Basarab, J A; Beauchemin, K A; Baron, V S; Ominski, K H; Guan, L L; Miller, S P; Crowley, J J

    2013-06-01

    Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFI fat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFI fat (efficient, -RFI fat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFI fat cattle (inefficient; +RFI fat). Few antagonistic effects have been reported for the relationships of RFI fat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFI fat cattle also produce 15% to 25% less enteric CH4 than +RFI fat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in -RFI fat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFI fat cattle. Rate

  13. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.

    1997-01-01

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  14. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  15. Genomic Regions Associated with Feed Efficiency Indicator Traits in an Experimental Nellore Cattle Population

    PubMed Central

    Olivieri, Bianca Ferreira; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely dos Santos Gonçalves; Branco, Renata Helena; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão; Silva, Rafael Medeiros de Oliveira; Baldi, Fernando

    2016-01-01

    The objective of this study was to identify genomic regions and metabolic pathways associated with dry matter intake, average daily gain, feed efficiency and residual feed intake in an experimental Nellore cattle population. The high-density SNP chip (Illumina High-Density Bovine BeadChip, 777k) was used to genotype the animals. The SNP markers effects and their variances were estimated using the single-step genome wide association method. The (co)variance components were estimated by Bayesian inference. The chromosome segments that are responsible for more than 1.0% of additive genetic variance were selected to explore and determine possible quantitative trait loci. The bovine genome Map Viewer was used to identify genes. In total, 51 genomic regions were identified for all analyzed traits. The heritability estimated for feed efficiency was low magnitude (0.13±0.06). For average daily gain, dry matter intake and residual feed intake, heritability was moderate to high (0.43±0.05; 0.47±0.05, 0.18±0.05, respectively). A total of 8, 17, 14 and 12 windows that are responsible for more than 1% of the additive genetic variance for dry matter intake, average daily gain, feed efficiency and residual feed intake, respectively, were identified. Candidate genes GOLIM4, RFX6, CACNG7, CACNG6, CAPN8, CAPN2, AKT2, GPRC6A, and GPR45 were associated with feed efficiency traits. It was expected that the response to selection would be higher for residual feed intake than for feed efficiency. Genomic regions harboring possible QTL for feed efficiency indicator traits were identified. Candidate genes identified are involved in energy use, metabolism protein, ion transport, transmembrane transport, the olfactory system, the immune system, secretion and cellular activity. The identification of these regions and their respective candidate genes should contribute to the formation of a genetic basis in Nellore cattle for feed efficiency indicator traits, and these results would support

  16. Genomic Regions Associated with Feed Efficiency Indicator Traits in an Experimental Nellore Cattle Population.

    PubMed

    Olivieri, Bianca Ferreira; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely Dos Santos Gonçalves; Branco, Renata Helena; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão; Silva, Rafael Medeiros de Oliveira; Baldi, Fernando

    2016-01-01

    The objective of this study was to identify genomic regions and metabolic pathways associated with dry matter intake, average daily gain, feed efficiency and residual feed intake in an experimental Nellore cattle population. The high-density SNP chip (Illumina High-Density Bovine BeadChip, 777k) was used to genotype the animals. The SNP markers effects and their variances were estimated using the single-step genome wide association method. The (co)variance components were estimated by Bayesian inference. The chromosome segments that are responsible for more than 1.0% of additive genetic variance were selected to explore and determine possible quantitative trait loci. The bovine genome Map Viewer was used to identify genes. In total, 51 genomic regions were identified for all analyzed traits. The heritability estimated for feed efficiency was low magnitude (0.13±0.06). For average daily gain, dry matter intake and residual feed intake, heritability was moderate to high (0.43±0.05; 0.47±0.05, 0.18±0.05, respectively). A total of 8, 17, 14 and 12 windows that are responsible for more than 1% of the additive genetic variance for dry matter intake, average daily gain, feed efficiency and residual feed intake, respectively, were identified. Candidate genes GOLIM4, RFX6, CACNG7, CACNG6, CAPN8, CAPN2, AKT2, GPRC6A, and GPR45 were associated with feed efficiency traits. It was expected that the response to selection would be higher for residual feed intake than for feed efficiency. Genomic regions harboring possible QTL for feed efficiency indicator traits were identified. Candidate genes identified are involved in energy use, metabolism protein, ion transport, transmembrane transport, the olfactory system, the immune system, secretion and cellular activity. The identification of these regions and their respective candidate genes should contribute to the formation of a genetic basis in Nellore cattle for feed efficiency indicator traits, and these results would support

  17. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...

  18. Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions

    NASA Astrophysics Data System (ADS)

    Chevalier, R.; Sokolovskaia, A.; Tcherniega, N.; Rivoire, G.

    1991-04-01

    Stimulated backward Raman scattering (SBRS) excited by picosecond laser pulses is produced with high efficiency conversion in materials displaying large Raman gain and small Kerr constants. A constant energy efficiency of 40% is obtained in aceton for a wide range of the exciting laser energy. The spatial, spectral and temporal structure of the backscattering beam is studied.

  19. Axicons for power conversion efficiency enhancement in solar cells for the visible spectrum

    NASA Astrophysics Data System (ADS)

    Podlipnov, V. V.; Porfirev, A. P.; Khonina, S. N.

    2016-08-01

    We investigate the possibility of using diffractive microaxicons with different periods for power conversion efficiency enhancement in solar cells. The microaxicons were manufactured by using electron beam lithography. The parameters of the manufactured microaxicons were measured using scanning electron microscopy (SEM). For imitation of solar light, we utilised a tunable laser (the used wavelength range is from 400 nm to 800 nm). Experimentally measured dependence of solar cell efficiency for the case of a combination of a solar cell and microaxicons of various types demonstrates a power conversion efficiency enhancement in the case of using such structures.

  20. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  1. High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal.

    PubMed

    Fan, Li; Fan, Ya-Xian; Li, Yu-Qiang; Zhang, Huaijin; Wang, Qin; Wang, Jin; Wang, Hui-Tian

    2009-06-01

    We report a high-efficiency cw Raman conversion with a BaWO(4) Raman crystal in a diode-end-pumped Nd:YVO(4) laser. The Raman threshold is as low as 3.6 W of diode power at 808 nm. The highest output power obtained at the 1,180 nm first-order Stokes line is 3.36 W under the diode power of 25.5 W, corresponding to a slope efficiency of 15.3% and a diode-to-Stokes optical conversion efficiency of 13.2%. The intracavity Raman conversion efficiency is 21.5% with respect to the available output of the 1,064 nm fundamental.

  2. Estimates of residual feed intake in Holstein dairy cattle using an automated, continuous feed intake monitoring system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving feed efficiency of cattle is a primary goal in livestock production to reduce feed costs and production impacts on the environment. In dairy cattle, studies to estimate efficiency of feed conversion to milk production based on residual feed intake (RFI) are limited primarily due to a lack ...

  3. Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency

    PubMed Central

    2011-01-01

    Background Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens. Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. Results The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. Conclusions GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits. PMID:21733156

  4. Efficient conversion of solar energy to biomass and electricity.

    PubMed

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  5. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  6. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  7. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  8. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels.

  9. High-efficiency microwave photonic harmonic down-conversion with tunable and reconfigurable filtering.

    PubMed

    Liao, Jinxin; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun

    2014-12-01

    A new optical-frequency comb-based microwave photonic harmonic down-convertor with tunable and reconfigurable filtering is proposed and experimentally demonstrated. The coherent evenly spaced optical carriers offer harmonic down-conversion for ultrahigh radio frequency signals with low-frequency local oscillator, and construct a tunable and reconfigurable bandpass filter for the intermediate-frequency (IF) signal combined with dispersion. This implementation features high conversion efficiency. Experimental results show the filtered output IF signal has a clean spectrum with high quality. Measured conversion loss is 8.3 dB without extra electrical amplification.

  10. Conversion efficiency in the process of copolarized spontaneous four-wave mixing

    SciTech Connect

    Garay-Palmett, Karina; U'Ren, Alfred B.; Rangel-Rojo, Raul

    2010-10-15

    We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We present results of numerical simulations, and compare them to values obtained from our analytical expressions, for the conversion efficiency as a function of several key experimental parameters.

  11. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    PubMed Central

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  12. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors.

    PubMed

    Yuan, Quan; Zhang, Yunfei; Chen, Yan; Wang, Ruowen; Du, Chaoling; Yasun, Emir; Tan, Weihong

    2011-06-07

    Plasmonic near-field coupling can induce the enhancement of photoresponsive processes by metal nanoparticles. Advances in nanostructured metal synthesis and theoretical modeling have kept surface plasmons in the spotlight. Previous efforts have resulted in significant intensity enhancement of organic dyes and quantum dots and increased absorption efficiency of optical materials used in solar cells. Here, we report that silver nanostructures can enhance the conversion efficiency of an interesting type of photosensitive DNA nanomotor through coupling with incorporated azobenzene moieties. Spectral overlap between the azobenzene absorption band and plasmonic resonances of silver nanowires increases light absorption of photon-sensitive DNA motor molecules, leading to 85% close-open conversion efficiency. The experimental results are consistent with our theoretical calculations of the electric field distribution. This enhanced conversion of DNA nanomotors holds promise for the development of new types of molecular nanodevices for light manipulative processes and solar energy harvesting.

  13. Is human conversation more efficient than chimpanzee grooming? : Comparison of clique sizes.

    PubMed

    Nakamura, M

    2000-09-01

    Clique sizes for chimpanzee (Pan troglodytes) grooming and for human conversation are compared in order to test Robin Dunbar's hypothesis that human language is almost three times as efficient a bonding mechanism as primate grooming. Recalculation of the data provided by Dunbar et al. (1995) reveals that the average clique size for human conversation is 2.72 whereas that of chimpanzee grooming is shown to be 2.18. The efficiency of human conversation and actual chimpanzee grooming over Dunbar's primate grooming model (always one-to-one and a one-way interaction) is 1.27 and 1.25, respectively, when we take role alternation into account. Chimpanzees can obtain about the same efficiency as humans in terms of quantity of social interactions because their grooming is often mutual and polyadic.

  14. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

    PubMed Central

    Majumder, Sagardip; Dhar, Jayabrata; Chakraborty, Suman

    2015-01-01

    We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories. PMID:26437925

  15. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-10-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth.

  16. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors

    PubMed Central

    Yuan, Quan; Zhang, Yunfei; Chen, Yan; Wang, Ruowen; Du, Chaoling; Yasun, Emir; Tan, Weihong

    2011-01-01

    Plasmonic near-field coupling can induce the enhancement of photoresponsive processes by metal nanoparticles. Advances in nanostructured metal synthesis and theoretical modeling have kept surface plasmons in the spotlight. Previous efforts have resulted in significant intensity enhancement of organic dyes and quantum dots and increased absorption efficiency of optical materials used in solar cells. Here, we report that silver nanostructures can enhance the conversion efficiency of an interesting type of photosensitive DNA nanomotor through coupling with incorporated azobenzene moieties. Spectral overlap between the azobenzene absorption band and plasmonic resonances of silver nanowires increases light absorption of photon-sensitive DNA motor molecules, leading to 85% close-open conversion efficiency. The experimental results are consistent with our theoretical calculations of the electric field distribution. This enhanced conversion of DNA nanomotors holds promise for the development of new types of molecular nanodevices for light manipulative processes and solar energy harvesting. PMID:21596999

  17. Systems Biology Analysis Merging Phenotype, Metabolomic and Genomic Data Identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and Cellular Maintenance Processes as Major Contributors to Genetic Variability in Bovine Feed Efficiency

    PubMed Central

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  18. Systems biology analysis merging phenotype, metabolomic and genomic data identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and cellular maintenance processes as major contributors to genetic variability in bovine feed efficiency.

    PubMed

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  19. Growth performance, nutrient utilization, and feed efficiency in broilers fed Tithonia diversifolia leaf meal as substitute of conventional feed ingredients in Mizoram

    PubMed Central

    Buragohain, Rajat

    2016-01-01

    Aim: The study was for assessment of growth performance, nutrient utilization, and feed efficiency in broilers fed rations with varying levels of Tithonia diversifolia leaf meal (TDLM) as a substitute of conventional feed ingredients in Mizoram. Materials and Methods: A total of 180, 1-day-old broiler chicks were randomly divided into six homogeneous groups and fed rations incorporated with TDLM (TDLM at 0% [TDLM-0], 2% [TDLM-2], 4% [TDLM-4], 6% [TDLM-6], 8% [TDLM-8], and 10% [TDLM-10] level as substitute of conventional feed ingredients) for 6 weeks. The chicks were reared in battery brooders for the first 2 weeks, and thereafter, in well-ventilated deep litter house following standard management protocols. Feed and drinking water were provided ad libitum to all the groups throughout the experiment. The daily feed intake and weekly body weight gain were recorded, and a metabolic trial for 3 days was conducted at the end of the 6th week. Results: Feed consumption decreased for inclusion of TDLM but without any significant differences, except during the 3rd week where it reduced significantly (p<0.05) at and above 6% TDLM in the ration. The average body weight gain decreased significantly (p<0.05) above 6% TDLM inclusion. The average body weights at 7th, 14th, and 21st day of age reduced significantly (p<0.05) from 4% to 10% TDLM inclusion level but was statistically non-significant up to 4% TDLM at 28th, 35th, and 42nd day of age. Body weight at 42nd day of age was 1624.72±30.52, 1616.66±17.84, 1592.60±19.24, 1404.61±17.76, 1188.29±17.67, and 1054.33±18.81 gin TDLM-0, TDLM-2, TDLM-4, TDLM-6, TDLM-8, and TDLM-10, respectively. The digestibility of nutrients decreased with increased inclusion level of TDLM. The digestibility coefficient of dry matter, crude protein, ether extract, and nitrogen free extract were significantly higher in TDLM-0, but crude fiber digestibility was comparable without any significant difference among the groups. Feed conversion ratio

  20. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    SciTech Connect

    Morace, A.; Bellei, C.; Patel, P. K.; Bartal, T.; Kim, J.; Beg, F. N.; Willingale, L.; Maksimchuk, A.; Krushelnick, K.; Wei, M. S.; Batani, D.; Piovella, N.; Stephens, R. B.

    2013-07-29

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  1. Improved laser-to-proton conversion efficiency in isolated reduced mass targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Bellei, C.; Bartal, T.; Willingale, L.; Kim, J.; Maksimchuk, A.; Krushelnick, K.; Wei, M. S.; Patel, P. K.; Batani, D.; Piovella, N.; Stephens, R. B.; Beg, F. N.

    2013-07-01

    We present experimental results of laser-to-proton conversion efficiency as a function of lateral confinement of the refluxing electrons. Experiments were carried out using the T-Cubed laser at the Center for Ultrafast Optical Science, University of Michigan. We demonstrate that the laser-to-proton conversion efficiency increases by 50% with increased confinement of the target from surroundings with respect to a flat target of the same thickness. Three-dimensional hybrid particle-in-cell simulations using LSP code agree with the experimental data. The adopted target design is suitable for high repetition rate operation as well as for Inertial Confinement Fusion applications.

  2. Efficient vibrational Raman conversion in O2 and N2 cells by use of superfluorescence seeding

    NASA Technical Reports Server (NTRS)

    Zhang, Barry; Lempert, Walter R.; Miles, R. B.; Diskin, Glenn

    1993-01-01

    We report first-Stokes vibrational conversion efficiency of 21 percent and 35 percent, respectively, in high-pressure O2- and N2-stimulated Raman cells. Broadband superfluorescence is employed to seed these Raman cells, significantly increasing the conversion efficiences with no measured effect on the Raman spectrum. The addition of helium buffer gas reduces competition from stimulated Brillouin scattering and improves the pulse-to-pulse stability and spatial mode quality by increasing the thermal conductivity. Further improvement of the spatial mode quality is achieved by use of gentle heating on the bottom of the cell to induce convection.

  3. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens.

    PubMed

    Lee, Jeeyoung; Karnuah, Arthur B; Rekaya, Romdhane; Anthony, Nicholas B; Aggrey, Samuel E

    2015-10-01

    Feed efficiency phenotypes defined by genotypes or gene markers are unknown. To date, there are only limited studies on global gene expression profiling on feed efficiency. The objective of this study was to identify genes and pathways associated with residual feed intake (RFI) through transcriptional profiling of duodenum at two different ages in a chicken population divergently selected for low (LRFI) or high (HRFI) RFI. The global gene expression differences in LRFI and HRFI were assessed by the Affymetrix GeneChip(®) Chicken Genome Array and RT-PCR using duodenal tissue on days 35 and 42. The Ingenuity Pathway Analysis program was used to identify canonical and gene network pathways associated with RFI. A global view of gene expression differences between LRFI and HRFI suggest that RFI can be explained by differences in cell division, growth, proliferation and apoptosis, protein synthesis, lipid metabolism, and molecular transport of cellular molecules. Chickens selected for improved RFI achieve efficiency by reducing feed intake with a nominal or no change in weight gain by either up-regulating CD36, PPARα, HMGCS2, GCG or down-regulating PCSK2, CALB1, SAT1, and SGK1 genes within the lipid metabolism, small molecule biochemistry, molecular transport, cell death, and protein synthesis molecular and cellular functions. Chickens selected for reduced RFI via reduced feed intake with no change in weight gain achieve feed efficiency for growth by the up-regulation of genes that reduce appetite with increased cellular oxidative stress, prolonged cell cycle, DNA damage, and apoptosis in addition to increased oxidation of dietary fat and efficient fatty acids transported from the intestines.

  4. Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows.

    PubMed

    Pryce, J E; Gonzalez-Recio, O; Nieuwhof, G; Wales, W J; Coffey, M P; Hayes, B J; Goddard, M E

    2015-10-01

    A new breeding value that combines the amount of feed saved through improved metabolic efficiency with predicted maintenance requirements is described. The breeding value includes a genomic component for residual feed intake (RFI) combined with maintenance requirements calculated from either a genomic or pedigree estimated breeding value (EBV) for body weight (BW) predicted using conformation traits. Residual feed intake is only available for genotyped Holsteins; however, BW is available for all breeds. The RFI component of the "feed saved" EBV has 2 parts: Australian calf RFI and Australian lactating cow RFI. Genomic breeding values for RFI were estimated from a reference population of 2,036 individuals in a multi-trait analysis including Australian calf RFI (n=843), Australian lactating cow RFI (n=234), and UK and Dutch lactating cow RFI (n=958). In all cases, the RFI phenotypes were deviations from a mean of 0, calculated by correcting dry matter intake for BW, growth, and milk yield (in the case of lactating cows). Single nucleotide polymorphism effects were calculated from the output of genomic BLUP and used to predict breeding values of 4,106 Holstein sires that were genotyped but did not have RFI phenotypes themselves. These bulls already had BW breeding values calculated from type traits, from which maintenance requirements in kilograms of feed per year were inferred. Finally, RFI and the feed required for maintenance (through BW) were used to calculate a feed saved breeding value and expressed as the predicted amount of feed saved per year. Animals that were 1 standard deviation above the mean were predicted to eat 66 kg dry matter less per year at the same level of milk production. In a data set of genotyped Holstein sires, the mean reliability of the feed saved breeding value was 0.37. For Holsteins that are not genotyped and for breeds other than Holsteins, feed saved is calculated using BW only. From April 2015, feed saved has been included as part of

  5. Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.

    1988-01-01

    The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.

  6. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    NASA Astrophysics Data System (ADS)

    Li, Qing; Davanço, Marcelo; Srinivasan, Kartik

    2016-06-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint <0.5 × 10-4 cm2) Si3N4 microring resonators. We investigate three frequency conversion configurations: spectral translation over a few nanometres within the 980 nm band; upconversion from 1,550 nm to 980 nm and downconversion from 980 nm to 1,550 nm. With conversion efficiencies ranging from 25% for the first process to >60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of <60 mW and background noise levels between a few femtowatts and a few picowatts, these devices are suitable for quantum frequency conversion of single-photon states from InAs/GaAs quantum dots. Simulations based on coupled mode equations and the Lugiato-Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  7. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measure of flight speed for cattle has been shown to be a predictive indicator of temperament and has also been associated with feed efficiency phenotypes, thus, genetic markers associated with both traits may assist with the selection of animals with calmer disposition and economic value. Chrom...

  8. US consortium for the genetic improvement of feed efficiency in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection is the only technology proven to unabatedly increase the food produced per animal. However, the cost and difficulty of measurement of feed efficiency (FE) in cattle has constrained quantitative genetic improvement to primarily output traits such as growth, meat yield and quality. As the wo...

  9. Characterizing the microbiome across the gastrointestinal tract from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bovine rumen and lower gastrointestinal tract (GIT) contain diverse microbial ecosystems that are essential for the host to digest plant material and regulate nutrient uptake and utilization. In cattle, optimization of feed efficiency has primarily focused host genetics, management, and diet. ...

  10. Microbial community profiles of the jejunum from steers differing in feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research regarding the association between the microbiome and host feed efficiency in cattle has primarily focused on the rumen. However, the various microbial populations within the gastrointestinal tract as a whole are critical to the overall well-being of the host and need to be examined when de...

  11. On-demand superradiant conversion of atomic spin gratings into single photons with high efficiency.

    PubMed

    Black, Adam T; Thompson, James K; Vuletić, Vladan

    2005-09-23

    We create quantized spin gratings by single-photon detection and convert them on demand into photons with retrieval efficiencies exceeding 40% (80%) for single (a few) quanta. We show that the collective conversion process, proceeding via superradiant emission into a moderate-finesse optical resonator, requires phase matching. The storage time of 3 micros in the cold-atom sample, as well as the peak retrieval efficiency, are likely limited by Doppler decoherence of the entangled state.

  12. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  13. Hybrid organic/inorganic thin-film multijunction solar cells exceeding 11% power conversion efficiency.

    PubMed

    Roland, Steffen; Neubert, Sebastian; Albrecht, Steve; Stannowski, Bernd; Seger, Mark; Facchetti, Antonio; Schlatmann, Rutger; Rech, Bernd; Neher, Dieter

    2015-02-18

    Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given.

  14. Fiber-Shaped Perovskite Solar Cells with High Power Conversion Efficiency.

    PubMed

    Qiu, Longbin; He, Sisi; Yang, Jiahua; Deng, Jue; Peng, Huisheng

    2016-05-01

    A perovskite solar cell fiber is created with a high power conversion efficiency of 7.1% through a controllable deposition method. A combination of aligned TiO2 nanotubes, a uniform perovskite layer, and transparent aligned carbon nanotube sheet contributes to the high photovoltaic performance. It is flexible and stable, and can be woven into smart clothes for wearable applications.

  15. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    SciTech Connect

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  16. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    SciTech Connect

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs.

  17. Effect of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile sablefish were fed a low taurine, basal feed with seven graded levels of supplemental taurine to determine taurine requirements for growth and feed efficiency. The basal feed was plant based, formulated primarily with soy and corn proteins with a minimal (9%) amount of fishmeal. The unsuppl...

  18. An evaluation of the differences in the rumen transcriptome among beef steers with extreme feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed is the largest variable cost in beef production and the rumen likely has a critical role in an animal’s ability to efficiently utilize feed. We identified differentially expressed transcripts in animals with extreme differences in postweaning feed intake and gain. Rumen papillae RNA samples wer...

  19. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers

    NASA Astrophysics Data System (ADS)

    Hanna, M. C.; Nozik, A. J.

    2006-10-01

    We calculate the maximum power conversion efficiency for conversion of solar radiation to electrical power or to a flux of chemical free energy for the case of hydrogen production from water photoelectrolysis. We consider several types of ideal absorbers where absorption of one photon can produce more than one electron-hole pair that are based on semiconductor quantum dots with efficient multiple exciton generation (MEG) or molecules that undergo efficient singlet fission (SF). Using a detailed balance model with 1 sun AM1.5G illumination, we find that for single gap photovoltaic (PV) devices the maximum efficiency increases from 33.7% for cells with no carrier multiplication to 44.4% for cells with carrier multiplication. We also find that the maximum efficiency of an ideal two gap tandem PV device increases from 45.7% to 47.7% when carrier multiplication absorbers are used in the top and bottom cells. For an ideal water electrolysis two gap tandem device, the maximum conversion efficiency is 46.0% using a SF top cell and a MEG bottom cell versus 40.0% for top and bottom cell absorbers with no carrier multiplication. We also consider absorbers with less than ideal MEG quantum yields as are observed experimentally.

  20. The influence of particle size of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Liu, Yong; Liu, Xinfu; Tang, Oisheng

    2010-06-01

    The Eggers model was used to study the influence of two particle sizes of dietary prey on food consumption and ecological conversion efficiency of young-of-the-year sand lance, Ammodytes personatus, in continuous flow-through seawater in 2.5-m 3 tanks in the laboratory. The sand lances (average body weight 0.85 ± 0.21 g) were fed larval (average body length 0.56 ± 0.08 mm) or adult (average body length 10.12 ± 1.61 mm) Artemia salina. The gastric evacuation rate of the fish feeding on larval Artemia was 0.214, higher than that of those feeding on adult Artemia (0.189). The daily food consumption of the fish feeding on larval Artemia was 60.14 kJ/100 g in terms of energy content, higher than that of the fish feeding on adult Artemia (51.69 kJ/100 g), but the daily growth rate of fish feeding on larval Artemia was 14.86 kJ/100 g, significantly lower than that of the fish feeding on adult Artemia (19.50 kJ/100 g), indicating that less energy was used for growth when the food particles were smaller. Slow growth of sand lances preying on larval Artemia was probably due to the high energy consumption during predation, consistent with the basic suppositions of optimal foraging theory.

  1. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%.

    PubMed

    Zhang, Maojie; Gu, Yu; Guo, Xia; Liu, Feng; Zhang, Shaoqing; Huo, Lijun; Russell, Thomas P; Hou, Jianhui

    2013-09-20

    A new copolymer PBDTP-DTBT based on benzothiadiazole and alkylphenyl substituted benzodithiophene is synthesized and characterized. The correlation of the evolution of the morphology and photovoltaic performance is investigated. The power conversion efficiency of the polymer solar cells based on PBDTP-DTBT/PC71 BM (1:1.5, w/w) reaches up to 8.07%, under the irradiation of AM 1.5G, 100 mW/cm(2) .

  2. DBD in burst mode: solution for more efficient CO2 conversion?

    NASA Astrophysics Data System (ADS)

    Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.

    2016-10-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16-26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles  <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.

  3. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  4. Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.

    PubMed

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-16

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  5. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  6. Protein requirements of bobwhite chicks for survival, growth and efficiency of feed utilization

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.; McClure, H.E.

    1942-01-01

    During the summer and fall of 1939 four experiments were conducted at the Patuxent Research Refuge, Bowie, Maryland, to determine the protein requirements of bobwhite chicks. A total of 816 chicks were used to compare six levels of protein, namely, 22,24,26, 28, 30, and 32 per cent.....From the three standpoints of survival, rate of growth, and efficiency of feed utilization for the first ten weeks of life, the 28 per cent level of protein gave the best results. During the ninth and tenth weeks, the highest efficiency of feed utilization was obtained on the 22 per cent level. The results indicate that after the birds have reached about twothirds of their mature weight, the difference in efficiency between a diet containing 28 per cent of protein and one containing 22 per cent may be small enough to justify, in the interest of economy, the use of a diet containing the lower percentage of protein.

  7. Solution-processed organic tandem solar cells with power conversion efficiencies >12%

    NASA Astrophysics Data System (ADS)

    Li, Miaomiao; Gao, Ke; Wan, Xiangjian; Zhang, Qian; Kan, Bin; Xia, Ruoxi; Liu, Feng; Yang, Xuan; Feng, Huanran; Ni, Wang; Wang, Yunchuang; Peng, Jiajun; Zhang, Hongtao; Liang, Ziqi; Yip, Hin-Lap; Peng, Xiaobin; Cao, Yong; Chen, Yongsheng

    2016-12-01

    An effective way to improve the power conversion efficiency of organic solar cells is to use a tandem architecture consisting of two subcells, so that a broader part of the solar spectrum can be used and the thermalization loss of photon energy can be minimized. For a tandem cell to work well, it is important for the subcells to have complementary absorption characteristics and generate high and balanced (matched) currents. This requires a rather challenging effort to design and select suitable active materials for use in the subcells. Here, we report a high-performance solution-processed, tandem solar cell based on the small molecules DR3TSBDT and DPPEZnP-TBO, which offer efficient, complementary absorption when used as electron donor materials in the front and rear subcells, respectively. Optimized devices achieve a power conversion efficiency of 12.50% (verified 12.70%), which represents a new level of capability for solution-processed, organic solar cells.

  8. High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    PubMed Central

    Lin, Chi-Feng; Zhang, Mi; Liu, Shun-Wei; Chiu, Tien-Lung; Lee, Jiun-Haw

    2011-01-01

    This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV) devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV) devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60) planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1) Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2) Optical: Optional architectures or infilling to promote photon confinement and enhance absorption. PMID:21339999

  9. Effect of cracking on the thermoelectric conversion efficiency of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, A. B.; Wang, B. L.; Wang, J.; Du, J. K.; Xie, C.

