Measurement technology based on laser internal/external cavity tuning
NASA Astrophysics Data System (ADS)
Zhang, Shulian
2011-08-01
For an ordinary laser with two cavity mirrors, if the length of laser cavity changes half wavelength the laser frequency changes one longitudinal mode separation. For a laser with three cavity mirrors, in which a feedback mirror is used to feed part of the laser output beam back into the laser cavity, the external cavity length changes half wavelength the laser intensity fluctuates one period. This presentation gives some research results in measurement field based on changing (tuning) the length of laser internal/external cavity, including 1) HeNe laser cavity-tuning nanometer displacement measurement instruments (laser nanometer rulers), 2) HeNe laser feedback displacement measurement, 3) Nd:YAG laser feedback nanometer displacement measurement, 4) benchmark of waveplate phase retardation measurement based on laser frequency splitting, 5) in-site waveplate phase retardation measurement instruments based on laser feedback and polarization hopping, 6) quasi-common-path microchip Nd:YAG laser feedback interferometer, 7) non-contact Nd:YAG laser feedback surface profile measurement. Some of these instruments have been put into application and display some irreplaceable advantages.
Non-contact angle measurement based on parallel multiplex laser feedback interferometry
NASA Astrophysics Data System (ADS)
Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian
2014-11-01
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Yuwei; Gao, Bingkun; Jiang, Chunlei
2018-03-01
A semiconductor laser employed with two-external-cavity feedback structure for laser self-mixing interference (SMI) phenomenon is investigated and analyzed. The SMI model with two directions based on F-P cavity is deduced, and numerical simulation and experimental verification were conducted. Experimental results show that the SMI with the structure of two-external-cavity feedback under weak light feedback is similar to the sum of two SMIs.
In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results
NASA Astrophysics Data System (ADS)
Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre
Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.
2016-01-15
Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less
Optical feedback-induced light modulation for fiber-based laser ablation.
Kang, Hyun Wook
2014-11-01
Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.
Sensor-based laser ablation for tissue specific cutting: an experimental study.
Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas
2004-01-01
The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.
Distributed Feedback Laser Based on Single Crystal Perovskite
NASA Astrophysics Data System (ADS)
Sun, Shang; Xiao, Shumin; Song, Qinghai
2017-06-01
We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.
Integrated optics reflectometer
Couch, Philip R; Murphy, Kent A.; Gunther, Michael F; Gause, Charles B
2017-01-31
An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.
Nguimdo, Romain Modeste; Lacot, Eric; Jacquin, Olivier; Hugon, Olivier; Van der Sande, Guy; Guillet de Chatellus, Hugues
2017-02-01
Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the input data are injected at a time interval that is much larger than the time-delay feedback. These data are directly coupled to the feedback light beam. Our results illustrate possible new avenues for RC implementations for prediction tasks.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-07-27
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.
Parallel multiplex laser feedback interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn
2013-12-15
We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less
Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller
NASA Astrophysics Data System (ADS)
Nino, Daniel; Wang, Haowei; Milstein, Joshua N.
2014-09-01
Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.
Random distributed feedback fiber laser at 2.1 μm.
Jin, Xiaoxi; Lou, Zhaokai; Zhang, Hanwei; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-11-01
We demonstrate a random distributed feedback fiber laser at 2.1 μm. A high-power pulsed Tm-doped fiber laser operating at 1.94 μm with a temporal duty ratio of 30% was employed as a pump laser to increase the equivalent incident pump power. A piece of 150 m highly GeO2-doped silica fiber that provides a strong Raman gain and random distributed feedbacks was used to act as the gain medium. The maximum output power reached 0.5 W with the optical efficiency of 9%, which could be further improved by more pump power and optimized fiber length. To the best of our knowledge, this is the first demonstration of random distributed feedback fiber laser at 2 μm band based on Raman gain.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-01-01
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342
Output power stability of a HCN laser using a stepping motor for the EAST interferometer system
NASA Astrophysics Data System (ADS)
Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.
2015-11-01
The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.
Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie
2013-05-20
We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.
Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.
El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K
2011-01-15
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
Li, Wangzhe; Zhang, Xia; Yao, Jianping
2013-08-26
We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.
Demonstration of a plenoptic microscope based on laser optical feedback imaging.
Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric
2013-03-25
A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Franz, Kale J.; Bagheri, Mahmood; Forouhar, Siamak
2012-01-01
We demonstrate single-mode laterally coupled distributed-feedback diode lasers at 2.05 microns employing low-loss etched gratings. Single-facet CW output exceeds 50 mW near room temperature with linewidth below 1 MHz over 10-ms observation times
Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang
2009-03-30
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.