    2017-01-01

    Analytical solutions for a rectangular thermoelectric plate with a crack under combined electrical and temperature loadings are obtained. The electric current density and energy flux intensity factors at the crack tip are calculated. The effective thermoelectric properties are obtained. From the results, it is found that both effective electric and heat conductivities are reduced by increasing the crack size. However, the thermoelectric conversion efficiency of the thermoelectric plate is independent of the crack size if the crack face boundary conditions are assumed to be electrically and thermally insulated. In addition, the effect of thermoelectric properties and size of an inclusion on the thermoelectric conversion efficiency is also discussed, and the condition for high efficiency thermoelectric materials is identified. This is the first theoretical paper to study the effect of cracking on the thermoelectric properties by a rigorous inference of mathematics and physics.

  10. [Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].

    PubMed

    Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian

    2011-07-01

    A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.

  11. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system

    SciTech Connect

    Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H.

    1996-10-01

    Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

  12. High conversion efficiency pumped-cavity second harmonic generation of a diode laser

    SciTech Connect

    Keicher, D.M.

    1994-01-01

    To investigate the feasibility of producing a compact, efficient blue laser source, pumped-cavity second harmonic generation of diode lasers was explored. It is desirable to have such lasers to increase optical disk storage density, for color displays and for under-the-sea green-blue optical signal transmission. Based on assumed cavity losses, a cavity was designed and numerical analysis predicted an overall conversion efficiency to the second harmonic wavelength of 76% from a 75 mW diode laser. The diode laser used in these experiments had a single longitudinal and a single transverse mode output at 860 nm. The best conversion efficiency obtained (26%) was less than optimum due to the 2.5% single-pass linear losses associated with the cavity. However, calculations based on these higher losses are in good agreement with the experimentally determined values. In additions, a factor of 1.65 increase in the second harmonic output power is anticipated by reducing the input mirror reflectivity to better impedance-match the cavity. With this relatively low second harmonic conversion, the power to light conversion is 7.8%.

  13. Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides.

    PubMed

    Ruan, Zhichao; Veronis, Georgios; Vodopyanov, Konstantin L; Fejer, Marty M; Fan, Shanhui

    2009-08-03

    A metallic slot waveguide, with a dielectric strip embedded within, is investigated for the purpose of enhancing the optics-to-THz conversion efficiency using the difference-frequency generation (DFG) process. To describe the frequency conversion process in such lossy waveguides, a fully-vectorial coupled-mode theory is developed. Using the coupled-mode theory, we outline the basic theoretical requirements for efficient frequency conversion, which include the needs to achieve large coupling coefficients, phase matching, and low propagation loss for both the optical and THz waves. Following these requirements, a metallic waveguide is designed by considering the trade-off between modal confinement and propagation loss. Our numerical calculation shows that the conversion efficiency in these waveguide structures can be more than one order of magnitude larger than what has been achieved using dielectric waveguides. Based on the distinct impact of the slot width on the optical and THz modal dispersion, we propose a two-step method to realize the phase matching for general pump wavelengths.

  14. Multicomponent glass materials with the raised efficiency for conversion of laser radiation frequency

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.; Schavelev, O. S.; Schavelev, K. O.; Jakobson, N. A.

    2010-02-01

    Nonlinear conversions of laser radiation frequency on the photo-integrated volumetric structures of the second-order susceptibility, created by all-optical poling, have been investigated in various glass mediums. The detailed analysis of the influence of a chemical compound was carried out, and as a result, the perspective multi-lead phosphate glasses with the concentration of the some percents of niobium oxide have been synthesized in which the greatest efficiency of the conversion of light is observed in conditions of long lifetime of the photo-integrated structures. The studied photointegrated structures may be useful in future for the creation of the various photonic devices for micro- and nanoelectronics.

  15. Multicomponent glass materials with the raised efficiency for conversion of laser radiation frequency

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.; Schavelev, O. S.; Schavelev, K. O.; Jakobson, N. A.

    2009-10-01

    Nonlinear conversions of laser radiation frequency on the photo-integrated volumetric structures of the second-order susceptibility, created by all-optical poling, have been investigated in various glass mediums. The detailed analysis of the influence of a chemical compound was carried out, and as a result, the perspective multi-lead phosphate glasses with the concentration of the some percents of niobium oxide have been synthesized in which the greatest efficiency of the conversion of light is observed in conditions of long lifetime of the photo-integrated structures. The studied photointegrated structures may be useful in future for the creation of the various photonic devices for micro- and nanoelectronics.

  16. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle

    PubMed Central

    2014-01-01

    Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs. PMID:24476087

  17. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOEpatents

    Wang, Yong , Liu; Wei, [Richland, WA

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  18. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study.

    PubMed

    Llonch, Pol; Somarriba, Miguel; Duthie, Carol-Anne; Haskell, Marie J; Rooke, John A; Troy, Shane; Roehe, Rainer; Turner, Simon P

    2016-01-01

    The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower

  19. Association of Temperament and Acute Stress Responsiveness with Productivity, Feed Efficiency, and Methane Emissions in Beef Cattle: An Observational Study

    PubMed Central

    Llonch, Pol; Somarriba, Miguel; Duthie, Carol-Anne; Haskell, Marie J.; Rooke, John A.; Troy, Shane; Roehe, Rainer; Turner, Simon P.

    2016-01-01

    The aim of this study was to assess individual differences in temperament and stress response and quantify their impact on feed efficiency, performance, and methane (CH4) emissions in beef cattle. Eighty-four steers (castrated males) (Charolais or Luing) were used. Temperament was assessed using two standardized tests: restlessness when restrained [crush score (CS)] and flight speed (FS) on release from restraint. Over a 56-day period individual animal dry matter intake (DMI) and weekly body weight was measured. Ultrasound fat depth was measured at the end of 56 days. Average daily gain (ADG), feed conversion ratio (FCR), and residual feed intake (RFI) were calculated. After the 56-day test period, animals were transported in groups of six/week to respiration chamber facilities. Blood samples were taken before and 0, 3, 6, and 9 h after transport. Plasma cortisol, creatine kinase (CK), glucose, and free fatty acids (FFA) were determined to assess physiological stress response. Subsequently, CH4 emissions were measured over a 3-day period in individual respiration chambers. CS (1.7 ± 0.09) and FS (1.6 ± 0.60 m/s) were repeatable (0.63 and 0.51, respectively) and correlated (r = 0.36, P < 0.001). Plasma cortisol, CK, and FFA concentrations increased after transport (P = 0.038, P = 0.006, and P < 0.001, respectively). Temperament (CS) and CK concentration were correlated (r = 0.29; P = 0.015). The extreme group analysis reveals that excitable animals (FS; P = 0.032) and higher stress response (cortisol, P = 0.007; FFA, P = 0.007; and CK, P = 0.003) were associated with lower DMI. ADG was lower in more temperamental animals (CS, P = 0.097, and FS, P = 0.030). Fat depth was greater in steers showing calmer CS (P = 0.026) and lower plasma CK (P = 0.058). Temperament did not show any relationship with RFI or CH4 emissions. However, steers with higher cortisol showed improved feed efficiency (lower

  20. In vitro ruminal fermentation of treated alfalfa silage using ruminal inocula from high and low feed-efficient lactating cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the effect of two additives on alfalfa silage and on in vitro ruminal fermentation when using ruminal inocula prepared from high feed-efficient (HE) and low feed-efficient (LE) lactating cows. Second and third cut alfalfa was harvested at 40% bloom stage, treated with con...

  1. RNA-Seq detection of differential gene expression in the rumen of beef steers associated with feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient utilization of feedstuffs is an economically important trait in beef production. The rumen is important to the digestive process of steers interacting with feed, microbial populations, and volatile fatty acids indicating it may play a critical role in feed efficiency. To gain an unders...

  2. New method to increase the energy conversion efficiency of thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Kido, Aiko; Sakamoto, Shin-ichi; Taga, Kazusa; Watanabe, Yoshiaki

    2015-10-01

    Many researches have been reported to improve an energy conversion efficiency of thermoacoustic engine. Proposed improvement methods by our group were a phase adjuster (PA) and expanding phase adjuster (EPA) devices. They act as the amplifier and stabilizer of the system oscillation. However, there are some problems for these devices. Because of the solidified device and located in the thermoacoustic tube, it is difficult to tune and move them to the best setting position during system operation. Therefore, it is necessary to find more easy methods that produce the same amplifier and stabilizer effects of the PA and EPA. In this report, we propose the local heating method. Experiments are carried out using the loop-tube-type thermoacoustic system. Two electric heaters are set on the system, one is for the PM stack and the other is for the proposed heater HPA. The setting position of the HPA is easily changed, and then the HPA is moved to the various positions from the PM stack along the system. Resonant mode was changed depending on the setting position of HPA. As the result of the change of resonant mode, energy conversion efficiency is also changed. Especially the resonant mode is realized in the single wavelength mode, it is confirmed that, the energy conversion efficiency in substantially increased compare with the system without the HPA. These observed phenomena are similar to the behavior of EPA. Therefore, the presented method can be performed as an easier method to perform a high efficiency and stable oscillation.

  3. Adaptive plasticity and genetic divergence in feeding efficiency during parallel adaptive radiation of whitefish (Coregonus spp.).

    PubMed

    Lundsgaard-Hansen, B; Matthews, B; Vonlanthen, P; Taverna, A; Seehausen, O

    2013-03-01

    Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selection regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post-glacial fish, replicated divergence in phenotypes along the benthic-limnetic habitat axis is commonly observed. Here, we use two benthic-limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feeding efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the phenotypically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.

  4. Genetic parameters of ascites-related traits in broilers: correlations with feed efficiency and carcase traits.

    PubMed

    Pakdel, A; van Arendonk, J A M; Vereijken, A L J; Bovenhuis, H

    2005-02-01

    (1) Pulmonary hypertension syndrome followed by ascites is a metabolic disorder in broilers that occurs more often in fast-growing birds and at cool temperatures. (2) Knowledge of the genetic relationships among ascites-related traits and performance traits like carcase traits or feed efficiency traits is required to design breeding programmes that aim to improve the degree of resistance to ascites syndrome as well as production traits. The objective of this study was to estimate these genetic correlations. (3) Three different experiments were set up to measure ascites-related traits (4202 birds), feed efficiency traits (2166 birds) and carcase traits (2036 birds). The birds in different experiments originated from the same group of parents, which enabled the estimation of genetic correlations among different traits. (4) The genetic correlation of body weight (BW) measured under normal conditions and in the carcase experiment with the ascites indicator trait of right ventricle to total ventricle ratio (RV:TV) measured under cold conditions was 0.30. The estimated genetic correlation indicated that single-trait selecting for BW leads to an increase in occurrence of the ascites syndrome but that there are realistic opportunities of multi-trait selection of birds for improved BW and resistance to ascites. (5) Weak but positive genetic relationships were found between feed efficiency and ascites-related traits suggesting that more efficient birds tend to be slightly more susceptible to ascites. (6) The relatively low genetic correlation between BW measured in the carcase or in the feed efficiency experiments and BW measured in the ascites experiment (0.49) showed considerable genotype by environment interaction. (7) These results indicate that birds with high genetic potential for growth rate under normal temperature conditions have lower growth rate under cold-stress conditions due to ascites.

  5. Conversion efficiency limits and bandgap designs for multi-junction solar cells with internal radiative efficiencies below unity.

    PubMed

    Zhu, Lin; Mochizuki, Toshimitsu; Yoshita, Masahiro; Chen, Shaoqiang; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-05-16

    We calculated the conversion-efficiency limit ηsc and the optimized subcell bandgap energies of 1 to 5 junction solar cells without and with intermediate reflectors under 1-sun AM1.5G and 1000-sun AM1.5D irradiations, particularly including the impact of internal radiative efficiency (ηint) below unity for realistic subcell materials on the basis of an extended detailed-balance theory. We found that the conversion-efficiency limit ηsc significantly drops when the geometric mean ηint* of all subcell ηint in the stack reduces from 1 to 0.1, and that ηsc degrades linearly to logηint* for ηint* below 0.1. For ηint*<0.1 differences in ηsc due to additional intermediate reflectors became very small if all subcells are optically thick for sun light. We obtained characteristic optimized bandgap energies, which reflect both ηint* decrease and AM1.5 spectral gaps. These results provide realistic efficiency targets and design principles.

  6. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency.

    PubMed

    Li, YangYang; Ni, Min; Li, FanChi; Zhang, Hua; Xu, KaiZun; Zhao, XiaoMing; Tian, JiangHai; Hu, JingSheng; Wang, BinBin; Shen, WeiDe; Li, Bing

    2016-02-01

    Silkworm (Bombyx mori) (B. mori) is an economically important insect and a model species for Lepidoptera. It has been reported that feeding of low concentrations of titanium dioxide nanoparticles (TiO2 NPs) can improve feed efficiency and increase cocoon mass, cocoon shell mass, and the ratio of cocoon shell. However, high concentrations of TiO2 NPs are toxic. In this study, we fed B. mori with different concentrations of TiO2 NPs (5, 10, 20, 40, 80, and 160 mg/L) and investigated B. mori growth, feed efficiency, and cocoon quality. We found that low concentrations of TiO2 NPs (5 and 10 mg/L) were more effective for weight gains, with significant weight gain being obtained at 72 h (P < 0.05). TiO2 NPs at 20 mg/L or higher had certain inhibitory effects, with significant inhibition to B. mori growth being observed at 48 h. The feed efficiency was significantly improved at low concentrations of 5 and 10 mg/L for 14.6 and 13.1 %, respectively (P < 0.05). All B. mori fed with TiO2 NPs showed increased cocoon mass and cocoon shell mass; at 5 and 10 mg/L TiO2 NPs, cocoon mass was significantly increased by 8.29 and 9.39 %, respectively (P < 0.05). We also found that low concentrations (5 and 10 mg/L) of TiO2 NPs promoted B. mori growth and development, improved feed efficiency, and increased cocoon production, while high concentrations (20 mg/L or higher) of TiO2 NPs showed inhibitory effect to the B. mori. Consecutive feeding of high concentrations of TiO2 NPs led to some degrees of adaptability. This study provides a reference for the research on TiO2 NPs toxicity and the basis for the development of TiO2 NPs as a feed additive for B. mori.

  7. Relationships of feeding behaviors with efficiency in RFI-divergent Japanese Black cattle.

    PubMed

    McGee, M; Ramirez, J A; Carstens, G E; Price, W J; Hall, J B; Hill, R A

    2014-08-01

    New approaches to limit expenses associated with input, without compromising profit, are needed in the beef industry. Residual feed intake (RFI) is an efficiency trait that measures variation in feed intake beyond maintenance, growth, and body composition. The addition of feeding behavior analysis to standard RFI tests may provide an approach to more readily identify feed-efficient cattle. The current study analyzes 7 feeding behaviors (BVFREQ: bunk visit frequency, BVDUR: bunk visit duration, FBFREQ: feed bout frequency, FBDUR: feed bout duration, MFREQ: meal frequency, MDUR: meal duration, and AMINT: average meal intake) and their relationships with RFI, ADG, and DMI in Japanese Black (Wagyu) cattle. Three cohorts of yearling Wagyu animals were studied using a standard 70-d RFI test, and data from divergent ( ± 0.5 SD from population RFI mean) subsets of animals were analyzed for feeding behaviors [n = 58, bulls on high-concentrate diet (C1); n = 36, bulls on a lower-concentrate diet (C2); n = 34, heifers on a lower-concentrate diet (C3)]. The following behaviors were correlated with ADG: BVFREQ (r = 0.32, P = 0.01; C1 bulls), BVDUR (r = 0.42, P = 0.01, C2 bulls), FBFREQ (r = 0.37, P < 0.01; C1 bulls), FBDUR (r = 0.46, P < 0.01, C1 bulls), and MFREQ (r = 0.42, P < 0.01, C2 bulls). Behaviors were trending or significantly correlated with DMI for all cases except for MFREQ for C3 and AMINT for C2. Residual feed intake was positively correlated with MDUR across all cohorts (r = 0.31, P = 0.02; r = 0.38, P = 0.02; r = 0.54, P ≥ 0.01, respectively). For C2 bulls and C3 heifers, RFI was positively correlated with behavior frequency categories (BVFREQ; r = 0.44, P = 0.01; r = 0.60, P ≤ 0.01, respectively, and FBFREQ r = 0.46, P ≤ 0.01; r = 0.60, P ≤ 0.01, respectively). Bunk visit frequency and FBFREQ were highly correlated with RFI status (high or low) in C2 bulls and C3 heifers. Behavior duration categories (BVDUR, FBDUR, and MDUR) were most correlated with

  8. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveal major causes of yield gap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving plant energy conversion efficiency is crucial for increasing food and bioenergy crop production and yields. This study statistically quantifies the effects of climate/weather factors and management techniques on energy conversion efficiency from 140 published studies and provides a quantit...

  9. Efficient photovoltaic conversion of graphene-carbon nanotube hybrid films grown from solid precursors

    NASA Astrophysics Data System (ADS)

    Gan, Xin; Lv, Ruitao; Bai, Junfei; Zhang, Zexia; Wei, Jinquan; Huang, Zheng-Hong; Zhu, Hongwei; Kang, Feiyu; Terrones, Mauricio

    2015-09-01

    Large-area (e.g. centimeter size) graphene sheets are usually synthesized via pyrolysis of gaseous carbon precursors (e.g. methane) on metal substrates like Cu using chemical vapor deposition (CVD), but the presence of grain boundaries and the residual polymers during transfer deteriorates significantly the properties of the CVD graphene. If carbon nanotubes (CNTs) can be covalently bonded to graphene, the hybrid system could possess excellent electrical conductivity, transparency and mechanical strength. In this work, conducting and transparent CNT-graphene hybrid films were synthesized by a facile solid precursor pyrolysis method. Furthermore, the synthesized CNT-graphene hybrid films display enhanced photovoltaic conversion efficiency when compared to devices based on CNT membranes or graphene sheets. Upon chemical doping, the graphene-CNT/Si solar cells reveal power conversion efficiencies up to 8.50%.

  10. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage.

    PubMed

    Kano, Shinya; Fujii, Minoru

    2017-03-03

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  11. Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage

    NASA Astrophysics Data System (ADS)

    Kano, Shinya; Fujii, Minoru

    2017-03-01

    We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.

  12. Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Kong; Huang, Feng-Wen; Lee, Chia-Hui; Lee, Ming-Lun; Yeh, Yu-Hsiang; Chen, Po-Cheng; Lai, Wei-Chih

    2013-08-01

    GaN-based solar cells with Mn-doped absorption layer grown by metal-organic vapor-phase epitaxy were investigated. The transmittance spectrum and the spectral response showed the presence of an Mn-related band absorption property. Power-dependent, dual-light excitation, and lock-in amplifier techniques were performed to confirm if the two-photon absorption process occurred in the solar cells with Mn-doped GaN absorption layer. Although a slight decrease in an open circuit voltage was observed, a prominent increase in the short circuit current density resulted in a significant enhancement of the overall conversion efficiency. Under one-sun air mass 1.5 G standard testing condition, the conversion efficiency of Mn-doped solar cells can be enhanced by a magnitude of 5 times compared with the cells without Mn-doped absorption layer.

  13. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    SciTech Connect

    Dewald, E; Rosen, M; Glenzer, S H; Suter, L J; Girard, F; Jadaud, J P; Schein, J; Constantin, C G; Neumayer, P; Landen, O

    2008-02-22

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10{sup 14} and 10{sup 15} W/cm{sup 2} over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After {approx}0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10{sup 14} W/cm{sup 2} laser intensity and of 80% at 10{sup 15} W/cm{sup 2}. The M-band flux (2-5 keV) is negligible at 10{sup 14} W/cm{sup 2} reaching {approx}1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10{sup 15} W/cm{sup 2} laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  14. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.

    2008-07-01

    The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  15. Effects of scattering and absorbing medium in the fluorescence conversion efficiency of physical tissue models

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Sujatha, N.

    2015-03-01

    Auto-fluorescence spectroscopy based on spectral line shape and intensity has been in use as a promising technique for detecting varying degrees of tissue malignancy. Tissue is a turbid medium with multi-layered structure constituting of different fluorophores, absorbers and scattering molecules. Tumor progression in tissues is ac- companied by varying degrees of biochemical and morphological changes. These include changes in nuclear size and density, epithelial thickness and increase in the hemoglobin (Hb) concentration associated with changes in metabolic activity. These variations in overall tissue scattering and absorption properties in turn modulate the fluorescence spectrum emitted and derived from tissues. Estimation of fluorescence conversion efficiency in the turbid tissue needs to take into account these effects of absorption and scattering in order to be evolved as a parameter for tissue discrimination. In this study, we set to investigate the factors affecting tissue fluorescence conversion efficiency by making use of physical models of the tissue. Liquid tissue models were prepared with different concentrations of absorbing and scattering media to simulate biological tissues of various degrees of malignancy. The results indicate that emitted fluorescence from the tissue model is subjected to variations by multiple scattering events and absorption. The fluorescence conversion efficiency of the models were derived and correlated to the experimental results with possible diagnostic significance.

  16. Improvement of proton exchange membrane fuel cell overall efficiency by integrating heat-to-electricity conversion

    NASA Astrophysics Data System (ADS)

    Xie, Chungang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    Proton exchange membrane fuel cells (PEMFCs) have shown to be well suited for distributed power generation due to their excellent performance. However, a PEMFC produces a considerable amount of heat in the process of electrochemical reaction. It is desirable to use thermal energy for electricity generation in addition to heating applications. Based on the operating characteristics of a PEMFC, an advanced thermal energy conversion system using "ocean thermal energy conversion" (OTEC) technology is applied to exploit the thermal energy of the PEMFC for electricity generation. Through this combination of technology, this unique PEMFC power plant not only achieves the combined heat and power efficiency, but also adequately utilizes heat to generate more valuable electricity. Exergy analysis illustrates the improvement of overall efficiency and energy flow distribution in the power plant. Analytical results show that the overall efficiency of the PEMFC is increased by 0.4-2.3% due to the thermal energy conversion (TEC) system. It is also evident that the PEMFC should operate within the optimal load range by balancing the design parameters of the PEMFC and of the TEC system.

  17. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    PubMed

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales.

  18. Dietary arginine requirement of juvenile red drum (Sciaenops ocellatus) based on weight gain and feed efficiency.

    PubMed

    Barziza, D E; Buentello, J A; Gatlin, D M

    2000-07-01

    Increasing aquacultural production of red drum (Sciaenops ocellatus) has prompted the determination of many of this species' nutritional requirements. However, limited information is available concerning its amino acid requirements, especially for arginine. Therefore, a feeding trial was conducted with juvenile red drum to determine their quantitative dietary requirement for arginine. Experimental diets contained 35 g crude protein/100 g from red drum muscle and crystalline amino acids. Incremental levels of arginine were added to the diets in place of a mixture of glycine and aspartic acid to maintain all diets isonitrogenous. All diets were fed in triplicate to juvenile red drum for 7 wk. Graded levels of arginine significantly (P < 0.05) affected weight gain, feed efficiency, protein efficiency ratio (PER) and plasma arginine levels of the fish. Based on least-squares regression of feed efficiency and PER data, the minimum requirement (+/- SEM) of red drum for arginine was estimated at 1.44 (+/- 0.15) and 1.48 (+/- 0.12) g/100 g diet (4.11 and 4.23 g/100 g dietary protein), respectively. The arginine requirements estimated from weight gain data were 1.75 (+/- 0.18) g/100 g diet or 5.0 g/100 g dietary protein. These values are similar to those reported for other carnivorous fish species.

  19. Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2 to Hydrocarbons Using a Traditional Cobalt-Based Fischer-Tropsch Catalyst

    DTIC Science & Technology

    2009-06-25

    1:1 H2/CO2 feed gas ratio. Concomitantly to the drop in methane selectivity when reducing the H2 content in the gas , the overall conversion of the...450 to 150 psig). As the feed gas ratio was changed from 3:1 to 2:1 and 1:1, the production distribution shifted from methane toward higher chain...hydrocarbons. This change in feed gas ratio is believed to lower the methanation ability of Co in favor of chain growth, with possibly two different

  20. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency.

    PubMed

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho

    2015-12-02

    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device.

  1. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  2. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  3. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  4. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion.

    PubMed

    Schaller, R D; Klimov, V I

    2004-05-07

    We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

  5. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System.

    PubMed

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize.

  6. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

    PubMed Central

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154

  7. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  8. A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes

    PubMed Central

    Won Jung, Je; Baeck, Seung-Jae; Perumalsamy, Haribalan; Hansson, Bill S.; Ahn, Young-Joon; Kwon, Hyung Wook

    2015-01-01

    In mosquitoes, precise and efficient finding of a host animal is crucial for survival. One of the poorly understood aspects of mosquito blood-feeding behavior is how these insects target an optimal site in order to penetrate the skin and blood vessels without alerting the host animal. Here we provide new findings that a piercing structure of the mouthpart of the mosquitoes, the stylet, is an essential apparatus for the stage in blood feeding. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Inhibition of gene expression of these AaOrs delayed blood feeding behaviors of the mosquito. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal. PMID:26306800

  9. Season of testing and its effect on feed intake and efficiency in growing beef cattle.

    PubMed

    Mujibi, F D N; Moore, S S; Nkrumah, D J; Wang, Z; Basarab, J A

    2010-12-01

    feed efficiency.

  10. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs.

    PubMed

    Fu, Liangliang; Xu, Yueyuan; Hou, Ye; Qi, Xiaolong; Zhou, Lian; Liu, Huiying; Luan, Yu; Jing, Lu; Miao, Yuanxin; Zhao, Shuhong; Liu, Huazhen; Li, Xinyun

    2017-03-27

    Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs.

  11. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs

    PubMed Central

    Fu, Liangliang; Xu, Yueyuan; Hou, Ye; Qi, Xiaolong; Zhou, Lian; Liu, Huiying; Luan, Yu; Jing, Lu; Miao, Yuanxin; Zhao, Shuhong; Liu, Huazhen; Li, Xinyun

    2017-01-01

    Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs. PMID:28345649

  12. Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion.

    PubMed

    Chen, Wei; Qiu, Yongcai; Yang, Shihe

    2012-08-21

    ZnO nanotetrapods are distinguished by their unique nanocrystalline geometric form with four tetrahedrally directed arms, which endows them the ability to handily assemble three-dimensional network structures. Such network structures, coupled with the intrinsically excellent electronic properties of the semiconducting ZnO, have proved advantageous for building photoelectrodes in energy conversion devices since they allow fast vectorial electron transport. In this review article, we summarize recent efforts, with partial emphasis on our own, in the development of ZnO nanotetrapod-based devices for solar energy conversion, including dye-sensitized solar cells and photoelectrochemical cells for water splitting. A pure ZnO nanotetrapod network was firstly demonstrated to have excellent charge collection properties even with just physical contacts. Composition design of ZnO nanotetrapods/SnO(2) nanoparticles yielded a high efficiency of 4.91% in flexible DSSCs. More significantly, by secondary branching and nitrogen doping, a record performance for water splitting has been achieved. A perspective on future research directions in ZnO nanotetrapod-based solar energy conversion devices is also discussed together with possible strategies of pursuit. It is hoped that the results obtained so far with the ZnO nanotetrapods could inspire and catalyze future developments of solar energy conversion systems based on branched nanostructural materials, contributing to solving global energy and environmental issues.

  13. The effects of essential oils BIOMIN PEP MGE on weight gain feed conversion ratio and survival of channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of matrix encapsulated essential oils (Biomin® P.E.P. MGE) on weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and survival of channel catfish. Five hundred catfish (32.4 ± 1.7 g/fish) were randomly assigned to two treatments with five replicate tanks/tre...

  14. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-07

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency.

  15. Genetic relationships between boar feed efficiency and sow piglet production, body condition score, and stayability in Norwegian Landrace pigs.

    PubMed

    Martinsen, K H; Ødegård, J; Aasmundstad, T; Olsen, D; Meuwissen, T H E

    2016-08-01

    Both feed efficiency and sow production are economically important traits in pig breeding. One challenge in a maternal line such as Norwegian Landrace is to breed for highly feed efficient fattening pigs and, at the same time, produce sows with high daily feed intake to maintain their BCS in multiple parities. The aim of this study was to estimate genetic correlations among novel feed efficiency measurements on Norwegian Landrace boars and piglet production, stayability, and body condition in Norwegian Landrace sows. The feed efficiency measurements were lean meat and fat efficiency. These measurements were calculated using an extended residual feed intake model where total feed intake in the test period was the response variable and fat (kg) and lean meat (kg) on the carcass were included as both fixed and random regressions. The random regression coefficients that resulted from this model were breeding values, which represented the amount of feed used to produce an extra kilogram of lean meat and fat. The sow traits were stayability of the sow from first to second parity, BCS at weaning, litter weight at 3 wk, and total number of piglets born. All traits were recorded on first parity purebred Norwegian Landrace and analyzed using multivariate animal models. All genetic correlations between fat efficiency and sow traits were low. Significant genetic correlations were found only between fat efficiency and stayability (0.21 ± 0.11) and between fat efficiency and total litter weight at 3 wk (0.21 ± 0.10). The results indicate that selection for efficient deposition of fat could give poor stayability and lower litter weight at 3 wk in first parity sows. The genetic correlations between lean meat efficiency and sow traits were not significantly different from 0 and signified no genetic relationships between these traits. Selection for efficient deposition of lean meat should not affect the sow traits and is, therefore, beneficial.

  16. Modeling recombination processes and predicting energy conversion efficiency of dye sensitized solar cells from first principles

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Meng, Sheng

    2014-03-01

    We present a set of algorithms based on solo first principles calculations, to accurately calculate key properties of a DSC device including sunlight harvest, electron injection, electron-hole recombination, and open circuit voltages. Two series of D- π-A dyes are adopted as sample dyes. The short circuit current can be predicted by calculating the dyes' photo absorption, and the electron injection and recombination lifetime using real-time time-dependent density functional theory (TDDFT) simulations. Open circuit voltage can be reproduced by calculating energy difference between the quasi-Fermi level of electrons in the semiconductor and the electrolyte redox potential, considering the influence of electron recombination. Based on timescales obtained from real time TDDFT dynamics for excited states, the estimated power conversion efficiency of DSC fits nicely with the experiment, with deviation below 1-2%. Light harvesting efficiency, incident photon-to-electron conversion efficiency and the current-voltage characteristics can also be well reproduced. The predicted efficiency can serve as either an ideal limit for optimizing photovoltaic performance of a given dye, or a virtual device that closely mimicking the performance of a real device under different experimental settings.

  17. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Sheng, Shiqi; Tu, Z. C.

    2013-10-01

    A unified χ-criterion for heat devices (including heat engines and refrigerators), which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance (de Tomás et al 2012 Phys. Rev. E 85 010104), is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures Tc and Th( > Tc). By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum χ asymptotically approaches \\sqrt{\\varepsilon _C} when the relative temperature difference between two heat baths \\varepsilon _C^{-1}\\equiv (T_h-T_c)/T_c is sufficiently small. Correspondingly, the efficiency at maximum χ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be \\eta _C/2+\\eta _C^2/8 up to the second order term of ηC ≡ (Th - Tc)/Th, which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left-right symmetry (Esposito et al 2009 Phys. Rev. Lett. 102 130602).

  18. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.

    PubMed

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-12-07

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.

  19. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  20. Power conversion efficiency and resistance tunability in coil-magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Srinivasan, G.; Li, Jiefang; Viehland, D.

    2016-11-01

    The power efficiency and resistance tunability of magnetoelectric (ME) gyrators consisting of two-phase magnetostrictive-piezoelectric ME longitudinal-transverse (L-T) mode sandwich laminates and coils, have been studied. The copper wire coil provided an inductance-based coil port (CoilP) and the piezoelectric layer of the ME laminate provided a capacitance-based ME port (MEP). The device behaved as a 2-port 4-wire ME gyrator. The current-to-voltage and voltage-to-current (I-V and V-I, respectively) conversion ratios, resistance-inductance/capacitance tunabilities (TR-L and TR-C, respectively) and direct/converse power efficiencies (PED and PEC, respectively) were measured. Maximum values of 1454 V/A and 0.468 mA/V for the I-V and V-I conversion ratios, 76 μH/Ω and 0.17 pF/Ω for TR-L and TR-C coefficients, and ˜35% for both PED and PEC were found by measuring the performance characteristics. Compared with the electromagnetic and piezoelectric transformers, ME gyrators have good input and output characteristics that change the capacitance and inductance features of the input and output ports. Our findings open a promising direction for developing a generation of converters for power electronics.

  1. Efficient cascade quasi-synchronous parametric generation with up-conversion

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-06-23

    We report efficient cascade up-conversion generation due to two simultaneous quasi-synchronous processes of parametric decay {omega}{sub 3{yields}{omega}1}+ {omega}{sub 2} of pump quanta at the frequency {omega}{sub 3} and up-conversion of one of the generated waves {omega}{sub 1}+{omega}{sub 3{yields}{omega}4}>{omega}{sub 3} at the frequency {omega}{sub 1} in a medium with a quadratic nonlinearity. It is found that the necessary condition for this generation is the requirement |{gamma}{sub 1}|{sup 2}>({omega}{sub 2}/{omega}{sub 1})|{gamma}{sub 1}|{sup 2}, where {gamma}{sub 1,2} are the averaged constants of the nonlinear coupling for the processes {omega}{sub 1}+{omega}{sub 2,3{yields}{omega}3,4}, respectively. If this requirement is fulfilled, the plane monochromatic pump wave is completely depleted, while the limiting (the noise seed intensity is I{sub 10,20{yields}}0 at the input) efficiency of the energy conversion into radiation at the frequency {omega}{sub 4} is independent of I{sub 10,20} and determined only by the relations between |{gamma}{sub 1,2}|{sup 2} and the frequencies of the interacting waves. (nonlinear optical phenomena)

  2. Breeding salmonids for feed efficiency in current fishmeal and future plant-based diet environments.

    PubMed

    Quinton, Cheryl D; Kause, Antti; Koskela, Juha; Ritola, Ossi

    2007-01-01

    The aquaculture industry is increasingly replacing fishmeal in feeds for carnivorous fish with soybean meal (SBM). This diet change presents a potential for genotype-environment (G x E) interactions. We tested whether current salmonid breeding programmes that evaluate and select within fishmeal diets also improve growth and efficiency on potential future SBM diets. A total of 1680 European whitefish from 70 families were reared with either fishmeal- or SBM-based diets in a split-family design. Individual daily gain (DG), daily feed intake (DFI) and feed efficiency (FE) were recorded. Traits displayed only weak G x E interactions as variances and heritabilities did not differ substantially between the diets, and cross-diet genetic correlations were near unity. In both diets, DFI exhibited moderate heritability and had very high genetic correlation with DG whereas FE had low heritability. Predicted genetic responses demonstrated that selection to increase DG and FE on the fishmeal diet lead to favourable responses on the SBM diet. Selection for FE based on an index including DG and DFI achieved at least double FE gain versus selection on DG alone. Therefore, current breeding programmes are improving the biological ability of salmonids to use novel plant-based diets, and aiding the aquaculture industry to reduce fishmeal use.

  3. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    PubMed

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.

  4. Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light

    NASA Astrophysics Data System (ADS)

    Que, Meidan; Que, Wenxiu; Yin, Xingtian; Chen, Peng; Yang, Yawei; Hu, Jiaxing; Yu, Boyan; Du, Yaping

    2016-07-01

    Up-conversion β-NaYF4:Yb3+,Tm3+/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as-fabricated devices were also investigated. The results indicate that the PCE of the optimized device achieves 16.9%, which is 20% higher than that of the device without introducing NYF NPs, and the steady-state PCE of the as-fabricated devices is close to its transient-state PCE. The up-conversion effect of NYF NPs is conducive to higher device performance rather than the nanoparticles as scattering centers to increase possible light absorption of the perovskite film or the electronic effect of the NaYF4 shell surface. These results can be further confirmed by finite-difference time-domain simulation. Photoluminescence results suggest that the multiphonon-assistance can accelerate the nonradiative recombination process at a lower temperature. Incorporating NYF NPs into the electron transporting layer opens a new approach to a promising family of electron transporting materials for mesoscopic perovskite solar cells.Up-conversion β-NaYF4:Yb3+,Tm3+/NaYF4 core-shell nanoparticles (NYF NPs) with a high luminous intensity in the visible light region were synthesized by a hydrothermal reaction process. Photocurrent densities of the mesoscopic perovskite solar cells fabricated by incorporating up-conversion NYF NPs into the electron transporting layer are effectively enhanced. The effects of the thicknesses of the electron transporting layer and the weight ratio of up-conversion NYF NPs/TiO2 on the power conversion efficiency (PCE) of the as

  5. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    SciTech Connect

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-03-15

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence {theta} of the Langmuir/z-mode wave, temperature {beta}=T{sub e}/m{sub e}c{sup 2}, adiabatic index {gamma}, and orientation angle {phi} between the ambient density gradient {nabla}N{sub 0} and ambient magnetic field B{sub 0} in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of {theta}, {gamma}, and {beta} with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency {epsilon} is strongly dependent on {gamma}{beta}, {phi} and {theta}, with {epsilon}{proportional_to}({gamma}{beta}){sup 1/2} and {theta}{proportional_to}({gamma}{beta}){sup 1/2}. The power conversion efficiency {epsilon}{sub p}, on the other hand, is independent of {gamma}{beta} but does vary significantly with {theta} and {phi}. The efficiencies are shown to be maximum for approximately perpendicular density gradients ({phi} Almost-Equal-To 90 Degree-Sign ) and minimal for parallel orientation ({phi}=0 Degree-Sign ) and both the energy and power conversion efficiencies peak at the same {theta}.

  6. Nutrition management, nitrogen efficiency, and income over feed cost on dairy farms in Costa Rica.

    PubMed

    Baars, R M

    1998-03-01

    Twenty-two dairy farms in two ecologically different zones were visited repeatedly during the dry and wet seasons of 1995 to evaluate nutrition and pasture management, N efficiency on the farm, and income over feed costs with the use of a management support program. Excessive amounts of concentrates were fed, and no differences in amounts were detected between seasons. Utilization of forage was consequently low and even negligible on some farms. The amount of crude protein in the diet was generally too high. The removal of N from the farms via milk and culling represented 27 and 31% of the total N input for the two regions, respectively. The income over feed costs per cow ($3.04 and $1.84/d, respectively) was considered reasonable despite the high amount of concentrates.

  7. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.

    PubMed

    Cushing, Scott K; Bristow, Alan D; Wu, Nianqiang

    2015-11-28

    Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.

  8. A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.

  9. The Upper Bound on Solar Power Conversion Efficiency Through Photonic Engineering

    NASA Astrophysics Data System (ADS)

    Xu, Yunlu; Munday, Jeremy

    The power conversion efficiency is a key parameter by which different photovoltaic devices are compared. The maximum value can be calculated under steady-state conditions where the photon flux absorbed by the device equals the outgoing flux of particles (also known as the principle of detailed balance). The photonic engineering of a solar cell offers a new alternative for boosting efficiency. We show that, for an ideally photonic engineered solar cell, its efficiency is subject to an upper bound dictated by a generalized form of detailed balance equation where nano-concentration is taken into account. Results under realistic operating conditions and recent experimental studies will also be discussed. Authors acknowledge the University of Maryland for startup funds to initiate this project and support by the National Science Foundation under Grant CBET-1335857.

  10. Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma

    SciTech Connect

    Cummins, Thomas; Li Bowen; O'Gorman, Colm; Dunne, Padraig; Sokell, Emma; O'Sullivan, Gerry; Otsuka, Takamitsu; Yugami, Noboru; Higashiguchi, Takeshi; Jiang Weihua; Endo, Akira

    2012-02-06

    We have demonstrated an efficient extreme ultraviolet (EUV) source at 6.7 nm by irradiating Gd targets with 0.8 and 1.06 {mu}m laser pulses of 140 fs to 10 ns duration. Maximum conversion efficiency of 0.4% was observed within a 0.6% bandwidth. A Faraday cup observed ion yield and time of flight signals for ions from plasmas generated by each laser. Ion kinetic energy was lower for shorter pulse durations, which yielded higher electron temperatures required for efficient EUV emission, due to higher laser intensity. Picosecond laser pulses were found to be the best suited to 6.7 nm EUV source generation.

  11. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  12. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction.

    PubMed

    Gajda, Andrzej; Zimmermann, Lars; Jazayerifar, Mahmoud; Winzer, Georg; Tian, Hui; Elschner, Robert; Richter, Thomas; Schubert, Colja; Tillack, Bernd; Petermann, Klaus

    2012-06-04

    In this paper we present four-wave mixing (FWM) based parametric conversion experiments in p-i-n diode assisted silicon-on-insulator (SOI) nano-rib waveguides using continuous-wave (CW) light around 1550 nm wavelength. Using a reverse biased p-i-n waveguide diode we observe an increase of the wavelength conversion efficiency of more than 4.5 dB compared to low loss nano-rib waveguides without p-i-n junction, achieving a peak efficiency of -1 dB. Conversion efficiency improves also by more than 7 dB compared to previously reported experiments deploying 1.5 µm SOI waveguides with p-i-n structure. To the best of our knowledge, the observed peak conversion efficiency of -1dB is the highest CW efficiency in SOI reported so far.

  13. How to improve breeding value prediction for feed conversion ratio in the case of incomplete longitudinal body weights.

    PubMed

    Tran, V H Huynh; Gilbert, H; David, I

    2017-01-01

    With the development of automatic self-feeders, repeated measurements of feed intake are becoming easier in an increasing number of species. However, the corresponding BW are not always recorded, and these missing values complicate the longitudinal analysis of the feed conversion ratio (FCR). Our aim was to evaluate the impact of missing BW data on estimations of the genetic parameters of FCR and ways to improve the estimations. On the basis of the missing BW profile in French Large White pigs (male pigs weighed weekly, females and castrated males weighed monthly), we compared 2 different ways of predicting missing BW, 1 using a Gompertz model and 1 using a linear interpolation. For the first part of the study, we used 17,398 weekly records of BW and feed intake recorded over 16 consecutive weeks in 1,222 growing male pigs. We performed a simulation study on this data set to mimic missing BW values according to the pattern of weekly proportions of incomplete BW data in females and castrated males. The FCR was then computed for each week using observed data (obser_FCR), data with missing BW (miss_FCR), data with BW predicted using a Gompertz model (Gomp_FCR), and data with BW predicted by linear interpolation (interp_FCR). Heritability (h) was estimated, and the EBV was predicted for each repeated FCR using a random regression model. In the second part of the study, the full data set (males with their complete BW records, castrated males and females with missing BW) was analyzed using the same methods (miss_FCR, Gomp_FCR, and interp_FCR). Results of the simulation study showed that h were overestimated in the case of missing BW and that predicting BW using a linear interpolation provided a more accurate estimation of h and of EBV than a Gompertz model. Over 100 simulations, the correlation between obser_EBV and interp_EBV, Gomp_EBV, and miss_EBV was 0.93 ± 0.02, 0.91 ± 0.01, and 0.79 ± 0.04, respectively. The heritabilities obtained with the full data set were

  14. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle.

    PubMed

    de Almeida Santana, Miguel Henrique; Junior, Gerson Antônio Oliveira; Cesar, Aline Silva Mello; Freua, Mateus Castelani; da Costa Gomes, Rodrigo; da Luz E Silva, Saulo; Leme, Paulo Roberto; Fukumasu, Heidge; Carvalho, Minos Esperândio; Ventura, Ricardo Vieira; Coutinho, Luiz Lehmann; Kadarmideen, Haja N; Ferraz, José Bento Sterman

    2016-11-01

    The use of genome-wide association results combined with other genomic approaches may uncover genes and metabolic pathways related to complex traits. In this study, the phenotypic and genotypic data of 1475 Nellore (Bos indicus) cattle and 941,033 single nucleotide polymorphisms (SNPs) were used for genome-wide association study (GWAS) and copy number variations (CNVs) analysis in order to identify candidate genes and putative pathways involved with the feed conversion ratio (FCR). The GWAS was based on the Bayes B approach analyzing genomic windows with multiple regression models to estimate the proportion of genetic variance explained by each window. The CNVs were detected with PennCNV software using the log R ratio and B allele frequency data. CNV regions (CNVRs) were identified with CNVRuler and a linear regression was used to associate CNVRs and the FCR. Functional annotation of associated genomic regions was performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID) and the metabolic pathways were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We showed five genomic windows distributed over chromosomes 4, 6, 7, 8, and 24 that explain 12 % of the total genetic variance for FCR, and detected 12 CNVRs (chromosomes 1, 5, 7, 10, and 12) significantly associated [false discovery rate (FDR) < 0.05] with the FCR. Significant genomic regions (GWAS and CNV) harbor candidate genes involved in pathways related to energetic, lipid, and protein metabolism. The metabolic pathways found in this study are related to processes directly connected to feed efficiency in beef cattle. It was observed that, even though different genomic regions and genes were found between the two approaches (GWAS and CNV), the metabolic processes covered were related to each other. Therefore, a combination of the approaches complement each other and lead to a better understanding of the FCR.

  15. Exploration of the genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to characterize the genetic basis underlying variation in feed efficiency in mid-lactation Holstein dairy cows. A genome-wide association study was performed for residual feed intake (RFI) and related traits using a large data set, consisting of nearly 5,000 cows. It wa...

  16. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    PubMed

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  17. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy.

    PubMed

    Zhu, Xiao-Ming; Wan, Hong-Ye; Jia, Henglei; Liu, Liang; Wang, Jianfang

    2016-12-01

    Plasmonic nanostructures are of potential in acting as a type of optical agents for cancer photothermal therapy. To effectively function as photothermal therapy agents, plasmonic nanostructures are strongly desired to have good biocompatibility and high photothermal conversion efficiencies. In this study, poly(diallyldimethylammonium chloride)-coated porous Pt nanoparticles are synthesized for photothermal therapy. The Pt nanoparticles possess broadband near-infrared light absorption in the range from 650 to 1200 nm, therefore allowing for selecting different laser wavelengths for photothermal therapy. The as-prepared Pt nanoparticles exhibit remarkable photothermal conversion efficiencies under 809 and 980 nm laser irradiation. In vitro studies indicate that the Pt nanoparticles display good biocompatibility and high cellular uptake efficiencies through an endocytosis pathway. Photothermal heating using 808 nm laser irradiation (>7.0 W cm(-2) , 3 min) leads to notable cytotoxic effect, and more than 70% of cells are photothermally ablated after 3 min irradiation at 8.4 W cm(-2) . Furthermore, simultaneous application of photothermal therapy synergistically enhances the cytotoxicity of an anti-cancer drug doxorubicin. Therefore, the porous Pt nanoparticles have great potential as an attractive photothermal agent for cancer therapy.

  18. Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Srinivasan, G.; Viehland, D.

    2017-03-01

    A gyrator that is capable of current-to-voltage conversion can be realized with a magnetoelectric (ME) composite of ferromagnetic and ferroelectric phases placed in a coil. Here, we report the dependence of the power conversion efficiency (PE) on the relative thickness of the two ferroic phases in a gyrator of Terfenol-D and PZT. Both experimental and theoretical results on PE as a function of composite parameters, such as thickness ratio of the ferroic layers (n), magnetic field bias (HBias) and several gyrator parameters, such as the resistance load (RL), were discussed. By decreasing the thickness ratio of Terfenol-D to composite (n = 0.28) in coil-ME gyrators, a high power efficiency of 73.9% was found at a fundamental resonance frequency of 72.5 kHz under a HBias of 1000 Oe and RL = 2.6 kΩ in experiments. At the same time, the non-linear mechanical loss was reduced by decreasing the value of n which resulted in a flat response over a wide HBias range. This improved power efficiency promises ME gyrators for power transfer devices.

  19. Molecular Design of Polymer Heterojunctions for Efficient Solar-Hydrogen Conversion.

    PubMed

    Chen, Jie; Dong, Chung-Li; Zhao, Daming; Huang, Yu-Cheng; Wang, Xixi; Samad, Leith; Dang, Lianna; Shearer, Melinda; Shen, Shaohua; Guo, Liejin

    2017-03-29

    Semiconducting photocatalytic solar-hydrogen conversion (SHC) from water is a great challenge for renewable fuel production. Organic semiconductors hold great promise for SHC in an economical and environmentally benign manner. However, organic semiconductors available for SHC are scarce and less efficient than most inorganic ones, largely due to their intrinsic Frenkel excitons with high binding energy. In this study the authors report polymer heterojunction (PHJ) photocatalysts consisting of polyfluorene family polymers and graphitic carbon nitride (g-C3 N4 ) for efficient SHC. A molecular design strategy is executed to further promote the exciton dissociation or light harvesting ability of these PHJs via alternative approaches. It is revealed that copolymerizing electron-donating carbazole unit into the poly(9,9-dioctylfluorene) backbone promotes exciton dissociation within the poly(N-decanyl-2,7-carbazole-alt-9,9-dioctylfluorene) (PCzF)/g-C3 N4 PHJ, achieving an enhanced apparent quantum yield (AQY) of 27% at 440 nm over PCzF/g-C3 N4 . Alternatively, copolymerizing electron-accepting benzothiadiazole unit extended the visible light response of the obtained poly(9,9-dioctylfluorene-alt-benzothiadiazole)/g-C3 N4 PHJ, leading to an AQY of 13% at 500 nm. The present study highlights that constructing PHJs and adapting a rational molecular design of PHJs are effective strategies to exploit more of the potential of organic semiconductors for efficient solar energy conversion.

  20. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  1. High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons.

    PubMed

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Wang, Jun; Xu, Zhuo

    2016-10-31

    In this paper, we propose to achieve high-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons (SSPP). Different k is firstly designed in the two transverse directions by aligning an SSPP-supporting fishbone structure in y direction while maintaining free space in x direction. The orthogonal phase difference is introduced by larger k of SSPP waves for y-polarized component of incident waves. Meanwhile, to achieve high efficiency, gradient k in z-direction is designed so that the y-polarized component of incident waves can be coupled perfectly as SSPP waves. By rotating the fishbone structure with respect to the polarization direction of incident waves, different polarization states for transmitted waves can be realized. As an example, a polarization converter prototype with the central working frequency f = 8GHz was designed, fabricated, and measured. Both the simulation and experiment demonstrate the high-efficiency linear-to-circular (LTC) polarization conversion in 6.9-9.6GHz.

  2. Efficient Solar Energy Conversion Systems for Hydrogen Production from Water using Semiconductor Photoelectrodes and Photocatalysts

    NASA Astrophysics Data System (ADS)

    Sayama, K.; Arai, T.

    2008-02-01

    Efficient solar energy conversion system for hydrogen production from water, solar-hydrogen system, is one of most important technologies for genuinely sustainable development of the society in the world wide scale. However, there are many problems to breakthrough such as low solar-to-H2 efficiency (STH), high cost, low stability, etc in order to realize the system practically and economically. The solar-hydrogen systems using semiconductors are mainly classified as follows; solar cell-electrolysis system, semiconductor photoelectrode system, and photocatalyst system. There are various merits and demerits in each system. The solar cell-electrolysis system is very efficient but is very high cost. The photocatalyst system is very simple and relatively low cost, but the efficiency is still very low. On the other hand, various semiconductor systems with high efficiency have been investigated. A high STH more than 10% was reported using non-oxide semiconductor photoelectrodes such as InGaP, while the preparation methods were costly. In a European project, some simple oxide semiconductor photoelectrodes such as Fe2O3 and WO3 are mainly studied. Here, we investigated various photoelectrodes using mixed metal oxide especially on BiVO4 semiconductor, and a high throughput screening system of new visible light responsible semiconductors for photoelectrode and photocatalyst. Moreover, photocatalysis-electrolysis hybrid system for economical H2 production is studied to overcome the demerit of photocatalyst system on the gas separation and low efficiency.

  3. Influence of feed efficiency classification on diet digestibility and growth performance of beef steers.

    PubMed

    Russell, J R; Minton, N O; Sexten, W J; Kerley, M S; Hansen, S L

    2016-04-01

    The diet digestibility and feed efficiency (FE) relationship is not well characterized in cattle. The study objective was to determine effects of growing phase FE and diet as well as finishing phase diet on diet digestibility and finishing phase FE. Two groups, totaling 373 crossbred steers, were fed for 70 d at the University of Missouri for the growing phase and then shipped to Iowa State University (ISU) for finishing. GrowSafe feed bunks were used during both the growing and the finishing phases. Steers were fed either growing phase whole shell corn (G-Corn) or growing phase roughage-based (G-Rough) diets. Within each group, the 12 greatest and 12 least feed efficient steers from each growing diet ( = 96 total; 48 steers/group; 488 ± 5 kg) were selected for further evaluation. At ISU, steers were fed an average of 10 g TiO/steer daily in receiving phase diets similar to growing diets for 15 d, with fecal grab samples collected on d 14 and 15 to determine diet DM digestibility during receiving (GDMdig). For finishing, steers were transitioned to byproduct-based diets (F-Byp) or corn-based diets (F-Corn) with 12 steers per growing-finishing diet combination per group. Optaflexx (200 mg/d) was fed for 28 d before harvest, and the TiO protocol was repeated immediately before introducing Optaflexx to determine diet DM digestibility during finishing (FDMdig). Data from the 2 groups (96 steers) were pooled, and steers were ranked by growing phase G:F and then classified as the 24 greatest feed efficient (HFE) or 24 least feed efficient (LFE) steers from each growing diet. Data were analyzed using PROC MIXED of SAS with group applied as a fixed effect. There was a positive correlation between GDMdig and FDMdig for steers fed nutritionally similar diets during both feeding phases, G-Rough/F-Byp steers ( = 0.68, < 0.01) and G-Corn/F-Corn steers ( = 0.49, = 0.02), but a negative correlation for G:F between phases in G-Rough/F-Corn steers ( = -0.57, < 0.01). Finishing G

  4. Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls.

    PubMed

    Fontoura, A B P; Montanholi, Y R; Diel de Amorim, M; Foster, R A; Chenier, T; Miller, S P

    2016-01-01

    The beef industry has emphasized the improvement of feed utilization, as measured by modeling feed intake through performance traits to calculate residual feed intake (RFI). Evidence supports an inverse relationship between feed efficiency and reproductive function. The objective of this study was to determine the relationship of reproductive assessments and RFI unadjusted (RFI(Koch)) or adjusted for body composition (RFI(us)) and the relationship among fertility-related parameters. In total, 34 crossbred bulls were housed together for 112 days of performance evaluation, followed by assessment of scrotum IR imaging, scrotal circumference, testes ultrasonography and semen quality parameters at 377±33.4 days of age. Bulls were slaughtered at 389±34.0 days of age, and analyses of carcass composition, biometrics and histomorphometry of the testis and epididymis were conducted. Bulls were grouped into two subpopulations based on divergence of RFI, and within each RFI model either by including 50% of the population (Halves, high and low RFI, n=17) or 20.6% extremes of the population (Tails, high and low RFI, n=7). The means of productive performance and fertility-related measures were compared through these categories. Pearson's correlation was calculated among fertility-related measures. In the Halves subpopulation of the RFI(us), sperm of low-RFI bulls had decreased progressive motility (47.30% v. 59.90%) and higher abundance of tail abnormalities (4.30% v. 1.80%) than that of high-RFI bulls. In the Tails subpopulation of the RFI(Koch), low RFI displayed less variation in the scrotum surface temperature (0.62°C v. 1.16°C), decreased testis echogenicity (175.50 v 198.00 pixels) and larger (60.90 v. 56.80 mm(2)) but less-developed seminiferous tubules than high-RFI bulls. The evaluation of fertility-related parameters indicated that a higher percentage of immature seminiferous tubules was correlated with occurrence of sperm with distal droplets (r=0.59), a larger

  5. Bivariate Genome-Wide Association Analysis of the Growth and Intake Components of Feed Efficiency

    PubMed Central

    Beever, Jonathan E.; Bollero, Germán A.; Southey, Bruce R.; Faulkner, Daniel B.; Rodriguez-Zas, Sandra L.

    2013-01-01

    Single nucleotide polymorphisms (SNPs) associated with average daily gain (ADG) and dry matter intake (DMI), two major components of feed efficiency in cattle, were identified in a genome-wide association study (GWAS). Uni- and multi-SNP models were used to describe feed efficiency in a training data set and the results were confirmed in a validation data set. Results from the univariate and bivariate analyses of ADG and DMI, adjusted by the feedlot beef steer maintenance requirements, were compared. The bivariate uni-SNP analysis identified (P-value <0.0001) 11 SNPs, meanwhile the univariate analyses of ADG and DMI identified 8 and 9 SNPs, respectively. Among the six SNPs confirmed in the validation data set, five SNPs were mapped to KDELC2, PHOX2A, and TMEM40. Findings from the uni-SNP models were used to develop highly accurate predictive multi-SNP models in the training data set. Despite the substantially smaller size of the validation data set, the training multi-SNP models had slightly lower predictive ability when applied to the validation data set. Six Gene Ontology molecular functions related to ion transport activity were enriched (P-value <0.001) among the genes associated with the detected SNPs. The findings from this study demonstrate the complementary value of the uni- and multi-SNP models, and univariate and bivariate GWAS analyses. The identified SNPs can be used for genome-enabled improvement of feed efficiency in feedlot beef cattle, and can aid in the design of empirical studies to further confirm the associations. PMID:24205251

  6. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers.

    PubMed

    Artegoitia, V M; Foote, A P; Lewis, R M; King, D A; Shackelford, S D; Wheeler, T L; Freetly, H C

    2016-12-01

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma and identify possible associations with production traits and carcass composition in finishing beef steers. Individual DMI and BW gain were measured on 140 Angus-sired steers for 105 d on a finishing ration. Blood samples were collected on d 84 of the experiment, which was 40 d before slaughter. Variables were analyzed using Pearson CORR procedure of SAS. Mean endocannabinoid concentrations in plasma were 4.48 ± 1.82 ng/mL and 0.44 ± 0.24 ng/mL for AEA and 2-AG, respectively. The AEA concentration was positively correlated with G:F ratio ( = 0.20; = 0.02), indicating that more efficient animals had greater AEA plasma concentrations. In addition, AEA concentration tended to be negatively correlated with the 12th rib fat thickness ( = -0.17; = 0.07); but no correlation was found with USDA-calculated yield grade ( = -0.14; = 0.11), or marbling score ( = 0.05; = 0.54). The concentration of 2-AG was positively correlated with AEA ( = 0.21; = 0.01); however, 2-AG concentration was not correlated with parameters of feed efficiency or carcass composition. To our knowledge, this study is the first to report plasma concentration of endocannabinoids in steers. These results provide evidence that plasma concentration of a key endocannabinoid, AEA, was favorably correlated with feed efficiency and fat thickness in finishing steers.