Measurement of remote micro vibration based on laser feedback interference
NASA Astrophysics Data System (ADS)
Wu, Peng; Qin, Shuijie; Xu, Ning
2018-03-01
The method of remote micro-vibration measurement is studied and presented based on the laser feedback effect in this paper, and the key factors of remote vibration measurement are analyzed. The vibration measurement system is designed and built based on the laser feedback and the research of the remote micro vibration measurement is carried out. The system has ultrahigh measuring sensitivity and the working distance is 25 meters, which can measure the vibration of non-cooperative target. The system has the capability to realize the non-contact measurement of remote micro-vibration at different driving signals and can fulfill the complex vibration measurement and reproduction of multiple frequencies. It can identify the voice signal and the voice signal reproduced is clear to hear. The system can meet various requirements of vibration measurement and has great significance in practical application.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu
2018-06-01
In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.
Optical frequency stabilization in infrared region using improved dual feed-back loop
NASA Astrophysics Data System (ADS)
Ružička, B.; Číp, O.; Lazar, J.
2007-03-01
Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
NASA Astrophysics Data System (ADS)
Azrina Talik, Noor; Boon Kar, Yap; Noradhlia Mohamad Tukijan, Siti; Wong, Chuan Ling
2017-10-01
To date, the state of art organic semiconductor distributed feedback (DFB) lasers gains tremendous interest in the organic device industry. This paper presents a short reviews on the fabrication techniques of DFB based laser by focusing on the fabrication method of DFB corrugated structure and the deposition of organic gain on the nano-patterned DFB resonator. The fabrication techniques such as Laser Direct Writing (LDW), ultrafast photo excitation dynamics, Laser Interference Lithography (LIL) and Nanoimprint Lithography (NIL) for DFB patterning are presented. In addition to that, the method for gain medium deposition method is also discussed. The technical procedures of the stated fabrication techniques are summarized together with their benefits and comparisons to the traditional fabrication techniques.
Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N
2012-01-30
Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
Coherent random lasing from liquid waveguide gain channels with biological scatters
NASA Astrophysics Data System (ADS)
Zhang, Hong; Feng, Guoying; Wang, Shutong; Yang, Chao; Yin, Jiajia; Zhou, Shouhuan
2014-12-01
A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.
NASA Astrophysics Data System (ADS)
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
Bernhardi, E H; Khan, M R H; Roeloffzen, C G H; van Wolferen, H A G M; Wörhoff, K; de Ridder, R M; Pollnau, M
2012-01-15
We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.
NASA Astrophysics Data System (ADS)
Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-13
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M
1992-08-20
An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.
NASA Astrophysics Data System (ADS)
Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy
2016-05-01
It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.
Feedback mechanism for smart nozzles and nebulizers
Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA
2009-01-27
Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.
NASA Astrophysics Data System (ADS)
Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Montero de Espinosa, Francisco; Razansky, Daniel
2017-03-01
Lack of haptic feedback during laser surgery hampers controlling the incision depth, leading to a high risk of undesired tissue damage. Here we present a new feedback sensing method that accomplishes non-contact realtime monitoring of laser ablation procedures by detecting shock waves emanating from the ablation spot with air-coupled transducers. Experiments in soft and hard tissue samples attained high reproducibity in real-time depth estimation of the laser-induced cuts. The advantages derived from the non-contact nature of the suggested monitoring approach are expected to greatly promote the general applicability of laser-based surgeries.
Laser frequency stabilization using a transfer interferometer
NASA Astrophysics Data System (ADS)
Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.
2018-03-01
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.
Coherent control of plasma dynamics by feedback-optimized wavefront manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Z.-H.; Hou, B.; Gao, G.
2015-05-15
Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less
Pattern dependence in high-speed Q-modulated distributed feedback laser.
Zhu, Hongli; Xia, Yimin; He, Jian-Jun
2015-05-04
We investigate the pattern dependence in high speed Q-modulated distributed feedback laser based on its complete physical structure and material properties. The structure parameters of the gain section as well as the modulation and phase sections are all taken into account in the simulations based on an integrated traveling wave model. Using this model, we show that an example Q-modulated DFB laser can achieve an extinction ratio of 6.8dB with a jitter of 4.7ps and a peak intensity fluctuation of less than 15% for 40Gbps RZ modulation signal. The simulation method is proved very useful for the complex laser structure design and high speed performance optimization, as well as for providing physical insight of the operation mechanism.
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems
NASA Astrophysics Data System (ADS)
Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.