  7. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  8. High photocurrent conversion efficiency in self-organized porous WO{sub 3}

    SciTech Connect

    Berger, S.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.

    2006-05-15

    Self-organized porous structures of WO{sub 3} were grown on tungsten by an anodic oxidation, and their photoelectrochemical properties were characterized. The porous WO{sub 3} layers show a regular morphology with average pore sizes of approximately 70 nm and a pore wall thickness of approximately 10 nm. As formed layers show an amorphous structure but the layers can be altered to a crystalline monoclinic structure by thermal annealing. The annealed porous WO{sub 3} layers show a very high specific photocurrent conversion efficiency.

  9. Efficient conversion of allitol to D-psicose by Bacillus pallidus Y25.

    PubMed

    Poonperm, Wayoon; Takata, Goro; Ando, Yasuyo; Sahachaisaree, Verasak; Lumyong, Pipob; Lumyong, Saisamorn; Izumori, Ken

    2007-03-01

    An efficient method for conversion of allitol to D-psicose was achieved by a resting cell reaction of Bacillus pallidus Y25 for the first time. Notably, it was possible to produce D-allose and D-altrose from allitol directly via D-psicose by prolonging the reaction time. This method was applied for the preparation of D-psicose using the extract of Itea virginica as a starting material in this study. D-Psicose which is the absolutely key precursor for the production of other six carbon sugars could be obtained as the sole product at high yield.

  10. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells.

    PubMed

    Jin, Yoonhee; Seo, Jungmok; Lee, Jung Seung; Shin, Sera; Park, Hyun-Ji; Min, Sungjin; Cheong, Eunji; Lee, Taeyoon; Cho, Seung-Woo

    2016-09-01

    Triboelectric nanogenerators (TENGs) can be an effective cell reprogramming platform for producing functional neuronal cells for therapeutic applications. Triboelectric stimulation accelerates nonviral direct conversion of functional induced neuronal cells from fibroblasts, increases the conversion efficiency, and induces highly matured neuronal phenotypes with improved electrophysiological functionalities. TENG devices may also be used for biomedical in vivo reprogramming.

  11. An efficient and accurate model of the coax cable feeding structure for FEM simulations

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    An efficient and accurate coax cable feed model is proposed for microstrip or cavity-backed patch antennas in the context of a hybrid finite element method (FEM). A TEM mode at the cavity-cable junction is assumed for the FEM truncation and system excitation. Of importance in this implementation is that the cavity unknowns are related to the model fields by enforcing an equipotential condition rather than field continuity. This scheme proved quite accurate and may be applied to other decomposed systems as a connectivity constraint. Comparisons of our predictions with input impedance measurements are presented and demonstrate the substantially improved accuracy of the proposed model.

  12. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  13. Measurements of Conversion Efficiency for a Flat Plate Thermophotovoltaic System Using a Photonic Cavity Test System

    SciTech Connect

    E.J. Brown; C.T. Ballinger; S.R. Burger; G.W. Charache; L.R. Danielson; D.M. DePoy; T.J. Donovan; M. LoCascio

    2000-05-30

    The performance of a 1 cm{sup 2} thermophotovoltaic (TPV) module was recently measured in a photonic cavity test system. A conversion efficiency of 11.7% was measured at a radiator temperature of 1076 C and a module temperature of 29.9 C. This experiment achieved the highest direct measurement of efficiency for an integrated TPV system. Efficiency was calculated from the ratio of the peak (load matched) electrical power output and the heat absorption rate. Measurements of these two parameters were made simultaneously to assure the validity of the measured efficiency value. This test was conducted in a photonic cavity which mimicked a typical flat-plate TPV system. The radiator was a large, flat graphite surface. The module was affixed to the top of a copper pedestal for heat absorption measurements. The heat absorption rate was proportional to the axial temperature gradient in the pedestal under steady-state conditions. The test was run in a vacuum to eliminate conductive and convective heat transfer mechanisms. The photonic cavity provides the optimal test environment for TPV efficiency measurements because it incorporates all important physical phenomena found in an integrated TPV system: high radiator emissivity and blackbody spectral shape, photon recycling, Lambertian distribution of incident radiation and complex geometric effects. Furthermore, the large aspect ratio between radiating surface area and radiator/module spacing produces a view factor approaching unity with minimal photon leakage.

  14. Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage

    SciTech Connect

    Kekuda, Dhananjaya; Chu, Chih-Wei

    2011-10-20

    We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

  15. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.

    PubMed

    Chang, Chieh; Tran, Van H; Wang, Junbo; Fuh, Yiin-Kuen; Lin, Liwei

    2010-02-10

    Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films. The early onset of the nonlinear domain wall motions behavior has been identified as one mechanism responsible for the apparent high piezoelectricity in nanofibers, rendering them potentially advantageous for sensing and actuation applications.

  16. Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Özbay Karakuş, Mücella; Koca, İrfan; Er, Orhan; Çetin, Hidayet

    2017-04-01

    In this work, natural dyes extracted from the same genus but different species flowers were used as sensitizer in Dye Sensitized Solar Cell (DSSC). To clearly show dye ingredients effect on electrical characteristics, the same genus flowers were selected. The dye ingredients were analyzed by Gas Chromatography Mass Spectrometer (GC-MS). The dyes were modified by a procedure that includes refluxing in acetone. All results indicate a relationship between gallic acid quantity in dyes and solar cell efficiency. To gain further insight, the solar cell parameters were obtained by using the single-diode and double-diode models and they were compared to each other. It was observed that the applied process causes a decrease in series resistance. How the modification process and gallic acid affect energy conversion efficiency were argued in detail in the frame of results that were obtained from solar cell models.

  17. Power conversion efficiency enhancement in OPV devices using spin 1/2 molecular additives

    NASA Astrophysics Data System (ADS)

    Basel, Tek; Vardeny, Valy; Yu, Luping

    2014-03-01

    We investigated the power conversion efficiency of bulk heterojunction OPV cells based on the low bandgap polymer PTB7, blend with C61-PCBM. We also employed the technique of photo-induced absorption, PA; electrical and magneto-PA (MPA) techniques to understand the details of the photocurrent generation process in this blend. We found that spin 1/2 molecular additives, such as Galvinoxyl (Gxl) radicals dramatically enhance the cell efficiency; we obtained 20% increase in photocurrent upon Gxl doping with 2% weight. We explain our finding by the ability of the spin 1/2 radicals to interfere with the known major loss mechanism in the cell due to recombination of charge transfer exciton at the D-A interface via triplet excitons in the polymer donors. Supported by National Science Foundation-Material Science & Engineering Center (NSF-MRSEC), University of Utah.

  18. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    NASA Astrophysics Data System (ADS)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  19. Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization

    NASA Astrophysics Data System (ADS)

    Kegel, Jan; Angermann, Heike; Stürzebecher, Uta; Conrad, Erhard; Mews, Mathias; Korte, Lars; Stegemann, Bert

    2014-05-01

    Amorphous/crystalline heterojunction (a-Si:H/c-Si) solar cells on n-type substrates, textured in isopropanol (IPA)-free solution, with conversion efficiencies exceeding 20% are presented. These values represent a considerable improvement over our previously reported best cell efficiencies for cells with (i)a-Si:H buffer layer. They were achieved by thorough optimization of the surface texture, of the a-Si:H/c-Si interface passivation, and of the thickness of the intrinsic a-Si:H front layer, resulting in improved open-circuit voltages and fill factors. Thus, solar cells fabricated on IPA-free textured Si wafers can compete with those processed on wafers textured conventionally in IPA-containing alkaline solution and are an attractive alternative for industrial production due to their better process control, lower environmental impact and lower costs.

  20. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.

  1. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes

    PubMed Central

    Akizuki, Naoto; Aota, Shun; Mouri, Shinichiro; Matsuda, Kazunari; Miyauchi, Yuhei

    2015-01-01

    Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100–200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range. PMID:26568250

  2. Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds.

    PubMed

    Dai, Ping; Harada, Yoshinori; Takamatsu, Tetsuro

    2015-05-01

    Direct conversion of mammalian fibroblasts into induced neuronal (iN) cells has been attained by forced expression of pro-neural transcriptional factors, or by combining defined factors with either microRNAs or small molecules. Here, we show that neuronal cells can be converted from postnatal human fibroblasts into cell populations with neuronal purities of up to >80% using a combination of six chemical compounds. The chemical compound-induced neuronal cells (CiNCs) express neuron-specific proteins and functional neuron markers. The efficiency of CiNCs is unaffected by either the donor's age or cellular senescence (passage number). We propose this chemical direct converting strategy as a potential approach for highly efficient generation of neuronal cells from human fibroblasts for such uses as in neural disease modeling and regenerative medicine.

  3. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  4. Dietary protein to metabolizable energy ratios on feed efficiency and structural growth of prepubertal Holstein heifers.

    PubMed

    Gabler, M T; Heinrichs, A J

    2003-01-01

    Sixty Holstein heifers, 124.5 +/- 1.1 d of age and 124.9 +/- 2.5 kg of BW, were used to evaluate the influence of dietary crude protein to metabolizable energy ratio (CP:ME) on feed efficiency, structural growth, and body condition score. Treatment rations containing a specific CP:ME ratio were assigned to heifers in a complete randomized block design with treatment periods lasting 20 wk. The CP:ME ratios were 48.3, 59.1, 67.5, and 76.5 g of CP per Mcal of ME. The CP:ME ratios were altered by adjusting the concentration of CP (12.0,15.2, 17.4, and 19.7% CP) with similar amounts of ME (2.6 Mcal/kg DM) across all treatment rations. BW was recorded weekly on two consecutive days and used to adjust dry matter intake to allow approximately 0.80 kg/d gain. Average daily gain did not differ between the treatment rations, 0.74, 0.81, 0.81, 0.77 kg/d, low to highest CP:ME ratio, respectively. Dry matter intake showed a quadratic effect for the treatment rations, 3.30, 3.41, 3.48, and 3.39 kg/d, low to highest CP:ME ratio, respectively, and averaged 2.0% BW. Feed efficiency improved linearly with increasing CP:ME ratios, 4.76, 4.42, 4.35, and 4.33, respectively. The increased CP:ME ratios were accompanied by increasing levels of plasma urea N, 9.88, 13.34, 14.94, and 16.57 mg/dl, respectively. A trend toward linear increases in wither and hip height growth resulted with increasing CP:ME. Hip width growth was quadratic with increasing CP:ME ratios. Observed linear effects in feed efficiency and some structural growth measurements demonstrate positive results when feeding CP:ME ratios >48.3 to Holstein heifers between 125 and 234 kg of BW and gaining 0.80 kg/d.

  5. Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation.

    PubMed

    Park, Sinjeung; Hahn, Jae W; Lee, Jae Yong

    2012-02-27

    The recent discovery of strong nonlinear emission in metallic nanostructures has offered possibilities for realization of functional nano photonic devices. Here, we demonstrate a novel design of a plasmonic nano device for high conversion efficiency of second harmonic generation. A 4 × 4 bowtie aperture array is fabricated to have both plasmonic resonance for local field enhancement of the fundamental wave and Fabry-Pérot resonance for high transmission of second harmonic wave. Combining nano structures for exciting surface plasmon polariton and suppressing higher order diffraction and anti-reflection layer, we achieve a second harmonic conversion efficiency of 1.4 × 10(-8) that is nearly an order of magnitude larger than the results published in recent literatures. We also theoretically analyze evidences of the role of double resonances tuned to the fundamental wave and the second harmonic wave, resulting in the augmentation of second harmonic response approximately an order of magnitude greater than that without the help of the resonance.

  6. [Research practices of conversion efficiency of resources utilization model of castoff from Chinese material medica industrialization].

    PubMed

    Duan, Jin-Ao; Su, Shu-Lan; Guo, Sheng; Liu, Pei; Qian, Da-Wei; Jiang, Shu; Zhu, Hua-Xu; Tang, Yu-Ping; Wu, Qi-Nan

    2013-12-01

    The industrialization chains and their products, which were formed from the process of the production of medicinal materials-prepared drug in pieces and deep processed product of Chinese material medica (CMM) resources, have generated large benefits of social and economic. However, The large of herb-medicine castoff of "non-medicinal parts" and "rejected materials" produced inevitably during the process of Chinese medicinal resources produce and process, and the residues, waste water and waste gas were produced during the manufactured and deep processed product of CMM. These lead to the waste of resources and environmental pollution. Our previous researches had proposed the "three utilization strategies" and "three types of resources models" of herb-medicine castoff according to the different physicochemical property of resources constitutes, resources potential and utility value of herb-medicine castoff. This article focus on the conversion efficiency of resources model and analysis the ways, technologies, practices, and application in herb-medicine cast off of the conversion efficiency of resources model based on the recycling economy theory of resources and thoughts of resources chemistry of CMM. These data may be promote and resolve the key problems limited the industrialization of Chinese material medica for long time and promote the realization of herb-medicine castoff resources utilization.

  7. 15% Power Conversion Efficiency from a Gated Nanotube/Silicon Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-03-01

    Despite their enhanced light trapping ability the performance of silicon nanowire array solar cells have, been stagnant with power conversion efficiencies barely breaking 10%. The problem is understood to be the consequence of a high photo-carrier recombination at the large surface area of the Si nanowire sidewalls. Here, by exploiting 1) electronic gating via an ionic liquid electrolyte to induce inversion in the n-type Si nanowires and 2) using a layer of single wall carbon nanotubes engineered to contact each nanowire tip and extract the minority carriers, we demonstrate silicon nanowire array solar cells with power conversion efficiencies of 15%. Our results allow for discrimination between the two principle means of avoiding front surface recombination: surface passivation and the use of local fields. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue a non-encapsulation based solution is also described. We gratefully acknowledge support from the National Science Foundation under ECCS-1232018.

  8. Enhancing the power conversion efficiency of solar cells employing down-shifting silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Lopez-Delgado, R.; Higuera-Valenzuela, H. J.; Zazueta-Raynaud, A.; Ramos, A.; Pelayo, J. E.; Berman, D.; Álvarez-Ramos, M. E.; Ayon, Arturo

    2016-11-01

    We report the synthesis and characterization of silicon quantum dots that exhibit down-shifting, photo luminescent characteristics. We also discuss the fabrication and characterization of single crystal Silicon (c-Si) Solar cells with and without the influence of the previously mentioned QDs. The incorporation of these nanostructures triggers improvements in the performance of the fabricated photovoltaic devices, especially in the open circuit voltage (Voc) and short circuit current density (Jsc). Specifically, the experimental results showed increments in the Voc from 532.6 to 536.2 mV and in the Jsc from 33.4 to 38.3 mA/cm2. The combined effect of those improved Voc and Jsc values led to an increment in the power conversion efficiency (PCE) from 11.90 to 13.37%. This increment represents an improvement of the order of 12.4% on the power conversion efficiency of this type of solar cells. The observed results could be conducive to promoting the proliferation of photovoltaic structures.

  9. Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Juan; Li, Chong; Zhou, Hong-Yi; Wu, Hua; Luan, Xin-Xin; Shi, Lei; Guo, Xia

    2015-02-01

    The maximum power conversion efficiencies of the top-emitting, oxide-confined, two-dimensional integrated 2×2 and 4×4 vertical-cavity surface-emitting laser (VCSEL) arrays with the oxide-apertures of 6 μm, 16 μm, 19 μm, 26 μm, 29 μm, 36 μm, 39 μm, and 46 μm are fabricated and characterized, respectively. The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly. A maximum value of 27.91% at an oxide-aperture of 18.6 μm is achieved by simulation. The experimental data are well consistent with the simulation results, which are analyzed by utilizing an empirical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501 and 61335004) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019)

  10. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  11. Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction.

    PubMed

    Nodera, Y; Kawata, S; Onuma, N; Limpouch, J; Klimo, O; Kikuchi, T

    2008-10-01

    Improvement of energy-conversion efficiency from laser to proton beam is demonstrated by particle simulations in a laser-foil interaction. When an intense short-pulse laser illuminates the thin-foil target, the foil electrons are accelerated around the target by the ponderomotive force. The hot electrons generate a strong electric field, which accelerates the foil protons, and the proton beam is generated. In this paper a multihole thin-foil target is proposed in order to increase the energy-conversion efficiency from laser to protons. The multiholes transpiercing the foil target help to enhance the laser-proton energy-conversion efficiency significantly. Particle-in-cell 2.5-dimensional ( x, y, vx, vy, vz) simulations present that the total laser-proton energy-conversion efficiency becomes 9.3% for the multihole target, though the energy-conversion efficiency is 1.5% for a plain thin-foil target. The maximum proton energy is 10.0 MeV for the multihole target and is 3.14 MeV for the plain target. The transpiercing multihole target serves as a new method to increase the energy-conversion efficiency from laser to ions.

  12. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth

    PubMed Central

    Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-01-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573

  13. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    PubMed

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system.

  14. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.

    PubMed

    Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-01-08

    The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs.

  15. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer.

    PubMed

    Inada, Natsumi; Asakawa, Hitoshi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid.

  16. Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits.

    PubMed

    Piles, M; Gomez, E A; Rafel, O; Ramon, J; Blasco, A

    2004-03-01

    Two elliptical selection experiments were performed in two contemporary sire lines of rabbits (C and R) in order to optimize the experimental design for estimating the genetic parameters of the growth rate (GR) and feed conversion ratio (FCR). Twelve males and 19 females from line C, and 13 males and 23 females from line R, were selected from an ellipse defined by a quadratic index based on these traits. Data from 160 rabbits of each of the parental generations of lines C and R and their offspring (275 and 266 animals, respectively) were used for the analysis. A Bayesian framework was adopted for inference. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. An animal model including batch, parity order, litter size, and common environmental litter effects was assumed. Posterior means (posterior standard deviations) for heritabilities of GR and FCR were estimated to be 0.31 (0.10) and 0.31 (0.10), respectively, in line C and 0.21 (0.08) and 0.25 (0.12) in line R. Posterior means of the proportion of the variance due to common litter environmental effects were 0.14 (0.06) and 0.21 (0.06) for GR and FCR, respectively, in line C and 0.17 (0.06) and 0.22 (0.06) in line R. Posterior means of genetic correlation between both traits were -0.49 (0.25) in line C and -0.47 (0.32) in line R, indicating that selection for GR was expected to result in a similar correlated response in FCR in both lines.

  17. Relationships between feed efficiency, scrotal circumference, and semen quality traits in yearling bulls.

    PubMed

    Hafla, A N; Lancaster, P A; Carstens, G E; Forrest, D W; Fox, J T; Forbes, T D A; Davis, M E; Randel, R D; Holloway, J W

    2012-11-01

    A meta-analysis was conducted to examine phenotypic relationships between feed efficiency, scrotal circumference, and semen quality traits in yearling bulls. Data evaluated were obtained from 5 postweaning trials involving Angus (n = 92), Bonsmara (n = 62), and Santa Gertrudis (n = 50) bulls fed diets that ranged from 1.70 to 2.85 Mcal ME/kg DM. After an adaptation period of 24 to 28 d, feed intake was measured daily, and BW was measured at 7- or 14-d intervals during the 70- to 77-d trials. Ultrasound carcass traits (12th-rib back fat thickness, BF; LM area, LMA) and scrotal circumference (SC) were measured at the start and end of each trial. Semen samples were collected by electroejaculation within 51 d of the end of the trials when the age of bulls averaged from 365 to 444 d and were evaluated for progressive sperm motility and morphology. Residual feed intake (RFI) was calculated as the difference between actual DMI and expected DMI from linear regression of DMI on ADG and midtest BW(0.75), with trial, trial by ADG, and trial by midtest BW(0.75) as random effects. Across all studies, bulls with low RFI phenotypes (<0.5 SD below the mean RFI of 0) consumed 20% less DM and had 10% less BF but had similar ADG, SC, and semen quality traits compared with high-RFI bulls (>0.5 SD above the mean RFI of 0). Gain to feed ratio was strongly correlated with ADG (0.60) and weakly correlated with initial BW (-0.17) and DMI (-0.26). Residual feed intake was not correlated with ADG, initial age, or BW but was correlated with DMI (0.71), G:F (-0.70), and BF (0.20). Initial SC (-0.20), gain in SC (-0.28), and percent normal sperm (-0.17) were correlated with G:F, but only sperm morphology was found to be weakly associated with RFI (0.13). These data suggest that RFI is not phenotypically associated with SC or sperm motility but is weakly associated with sperm morphology.

  18. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells

    PubMed Central

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702

  19. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas.

    PubMed

    Krupová, Z; Krupa, E; Michaličková, M; Wolfová, M; Kasarda, R

    2016-01-01

    Economic values of clinical mastitis, claw disease, and feed efficiency traits along with 16 additional production and functional traits were estimated for the dairy population of the Slovak Pinzgau breed using a bioeconomic approach. In the cow-calf population (suckler cow population) of the same breed, the economic values of feed efficiency traits along with 15 further production and functional traits were calculated. The marginal economic values of clinical mastitis and claw disease incidence in the dairy system were -€ 70.65 and -€ 26.73 per case per cow and year, respectively. The marginal economic values for residual feed intake were -€ 55.15 and -€ 54.64/kg of dry matter per day for cows and breeding heifers in the dairy system and -€ 20.45, -€ 11.30, and -€ 6.04/kg of dry matter per day for cows, breeding heifers, and fattened animals in the cow-calf system, respectively, all expressed per cow and year. The sums of the relative economic values for the 2 new health traits in the dairy system and for residual feed intake across all cattle categories in both systems were 1.4 and 8%, respectively. Within the dairy production system, the highest relative economic values were for milk yield (20%), daily gain of calves (20%), productive lifetime (10%), and cow conception rate (8%). In the cow-calf system, the most important traits were weight gain of calves from 120 to 210 d and from birth to 120 d (19 and 14%, respectively), productive lifetime (17%), and cow conception rate (13%). Based on the calculation of economic values for traits in the dual-purpose Pinzgau breed, milk production and growth traits remain highly important in the breeding goal, but their relative importance should be adapted to new production and economic conditions. The economic importance of functional traits (especially of cow productive lifetime and fertility) was sufficiently high to make the inclusion of these traits into the breeding goal necessary. An increased interest

  20. Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity.

    PubMed

    Vigors, S; Sweeney, T; O'Shea, C J; Kelly, A K; O'Doherty, J V

    2016-11-01

    Feed efficiency is an important trait in the future sustainability of pig production, however, the mechanisms involved are not fully elucidated. The objective of this study was to examine nutrient digestibility, organ weights, select bacterial populations, volatile fatty acids (VFA's), enzyme and intestinal nutrient transporter gene expression in a pig population divergent in feed efficiency. Male pigs (n=75; initial BW 22.4 kg SEM 2.03 kg) were fed a standard finishing diet for 43 days before slaughter to evaluate feed intake and growth for the purpose of calculating residual feed intake (RFI). Phenotypic RFI was calculated as the residuals from a regression model regressing average daily feed intake (ADFI) on average daily gain (ADG) and midtest BW0.60 (MBW). On day 115, 16 pigs (85 kg SEM 2.8 kg), designated as high RFI (HRFI) and low RFI (LRFI) were slaughtered and digesta was collected to calculate the coefficient of apparent ileal digestibility (CAID), total tract nutrient digestibility (CATTD), microbial populations and VFA's. Intestinal tissue was collected to examine intestinal nutrient transporter and enzyme gene expression. The LRFI pigs had lower ADFI (P<0.001), improved feed conversion ratio (P<0.001) and an improved RFI value relative to HRFI pigs (0.19 v. -0.14 SEM 0.08; P<0.001). The LRFI pigs had an increased CAID of gross energy (GE), and an improved CATTD of GE, nitrogen and dry matter compared to HRFI pigs (P<0.05). The LRFI pigs had higher relative gene expression levels of fatty acid binding transporter 2 (FABP2) (P<0.01), the sodium/glucose co-transporter 1 (SGLT1) (P<0.05), the glucose transporter GLUT2 (P<0.10), and the enzyme sucrase-isomaltase (SI) (P<0.05) in the jejunum. The LRFI pigs had increased populations of lactobacillus spp. in the caecum compared with HRFI pigs. In colonic digesta HRFI pigs had increased acetic acid concentrations (P<0.05). Differences in nutrient digestibility, intestinal microbial populations and gene

  1. Enhanced power conversion efficiency of dye-sensitized solar cells using nanoparticle/nanotube double layered film.

    PubMed

    Sun, Kyung Chul; Yun, Sung Hoon; Yoon, Chang Hyun; Ko, Hwan Ho; Yi, Sung; Jeong, Sung Hoon

    2013-12-01

    To enhance the power conversion efficiency of dye-sensitized solar cell, a new type of double layered photoanode was prepared using TiO2 nanoparticle in under layer and TiO2 nanotube in upper layer. TiO2 nanotubes were synthesized by hydrothermal polymerization. The morphology and the properties were investigated and characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), Field Emission-Transmission Electron Microscopy (FE-TEM), Wide Angle X-ray Diffraction (WAXD), Thermogravimetric analysis (TGA) and, Brunauer-Emmett-Teller test (BET). The light-to-electricity conversion efficiency was improved with the double-layered TiO2 film, which in turn, significantly increases the power conversion efficiency of dye-sensitized solar cells (DSSCs). This is due to large dye adsorption of light-scatters as well as TiO2 main layer. Moreover, rapid electron transport and light-havesting efficiency contributed to high conversion efficiency. The power conversion efficiency of an optimized cell (photoanode consisting of 13-15 microm main-layer and TNT over-layer) was 8.06% under simulated Air mass 1.5 (AM 1.5) global sunlight (1 Sun, 100 mW/cm2).

  2. Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions.

    PubMed

    Lukovic, Dunja; Diez Lloret, Andrea; Stojkovic, Petra; Rodríguez-Martínez, Daniel; Perez Arago, Maria Amparo; Rodriguez-Jimenez, Francisco Javier; González-Rodríguez, Patricia; López-Barneo, José; Sykova, Eva; Jendelova, Pavla; Kostic, Jelena; Moreno-Manzano, Victoria; Stojkovic, Miodrag; Bhattacharya, Shomi S; Erceg, Slaven

    2017-04-01

    Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.

  3. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Lesne, E.; Fu, Yu; Oyarzun, S.; Rojas-Sánchez, J. C.; Vaz, D. C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; George, J.-M.; Barthélémy, A.; Jaffrès, H.; Fert, A.; Bibes, M.; Vila, L.

    2016-12-01

    The spin-orbit interaction couples the electrons’ motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism--the Rashba effect--in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

  4. Effects of plasma spatial profile on conversion efficiency of laser produced plasma sources for EUV lithography

    NASA Astrophysics Data System (ADS)

    Hassanein, A.; Sizyuk, V.; Sizyuk, T.; Harilal, S.

    2009-03-01

    Extreme ultraviolet (EUV) lithography devices that use laser produced plasma (LPP), discharge produced plasma (DPP), and hybrid devices need to be optimized to achieve sufficient brightness with minimum debris generation to support the throughput requirements of High-Volume Manufacturing (HVM) lithography exposure tools with long lifetime. Source performance, debris mitigation, and reflector system are all critical to efficient EUV collection and component lifetime. Enhanced integrated models are continued to be developed using HEIGHTS computer package to simulate EUV emission at high power and debris generation and transport in multiple and colliding LPP. A new center for materials under extreme environments (CMUXE) is established to benchmark HEIGHTS models for various EUV related issues. The models being developed and enhanced include, for example, new ideas and parameters of multiple laser beams in different geometrical configurations and with different pre-pulses to maximize EUV production. Recent experimental and theoretical work show large influence of the hydrodynamic processes on EUV generation. The effect of plasma hydrodynamics evolution on the EUV radiation generation was analyzed for planar and spherical geometry of a tin target in LPP devices. The higher efficiency of planar target in comparison to the spherical geometry was explained with better hydrodynamic containment of the heated plasma. This is not the case if the plasma is slightly overheated. Recent experimental results of the conversion efficiency (CE) of LPP are in good agreement with HEIGHTS simulation.

  5. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    PubMed

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-05

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  6. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    PubMed Central

    Hernández-Martínez, Angel Ramon; Estévez, Miriam; Vargas, Susana; Rodríguez, Rogelio

    2013-01-01

    Dye-Sensitized Solar Cells (DSSCs), based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE) with Tetraethylorthosilicate (TEOS), are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time. PMID:23429194

  7. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: II. Carcass and meat quality.

    PubMed

    Molette, C; Gilbert, H; Larzul, C; Balmisse, E; Ruesche, J; Manse, H; Tircazes, A; Theau-Clément, M; Joly, T; Gidenne, T; Garreau, H; Drouilhet, L

    2016-01-01

    To get insights into selection criteria for feed efficiency, 2 rabbit lines have been created: the ConsoResidual line was selected for residual feed intake (RFI) with ad libitum feeding and the ADGrestrict line was selected for ADG under restricted feeding. The aim of the present study was to evaluate the impact on carcass and meat quality of the genetic selections. This comparison was performed using 2 different feeding strategies corresponding to the selection design. Carcass and meat quality traits were recorded for the 3 lines (ConsoResidual, ADGrestrict, and an unselected control [generation 0 {G0}]) in the 2 feeding systems (ad libitum and restricted) for 163 animals. Concerning the line effect, the BW at 63 d old was higher for the ADGrestrict line compared with the G0 and ConsoResidual lines ( < 0.0001). There was no line effect on the gastrointestinal tract. The rabbits did not exhibit a different carcass yield but showed different carcass traits. Indeed, the ConsoResidual rabbits had a higher hind leg yield ( < 0.0001) but no difference in the meat-to-bone ratio of the hind leg. On the contrary, the ADGrestrict line had a higher proportion of forelegs plus thoracic cage ( = 0.03). We also found lower perirenal ( < 0.0001) and scapular fat yields ( < 0.0001) in ConsoResidual rabbits. The ADGrestrict line had an intermediate perirenal fat yield compared with the other 2 lines. The G0 line always exhibited higher fat yields. Concerning meat quality, the ConsoResidual rabbits showed a lower ultimate pH ( < 0.0001) and higher water loss (drip and cooking loss; < 0.002) compared with the G0 and ADGrestrict rabbits. The feeding level had a strong effect on the gastrointestinal tract ( = 0.0004) and the carcass yield ( = 0.001). The latter was decreased in restricted rabbits. The effects of feeding strategy on meat quality were detrimental in the case of restricted feeding. Even if the ultimate pH was slightly higher in restricted rabbits ( = 0.0002), the carcass

  8. Microarray studies in high and low RFI cattle reveal a potential role for gonadotropin releasing hormone (GnRH) in regulating feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Residual feed intake (RFI) is a heritable feed efficiency measure. Mechanisms underlying variation in feed efficiency are currently poorly understood. To address this issue, two divergent cohorts consisting of High (H) and Low (L) RFI individuals were created by assessing RFI in forty-eight Angus-si...

  9. Apparatus and method for enabling quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber lasers

    DOEpatents

    Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter; Messerly, Michael J.; Pax, Paul H.

    2016-09-20

    Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.

  10. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

    PubMed

    Tsai, Hung-Wei; Thomas, Stuart R; Chen, Chia-Wei; Wang, Yi-Chung; Tsai, Hsu-Sheng; Yen, Yu-Ting; Hsu, Cheng-Hung; Tsai, Wen-Chi; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-01

    Defect control in Cu(In,Ga)Se2 (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley-Read-Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent J-V characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%.

  11. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    SciTech Connect

    Eimerl, D.

    1985-10-28

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology.

  12. Report of feasibility study on international-cooperation in high efficient energy conversion technology

    NASA Astrophysics Data System (ADS)

    1993-03-01

    With regard to accelerated introduction of high efficient energy conversion technology to developing countries, the paper investigates the countries' thoughts of the introduction of the technology and the status of the introduction bases. The countries for survey are the Philippines, Indonesia, Malaysia and Thailand. The Philippine government expects to develop cogeneration as well as large power sources and to widen effective use of natural energy. In Indonesia, they largely expect effective use of biomass energy using Stirling engines by international cooperation and the promoted local electrification using standalone distributed fuel cells. In Malaysia, they have great expectations of the introduction of air conditioning facilities using Stirling engines and the use of standalone distributed fuel cells for promotion of local electrification. Thailand hopes for the use of Stirling engines to air conditioning systems, and the development of solar Stirling generators with solar energy as a heat source and electric vehicles.

  13. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  14. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    PubMed

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-11-28

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  15. Conservation laws and conversion efficiency in ultraintense laser-overdense plasma interactions

    SciTech Connect

    Levy, M. C.; Wilks, S. C.; Tabak, M.; Baring, M. G.

    2013-10-15

    Particle coupling to the oscillatory and steady-state nonlinear force of an ultraintense laser is studied through analytic modeling and particle-in-cell simulations. The complex interplay between these absorption mechanisms—corresponding, respectively, to “hot” electrons and “hole punching” ions—is central to the viability of many ultraintense laser applications. Yet, analytic work to date has focused only on limiting cases of this key problem. In this paper, we develop a fully relativistic model in 1-D treating both modes of ponderomotive light absorption on equitable theoretical footing for the first time. Using this framework, analytic expressions for the conversion efficiencies into hole punching ions and into hot electrons are derived. Solutions for the relativistically correct hole punching velocity and the hot electron Lorentz factor are also calculated. Excellent agreement between analytic predictions and particle-in-cell simulations is demonstrated, and astrophysical analogies are highlighted.

  16. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-sections

    NASA Astrophysics Data System (ADS)

    He, Yan; Yu, Wangbing; Ouyang, Gang

    2016-06-01

    A deeper insight into shape-dependent power conversion efficiency (PCE) of Si nanowire (SiNW) solar cells with polygonal cross-sectional shapes, including trigon, tetragon, hexagon, and circle, has been explored based on the atomic-bond-relaxation approach and detailed balance principle. It has been found that the surface effect induced by the loss-coordination atoms located at edges and surfaces, as well as the thermal effect, plays the dominant roles for the band shift and PCE of SiNWs due to the lattice strain occurrence at the self-equilibrium state. Our predictions are consistent with the available evidences, providing an important advance in the development of Si-based nanostructures for the desirable applications.

  17. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency.

    PubMed

    Funde, Adinath M; Nasibulin, Albert G; Syed, Hashmi Gufran; Anisimov, Anton S; Tsapenko, Alexey; Lund, Peter; Santos, J D; Torres, I; Gandía, J J; Cárabe, J; Rozenberg, A D; Levitsky, Igor A

    2016-05-06

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  18. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.

  19. Transmissive concentrator multijunction solar cells with over 47% in-band power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Ji, Yaping; Krut, Dimitri D.; Ermer, Jim H.; Escarra, Matthew D.

    2016-11-01

    Transmissive concentrator multijunction (TCMJ) solar cells with over 47% in-band power conversion efficiency (PCE) have been designed and realized. These TCMJ solar cells have been characterized under 1 sun and concentrated 500 sun solar spectra, showing that the PCE for in-band light (photon energies above the cell's lowest bandgap) can reach up to 47.6% (29.5% for the full solar spectrum). Temperature coefficients of electrical parameters (Voc, Jsc, fill factor) have been derived from measurements within the temperature range of 20 °C-130 °C, showing linear variations versus temperature change. Optical measurements demonstrate that the cells show 76.5% solar-weighted optical transmission for the out-of-band light (photon energy below the cell's lowest bandgap). This TCMJ solar cell exhibits promising spectrum splitting capability, which has the potential for use in hybrid photovoltaic-solar thermal applications.

  20. Genome-wide association analysis for feed efficiency in Angus cattle

    PubMed Central

    Rolf, M M; Taylor, J F; Schnabel, R D; McKay, S D; McClure, M C; Northcutt, S L; Kerley, M S; Weaber, R L

    2012-01-01

    Estimated breeding values for average daily feed intake (AFI; kg/day), residual feed intake (RFI; kg/day) and average daily gain (ADG; kg/day) were generated using a mixed linear model incorporating genomic relationships for 698 Angus steers genotyped with the Illumina BovineSNP50 assay. Association analyses of estimated breeding values (EBVs) were performed for 41 028 single nucleotide polymorphisms (SNPs), and permutation analysis was used to empirically establish the genome-wide significance threshold (P < 0.05) for each trait. SNPs significantly associated with each trait were used in a forward selection algorithm to identify genomic regions putatively harbouring genes with effects on each trait. A total of 53, 66 and 68 SNPs explained 54.12% (24.10%), 62.69% (29.85%) and 55.13% (26.54%) of the additive genetic variation (when accounting for the genomic relationships) in steer breeding values for AFI, RFI and ADG, respectively, within this population. Evaluation by pathway analysis revealed that many of these SNPs are in genomic regions that harbour genes with metabolic functions. The presence of genetic correlations between traits resulted in 13.2% of SNPs selected for AFI and 4.5% of SNPs selected for RFI also being selected for ADG in the analysis of breeding values. While our study identifies panels of SNPs significant for efficiency traits in our population, validation of all SNPs in independent populations will be necessary before commercialization. PMID:22497295

  1. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    PubMed

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.

  2. Biofuels done right: land efficient animal feeds enable large environmental and energy benefits.

    PubMed

    Dale, Bruce E; Bals, Bryan D; Kim, Seungdo; Eranki, Pragnya

    2010-11-15

    There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO₂-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change.

  3. Photovoltaics: reviewing the European Feed-in-Tariffs and changing PV efficiencies and costs.

    PubMed

    Zhang, H L; Van Gerven, T; Baeyens, J; Degrève, J

    2014-01-01

    Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future.

  4. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    PubMed Central

    Zhang, H. L.; Van Gerven, T.; Baeyens, J.; Degrève, J.

    2014-01-01

    Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future. PMID:24959614

  5. Utilization of macrominerals and trace elements in pregnant heifers with distinct feed efficiencies.

    PubMed

    Dias, R S; Montanholi, Y R; Lopez, S; Smith, B; Miller, S P; France, J

    2016-07-01

    The objective of the study was to evaluate utilization of dietary minerals and trace elements in pregnant heifers with distinct residual feed intakes (RFI). Feed intake, body weight (BW), and body composition traits were recorded in 36 crossbred heifers over a period of 37 wk, starting shortly after weaning at 8.3 (0.10; standard deviation) mo of age with an average BW of 276 (7.8) kg. Both BW and body composition were monitored regularly throughout the study, whereas individual feed intake was assessed during the last 84 d of the trial. Data recorded were used to calculate RFI for each heifer. Heifers were ranked based on RFI and assigned to high (n=14) or low (n=10) RFI groups. After the RFI study, 24 selected heifers [age 18.2 (0.14) mo; 87.5 (4.74) d in gestation; 497 (8.5) kg of BW] were used in an indirect digestibility trial (lignin as internal marker). Heifers were fed a ration containing corn silage, haylage, and a mineral premix in which Ca, P, K, Na, Mg, S, Cu, Fe, Mn, Mo, Se, Zn, and Co were provided in the diet according to National Research Council requirements of pregnant replacement heifers. The digestibility trial lasted 1 wk, during which samples of feces were gathered twice daily, and blood and liver biopsy samples were collected on the last day. We noted no significant differences between low- and high-RFI heifers in dry matter digestibility. Apparent absorption of Cu, Zn, and Mn was increased in heifers with low RFI, and apparent absorption of Co tended to be greater for these animals. Concentrations of macrominerals and trace elements in serum of pregnant heifers were similar for both groups except for Se, which was increased in the serum of low-RFI heifers. Liver concentrations of Cu, Fe, Mn, Mo, Se, and Zn did not differ between low- and high-RFI heifers. In conclusion, whereas improved absorption of some trace elements (Cu, Zn, Mn, and Co) and increased Se serum concentration appear to be associated with superior feed efficiency in pregnant

  6. Elevated soil nitrogen pools after conversion of turfgrass to water-efficient residential landscapes

    NASA Astrophysics Data System (ADS)

    Heavenrich, Hannah; Hall, Sharon J.

    2016-08-01

    As a result of uncertain resource availability and growing populations, city managers are implementing conservation plans that aim to provide services for people while reducing household resource use. For example, in the US, municipalities are incentivizing homeowners to replace their water-intensive turfgrass lawns with water-efficient landscapes consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). While these strategies are likely to reduce water demand, the consequences for other ecosystem services are unclear. Previous studies in controlled, experimental landscapes have shown that conversion from turfgrass to shrubs may lead to high rates of nutrient leaching from soils. However, little is known about the long-term biogeochemical consequences of this increasingly common land cover change across diverse homeowner management practices. We explored the fate of soil nitrogen (N) across a chronosequence of land cover change from turfgrass to water-efficient landscapes in privately owned yards in metropolitan Phoenix, Arizona, in the arid US Southwest. Soil nitrate ({{{{NO}}}3}--N) pools were four times larger in water-efficient landscapes (25 ± 4 kg {{{{NO}}}3}--N/ha 0-45 cm depth) compared to turfgrass lawns (6 ± 7 kg {{{{NO}}}3}--N/ha). Soil {{{{NO}}}3}--N also varied significantly with time since landscape conversion; the largest pools occurred at 9-13 years after turfgrass removal and declined to levels comparable to turfgrass thereafter. Variation in soil {{{{NO}}}3}--N with landscape age was strongly influenced by management practices related to soil water availability, including shrub cover, sub-surface plastic sheeting, and irrigation frequency. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of {{{{NO}}}3}--N that may be lost from the plant rooting zone over time following irrigation or

  7. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  8. Influences of bulk and surface recombinations on the power conversion efficiency of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Ziang; Sun, Shuren; Yan, Yu; Wang, Wei; Qin, Laixiang; Qin, G. G.

    2016-07-01

    For a novel kind of solar cell (SC) material, it is critical to estimate how far the power conversion efficiencies (PCEs) of the SCs made of it can go. In 2010 Han and Chen proposed the equation for the ultimate efficiency of SCs without considering the carrier recombination η un. η un is capable of estimating the theoretical upper limits of the SC efficiencies and has attracted much attention. However, carrier recombination, which is one of the key factors influencing the PCEs of the SCs, is ignored in the equation for η un. In this paper, we develop a novel equation to calculate the ultimate efficiency for the SCs, η ur, which considers both the bulk and the surface carrier recombinations. The novel equation for η ur can estimate how much the bulk and the surface carrier recombinations influence the PCEs of the SCs. Moreover, with η ur we can estimate how much PCE improvement space can be gained only by reducing the influence of the carrier recombination to the least. The perovskite organometal trihalide SCs have attracted tremendous attention lately. For the planar CH3NH3PbI3 SCs, in the material depth range from 31.25-2000 nm, we apply the equation of η ur to investigate how the bulk and the surface carrier recombinations affect PCE. From a typically reported PCE of 15% for the planar CH3NH3PbI3 SC, using the equation of η ur, it is concluded that by reducing the influence of carrier recombination to the least the improvement of PCE is in the range of 17-30%.

  9. Chemical-looping combustion -- Efficient conversion of chemical energy in fuels into work

    SciTech Connect

    Anheden, M.; Naesholm, A.S.; Svedberg, G.

    1995-12-31

    In thermal power plants, a large amount of the useful energy in the fuel is destroyed during the combustion process. This paper presents theoretical thermodynamic studies of a new system to increase the energy conversion efficiency of chemical energy in fuels into work. The system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of the fuel is carried out in a two-step reaction. The first reaction step is an exothermic oxidation of a metal with air and the second reaction step an endothermic oxidation of the fuel with the metal oxide from the first step. The low grade heat in the exhaust gas is used to drive the endothermic reaction. This two-step reaction has proven to be one way to increase the energy utilization compared to conventional combustion. Results for a gas turbine reheat cycle with methane as a fuel and NiO as an oxygen carrier show that the gain in net power efficiency for the chemical-looping combustion system is as high as 5 percentage points compared to a similar conventional gas turbine system. An exergy analysis of the reactions shows that less irreversibilities are generated with chemical looping combustion than with conventional combustion. Another advantage with chemical-looping combustion is that the greenhouse gas CO{sub 2} is separated from the other exhaust gases without decreasing the overall-system thermal efficiency. This is an important feature since future regulations of CO{sub 2} emission are likely to be strict. Today, most of the suggested CO{sub 2} separation methods are considered to reduce the thermal efficiency at least 5--10 percentage points and to require expensive equipment.

  10. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%

    SciTech Connect

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-09

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% +/- 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell showed a steady-state efficiency of almost equal to 6.00% for over 100 s.

  11. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22.

    PubMed

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-01

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

  12. Effect of production quotas on economic and environmental values of growth rate and feed efficiency in sea cage fish farming

    PubMed Central

    Besson, M.; de Boer, I. J. M.; Vandeputte, M.; van Arendonk, J. A. M.; Quillet, E.; Komen, H.; Aubin, J.

    2017-01-01

    In sea cage fish farming, production quotas aim to constrain the impact of fish farming on the surrounding ecosystem. It is unknown how these quotas affect economic profitability and environmental impact of genetic improvement. We combined bioeconomic modelling with life cycle assessment (LCA) to calculate the economic (EV) and environmental (ENV) values of thermal growth coefficient (TGC) and feed conversion ratio (FCR) of sea bass reared in sea cages, given four types of quota commonly used in Europe: annual production (Qprod), annual feed distributed (Qannual_feed), standing stock (Qstock), and daily feed distributed (Qdaily_feed). ENV were calculated for LCA impact categories climate change, eutrophication and acidification. ENV were expressed per ton of fish produced per year (ENV(fish)) and per farm per year (ENV(farm)). Results show that irrespective of quota used, EV of FCR as well as ENV(fish) and ENV(farm) were always positive, meaning that improving FCR increased profit and decreased environmental impacts. However, the EV and the ENV(fish) of TGC were positive only when quota was Qstock or Qdaily_feed. Moreover, the ENV(farm) of TGC was negative in Qstock and Qdaily_feed quotas, meaning that improving TGC increased the environmental impact of the farm. We conclude that Qstock quota and Qdaily_feed quota are economically favorable to a genetic improvement of TGC, a major trait for farmers. However, improving TGC increases the environmental impact of the farm. Improving FCR represents a good opportunity to balance out this increase but more information on its genetic background is needed to develop breeding programs improving FCR. PMID:28288179

  13. Effect of production quotas on economic and environmental values of growth rate and feed efficiency in sea cage fish farming.

    PubMed

    Besson, M; de Boer, I J M; Vandeputte, M; van Arendonk, J A M; Quillet, E; Komen, H; Aubin, J

    2017-01-01

    In sea cage fish farming, production quotas aim to constrain the impact of fish farming on the surrounding ecosystem. It is unknown how these quotas affect economic profitability and environmental impact of genetic improvement. We combined bioeconomic modelling with life cycle assessment (LCA) to calculate the economic (EV) and environmental (ENV) values of thermal growth coefficient (TGC) and feed conversion ratio (FCR) of sea bass reared in sea cages, given four types of quota commonly used in Europe: annual production (Qprod), annual feed distributed (Qannual_feed), standing stock (Qstock), and daily feed distributed (Qdaily_feed). ENV were calculated for LCA impact categories climate change, eutrophication and acidification. ENV were expressed per ton of fish produced per year (ENV(fish)) and per farm per year (ENV(farm)). Results show that irrespective of quota used, EV of FCR as well as ENV(fish) and ENV(farm) were always positive, meaning that improving FCR increased profit and decreased environmental impacts. However, the EV and the ENV(fish) of TGC were positive only when quota was Qstock or Qdaily_feed. Moreover, the ENV(farm) of TGC was negative in Qstock and Qdaily_feed quotas, meaning that improving TGC increased the environmental impact of the farm. We conclude that Qstock quota and Qdaily_feed quota are economically favorable to a genetic improvement of TGC, a major trait for farmers. However, improving TGC increases the environmental impact of the farm. Improving FCR represents a good opportunity to balance out this increase but more information on its genetic background is needed to develop breeding programs improving FCR.

  14. Feeding intervention in cleft lip and palate babies: a practical approach to feeding efficiency and weight gain.

    PubMed

    Ize-Iyamu, I N; Saheeb, B D

    2011-09-01

    Using a disposable syringe to feed 1-14-week-old babies with cleft lip and palate (CLP) was studied. 57 CLP babies were randomly divided into: syringe-fed (intervention) and cup-and-spoon-fed groups and compared with 55 normal breast- or bottle-fed babies. Differences in weight gained from birth to 6, 10 and 14 weeks were compared. Syringe-fed CLP babies fed breast milk had a significant difference in weight gain (0.7 and 0.8 kg) compared with cup-and-spoon-fed babies (0.4 kg), at 10 and 14 weeks, respectively. Normal breast-fed babies gained 0.6 and 0.7 kg. Cup-and-spoon-fed CLP babies fed artificial and breast milk gained 0.5 and 0.6 kg; syringe-fed CLP babies gained 0.6 and 1.2 kg. Normal babies gained 1.0 and 1.7 kg for the same age and food. Average feeding times were 10 ml/1.25 min for syringe-fed and 10 ml/2.08 min for cup-and-spoon-fed CLP babies at 6 weeks. 19 (100%) cup-and-spoon-fed babies exhibited spill and regurgitation at 6 weeks compared with 30 (79%) CLP syringe-fed babies (P<0.05). In both groups spill and regurgitation decreased with age. CLP babies fed with the modified method had a faster feeding time, less spill and regurgitation and gained the same weight as normal babies at 10 and 14 weeks.

  15. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%

    DOE PAGES

    Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...

    2016-08-11

    The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less

  16. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    SciTech Connect

    Mohamed, Norani Muti; Zaine, Siti Nur Azella

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  17. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  18. Aspects for efficient wide spectral band THz generation via CO2 laser down conversion

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Andreev, Yu. M.; Lanskii, G. V.; Losev, V. F.; Lubenko, D. M.

    2015-02-01

    Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not doped GaSe crystals.

  19. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  20. Theoretical comparison of the energy conversion efficiencies of electrostatic energy harvesters

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Kyu

    2017-02-01

    The characteristics of a new type of electrostatic energy harvesting device, called an out-of-plane overlap harvester, are analyzed for the first time. This device utilizes a movable part that vibrates up and down on the surface of a wafer and a changing overlapping area between the vertical comb fingers. This operational principle enables the minimum capacitance to be close to 0 and significantly increases the energy conversion efficiency per unit volume. The characteristics of the out-of-plane overlap harvester, an in-plane gap-closing harvester, and an in-plane overlap harvester are compared in terms of the length, height, and width of the comb finger and the parasitic capacitance. The efficiency is improved as the length or the height increases and as the width or the parasitic capacitance decreases. In every case, the out-of-plane overlap harvester is able to create more energy and is, thus, preferable over other designs. It is also free from collisions between two electrodes caused by random vibration amplitudes and creates more energy from offaxis perturbations. This device, given its small feature size, is expected to provide more energy to various types of wireless electronics devices and to offer high compatibility with other integrated circuits and ease of embedment.

  1. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

  2. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.

    PubMed

    Shao, Wei; Gu, Feng; Li, Chunzhong; Lu, Mengkai

    2010-06-21

    Uniform mesoporous TiO(2) nanospheres were successfully developed via an interfacial confined formation process for application in dye-sensitized solar cells. The mesoporous spherical structures greatly promote the dye-loading capacity, electron transfer, and light scattering, resulting in remarkable enhancement of the cell performance. The designed interfacial platform caused a reaction-limited aggregation of the TiO(2) nanocrystals, resulting in the formation of mesoporous spherical nanostructures with sphere diameter of 216 nm and pore size of 8 nm. The oriented attachment of adjacent TiO(2) nanocrystals facilitated the electron transfer process when the mesoporous TiO(2) nanospheres were used as electrode films. The dye coverage was enhanced remarkably in the mesoporous spherical TiO(2) samples. Owing to the enhanced light-harvesting efficiency, solar conversion efficiency was enhanced about 30% for the dye-sensitized solar cell (DSSC) based on mesoporous spherical TiO(2) in comparison with that made by commercial TiO(2) nanoparticles.

  3. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency.

    PubMed

    Menke, S Matthew; Luhman, Wade A; Holmes, Russell J

    2013-02-01

    Photoconversion in planar-heterojunction organic photovoltaic cells (OPVs) is limited by a short exciton diffusion length (L(D)) that restricts migration to the dissociating electron donor/acceptor interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternative approach that seeks to directly engineer L(D) by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride into a wide-energy-gap host material, we optimize the degree of interaction between donor molecules and observe a ~50% increase in L(D). Using this approach, we construct planar-heterojunction OPVs with a power conversion efficiency of (4.4 ± 0.3)%, > 30% larger than the case of optimized devices containing an undiluted donor layer. The underlying correlation between L(D) and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.

  4. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%

    SciTech Connect

    Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; Sfeir, Matthew Y.; Nam, Chang -Yong; Tong, Xiao; Guard, Louise M.; Melvin, Patrick R.; Antonio, Francisco; Bartolome, Benjamin G.; Lee, Minjoo L.; Hazari, Nilay; Taylor, André D.

    2016-08-11

    The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, it is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.

  5. The liquid droplet radiator - An ultralightweight heat rejection system for efficient energy conversion in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1981-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.

  6. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  7. Efficient conversion of primary azides to aldehydes catalyzed by active site variants of myoglobin

    PubMed Central

    Giovani, Simone; Singh, Ritesh; Fasan, Rudi

    2015-01-01

    The oxidation of primary azides to aldehydes constitutes a convenient but underdeveloped transformation for which no efficient methods are available. Here, we demonstrate that engineered variants of the hemoprotein myoglobin can catalyze this transformation with high efficiency (up to 8,500 turnovers) and selectivity across a range of structurally diverse aryl-substituted primary azides. Mutagenesis of the 'distal' histidine residue was particularly effective in enhancing the azide oxidation reactivity of myoglobin, enabling these reactions to proceed in good to excellent yields (37-89%) and to be carried out at a synthetically useful scale. Kinetic isotope effect, isotope labeling, and substrate binding experiments support a mechanism involving heme-catalyzed decomposition of the organic azide followed by alpha hydrogen deprotonation to generate an aldimine which, upon hydrolysis, releases the aldehyde product. This work provides the first example of a biocatalytic azide-to-aldehyde conversion and expands the range of non-native chemical transformations accessible through hemoprotein-mediated catalysis. PMID:26900445

  8. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.

    PubMed

    Dau, Holger; Zaharieva, Ivelina

    2009-12-21

    Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation

  9. Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander; McKinney, Jonathan C.; Narayan, Ramesh

    2009-07-01

    Unconfined relativistic outflows from rotating, magnetized compact objects are often well modeled by assuming that the field geometry is approximately a split-monopole at large radii. Earlier work has indicated that such an unconfined flow has an inefficient conversion of magnetic energy to kinetic energy. This has led to the conclusion that ideal magnetohydrodynamical (MHD) processes fail to explain observations of, e.g., the Crab pulsar wind at large radii where energy conversion appears efficient. In addition, as a model for astrophysical jets, the monopole field geometry has been abandoned in favor of externally confined jets since the latter appeared to be generically more efficient jet accelerators. We perform time-dependent axisymmetric relativistic MHD simulations in order to find steady-state solutions for a wind from a compact object endowed with a monopole field geometry. Our simulations follow the outflow for 10 orders of magnitude in distance from the compact object, which is large enough to study both the initial "acceleration zone" of the magnetized wind as well as the asymptotic "coasting zone." We obtain the surprising result that acceleration is actually efficient in the polar region, which develops a jet despite not being confined by an external medium. Our models contain jets that have sufficient energy to account for moderately energetic long and short gamma-ray burst (GRB) events (~1051-1052 erg), collimate into narrow opening angles (opening half-angle θ j ≈ 0.03 rad), become matter-dominated at large radii (electromagnetic energy flux per unit matter energy flux σ < 1), and move at ultrarelativistic Lorentz factors (γ j ~ 200 for our fiducial model). The simulated jets have γ j θ j ~ 5-15, so they are in principle capable of generating "achromatic jet breaks" in GRB afterglow light curves. By defining a "causality surface" beyond which the jet cannot communicate with a generalized "magnetic nozzle" near the axis of rotation, we obtain

  10. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight

    PubMed Central

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  11. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight.

    PubMed

    Ceacero, Thais Matos; Mercadante, Maria Eugênia Zerlotti; Cyrillo, Joslaine Noely Dos Santos Gonçalves; Canesin, Roberta Carrilho; Bonilha, Sarah Figueiredo Martins; de Albuquerque, Lucia Galvão

    2016-01-01

    This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness

  12. Feeding protein supplements in alfalfa hay-based lactation diets improves nutrient utilization, lactational performance, and feed efficiency of dairy cows.

    PubMed

    Neal, K; Eun, J-S; Young, A J; Mjoun, K; Hall, J O

    2014-12-01

    Due to the increasing cost of soybean meal and concerns of excess N being excreted into the environment, new protein supplements have been developed. Two products that have shown potential in increasing N utilization efficiency are slow-release urea (SRU; Optigen; Alltech Inc., Nicholasville, KY) and ruminal-escape protein derived from yeast (YMP; DEMP; Alltech Inc.). The objective of this study was to assess the effects of feeding these 2 supplements in alfalfa hay-based [45.7% of forage dietary dry matter (DM)] dairy diets on nutrient utilization, feed efficiency, and lactational performance of dairy cows. Twelve multiparous dairy cows were used in a triple 4 × 4 Latin square design with one square consisting of ruminally cannulated cows. Treatments included (1) control, (2) SRU-supplemented total mixed ration (SRUT), (3) YMP-supplemented total mixed ration (YMPT), and (4) SRU- and YMP-supplemented total mixed ration (SYT). The control consisted only of a mixture of soybean meal and canola meal in a 50:50 ratio. The SRU and the YMP were supplemented at 0.49 and 1.15% DM, respectively. The experiment consisted of 4 periods lasting 28 d each (21 d of adaptation and 7 d of sampling). Cows fed YMPT and SYT had decreased intake of DM, and all supplemented treatments had lower crude protein intake compared with those fed the control. Milk yield tended to have the greatest increase in YMPT compared with the control (41.1 vs. 39.7 kg/d) as well as a tendency for increased milk fat and protein yields. Feed efficiencies based on yields of milk, 3.5% fat-corrected milk, and energy-corrected milk increased at 10 to 16% due to protein supplementation. Cows fed protein supplements partitioned less energy toward body weight gain, but tended to partition more energy toward milk production. Efficiency of use of feed N to milk N increased by feeding SRUT and YMPT, and milk N-to-manure N ratio increased with YMPT. Overall results from this experiment indicate that replacing the

  13. Impact of Dissolved Oxygen on Feed Conversion, Feed Consumption, and Growth of Blue Catfish Ictalurus furcatus, Channel Catfish I. punctatus, and Blue X Channel Catfish Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were conducted in 15 1-acre and six ¼-acre ponds over several years to determine the effect of low dissolved oxygen (DO) concentration on food conversion ratio (FCR), food consumption, growth, and net production of blue catfish (BC), channel catfish (CC), and their hybrid (BC X CC). Control ...

  14. Conversion efficiency of spin power to charge power in a normal metal with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Yan, Yonghong; Wu, Haifei; Jiang, Feng

    2016-12-01

    We theoretically investigate the conversion efficiency of spin power to charge power in a normal metal with spin-orbit coupling based on the Green's function method. The normal metal is connected with three leads. A spin current injected in one lead can induce a charge current between another two leads. We find that the conversion efficiency of spin power to charge power is roughly proportional to tSO4 when the spin-orbit coupling tSO is weak, suggesting that the efficiency is limited. Moreover, an increase of temperature may reduce the efficiency. The results may be useful in determining the overall efficiency of a thermoelectric setup based on the longitudinal spin Seebeck effect.

  15. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  16. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.

    PubMed

    Yue, Hairong; Ma, Xinbin; Gong, Jinlong

    2014-05-20

    Ethanol is an attractive end product and a versatile feedstock because a widespread market exists for its commercial use as a fuel additive or a potential substitute for gasoline. Currently, ethanol is produced primarily by fermentation of biomass-derived sugars, particularly those containing six carbons, but coproducts 5-carbon sugars and lignin remain unusable. Another major process for commercial production of ethanol is hydration of ethylene over solid acidic catalysts, yet not sustainable considering the depletion of fossil fuels. Catalytic conversion of synthetic gas (CO + H2) could produce ethanol in large quantities. However, the direct catalytic conversion of synthetic gas to ethanol remains challenging, and no commercial process exists as of today although the research has been ongoing for the past 90 years, since such the process suffers from low yield and poor selectivity due to slow kinetics of the initial C-C bond formation and fast chain growth of the C2 intermediates. This Account describes recent developments in an alternative approach for the synthesis of ethanol via synthetic gas. This process is an integrated technology consisting of the coupling of CO with methanol to form dimethyl oxalate and the subsequent hydrogenation to yield ethanol. The byproduct of the second step (methanol) can be separated and used in circulation as the feedstock for the coupling step. The coupling reaction of carbon monoxide for producing dimethyl oxalate takes place under moderate reaction conditions with high selectivity (∼95%), which ideally leads to a self-closing, nonwaste, catalytic cycling process. This Account also summarizes the progress on the development of copper-based catalysts for the hydrogenation reaction with remarkable efficiencies and stability. The unique lamellar structure and the cooperative effect between surface Cu(0) and Cu(+) species are responsible for the activity of the catalyst with high yield of ethanol (∼91%). The understanding of

  17. Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers.

    PubMed

    Russell, J R; Sexten, W J; Kerley, M S; Hansen, S L

    2016-07-01

    Feed efficiency (FE) can vary between individuals but sources of variation are not well characterized. Oxidative stress is among the biological mechanisms believed to contribute to variation. The objective of this study was to evaluate the relationship between FE, antioxidant activity, and oxidative stress in feedlot steers representing phenotypic extremes for FE. Crossbred beef steers ( = 181) fed 70-d growing phase (GP) whole-shell corn-based (G-Corn) or rye baleage and soybean hull-based (G-Rough) diets in GrowSafe bunks at the University of Missouri were shipped to Iowa State University where the 12 most feed efficient (HFE) and 12 least feed efficient (LFE) steers from each diet (n = 48; 467 kg [SD 51]) were selected for evaluation. Steers received diets similar to GP diets, and 3 d after arrival, blood was sampled to evaluate antioxidant activity and oxidative stress markers for the GP following transit. Steers were transitioned to finishing phase (FP) cracked corn-based (F-Corn) or dried distillers' grains and soybean hull-based (F-Byp) diets, and on FP d 97, blood samples for the FP were collected. Data for the GP were analyzed as a 2 × 2 factorial, and data for the FP were analyzed as a 2 × 2 × 2 factorial using PROC MIXED of SAS. No GP diet × FP diet, FP diet × FE group, or 3-way interactions were noted ( ≥ 0.11) for FP measures. Steers fed the G-Rough diet had greater ( = 0.04) GP plasma protein carbonyl concentrations. During the GP, HFE steers had greater ( ≤ 0.04) protein carbonyl and ratio of oxidized:reduced blood lysate glutathione concentrations than LFE steers. There were GP diet × FE group interactions ( ≤ 0.03) during the GP and FP. During the GP, total blood lysate superoxide dismutase (SOD) activity was greater ( ≤ 0.03) in G-Rough/LFE steers than in G-Rough/HFE and G-Corn/LFE steers; G-Corn/HFE steers were intermediate. The G-Rough/LFE steers had greater ( < 0.04) glutathione peroxidase (GPX) activity than other groups and

  18. Palatability of diets for channel catfish that contain amprolium or salinomycin using feed conversion ratio as criterion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two feeding studies were conducted to evaluate the palatability of diets for juvenile Channel Catfish Ictalurus punctatus that contained the poultry anticoccidial drugs Amprolium or Salinomycin, which are candidates to control the Channel Catfish myxozoan parasite, Henneguya ictaluri. These chemothe...

  19. Proceedings of the conference on Coal Feeding Systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.

  20. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    SciTech Connect

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  1. Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Ozkan, A.; Bogaerts, A.; Reniers, F.

    2017-03-01

    Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.

  2. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  3. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.

    PubMed

    Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun

    2015-07-10

    Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.

  4. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    PubMed Central

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans. PMID:27384922

  5. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    PubMed

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-07-07

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.

  6. Quantum-dot density dependence of power conversion efficiency of intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Sakamoto, Katsuyoshi; Kondo, Yasunori; Uchida, Keisuke; Yamaguchi, Koichi

    2012-12-01

    For intermediate-band solar cells containing GaAs/InAs quantum dots (QDs), the QD density dependence of the power conversion efficiency (PCE) was theoretically calculated for various sun concentrations under AM1.5 conditions based on detailed balance principles. A QD density of over 5 × 1013 cm-2 was required to achieve a PCE of more than 50% under 10 000 suns. However, under the photo-filled state and 1 sun, the PCE decreased over a wide total QD density range from about 3 × 1010 to 1 × 1013 cm-2. This reduction was attributed to the negative net carrier generation rate through the intermediate band, which was due to insufficient two-step optical absorption. The short-circuit current density increased as the QD density increased up to about 1 × 1011 cm-2 and it then saturated. In contrast, the open-circuit voltage decreased with increasing QD density. This reduction in the open-circuit voltage was suppressed at high sun concentrations.

  7. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  8. Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion

    PubMed Central

    Luo, Jingshan; Karuturi, Siva Krishna; Liu, Lijun; Su, Liap Tat; Tok, Alfred Iing Yoong; Fan, Hong Jin

    2012-01-01

    TiO2 nanostructures-based photoelectrochemical (PEC) cells are under worldwide attentions as the method to generate clean energy. For these devices, narrow-bandgap semiconductor photosensitizers such as CdS and CdSe are commonly used to couple with TiO2 in order to harvest the visible sunlight and to enhance the conversion efficiency. Conventional methods for depositing the photosensitizers on TiO2 such as dip coating, electrochemical deposition and chemical-vapor-deposition suffer from poor control in thickness and uniformity, and correspond to low photocurrent levels. Here we demonstrate a new method based on atomic layer deposition and ion exchange reaction (ALDIER) to achieve a highly controllable and homogeneous coating of sensitizer particles on arbitrary TiO2 substrates. PEC tests made to CdSe-sensitized TiO2 inverse opal photoanodes result in a drastically improved photocurrent level, up to ~15.7 mA/cm2 at zero bias (vs Ag/AgCl), more than double that by conventional techniques such as successive ionic layer adsorption and reaction. PMID:22693653

  9. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  10. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

    PubMed Central

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent

    2016-01-01

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape. PMID:27924857

  11. Restructuring fundamental predator-prey models by recognising prey-dependent conversion efficiency and mortality rates.

    PubMed

    Li, Jiqiu; Montagnes, David J S

    2015-05-01

    Incorporating protozoa into population models (from simple predator-prey explorations to complex food web simulations) is of conceptual, ecological, and economic importance. From theoretical and empirical perspectives, we expose unappreciated complexity in the traditional predator-prey model structure and provide a parsimonious solution, especially for protistologists. We focus on how prey abundance alters two key components of models: predator conversion efficiency (e, the proportion of prey converted to predator, before mortality loss) and predator mortality (δ, the portion of the population lost though death). Using a well-established model system (Paramecium and Didinium), we collect data to parameterize a range of existing and novel population models that differ in the functional forms of e and δ. We then compare model simulations to an empirically obtained time-series of predator-prey population dynamics. The analysis indicates that prey-dependent e and δ should be considered when structuring population models and that both prey and predator biomass also vary with prey abundance. Both of these impact the ability of the model to predict population dynamics and, therefore, should be included in theoretical model evaluations and assessment of ecosystem dynamics associated with biomass flux.

  12. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent

    2016-12-01

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.

  13. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-07-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3‑xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity.

  14. Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yi, Chao; Hu, Rong; Ren, He; Hu, Xiaowen; Wang, Shu; Gong, Xiong; Cao, Yong

    2014-01-01

    In this study, two conjugated polyelectrolytes, polythiophene derivative (PTP) and poly[(9,9-bis [6‧-N, N, N-trimethylammonium] hexyl)-fluorenylene-phenylene] dibromide (PFP), are utilized to modify the surface properties of ZnO electron extraction layer (EEL) in the inverted polymer solar cells (PSCs). Both higher short-circuit current densities and larger open-circuit voltages were observed from the inverted PSCs with ZnO/PFP or ZnO/PTP as compared with those only with ZnO EEL. The protonation process for PTP and PFP in solution is distinguished. Overall, more than 40% enhanced power conversion efficiency (PCE) from the inverted PSCs with ZnO/PFP, in which the PFP could be fully ionized in deionized water, and more than 30% enhanced PCE from the inverted PSCs with ZnO/PTP, as the case that the PTP could not be fully ionized in deionized water, as compared with the inverted PSCs with ZnO EEL were observed, respectively. These results demonstrate that the conjugated polyelectrolytes play an important role in enhancement of device performance of inverted PSCs and that the protonation process of the conjugated polyelectrolytes is critical to the modification for EEL in PSCs.

  15. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid

    PubMed Central

    Tao, Meilin; Dan Zhang; Guan, Hongyu; Huang, Guohui; Wang, Xiaohong

    2016-01-01

    Production of lactic acid from glycerol is a cascade catalytic procedure using multifunctional catalysts combined with oxidative and acidic catalytic sites. Therefore, a series of silver-exchanged phosphomolybdic acid catalysts (AgxH3−xPMo12O40, x = 1 ~ 3, abbreviated as AgxPMo) was designed and applied in glycerol oxidation with O2 as an oxidant to produce lactic acid (LA) without adding any base. Among all, total silver exchanged phosphomolybdic acid (Ag3PMo) was found to be the most active one with LA selectivity of 93% at 99% conversion under mild conditions of 5 h at 60 °C. The exceptionally high efficiency was contributed to the generation of strong Lewis acid sites, enhanced redox potentials and water-tolerance. More importantly, Ag3PMo was tolerant in crude glycerol from biodiesel production. And the reaction mechanism was also discussed. Meanwhile, Ag3PMo acted as a heterogeneous catalyst for 12 recycles without loss of activity. PMID:27431610

  16. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions.

    PubMed

    Ishihara, Hidetaka; Chen, Yen-Chang; De Marco, Nicholas; Lin, Oliver; Huang, Chih-Meng; Limsakoune, Vipawee; Chou, Yi-Chia; Yang, Yang; Tung, Vincent

    2016-12-07

    The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.

  17. Ternary blend polymer solar cells with self-assembled structure for enhancing power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.

  18. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites.

    PubMed

    Yin, Guoling; Yang, Yu; Song, Feilong; Renard, Christophe; Dang, Zhi-Min; Shi, Chang-Yong; Wang, Dongrui

    2017-02-15

    Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (∼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm(3) was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.

  19. Impact of Feed Efficiency and Diet on Adaptive Variations in the Bacterial Community in the Rumen Fluid of Cattle

    PubMed Central

    Hernandez-Sanabria, Emma; Goonewardene, Laksiri A.; Wang, Zhiquan; Durunna, Obioha N.; Moore, Stephen S.

    2012-01-01

    Limited knowledge of the structure and activities of the ruminal bacterial community prevents the understanding of the effect of population dynamics on functional bacterial groups and on host productivity. This study aimed to identify particular bacteria associated with host feed efficiency in steers with differing diets and residual feed intake (RFI) using culture-independent methods: PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis. PCR-DGGE profiles were generated from the ruminal fluid of 55 steers fed a low-energy-density diet and then switched to a high-energy-density diet. Bacterial profile comparisons by multivariate statistical analysis showed a trend only for RFI-related clusters on the high-energy diet. When steers (n = 19) belonging to the same RFI group under both diets were used to identify specific bacterial phylotypes related to feed efficiency traits, correlations were detected between dry matter intake, average daily gain, and copy numbers of the 16S rRNA gene of Succinivibrio sp. in low-RFI (efficient) steers, whereas correlations between Robinsoniella sp. and RFI (P < 0.05) were observed for high-RFI (inefficient) animals. Eubacterium sp. differed significantly (P < 0.05) between RFI groups that were only on the high-energy diet. Our work provides a comprehensive framework to understand how particular bacterial phylotypes contribute to differences in feed efficiency and ultimately influence host productivity, which may either depend on or be independent from diet factors. PMID:22156428

  20. NASA-OAST/JPL high efficiency thermionic conversion studies. [nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Efforts were made to develop a thermionic energy conversion TEC technology appropriate for nuclear electric propulsion missions. This space TEC effort was complementary to the terrestrial TEC studies sponsored by the Department of Energy which had the goal of topping fossil fuel power plants. Thermionic energy conversion was a primary conversion option for space reactors because of its: (1) high operating temperature; (2) lack of moving parts; (3) modularity; (4) established technology; and (5) development potential.

  1. A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells.

    PubMed

    Yao, Zhaoyang; Zhang, Min; Li, Renzhi; Yang, Lin; Qiao, Yongna; Wang, Peng

    2015-05-11

    Reported are two highly efficient metal-free perylene dyes featuring N-annulated thienobenzoperylene (NTBP) and N-annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal-free organic dye derived from the NTCP segment was used for a dye-sensitized solar cell which attained a power conversion efficiency of 12% under an irradiance of 100 mW cm(-2), simulated air mass global (AM1.5G) sunlight.

  2. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    SciTech Connect

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  3. Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Raja, K. S.; Mahajan, V. K.; Misra, M.

    Anodized and annealed titanium oxide nanotubes show enhanced photo activity and can be used as photo anodes for water electrolysis in hydrogen generation. Application of an external potential to the photo anode is required for enhancement of the photocurrent. This additional electrical energy input complicates the photo conversion efficiency calculation. In this investigation, the photo-electrochemical behavior of anodized titanium oxide nanotubular arrays have been characterized in various electrolytes. Increase in the applied potential increased the photocurrent under illumination with visible light. A simple experimental method for calculating the photo conversion efficiency has been proposed. According to this method, the potential difference between the photo anode and cathode is measured with and without light illumination. The product of the photocurrent and the increase in potential due to light irradiation is considered as the net power output. The photocurrent and the conversion efficiency increased with increase in the pH of the electrolyte. TiO 2 nanotubular arrays annealed at 350 °C for 6 h in nitrogen atmosphere showed a maximum photo conversion efficiency of ∼4% in 1 M KOH electrolyte and ∼3% in 3.5 wt.% sodium chloride solution. The results indicate that nanotubular TiO 2 can be potentially used for the photo electrolysis of seawater to generate hydrogen.

  4. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen "Clostridium ragsdalei".

    PubMed

    Isom, Catherine E; Nanny, Mark A; Tanner, Ralph S

    2015-01-01

    "Clostridium ragsdalei" is an acetogen that ferments synthesis gas (syngas, predominantly H2:CO2:CO) to ethanol, acetate, and cell mass. Previous research showed that C. ragsdalei could also convert propionic acid to 1-propanol and butyric acid to 1-butanol at conversion efficiencies of 72.3 and 21.0 percent, respectively. Our research showed that C. ragsdalei can also reduce pentanoic and hexanoic acid to the corresponding primary alcohols. This reduction occurred independently of growth in an optimized medium with headspace gas exchange (vented and gassed with CO) every 48 h. Under these conditions, conversion efficiencies increased to 97 and 100 % for propionic and butyric acid, respectively. The conversion efficiencies for pentanoic and hexanoic acid to 1-pentanol and 1-hexanol, respectively, were 82 and 62 %. C. ragsdalei also reduced acetone to 2-propanol at a conversion efficiency of 100 %. Further, we showed that C. ragsdalei uses an aldehyde oxidoreductase-like enzyme to reduce n-fatty acids to the aldehyde intermediates in a reaction that requires ferredoxin and exogenous CO.

  5. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants.

    PubMed

    Lin, Yu-Hsiang; Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2011-01-01

    Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1-3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.

  6. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation.

  7. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis

    PubMed Central

    Pavlovič, Andrej; Krausko, Miroslav; Libiaková, Michaela; Adamec, Lubomír

    2014-01-01

    Backround and Aims It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. Methods Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). Key Results Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). Conclusions According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved

  8. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    SciTech Connect

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  9. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Hrma, Pavel; Washton, Nancy; Schweiger, Michael J.; Kruger, Albert A.

    2017-01-01

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700 °C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500 °C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (∼8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  10. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  11. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  12. GENOME-WIDE ASSOCIATION ANALYSIS FOR FEED EFFICIENCY IN ANGUS CATTLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypes for average daily feed intake (AFI; kg/d), residual feed intake (RFI; kg/d), average daily gain (ADG; kg/d) and predicted dry matter required (pDMR; kg/d) were estimated by correcting field records for effects of pen, year and season using a mixed linear model incorporating genomic relati...

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  14. Genetic Determinism of Fearfulness, General Activity and Feeding Behavior in Chickens and Its Relationship with Digestive Efficiency.

    PubMed

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Le Bihan-Duval, Elisabeth; Bertin, Aline

    2017-01-01

    The genetic relationships between behavior and digestive efficiency were studied in 860 chickens from a cross between two lines divergently selected on digestive efficiency. At 2 weeks of age each chick was video-recorded in the home pen to characterize general activity and feeding behavior. Tonic immobility and open-field tests were also carried out individually to evaluate emotional reactivity (i.e. the propensity to express fear responses). Digestive efficiency was measured at 3 weeks. Genetic parameters of behavior traits were estimated. Birds were genotyped on 3379 SNP markers to detect QTLs. Heritabilities of behavioral traits were low, apart from tonic immobility (0.17-0.18) and maximum meal length (0.14). The genetic correlations indicated that the most efficient birds fed more frequently and were less fearful. We detected 14 QTL (9 for feeding behavior, 3 for tonic immobility, 2 for frequency of lying). Nine of them co-localized with QTL for efficiency, anatomy of the digestive tract, feed intake or microbiota composition. Four genes involved in fear reactions were identified in the QTL for tonic immobility on GGA1.

  15. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.

    PubMed

    Guo, Jianchang; Liang, Yongye; Szarko, Jodi; Lee, Byeongdu; Son, Hae Jung; Son, Hae Jun; Rolczynski, Brian S; Yu, Luping; Chen, Lin X

    2010-01-21

    Molecular packing structures and photoinduced charge separation dynamics have been investigated in a recently developed bulk heterojunction (BHJ) organic photovoltaic (OPV) material based on poly(thienothiophene-benzodithiophene) (PTB1) with a power conversion efficiency (PCE) of >5% in solar cell devices. Grazing incidence X-ray scattering (GIXS) measurements of the PTB1:PCBM ([6,6]-phenyl-C(61)-butyric acid methyl ester) films revealed pi-stacked polymer backbone planes oriented parallel to the substrate surface, in contrast to the pi-stacked polymer backbone planes oriented perpendicular to the substrate surface in regioregular P3HT [poly(3-hexylthiophene)]:PCBM films. A approximately 1.7 times higher charge mobility in the PTB1:PCBM film relative to that in P3HT:PCBM films is attributed to this difference in stacking orientation. The photoinduced charge separation (CS) rate in the pristine PTB1:PCBM film is more than twice as fast as that in the annealed P3HT:PCBM film. The combination of a small optical gap, fast CS rate, and high carrier mobility in the PTB1:PCBM film contributes to its relatively high PCE in the solar cells. Contrary to P3HT:PCBM solar cells, annealing PTB1:PCBM films reduced the device PCE from 5.24% in the pristine film to 1.92% due to reduced interfacial area between the electron donor and the acceptor. Consequently, quantum yields of exciton generation and charge separation in the annealed film are significantly reduced compared to those in the pristine film.

  16. Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells.

    PubMed

    Xiao, Minyu; Joglekar, Suneel; Zhang, Xiaoxian; Jasensky, Joshua; Ma, Jialiu; Cui, Qingyu; Guo, L Jay; Chen, Zhan

    2017-03-08

    A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.

  17. A theoretical analysis of the current-voltage characteristics of solar cells. [and their energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.

  18. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  19. Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes.

    PubMed

    Liu, Che-Yu; Chen, Tzu-Pei; Kao, Tsung Sheng; Huang, Jhih-Kai; Kuo, Hao-Chung; Chen, Yang-Fang; Chang, Chun-Yen

    2016-08-22

    A large enhancement of color-conversion efficiency of colloidal quantum dots in light-emitting diodes (LEDs) with novel structures of nanorods embedded in microholes has been demonstrated. Via the integration of nano-imprint and photolithography technologies, nanorods structures can be fabricated at specific locations, generating functional nanostructured LEDs for high-efficiency performance. With the novel structured LED, the color-conversion efficiency of the existing quantum dots can be enhanced by up to 32.4%. The underlying mechanisms can be attributed to the enhanced light extraction and non-radiative energy transfer, characterized by conducting a series of electroluminescence and time-resolved photoluminescence measurements. This hybrid nanostructured device therefore exhibits a great potential for the application of multi-color lighting sources.

  20. The first picoseconds in bacterial photosynthesis--ultrafast electron transfer for the efficient conversion of light energy.

    PubMed

    Zinth, Wolfgang; Wachtveitl, Josef

    2005-05-01

    In this Minireview, we describe the function of the bacterial reaction centre (RC) as the central photosynthetic energy-conversion unit by ultrafast spectroscopy combined with structural analysis, site-directed mutagenesis, pigment exchange and theoretical modelling. We show that primary energy conversion is a stepwise process in which an electron is transferred via neighbouring chromophores of the RC. A well-defined chromophore arrangement in a rigid protein matrix, combined with optimised energetics of the different electron carriers, allows a highly efficient charge-separation process. The individual molecular reactions at room temperature are well described by conventional electron-transfer theory.

  1. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    SciTech Connect

    Pannone, Greg; Thomas, John F; Reale, Michael; Betz, Brian

    2017-01-01

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.

  2. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

    PubMed

    Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang

    2017-02-16

    Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further

  3. Gene expression in breast muscle and duodenum from low and high feed efficient broilers.

    PubMed

    Ojano-Dirain, C; Toyomizu, M; Wing, T; Cooper, M; Bottje, W G

    2007-02-01

    This study was conducted to evaluate messenger RNA (mRNA) expression of genes that are involved in energy metabolism and mitochondrial biogenesis: avian adenine nucleotide translocator (avANT), cytochrome oxidase III (COX III), inducible nitric oxide synthase (iNOS), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), avian PPAR-gamma coactivator-1alpha (avPGC-1alpha), and avian uncoupling protein in breast muscle and duodenum of broilers with low and high feed efficiency (FE). Total RNA was extracted from snap-frozen tissues from male broilers with low (0.55 +/- 0.01) and high (0.72 +/- 0.01) FE (n = 8 per group). Total RNA was reverse-transcribed using oligo(dT), random primers, or both followed by real-time reverse transcription-PCR. Protein oxidation, measured as protein carbonyls, was also evaluated in duodenal mucosa. Protein carbonyls were higher in low FE mucosa in tissue homogenate and mitochondrial fraction. The mRNA expression of iNOS and PPAR-gamma in the duodenum was lower in the low FE broilers, with no differences in avANT, COX III, and avPGC-1alpha. In contrast, expression of avANT and COX III mRNA in breast muscle was lower in low FE broilers with no differences in iNOS, PPAR-gamma, and avPGC-1alpha. The avian uncoupling protein in breast muscle was higher in low FE birds (P = 0.068). These results indicate that there are differences in the expression of mRNA encoding for mitochondrial transcription factors and proteins in breast muscle and duodenal tissue between low and high FE birds. The differences that were observed may also reflect inherent metabolic and gene regulation differences between tissues.

  4. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    -hydroxybutyrate were not altered by the treatments. Results demonstrate that palmitic acid is more effective than stearic acid in improving milk fat concentration and yield as well as efficiency of feed conversion to milk. Responses were independent of production level and without changes in body condition score or body weight. Further studies are required to test the consistency of these responses across different types of diets.

  5. Effects of Natustat supplementation on performance, feed efficiency and intestinal lesion scores in broiler chickens challenged with Eimeria acervulina, Eimeria maxima and Eimeria tenella.

    PubMed

    Duffy, C F; Mathis, G F; Power, R F

    2005-06-30

    The effects of dietary supplementation of Natustat, a proprietary plant derived product (Alltech Inc., KY, USA) and Salinomycin, on performance, feed efficiency and intestinal lesion scores were observed during two Eimeria challenge trials in broiler chickens. In the first trial chickens were challenged with Eimeria sp. via infecting the litter with a known amount of Eimeria oocysts. In the second trial the source of the Eimeria challenge was the litter from the first trial and the same treatment groups were assigned to the same pens as in the initial trial. Birds were placed 55 per pen with seven pens per treatment. Performance parameters were recorded on days 21 and 42 during both trials. Intestinal lesion scores were assessed on days 14 and 21 during Trial 1 and on day 21 during Trial 2. Average weight gain and feed conversion ratios were significantly improved in the Natustat and Salinomycin treatment groups when compared to the non-supplemented infected group. Furthermore, lesion scores were lower on all sampling days in the Natustat and Salinomycin groups when compared to the non-supplemented group. However, only lesions associated with Eimeria tenella were significantly lowered by Natustat and Salinomycin supplementation. Natustat and Salinomycin were equivalent in alleviating the negative performance effects associated with coccidiosis challenge. In summary, Natustat has the potential to be used as a natural alternative to chemotherapeutic drugs for Eimeria control.

  6. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake.

    PubMed

    Do, Duy N; Strathe, Anders B; Ostersen, Tage; Pant, Sameer D; Kadarmideen, Haja N

    2014-01-01

    pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.

  7. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do

  8. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells

    NASA Astrophysics Data System (ADS)

    Nakamura, Akihiro; Ota, Yasuyuki; Koike, Kayo; Hidaka, Yoshihide; Nishioka, Kensuke; Sugiyama, Masakazu; Fujii, Katsushi

    2015-10-01

    The highest efficiency of 24.4% for the solar-to-hydrogen (STH) energy conversion was obtained in an outdoor field test by combining concentrator photovoltaic (CPV) modules with InGaP/GaAs/Ge three-junction cells and polymer-electrolyte electrochemical (EC) cells. The high efficiency was obtained by using the high-efficiency CPV modules (∼31% under the present operation conditions) and the direct connection between the CPV modules and the EC cells with an almost optimized number of elements in series. The STH efficiency bottleneck was clarified to be the efficiency of the CPV modules, the over-potential of the EC cells, and matching of the operation point to the maximal-power point of the CPV modules.

  9. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  10. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria.

    PubMed

    Stanley, Dragana; Hughes, Robert J; Geier, Mark S; Moore, Robert J

    2016-01-01

    Identification of bacteria associated with desirable productivity outcomes in animals may offer a direct approach to the identification of probiotic bacteria for use in animal production. We performed three controlled chicken trials (n = 96) to investigate caecal microbiota differences between the best and poorest performing birds using four performance measures; feed conversion ratio (FCR), utilization of energy from the feed measured as apparent metabolisable energy, gain rate (GR), and amount of feed eaten (FE). The shifts in microbiota composition associated with the performance measures were very different between the three trials. Analysis of the caecal microbiota revealed that the high and low FCR birds had significant differences in the abundance of some bacteria as demonstrated by shifts in microbiota alpha and beta diversity. Trials 1 and 2 showed significant overall community shifts, however, the microbial changes driving the difference between good and poor performers were very different. Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families and genera Ruminococcus, Faecalibacterium and multiple lineages of genus Clostridium (from families Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae) were highly abundant in good FCR birds in Trial 1. Different microbiota was associated with FCR in Trial 2; Catabacteriaceae and unknown Clostridiales family members were increased in good FCR and genera Clostridium (from family Clostridiaceae) and Lactobacillus were associated with poor FCR. Trial 3 had only mild microbiota differences associated with all four performance measures. Overall, the genus Lactobacillus was correlated with feed intake which resulted in poor FCR performance. The genus Faecalibacterium correlated with improved FCR, increased GR and reduced FE. There was overlap in phylotypes correlated with improved FCR and GR, while different microbial cohorts appeared to be correlated with FE. Even under controlled conditions different

  11. Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria

    PubMed Central

    Stanley, Dragana; Hughes, Robert J.; Geier, Mark S.; Moore, Robert J.

    2016-01-01

    Identification of bacteria associated with desirable productivity outcomes in animals may offer a direct approach to the identification of probiotic bacteria for use in animal production. We performed three controlled chicken trials (n = 96) to investigate caecal microbiota differences between the best and poorest performing birds using four performance measures; feed conversion ratio (FCR), utilization of energy from the feed measured as apparent metabolisable energy, gain rate (GR), and amount of feed eaten (FE). The shifts in microbiota composition associated with the performance measures were very different between the three trials. Analysis of the caecal microbiota revealed that the high and low FCR birds had significant differences in the abundance of some bacteria as demonstrated by shifts in microbiota alpha and beta diversity. Trials 1 and 2 showed significant overall community shifts, however, the microbial changes driving the difference between good and poor performers were very different. Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families and genera Ruminococcus, Faecalibacterium and multiple lineages of genus Clostridium (from families Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae) were highly abundant in good FCR birds in Trial 1. Different microbiota was associated with FCR in Trial 2; Catabacteriaceae and unknown Clostridiales family members were increased in good FCR and genera Clostridium (from family Clostridiaceae) and Lactobacillus were associated with poor FCR. Trial 3 had only mild microbiota differences associated with all four performance measures. Overall, the genus Lactobacillus was correlated with feed intake which resulted in poor FCR performance. The genus Faecalibacterium correlated with improved FCR, increased GR and reduced FE. There was overlap in phylotypes correlated with improved FCR and GR, while different microbial cohorts appeared to be correlated with FE. Even under controlled conditions different

  12. Effects of the graphene content on the conversion efficiency of P3HT:Graphene based organic solar cells

    NASA Astrophysics Data System (ADS)

    Bkakri, R.; Chehata, N.; Ltaief, A.; Kusmartseva, O. E.; Kusmartsev, F. V.; Song, M.; Bouazizi, A.

    2015-10-01

    We investigate the effects of the insertion of graphene in the matrix of regioregular poly (3-hexylthiophene-2,5-diyl) (RR-P3HT) on the conversion efficiency of ITO/P3HT:Graphene/Au solar cells. The X-ray diffraction (XRD) measurements show that progressive addition of graphene reduces the degree of order of P3HT lamellae along the hexyl-side direction (a-axis). The insertion of low graphene content in the P3HT matrix reduces the RMS roughness of the P3HT thin film, and improves the optical absorption properties of the device in the visible range. However for high doping level we observe the formation of graphene aggregates which in turn reduces the optical absorption properties of the device. The observed effects arising after addition of graphene to P3HT, and their relationship with the conversion efficiency of the devices are discussed in this work.

  13. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    PubMed

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.

  14. Role of dc space charge field in the optimization of microwave conversion efficiency from a modulated intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Wu, Ping; Song, Zhimin; Sun, Jun

    2013-12-01

    We demonstrate an efficiency of 70% with 5.1 GW microwave power for a diode voltage of 770 kV and a current modulation coefficient of 1.67 in a klystron-like relativistic backward wave oscillator. The device combines the advantages of reducing electron beam radius, adopting dual-cavity extractor, and introducing two pre-modulation cavities. A large dc space charge field is present due to the conversion of considerable potential energy to kinetic energy at the end of beam-wave interaction region. A nonlinear theory is developed to show that the dc space charge field can increase the current modulation coefficient and microwave conversion efficiency significantly.

  15. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Sabry; Simbula, Angelica; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2017-03-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10-3 W-1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  16. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    SciTech Connect

    Li, Xia; Bi, Wanjun; Chen, Wei; Xue, Tianfeng; Hu, Lili; Liao, Meisong; Gao, Weiqing

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferred into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.

  17. Meal frequency changes the basal and time-course profiles of plasma nutrient concentrations and affects feed efficiency in young growing pigs.

    PubMed

    Le Naou, T; Le Floc'h, N; Louveau, I; van Milgen, J; Gondret, F

    2014-05-01

    Ingested dietary nutrients and feed energy are partitioned among tissues to sustain body growth. Based on the respective costs of the various metabolic pathways allowing use and storage of feed energy into cells, it may be theorized that daily meal frequency could affect growth, body composition or feed efficiency. This study aimed to determine the effects of daily meal frequency on nutrient partitioning, tissue metabolism and composition, and performance. Young growing pigs (30 kg BW) were offered a same amount of feed either in 2 (M2, n = 15) or 12 (M12, n = 16) meals per day during a 3-wk interventional period. Animals fed twice a day had an accelerated weight gain (+6.4%, P < 0.05) and exhibited a greater G:F (+4%, P = 0.03) than animals fed 12 meals per day during this period. Basal plasma concentrations of glucose, lactate, triglyceride, urea, and leptin were lower (P < 0.001) in M2 pigs than in M12 pigs. Meal frequency also changed (P < 0.001) the time-course profiles of plasma concentrations of glucose, insulin, and lactate in response to meal ingestion. A greater rise and a sharper fall in plasma glucose and insulin levels were observed in M2 pigs compared with M12 pigs. In both groups, similarities were observed in the postprandial time courses of plasma concentrations of insulin and of α-amino nitrogen (used as a measure of total AA). Despite these metabolic responses, tissue lipids, glycogen content, and enzyme activities participating in energy metabolism in muscle and liver were similar (P > 0.10) in both groups at the end of the trial. Percentage of perirenal fat in the body and depth of dorsal subcutaneous fat tissue were not affected by meal frequency, but kidney weight was lower (-18%, P < 0.001) in M2 pigs than in M12 pigs. Altogether, the less frequent daily meal intake improves the conversion of feed into weight gain, without marked modifications of tissue composition in young pigs.

  18. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  19. Enhancing the power conversion efficiency of dye-sensitized solar cells via molecular plasmon-like excitations.

    PubMed

    Li, Jian-Hao; Gryn'ova, Ganna; Prlj, Antonio; Corminboeuf, Clémence

    2017-02-21

    We introduce a tactic for employing molecular plasmon-like excitations to enhance solar-to-electric power conversion efficiency of dye-sensitized solar cells. We offer general design principles of dimeric dyes, in which a strong plasmonic interaction between two π-conjugated moieties is promoted. The π-stacked conformations of these dimeric dyes result in a desirable broadened absorption and a longer absorption onset wavelength.

  20. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  1. Conversion of distiller's grain into fuel alcohol and a higher-value animal feed by dilute-acid pretreatment.

    PubMed

    Tucker, Melvin P; Nagle, Nicholas J; Jennings, Edward W; Ibsen, Kelly N; Aden, Andy; Nguyen, Quang A; Kim, Kyoung H; Noll, Sally L

    2004-01-01

    Over the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement. The sale of residual DG for animal feed is an important part of corn dry-grind ethanol production economics; therefore, dry-grind ethanol producers are seeking ways to improve the quality of DG to increase market penetration and help stabilize prices. One possible improvement is to increase the protein content of DG by converting the residual starch and fiber into ethanol. We have developed methods for steam explosion, SO2, and dilute-sulfuric acid pretreatment of DG for evaluation as a feedstock for ethanol production. The highest soluble sugar yields (approximately 77% of available carbohydrate) were obtained by pretreatment of DG at 140 degrees C for 20 min with 3.27 wt% H2SO4. Fermentation protocols for pretreated DG were developed at the bench scale and scaled to a working volume of 809 L for production of hydrolyzed distiller's grain (HDG) for feeding trials. The pretreated DG was fermented with Saccharomyces cerevisiae D5A, with ethanol yields of 73% of theoretical from available glucans. The HDG was air-dried and used for turkey-feeding trials. The inclusion of HDG into turkey poult (as a model non-ruminant animal) diets at 5 and 10% levels, replacing corn and soybean meal, showed weight gains in the birds similar to controls, whereas 15 and 20% inclusion levels showed slight decreases (-6%) in weight gain. At the conclusion of the trial, no negative effects on internal organs or morphology, and no mortality among the poults, was found. The high protein levels (58-61%) available in HDG show promising economics for incorporation of this process into corn dry-grind ethanol plants.

  2. Identification of single nucleotide polymorphisms in genes involved in digestive and metabolic processes associated with feed efficiency and performance traits in beef cattle.

    PubMed

    Abo-Ismail, M K; Kelly, M J; Squires, E J; Swanson, K C; Bauck, S; Miller, S P

    2013-06-01

    Discovery of genetic mutations that have a significant association with economically important traits would benefit beef cattle breeders. Objectives were to identify with an in silico approach new SNP in 8 genes involved in digestive function and metabolic processes and to examine the associations between the identified SNP and feed efficiency and performance traits. The association between SNP and daily DMI, ADG, midpoint metabolic weight (MMWT), residual feed intake (RFI), and feed conversion ratio (FCR; the ratio of average daily DMI to ADG) was tested in discovery and validation populations using a univariate mixed-inheritance animal model fitted in ASReml. Substitution effect of the T allele of SNP rs41256901 in protease, serine, 2 (trypsin 2; PRSS2) was associated with FCR (-0.293 ± 0.08 kg DMI kg(-1) BW gain; P < 0.001) and RFI (-0.199 ± 0.08 kg; P < 0.01) and although not significant in the validation population, the phase of association remained. In the cholecystokinin B receptor (CCKBR) gene, genotypes in rs42670351 were associated with RFI (P < 0.05) whereas genotypes in rs42670352 were associated with RFI (P = 0.002) and DMI (P < 0.05). Substitution of the G allele in rs42670352 was associated with DMI (-0.236 ± 0.12 kg; P = 0.055) and RFI (-0.175 ± 0.09 kg; P = 0.05). Substitution of the G allele of SNP rs42670353 was associated with ADG (0.043 ± 0.02 kg/d; P < 0.01) and FCR (0.114 ± 0.05 kg BW gain kg(-1) DMI; P < 0.05). In the validation dataset, SNP rs42670352 in gene CCKBR was significant for RFI and DMI and had the same phase of associations; SNP rs42670353 was significantly associated with FCR with same phase of association and the C allele in SNP rs42670351 was validated as decreasing DMI, RFI, and FCR. Substituting the G allele of SNP rs42670352 in CCKBR2 was associated with decreasing DMI and RFI in the validation study. New SNP were reported in genes PRSS2 and CCKBR, being associated with feed efficiency and performance traits in beef

  3. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    PubMed

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the

  4. Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles.

    PubMed

    Liu, Huiyu; Liu, Tianlong; Wang, Hai; Li, Linlin; Tan, Longfei; Fu, Changhui; Nie, Guangjun; Chen, Dong; Tang, Fangqiong

    2013-09-01

    As an excellent photothermal agent candidate, gold nanoshells have attracted a great deal of attention, but the influences of PEGylation on their biological effects and light heat conversion efficiency remain unclear. Here we investigate the influences of PEGylation density on the gold nanoshells on silica nanorattles (GSNPs) to their biological effects, including their cellular uptake, "corona" of biological macromolecules they are covered with, in vivo biodistribution and toxicities, and their in vitro and in vivo light heat conversion efficiency. The results suggest PEGylation obviously impacts the uptake patterns of GSNPs. Less-density PEGylated GSNPs show enhanced cellular uptake caused by the high dose exposure on cell surface due to their rapid aggregation. High-density PEGylated GSNPs show advantages in less toxicity for suppression of aggregation of GSNPs, avoidance of RES, good enhanced permeability and retention (EPR) effect of cancerous tumors, especially the enhanced light heat conversion efficiency in vivo. Less or insufficient PEGylation may induce in vivo toxicity. This study highlights the need to study the effect of PEGylation for near infrared (NIR) light absorbing nanoparticles to predict the effects and safety of nanotherapeutics.

  5. High efficiency light source using solid-state emitter and down-conversion material

    DOEpatents

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  6. Between-host phylogenetic distance and feeding efficiency in hematophagous ectoparasites: rodent fleas and a bat host.

    PubMed

    Krasnov, Boris R; Korine, Carmi; Burdelova, Nadezhda V; Khokhlova, Irina S; Pinshow, Berry

    2007-07-01

    We hypothesized that a parasite exploits most effectively its principal host, less effectively a host that is phylogenetically close to its principal host, and least effectively a host that is phylogenetically distant from its principal host. We tested this hypothesis by quantifying the feeding efficiency of two flea species (Parapulex chephrenis and Xenopsylla ramesis) on two rodents, Acomys cahirinus, the specific host of P. chephrenis, and Meriones crassus, a preferred host of X. ramesis, and one bat, Rousettus aegyptiacus, an alien host to both flea species. In both fleas, fewer individuals succeed in feeding when offered with their nonspecific or nonpreferred rodent host to feed on compared with those allowed to feed on their preferred or specific rodent host or, surprisingly, on a bat. The proportion of P. chephrenis that fed was higher on A. cahirinus than on R. aegyptiacus. In contrast, similar proportions of X. ramesis took blood from M. crassus and R. aegyptiacus. The mass-independent size of the blood meal taken by the fleas differed significantly between species, being higher in X. ramesis than in P. chephrenis. However, each flea species took similar amounts of blood from any of the three host species. The duration of early, middle, and late digestion stages differed significantly between P. chephrenis and Xenopsylla conformis, all being shorter in the former, independent of the source of blood. Both fleas digested bat blood significantly faster than the blood of either rodent host. The time of survival after a single blood meal differed significantly between flea species, with X. ramesis surviving significantly longer than P. chephrenis, although no effect of host species on flea survival was found. In terms of the evaluation criteria that we used, we concluded that (a) the alien bat host appeared not to be inferior as a source of food to a rodent host phylogenetically close to the flea's principal host and (b) that the rarity of finding rodent fleas

  7. Colostrum replacer feeding regimen, addition of sodium bicarbonate, and milk replacer: the combined effects on absorptive efficiency of immunoglobulin G in neonatal calves.

    PubMed

    Cabral, R G; Cabral, M A; Chapman, C E; Kent, E J; Haines, D M; Erickson, P S

    2014-01-01

    Eighty Holstein and Holstein cross dairy calves were blocked by birth date and randomly assigned to 1 of 8 treatments within each block to examine the effect of a colostrum replacer (CR) feeding regimen, supplementation of CR with sodium bicarbonate (NaHCO3), and provision of a milk replacer (MR) feeding on IgG absorption. Calves were offered a CR containing 184.5g/L of IgG in either 1 feeding at 0h (within 30 min of birth), with or without 30g of NaHCO3, with or without a feeding of MR at 6h of age, or 2 feedings of CR (123g of IgG at 0h with or without 20g of NaHCO3 and 61.5g of IgG at 6h with or without 10g of NaHCO3), with or without a MR feeding at 12h. Therefore, treatments were (1) 1 feeding of CR; (2) 2 feedings of CR; (3) 1 feeding of CR + 30g of NaHCO3; (4) 2 feedings of CR + 30g of NaHCO3; (5) 1 feeding of CR + MR feeding; (6) 2 feedings of CR + MR feeding; (7) 1 feeding of CR + 30g NaHCO3 + MR feeding; and (8) 2 feedings of CR + 30g NaHCO3 + MR feeding. Blood samples were obtained at 0, 6, 12, 18, and 24h after birth and were analyzed for IgG via radial immunoassay. Results indicated that CR feeding schedule, MR feeding, and the interactions CR × Na, CR × MR, and CR × Na × MR were similar for 24-h serum IgG, apparent efficiency of absorption, or area under the curve. Serum IgG at 24h, apparent efficiency of absorption, and area under the curve were decreased with addition of NaHCO3 compared with calves not supplemented with NaHCO3. These data indicate that supplementation of CR with NaHCO3 is not beneficial to IgG absorption and feeding MR within 6h of CR feeding does not affect IgG absorption.

  8. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency.

    PubMed

    Jeong, Sangmoo; McGehee, Michael D; Cui, Yi

    2013-01-01

    Thinner Si solar cells with higher efficiency can make a Si photovoltaic system a cost-effective energy solution, and nanostructuring has been suggested as a promising method to make thin Si an effective absorber. However, thin Si solar cells with nanostructures are not efficient because of severe Auger recombination and increased surface area, normally yielding <50% EQE with short-wavelength light. Here we demonstrate >80% EQEs at wavelengths from 400 to 800 nm in a sub-10-μm-thick Si solar cell, resulting in 13.7% power conversion efficiency. This significant improvement was achieved with an all-back-contact design preventing Auger recombination and with a nanocone structure having less surface area than any other nanostructures for solar cells. The device design principles presented here balance the photonic and electronic effects together and are an important step to realizing highly efficient, thin Si and other types of thin solar cells.

  9. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes.

    PubMed

    Erdem, Talha; Nizamoglu, Sedat; Demir, Hilmi Volkan

    2012-01-30

    We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of ≥90 (with R9 at least 70), a luminous efficacy of optical radiation of ≥380 lm/W(opt) a correlated color temperature of ≤4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W(elect) can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used.

  10. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.

    PubMed

    Li, Yanbo; Zhang, Li; Torres-Pardo, Almudena; González-Calbet, Jose M; Ma, Yanhang; Oleynikov, Peter; Terasaki, Osamu; Asahina, Shunsuke; Shima, Masahide; Cha, Dongkyu; Zhao, Lan; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2013-01-01

    Spurred by the decreased availability of fossil fuels and global warming, the idea of converting solar energy into clean fuels has been widely recognized. Hydrogen produced by photoelectrochemical water splitting using sunlight could provide a carbon dioxide lean fuel as an alternative to fossil fuels. A major challenge in photoelectrochemical water splitting is to develop an efficient photoanode that can stably oxidize water into oxygen. Here we report an efficient and stable photoanode that couples an active barium-doped tantalum nitride nanostructure with a stable cobalt phosphate co-catalyst. The effect of barium doping on the photoelectrochemical activity of the photoanode is investigated. The photoanode yields a maximum solar energy conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency of almost unity for 100 min.

  11. Evaluating low lignin mutants of forage sorghum for increased conversion efficiency to sugars and ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced lignin near-isogenic lines of Atlas bmr-6, bmr-12, and bmr-6 bmr-12 forage sorghum (Sorghum biocolor (L.)) were evaluated as sources of biomass for conversion to sugars and ethanol. These mutants have the advantage of reduced lignin contents and high biomass yields. Field replicates of wil...

  12. Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage.

    PubMed

    Yu, Minghao; Han, Yi; Cheng, Xinyu; Hu, Le; Zeng, Yinxiang; Chen, Meiqiong; Cheng, Faliang; Lu, Xihong; Tong, Yexiang

    2015-05-20

    Holey tungsten oxynitride nanowires with superior conductivity, good biocompatibility, and good stability achieve excellent performance as anodes for both asymmetric supercapacitors and microbial fuel cells. Moreover, an innovative system is devised based on these as-prepared tungsten oxynitride anodes, which can simultaneously realize both energy conversion from chemical to electric energy and its storage.

  13. Genetic variation among sorghum and Brachypodium distachyon accessions for biological conversion efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the well-developed microbial system, Clostridium phytofermentans, we developed an assay that provides the ability to measure the impact of pretreatment, conversion processes, and microbial and plant genetic diversity of digestibility, and thereby determine the potential effects of numerous var...

  14. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance

  15. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as

  16. Determining Suction Feeding Efficiency in the Bowfin fish (Amia) using Particle Image Velocimery and Computaional Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rua, Yenny; Kharbouch, Karim; Sanford, Christopher; Reckinger, Shanon

    2014-11-01

    Suction feeding is the most common form of prey capture in aquatic vertebrates. During the early evolution of fishes there was a major change in shape of the mouth, from a wedge shaped mouth opening in more primitive fishes to a more circular and planar mouth. This change in shape resulted from increased mobility of a key upper jaw bone, the maxilla. It has been suggested that this change in shape dramatically increased suction feeding efficiency. This study examines the hydrodynamic effects of these two mouth shapes in the same animal, the bowfin fish (Amia calva). 2D Particle Image Velocimetry (PIV) is used to analyze suction feeding events. Post-processing algorithms have been developed to determine the flow rate of water into the mouth of the fish; the area of fluid, the velocity of fluid and the volume of fluid affected by the fish; the velocity of the fluid at the mouth, as well as the velocity of the fluid as a function of the distance from the mouth, finally the force exerted on the fluid by the fish is also determined. Lastly, a numerical model has been developed for comparison using a non-uniform mesh, which adapts dynamically in space and time to the fish feeding event. The realistic geometry of the fish's head is modeled in CAD.

  17. Feeding, production, and efficiency of Holstein-Friesian, Jersey, and mixed-breed lactating dairy cows in commercial Danish herds.

    PubMed

    Kristensen, T; Jensen, C; Østergaard, S; Weisbjerg, M R; Aaes, O; Nielsen, N I

    2015-01-01

    The objective of this paper was to compare efficiency measures, milk production, and feed intake for lactating cows in commercial herds using different breeds and production and milking systems. To accomplish this, we used all feed evaluations made by the Danish extension service during the period November 2012 to April 2013 for 779 herds, of which 508 were Holstein-Friesian (HOL); 100 were Jersey (JER); and 171 herds were a mixture of these 2 breeds, other dairy breeds, and crossbreeds (OTH). The annually recorded, herd-average energy-corrected milk (ECM) yield was 8,716kg (JER) and 9,606kg (HOL); and average herd size was 197 cows (HOL) and 224 cows (JER). All cows were fed a total mixed or partial mixed ration supplemented with concentrate from feeding stations, housed in loose housing systems with a slatted floor, and milked in either a parlor milking unit or an automatic milking system. Energy efficiency was calculated as net energy efficiency defined as total energy demand as a percentage of energy intake and as residual feed intake defined as energy intake (net energy for lactation; NEL) minus energy requirement. Production efficiency was expressed as kilograms of ECM per kilogram of dry matter intake (DMI), kilograms of ECM per 10 MJ of net energy intake (NEL), kilograms of ECM per 100kg of BW, and kilograms of DMI per 100kg of BW. Environmental efficiency was expressed by the nitrogen efficiency calculated as N in milk and meat as a percentage of N in intake, and as enteric emission of methane expressed as kilograms of ECM per megajoule of CH4. Mean milk yield for lactating cows was 30.4kg of ECM in HOL and 3kg less in JER, with OTH herds in between. Mean NEL intake was 122 MJ in JER, increasing to 147 MJ in HOL, whereas ration energy density between breeds did not differ (6.4-6.5 MJ of NEL per kg of DMI). The NEL intake and DMI explained 56 and 47%, respectively, of variation in production (ECM) for HOL herds but only 44 and 27% for JER. Jersey had a

  18. Endocannabinoid concentrations in plasma associated with feed efficiency and carcass composition on crossbreed steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  19. Efficient and reliable protocols for the production of live feeds for larval Florida pompano

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As is the case with most marine finfish species, production of live feed organisms represents the majority of time and labor associated with larviculture operations. As a byproduct of establishing a reproduction and larviculture research program at our facility, procedures for the production and en...

  20. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...

  1. Genetic architechture and biological basis for feed efficiency in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic architecture of residual feed intake (RFI) and related traits was evaluated using a dataset of 2,894 cows. A Bayesian analysis estimated that markers accounted for 14% of the variance in RFI, and that RFI had considerable genetic variation. Effects of marker windows were small, but QTL p...

  2. Quantitative trait loci with effects on feed efficiency traits in Hereford x composite double backcross populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two half-sib families of backcross progeny were produced by mating F1 Line 1 Hereford (L1) x composite gene combination (CGC) bulls with L1 and CGC cows. Feed intake and periodic weights were measured for 218 backcross progeny. These progeny were genotyped using 232 microsatellite markers that spann...

  3. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion.

    PubMed

    Erickson, S D; Smith, T J; Moses, L M; Watt, R K; Colton, J S

    2015-01-09

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

  4. Parametric Study of Up-Conversion Efficiency in Er-Doped Lanthanide Hosts Under 780 nm/980 nm Excitation Wavelengths

    NASA Astrophysics Data System (ADS)

    Samir, E.; Shehata, N.; Aldacher, M.; Kandas, I.

    2016-06-01

    Up-conversion is a process of converting low energy light photons to higher energy ones, which can be extensively used in many applications. This paper presents a detailed parametric study of the up-conversion process under different wavelength excitations—780 nm and 980 nm—showing the optical conversion mechanisms that affect the emitted light quantum yield efficiencies. The studied material is erbium-doped β-NaYF4 material, which is one of the most recently studied materials due to its low phonon energy. The studied simulation considers most processes and possible transitions that can take place between Er3+ ions. Einstein coefficients, which are the main parameters that are responsible for the transitions probabilities, are discussed in detail using Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, showing their optimum values that could improve the quantum yield efficiency. This model is very promising, and generic, and can be applied for any host material under any excitation wavelengths by varying the material-dependent parameters.

  5. A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents.

    PubMed

    Toma, Maricela; Fukutomi, Satoshi; Asakura, Yoshiyuki; Koda, Shinobu

    2011-01-01

    It would seem that the economic viability is yet to be established for a great number of sonochemical processes, owning to their perfectible ultrasonic equipments. Industrial scale sonoreactors may become more important as a result of mastering the parameters with influence on their energy balance. This work related the solvent type to the energy efficiency as the first step of a complex study aiming to assess the energy balance of sonochemical reactors at 500 kHz. Quantitative measurements of ultrasonic power for water and 10 pure organic solvents were performed by calorimetry for a cylindrically shaped sonochemical reactor with a bottom mounted vibrating plate. It was found that the ultrasonic power is strongly related to the solvent, the energy conversion for organic liquids is half from that of water and there is a drop in energy efficiency for filling levels up to 250 mm organic solvents. Surface tension, viscosity and vapor pressure influence the energy conversion for organic solvents, but it is difficult explain these findings based on physical properties of solvents alone. The apparent intensity of the atomization process shows a good agreement with the experimentally determined values for energy conversion for water and the solvent group studied here. This study revealed that to attain the same ultrasonic power level, more electrical energy is need for organic solvents as compared to water. The energy balance equation has been defined based on these findings by considering an energy term for atomization.

  6. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy.

    PubMed

    Linic, Suljo; Christopher, Phillip; Ingram, David B

    2011-11-23

    Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.

  7. Effect of castration technique on beef calf performance, feed efficiency, and inflammatory response.

    PubMed

    Warnock, T M; Thrift, T A; Irsik, M; Hersom, M J; Yelich, J V; Maddock, T D; Lamb, G C; Arthington, J D

    2012-07-01

    The objective of this experiment was to examine the effect of castration technique on daily feed intake (DFI), daily water intake (DWI), growth performance, residual feed intake (RFI), and inflammatory response in weaned beef calves. Seventy-five beef calves (214 ± 3.2 kg; 200 ± 26 d of age) were housed in a GrowSafe 4000 feed intake facility 7 d post weaning (15 calves/pen). Calves were offered a total mixed ration (TDN = 67.3% and CP = 12.2%, DM = 89%) for ad libitum consumption. On d 0, calves were assigned to 1 of 5 treatments (n = 15 calves/treatment): 1) steers castrated surgically pre-weaning (52 d of age; CON); 2) intact bulls (BULL); 3) bulls castrated by the Callicrate Bander on d 0 (No-Bull Enterprises LLC.; BAN); 4) bulls castrated by the Henderson Castrating Tool on d 0 (Stone Mfg & Supply Co.; HEN); and 5) bulls castrated surgically utilizing an emasculator on d 0 (SUR). Average daily gain, DFI, and DWI were recorded over 84 d. Blood was collected from a sub-sample of calves (n = 45) on d 0, 2, 6, 9, 12, and 15 relative to castration. Castration decreased (P = 0.06) ADG for castrates compared with CON from d 0 to 14 but not d 0 to 84. Daily feed intake and DWI were similar (P > 0.10) among treatments during d 0 to 84. Gain:feed was not affected by castration technique; however, RFI tended (P = 0.09) to be negative for CON and BULL compared with castrates on d 0 to 14 but not d 0 to 84. Acute phase protein analyses indicated that surgical castration (SUR or HEN) elicited a short-term inflammatory response in calves, whereas calves castrated with BAN elicited a delayed response. Calves castrated pre-weaning had improved d 0 to 14 ADG, feed intake, and inflammation response compared with calves castrated at weaning. Banding elicited a delayed negative response in ADG, DWI, and inflammation. In weaned calves, castration method did not affect performance, DFI, DWI, or inflammatory response during the 84-d trial.

  8. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  9. Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage.

    PubMed

    Choi, Bong Gill; Park, Ho Seok

    2012-04-01

    A facilitated electrochemical reaction at the surface of electrodes is crucial for highly efficient energy conversion and storage. Herein, various nanoparticles (NPs) including Au, Pt, Pd, Ru, and RuO(2), were synthesized in situ and directly deposited on the ionic liquid (IL)-functionalized reduced graphene oxides (RGOs) in a controlled manner. The size, amount, and crystalline structures of discrete NPs were readily controlled, giving rise to enhanced methanol oxidation and pseudocapacitance. The well-defined nanostructure of decorated NPs and the favorable interaction between ILs and RGOs (or NPs) facilitated the electrochemical reaction, where NPs acted as electrocatalysts for energy conversion and played the role of redox-active electrodes for energy storage.

  10. Tandem concentrator solar cells with 30 percent (AMO) power conversion efficiency

    NASA Technical Reports Server (NTRS)

    Avery, J. E.; Fraas, L. M.; Sundaram, V. S.; Brinker, David J.; Gee, J. M.; Oneill, Mark J.

    1991-01-01

    Very high efficiency concentrator solar panels are envisioned as economical and reliable electrical power subsystems for space based platforms of the future. GaAs concentrator cells with very high efficiencies and good sub-bandgap transmissions can be fabricated on standard wafers. GaSb booster cell development is progressing very well; performance characteristics are still improving dramatically. Consistent GaAs/GaSb stacked cell AMO efficiencies greater than 30 percent are expected.

  11. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  12. Limiting efficiencies of GaInP/GaAs/Ge up-conversion systems: Addressing the issue of radiative coupling

    NASA Astrophysics Data System (ADS)

    Lan, Dongchen; Green, Martin A.

    2016-09-01

    Recent work proposed up-conversion of sunlight through low-band-gap solar cells in combination with a large-band-gap light-emitting diode (LED), with one possibility being the use of a GaAs/Ge tandem photovoltaic device to drive a GaInP LED. One-sun limiting efficiencies for a GaInP bifacial solar cell with such an up-converter attached to its rear are reported for varying band-gap of GaInP junctions, both when there are radiative couplings between cells in the rear up-converter and when there are not. With a maximum theoretical efficiency of 44%, it is shown that the top cell's band-gap is a trade-off and radiative coupling in the rear up-converter reduces the efficiency, where physical reasons are given as is insight into the practice.

  13. Genomic-polygenic evaluation of Angus-Brahman multibreed cattle for feed efficiency and postweaning growth using the Illumina 3K chip.

    PubMed

    Elzo, M A; Lamb, G C; Johnson, D D; Thomas, M G; Misztal, I; Rae, D O; Martinez, C A; Wasdin, J G; Driver, J D

    2012-08-01

    The objectives of this study were to determine the fraction of additive genetic variance explained by the SNP from the Illumina Bovine3K chip; to compare the ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models; and to assess trends in predicted values from these 3 models for residual feed intake (RFI), daily feed intake (DFI), feed conversion ratio (FCR), and postweaning BW gain (PWG) in a multibreed Angus-Brahman cattle population under subtropical conditions. Data consisted of phenotypes and genotypes from 620 bulls, steers, and heifers ranging from 100% Angus to 100% Brahman. Phenotypes were collected in a GrowSafe automated feeding facility (GrowSafe Systems, Ltd., Airdrie, Alberta, Canada) from 2006 to 2010. Variance components were estimated using single-trait genomic-polygenic mixed models with option VCE (Markov chain Monte Carlo) of the program GS3. Fixed effects were contemporary group (year-pen), age of dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf. Random effects were additive SNP, animal polygenic, and residual effects. Genomic predictions were computed using a model without polygenic effects and polygenic predictions with a model that excluded additive SNP effects. Heritabilities were 0.20 for RFI, 0.31 for DFI, 0.21 for FCR, and 0.36 for PWG. The fraction of the additive genetic variance explained by SNP in the Illumina 3K chip was 15% for RFI, 11% for DFI, 25% for FCR, and 15% for PWG. These fractions will likely differ in other multibreed populations. Rank correlations between genomic-polygenic and polygenic predictions were high (0.95 to 0.99; P < 0.0001), whereas those between genomic-polygenic and genomic predictions were low (0.65 to 0.74; P < 0.0001). Genomic-polygenic, genomic, and polygenic predictions for all traits tended to decrease as Brahman fraction increased, indicating that calves with greater Brahman fraction were more efficient but grew more slowly than calves

  14. Modeling genetic and non-genetic variation of feed efficiency and its partial relationships between component traits as a function of management and environmental factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed efficiency (FE), characterized as the ability to convert feed nutrients into saleable milk or meat directly affects the profitability of dairy production, is of increasing economic importance in the dairy industry. We conjecture that FE is a complex trait whose variation and relationships or pa...

  15. QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies a...

  16. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure.

    PubMed

    May, Matthias M; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-15

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  17. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    PubMed Central

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-01-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620

  18. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    NASA Astrophysics Data System (ADS)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  19. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells.

    PubMed

    Wang, DongLin; Su, Gang

    2014-11-24

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm-800 nm, the conversion efficiency of solar cells can be further enhanced.

  20. New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells

    PubMed Central

    Wang, DongLin; Su, Gang

    2014-01-01

    Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477

  1. Analysis and calculation of electronic properties and light absorption of defective sulfur-doped silicon and theoretical photoelectric conversion efficiency.

    PubMed

    Jiang, He; Chen, Changshui

    2015-04-23

    Most material properties can be traced to electronic structures. Black silicon produced from SF6 or sulfur powder via irradiation with femtosecond laser pulses displays decreased infrared absorption after annealing, with almost no corresponding change in visible light absorption. The high-intensity laser pulses destroy the original crystal structure, and the doping element changes the material performance. In this work, the structural and electronic properties of several sulfur-doped silicon systems are investigated using first principle calculations. Depending on the sulfur concentration (level of doping) and the behavior of the sulfur atoms in the silicon lattice, different states or an absence of states are exhibited, compared with the undoped system. Moreover, the visible-infrared light absorption intensities are structure specific. The results of our theoretical calculations show that the conversion efficiency of sulfur-doped silicon solar cells depends on the sulfur concentrations. Additionally, two types of defect configurations exhibit light absorption characteristics that differ from the other configurations. These two structures produce a rapid increase in the theoretical photoelectric conversion efficiency in the range of the specific chemical potential studied. By controlling the positions of the atomic sulfur and the sulfur concentration in the preparation process, an efficient photovoltaic (PV) material may be obtainable.

  2. Effects of surface-modified photoelectrode on the power conversion efficiency of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Jong Tae; Han, Yoon Soo

    2014-05-01

    The effects of Na2SO4 as a surface modification material on the performance of dye-sensitized solar cells (DSSCs) were studied. The surfaces of TiO2 films were firstly modified with aqueous Na2SO4 solution by a dip coating process, and then the resulting electrode was applied to the photoelectrode of a DSSC. The DSSC with the Na2SO4-modified photoelectrode had a power conversion efficiency of 9.01% compared with that (7.97%) of the reference cell, which corresponds to an increase of about 13.0% in the efficiency due to an enhancement in short-circuit current ( J sc ) and open-circuit voltage ( V oc ). A series of measurements such as UV-visible absorption, electrochemical impedance, incident photon to current conversion (IPCE) efficiency and dark current revealed that incorporation of Na2SO4 onto the TiO2 film led to an increase of dye adsorption and a longer lifetime of electrons injected from dyes to the TiO2 electrodes, resulting in the improvement in both J sc and V oc , compared to those of a reference device without surface modification.

  3. Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Ajuria, Jon; Pacios, Roberto

    2015-01-01

    In spite of the impressive development achieved by organic photovoltaics throughout the last decades, especially in terms of reported power conversion efficiencies, there are still important technological and fundamental obstacles to circumvent before they can be implemented into reliable and long-lasting applications. Regarding device processing, the synthesis of highly soluble polymeric semiconductors first, and then fullerene derivatives, was initially considered as an important breakthrough that would definitely change the fabrication of photovoltaics once and for all. The potential and the expectation raised by this technology is such that it is very difficult to keep track of the most significant progresses being now published in different and even monographic journals. In this paper, we review the development of polymeric solar cells from its origin to the most efficient devices published to date. We separate these achievements into three different categories traditionally followed by the scientific community to push devices over 10% power conversion efficiency: active materials, strategies-fabrication/processing procedures-that can mainly modify the active film morphology, and all the different cell layout/architectures that have been used in order to extract as high a photocurrent as possible from the Sun. The synthesis of new donors, the use of additives and postprocessing techniques, buffer interlayers, inverted and tandem designs are some of the most important aspects that are reviewed in detail in this paper. All have equally contributed to develop this technology and bring it at the doors of commercialization.

  4. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency

    PubMed Central

    Jewell, Kelsea A.; McCormick, Caroline A.; Odt, Christine L.; Weimer, Paul J.

    2015-01-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles. PMID:25934629

  5. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    PubMed

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles.

  6. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons.

    PubMed

    Demmig-Adams, Barbara; Cohu, Christopher M; Muller, Onno; Adams, William W

    2012-09-01

    Modulation of the efficiency with which leaves convert absorbed light to photochemical energy [intrinsic efficiency of open photosystem II (PSII) centers, as the ratio of variable to maximal chlorophyll fluorescence] as well as leaf xanthophyll composition (interconversions of the xanthophyll cycle pigments violaxanthin and zeaxanthin) were characterized throughout single days and nights to entire seasons in plants growing naturally in contrasting light and temperature environments. All pronounced decreases of intrinsic PSII efficiency took place in the presence of zeaxanthin. The reversibility of these PSII efficiency changes varied widely, ranging from reversible-within-seconds (in a vine experiencing multiple sunflecks under a eucalypt canopy) to apparently permanently locked-in for entire seasons (throughout the whole winter in a subalpine conifer forest at 3,000 m). While close association between low intrinsic PSII efficiency and zeaxanthin accumulation was ubiquitous, accompanying features (such as trans-thylakoid pH gradient, thylakoid protein composition, and phosphorylation) differed among contrasting conditions. The strongest and longest-lasting depressions in intrinsic PSII efficiency were seen in the most stress-tolerant species. Evergreens, in particular, showed the most pronounced modulation of PSII efficiency and thermal dissipation, and are therefore suggested as model species for the study of photoprotection. Implications of the responses of field-grown plants in nature for mechanistic models are discussed.

  7. Efficiency of Drude mirror-type selective transparent filters for solar thermal conversion.

    PubMed

    Yoshida, S

    1978-01-01

    The efficiency of the solar collector consisting of a selective absorber and a selective transparent filter is derived for comparing and evaluating the collectors. The efficiency of Drude mirror type selective transparent filters is calculated in cases of a blackbody absorber and the Al(2)O(3)-Mo-Al(2)O(3)-Mo highly selective absorber. As Drude mirrors, Sn-doped In(2)O(3) films were formed on Pyrex glass plates by rf sputtering, and the dependence of the efficiencies on the operating conditions of the collector, including solar concentration and temperature of the absorber, is discussed.

  8. Nano metal-enhanced power conversion efficiency in CH3NH3PbI3 solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Chao; Yang, Siyu; Chen, Meina; Lei, Fengcai; Man, Baoyuan

    2017-04-01

    Nano metal-enhanced power conversion efficiency (PCE) in CH3NH3PbI3 solar cells utilizing the forward scattering effect of metal nanoparticles has been researched in this paper by finite difference time domain method. Two structures are designed in the research to explore this feasibility, by adjusting the materials, sizes and surface coverages of metal nanoparticles, both of them exhibit the exciting results bringing the max PCE enhancements by 12.18% and 8.03% respectively. Especially, considering the huge handleability of the second structure, this method has large applications in further improving the performance for other perovskite solar cells.

  9. Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy.

    PubMed

    Kudlinski, A; Lelek, M; Barviau, B; Audry, L; Mussot, A

    2010-08-02

    Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350-600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.

  10. Solid Confinement of Quantum Dots in ZIF-8 for Efficient and Stable Color-Conversion White LEDs.

    PubMed

    Ying, Wen; Mao, Yiyin; Wang, Xiaobing; Guo, Yi; He, Haiping; Ye, Zhizhen; Lee, Shuit-Tong; Peng, Xinsheng

    2017-03-13

    The powder form and low photoluminescence quantum yield (PLQY) of fluorescent metal-organic frameworks (MOFs) present a serious obstacle to fabricating high-efficiency film-like lighting devices. Here, we present a facile way to produce thin films of CdSex S1-x /ZnS quantum dots (QDs)@ZIF-8 with high PLQY by encapsulating red, green, and blue CdSex S1-x /ZnS QDs in ZIF-8 through a one-pot solid-confinement conversion process. The QDs@ZIF-8 thin film emits warm white light with good color quality and presents good thermal stability and long-term durability.

  11. Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach.

    PubMed

    Huang, Hao; Liu, Xiaoqing; Qu, Chunxiang; Liu, Chao; Chen, Liang; Hong, Fashui

    2008-10-01

    Chloroplast absorbs light energy and transforms it into electron energy, and then converts it into active chemical energy and stable chemical energy. In the present paper, we investigated the effects of Ce(3+), which has the most significant catalytic effects and similar characteristics with Ca(2+), on light energy conversion of spinach chloroplasts under Ca(2+)-deficient stress. The results illuminated that the Hill reaction activity, electron flow both photosystems and photophosphorylation rate of spinach chloroplasts reduced significantly under Ca(2+)-deficient condition, and activities of Mg(2+)-ATPase and Ca(2+)-ATPase on the thylakoid membrane were severely inhibited. Meanwhile, the activity of Rubisco, which is the key enzyme of photosynthetic carbon assimilation, was also prohibited. However, Ce(3+) decreased the inhibition of calcium deprivation the electron transport rate, the oxygen evolution rate, the cyclic and noncyclic photophosphorylation, the activities of Mg(2+)-ATPase, Ca(2+)-ATPase and Rubisco of spinach chloroplasts. All above implied that Ca(2+)-depletion could disturb light energy conversion of chloroplasts strongly, which could be reversed by Ce(3+).

  12. Growth and feed efficiency of juvenile shrimp Litopenaeus vannamei fed formulated diets containing different levels of poultry by-product meal

    NASA Astrophysics Data System (ADS)

    Chi, Shuyan; Tan, Beiping; Mai, Kangsen; Zheng, Shixuan

    2009-12-01

    This feeding trial was conducted to evaluate the potential of poultry by-product meal (PBM) as a protein source in the culture of Litopenaeus vannamei. Seven isonitrogenous and isoenergetic diets were formulated to near to commercial diet with about 40% protein and 7.5% lipid. Fish meal was replaced by 0, 30%, 40%, 50%, 60%, 70% and 100% of PBM (diets 1-7). The diet with 100% fish meal was used as a control (diet 1). Post-larvae were reared in an indoor semi-closed re-circulating system. Each dietary treatment was tested in 4 replicate tanks (260 L) of 40 shrimp, arranged in a completely randomized design. The shrimps were hand-fed for three times a day to near-satiation (0700, 1200 and 1800) for 60 d. Percentage weight gain, survival, feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition of shrimps were measured. There were no significant differences ( P>0.05) in growth performance among shrimps fed diets 1-5 (0-60% fish meal replacement). However, shrimps fed diet 7 (100% fish meal replacement) had significantly lower ( P<0.05) growth than those fed diets 1-5 (0-60% fish meal replacement). Shrimp fed diets 2-4 (30%-50% fish meal replacement) showed significantly higher growth than those fed diets 6 and 7 (70% and 100% fish meal replacement, respectively). Survival ranged from 94.7% to 100.0% and did not differ significantly ( P>0.05) among different experimental diets. No differences in body composition were found among shrimps fed different diets. These results showed that up to 70% of fish meal protein can be replaced by PBM without adversely affecting the growth, survival, FCR, PER and body composition of Litop enaeus vannamei.

  13. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2010-11-15

    strength from the fluorene to cyclopentadithiophene unit. PCPBBT showed highest CT transition absorption at 926 nm red-shifted to 53 nm compared with the...got at conc. Ax8 was 3.97%. Compared to the original efficiency (η0=3.10%), the efficiency of our solar cell was improved about 28% (Figure 9...nanocrystals as well as improved charge generation. Such a photovoltaic performance is confirmed to originate from the both contribution of polymer

  14. Hybrid Inorganic/Organic Photovoltaics: Translating Fundamental Nanostructure Research to Enhanced Solar Conversion Efficiency

    DTIC Science & Technology

    2008-12-31

    Polymer Chemistry, Solar Cells 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 9 19a. NAME OF...mobilities of carriers, which can lead to highly efficient quantum dot:carbon nanotubes: polymer nanocomposites based solar cells . These studies will...significantly contribute to the understanding of efficient quantum-dot based solar cell architectures. The details are given below; -Preparation of

  15. On Training Efficiency and Computational Costs of a Feed Forward Neural Network: A Review

    PubMed Central

    Laudani, Antonino; Lozito, Gabriele Maria; Riganti Fulginei, Francesco; Salvini, Alessandro

    2015-01-01

    A comprehensive review on the problem of choosing a suitable activation function for the hidden layer of a feed forward neural network has been widely investigated. Since the nonlinear component of a neural network is the main contributor to the network mapping capabilities, the different choices that may lead to enhanced performances, in terms of training, generalization, or computational costs, are analyzed, both in general-purpose and in embedded computing environments. Finally, a strategy to convert a network configuration between different activation functions without altering the network mapping capabilities will be presented. PMID:26417368

  16. Postteneral protein feeding may improve biological control efficiency of Aphytis lingnanensis and Aphytis melinus.

    PubMed

    Vanaclocha, Pilar; Papacek, Dan; Verdú, Maria Jesús; Urbaneja, Alberto

    2014-01-01

    The augmentative releases of mass-reared Aphytis spp. (Hymenoptera: Aphelinidae) parasitoids are widely used against armored scales. The nutritional status and the initial egg load of Aphytis spp. females are key to their success as biological control agents. For these reasons, this work focuses on the study of providing a protein feed to Aphytis lingnanensis (Compere) and A. melinus DeBach to improve the egg load before their release. The addition of protein to a honey diet during the first 2 d after the adult parasitoid emergence increased the initial egg load in both species of parasitoids by more than five eggs. Furthermore, the addition of protein increased the total number of eggs laid by A. lingnanensis on oleander scale, Aspidiotus nerii Bouché (Hemiptera: Diaspididae). In contrast, this effect was not observed on A. melinus probably because A. nerii is considered a suboptimal host for this parasitoid. The host-feeding activities of the two Aphytis species were differentially affected by the addition of protein to their diets. These results may have direct implications for augmentative biological control programs, especially during transportation from insectaries to the field, a period of time when parasitoids are deprived of hosts.

  17. A Hierarchical Bipyridine-Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion.

    PubMed

    Dai, Zhifeng; Sun, Qi; Liu, Xiaolong; Guo, Liping; Li, Jixue; Pan, Shuxiang; Bian, Chaoqun; Wang, Liang; Hu, Xin; Meng, Xiangju; Zhao, Leihong; Deng, Feng; Xiao, Feng-Shou

    2017-03-22

    As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. Porous materials bearing particular binding and active sites that can capture and convert CO2 simultaneously are promising candidates for CO2 utilization. In this work, a bipyridine-constructed polymer featuring a high surface area, a hierarchical porous structure, and excellent stability was synthesized through free-radical polymerization. After metalation, the resultant catalysts exhibited superior activities in comparison with those of their homogeneous counterparts in the cycloaddition of CO2 to epoxides. The high performance of the heterogeneous catalysts originates from cooperative effects between the CO2 -philic polymer and the embedded metal species. In addition, the catalysts showed excellent stabilities and are readily recyclable; thus, they are promising for practical utilization for the conversion of CO2 into value-added chemicals.

  18. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water

    PubMed Central

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tatin, Arnaud

    2015-01-01

    Substitution of the four paraphenyl hydrogens of iron tetraphenylporphyrin by trimethylammonio groups provides a water-soluble molecule able to catalyze the electrochemical conversion of carbon dioxide into carbon monoxide. The reaction, performed in pH-neutral water, forms quasi-exclusively carbon monoxide with very little production of hydrogen, despite partial equilibration of CO2 with carbonic acid—a low pKa acid. This selective molecular catalyst is endowed with a good stability and a high turnover frequency. On this basis, prescribed composition of CO–H2 mixtures can be obtained by adjusting the pH of the solution, optionally adding an electroinactive buffer. The development of these strategies will be greatly facilitated by the fact that one operates in water. The same applies for the association of the cathode compartment with a proton-producing anode by means of a suitable separator. PMID:26038542

  19. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    PubMed Central

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C−C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion. PMID:23877200

  20. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.

    PubMed

    Karalis, Aristeidis; Joannopoulos, J D

    2016-07-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.

  1. Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Shinho; Kim, Kang Min; Tampo, Hitoshi; Shibata, Hajime; Niki, Shigeru

    2016-10-01

    We demonstrate the improved efficiency of a Cu2Zn(Sn1- x Ge x )Se4 (CZTGSe) thin-film solar cell with a conversion efficiency of 12.3%; this cell exhibits a greatly improved open-circuit voltage (V OC) deficit of 0.583 V and a fill factor (FF) of 0.73 compared with previously reported CZTGSe cells. The V OC deficit was found to be improved through a reduced band tailing via the control of the Ge/(Sn + Se) ratio. In addition, the high FF was mainly induced by a reduced carrier recombination at the absorber/buffer interface and/or in the space charge region, whereas parasitic resistive effects on FF were very small.

  2. New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells

    SciTech Connect

    Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M. )

    1993-01-01

    This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

  3. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes.

    PubMed

    Armstrong, Fraser A; Hirst, Judy

    2011-08-23

    Enzymes are long established as extremely efficient catalysts. Here, we show that enzymes can also be extremely efficient electrocatalysts (catalysts of redox reactions at electrodes). Despite being large and electronically insulating through most of their volume, some enzymes, when attached to an electrode, catalyze electrochemical reactions that are otherwise extremely sluggish (even with the best synthetic catalysts) and require a large overpotential to achieve a useful rate. These enzymes produce high electrocatalytic currents, displayed in single bidirectional voltammetric waves that switch direction (between oxidation and reduction) sharply at the equilibrium potential for the substrate redox couple. Notoriously irreversible processes such as CO(2) reduction are thereby rendered electrochemically reversible--a consequence of molecular evolution responding to stringent biological drivers for thermodynamic efficiency. Enzymes thus set high standards for the catalysts of future energy technologies.

  4. The effect of breed and individual heterosis on the feed efficiency, performance, and carcass characteristics of feedlot steers.

    PubMed

    Retallick, K M; Faulkner, D B; Rodriguez-Zas, S L; Nkrumah, J D; Shike, D W

    2013-11-01

    This study was conducted to evaluate maternal breed effects, direct breed effects, and individual heterosis on subsequent steer performance, carcass, and feed efficiency traits. This was a consecutive 2-yr trial using 158 steers. The same dam breeds, Angus (AN) and purebred Simmental (SM), were used both years. Also, the same AN and SM sires (n=11) were used both years. Steers were AN, SM, or AN×SM breed composition. Steers were managed similarly before weaning and early weaned at 56±9 d of age. Steers were then randomly allotted to pens and fed a common finishing ration. Contrasts were written to evaluate direct and maternal breed effects and individual heterosis in the PROC MIXED procedure of SAS (SAS Inst. Inc., Cary, NC) using dam breed, sire breed, and year as fixed effects. Simmental direct breed effect resulted in a 26 kg heavier initial BW (P<0.05) and a 46 kg heavier final BW (P<0.05). Simmental maternal breed effect increased initial BW by 43.5 kg (P<0.05). Dry matter intake was not impacted by direct breed effects, maternal breed effects, or individual heterosis. Individual heterosis did improve G:F 3.4% (P<0.05) and residual BW gain 0.048 kg/d (P<0.05). Residual intake and BW gain tended (P=0.07) to improve as a result of individual heterosis. Residual feed intake (RFI) was impacted by direct breed effect with SM cattle having a more desirable RFI (P=0.05). Angus direct breed effect increased backfat (P<0.05) and improved marbling score by 126 units (P<0.05). Simmental direct breed effect increased LM area (P<0.05), had the highest HCW at 410 kg (P<0.05), and had the most desirable yield grade at 2.74 (P<0.05). Individual heterosis improved marbling score (P=0.05). Maternal breed effect increased HCW (P<0.05) as a result of the SM dam. Direct breed effects were present for performance, feed efficiency measures, and carcass traits. Overall, heterosis impacted feedlot performance, carcass characteristics, and feed efficiency, which impacts beef

  5. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  6. Ag Nanoparticle-Functionalized Open-Ended Freestanding TiO₂ Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells.

    PubMed

    Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun

    2016-06-15

    Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.

  7. Molecular symmetry determines the mechanism of a very efficient ultrafast excitation-to-heat conversion in Ni-substituted chlorophylls.

    PubMed

    Pilch, Mariusz; Dudkowiak, Alina; Jurzyk, Barbara; Lukasiewicz, Jędrzej; Susz, Anna; Stochel, Grażyna; Fiedor, Leszek

    2013-01-01

    In the Ni-substituted chlorophylls, an ultrafast (<60 fs) deactivation channel is created, which is not present in Ni-porphyrins. This observation prompted us to investigate in detail the mechanism of excitation-to-heat conversion in Ni-substituted chlorophylls, experimentally, using time-resolved laser-induced optoacoustic spectroscopy, and theoretically, using group theory approach. The Ni-substituted chlorophylls show exceptional photostability and the optoacoustic measurements confirm the prompt and very efficient (100%) excitation-into-heat conversion in these complexes. Considering their excellent spectral properties and the loss-free excitation-into-heat conversion they are likely to become a new class of versatile photocalorimetric references. The curious features of the Ni-substituted chlorophylls originate from the symmetry of a ligand field created in the central cavity. The central N-Ni(2+) bonds, formed via the donation of two electrons from each of the sp(2) orbitals of two central nitrogens to an empty [Formula: see text] hybrid centered on Ni(2+), have a considerable covalent character. The extreme rate of excited state relaxation is then not due to a ladder of the metal centered d-states, often invoked in metalloporphyrins, but seems to result from a peculiar topology of the potential energy surface (a saddle-shaped crossing) due to the covalent character of the N-Ni(2+) bonds. This is confirmed by a strong 0→0 character of electronic transitions in these complexes indicating a similarity of their equilibrium geometries in the ground (S(0)) and the excited states (both Q(X) and Q(Y)). The excitation energy is very efficiently converted into molecular vibrations and dissipated as heat, involving the central Ni(2+). These Ni-substituted pigments pose a fine exemplification of symmetry control over properties of excited states of transition metal complexes.

  8. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  9. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Feng, Xiaoyang; Liu, Maochang; Su, Jinzhan; Shen, Shaohua

    2016-09-01

    Photoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  10. Reliable operation of 976nm high power DFB broad area diode lasers with over 60% power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Crump, P.; Schultz, C. M.; Wenzel, H.; Knigge, S.; Brox, O.; Maaßdorf, A.; Bugge, F.; Erbert, G.

    2011-02-01

    Diode lasers that deliver high continuous wave optical output powers (> 5W) within a narrow, temperature-stable spectral window are required for many applications. One technical solution is to bury Bragg-gratings within the semiconductor itself, using epitaxial overgrowth techniques to form distributed-feedback broad-area (DFB-BA) lasers. However, such stabilization is only of interest when reliability, operating power and power conversion efficiency are not compromised. Results will be presented from the ongoing optimization of such DFB-BA lasers at the Ferdinand-Braun- Institut (FBH). Our development work focused on 976nm devices with 90μm stripe width, as required for pumping Nd:YAG, as well as for direct applications. Such devices operate with a narrow spectral width of < 1nm (95% power content) to over 10W continuous wave (CW) optical output. Further optimization of epitaxial growth and device design has now largely eliminated the excess optical loss and electrical resistance typically associated with the overgrown grating layer. These developments have enabled, for the first time, DFB-BA lasers with peak CW power conversion efficiency of > 60% with < 1nm spectral width (95% power content). Reliable operation has also been demonstrated, with 90μm stripe devices operating for over 4000 hours to date without failure at 7W (CW). We detail the technological developments required to achieve these results and discuss the options for further improvements.

  11. Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films.

    PubMed

    Liu, Bo-Tau; Wu, Kuan-Han; Lee, Rong-Ho

    2016-12-01

    In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm(-2), reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs.

  12. Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Tau; Wu, Kuan-Han; Lee, Rong-Ho

    2016-09-01

    In this study, we prepared the reduced graphene oxide (rGO)-CdSe/ZnS quantum dots (QDs) hybrid films on a three-layer scaffold that the QD layer was sandwiched between the two rGO layers. The photocurrent was induced by virtue of the facts that the rGO quenched the photoluminescence of QDs and transferred the excited energy. The quenching mechanism was attributed to the surface energy transfer, supported in our experimental results. We found that the optoelectronic conversion efficiency of the hybrid films can be significantly improved by incorporating the silver nanowires (AgNWs) into the QD layer. Upon increasing AgNW content, the photocurrent density increased from 22.1 to 80.3 μA cm-2, reaching a near 3.6-fold enhancement compared to the pristine rGO-QD hybrid films. According to the analyses of photoluminescence spectra, shape effect, and electrochemical impedance spectra, the enhancement on the optoelectronic conversion efficiency arise mainly from the strong quenching ability of silver and the rapid electron transfer of AgNWs.

  13. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power