2017-08-01
This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.
Terahertz plasmonic lasers with narrow beams and large tunability
NASA Astrophysics Data System (ADS)
Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil
2017-02-01
Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.
Confocal laser feedback tomography for skin cancer detection
Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H. Peter; Rakić, Aleksandar D.
2017-01-01
Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique. PMID:28966845
Confocal laser feedback tomography for skin cancer detection.
Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H Peter; Rakić, Aleksandar D
2017-09-01
Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.
Intracavity optical trapping with Ytterbium doped fiber ring laser
NASA Astrophysics Data System (ADS)
Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.
2013-09-01
We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Strong intensity variations of laser feedback interferometer caused by atmospheric turbulence
NASA Astrophysics Data System (ADS)
Sun, Yiyi; Li, Zhiping
2003-05-01
The significant variation of the laser output can be caused by feedback of a small part of laser beam, which is reflected or backscattered by a target at a long distance from laser source, into the laser cavity. This paper describes and analyzes theoretically and experimentally the influence of atmospheric turbulence on interference caused by laser feedback. The influence depends upon both the energy of feedback into the laser cavity and the strength of turbulence over a laser propagation path in the atmosphere. In the case of stronger energy of feedback and weak turbulence variance of fluctuation of the laser output can be enhanced by hundreds to thousands times. From our measurements and theoretical analysis it shows thatthese significant enhancements can result from the change of laser-cavity-modes which can be stimulated simultaneously and from beat oscillations between a variety of frequencies of laser modes. This also can result from optical chaos inside the laser resonator because a non-separable distorted external cavity can become a prerequisite for optical chaos.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
NASA Astrophysics Data System (ADS)
Stelzle, Florian; Zam, Azhar; Adler, Werner; Douplik, Alexandre; Tangermann-Gerk, Katja; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael
Objective: Laser surgery has many advantages. However, due to a lack of haptic feedback it is accompanied by the risk of iatrogenic nerve damage. The aim of this study was to evaluate the possibilities of optical nerve identification by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Materials and Methods: Diffuse reflectance spectra of nerve tissue, skin, mucosa, fat tissue, muscle, cartilage and bone (15120 spectra) of ex vivo pig heads were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed by principal components analysis (PCA) followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Nerve tissue could correctly be identified and differed from skin, mucosa, fat tissue, muscle, cartilage and bone in more than 90% of the cases (AUC results) with a specificity of over 78% and a sensitivity of more than 86%. Conclusion: Nerve tissue can be identified by diffuse reflectance spectroscopy with high precision and reliability. The results may set the base for a feedback system to prevent iatrogenic nerve damage performing oral and maxillofacial laser surgery.
Method and apparatus for controlling carrier envelope phase
Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS
2011-12-06
A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.
Nearly-octave wavelength tuning of a continuous wave fiber laser
Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan
2017-01-01
The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-06-08
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh
2016-01-01
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634
An imaging system based on laser optical feedback for fog vision applications
NASA Astrophysics Data System (ADS)
Belin, E.; Boucher, V.
2008-08-01
The Laboratoire Régional des Ponts et Chaussées d'Angers - LRPC of Angers is currently studying the feasability of applying an optical technique based on the principle of the laser optical feedback to long distance fog vision. Optical feedback set up allows the creation of images on roadsigns. To create artificial fog conditions we used a vibrating cell that produces a micro-spray of water according to the principle of acoustic cavitation. To scale the sensitivity of the system under duplicatible conditions we also used optical densities linked to first-sight visibility distances. The current system produces, in a few seconds, 200 × 200 pixel images of a roadsign seen through dense artificial fog.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; Alcatel Thales III-V Lab, Campus de Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau; Carras, M.
2014-09-29
External optical feedback is studied experimentally in mid-infrared quantum cascade lasers. These structures exhibit a dynamical response close to that observed in interband lasers, with threshold reduction and optical power enhancement when increasing the feedback ratio. The study of the optical spectrum proves that the laser undergoes five distinct regimes depending on the phase and amplitude of the reinjected field. These regimes are mapped in the plane of external cavity length and feedback strength, revealing unstable behavior only for a very narrow range of operation, making quantum cascade lasers much more stable than their interband counterparts.
Period locking due to delayed feedback in a laser with saturable absorber.
Carr, T W
2003-08-01
We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to an integer fraction of the feedback time. We derive a map from the original model to describe the periodic pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states as well as the value of the pump when there is a switch between the locked states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon
2016-06-28
An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.
Near-IR laser frequency standard stabilized using FM-spectroscopy
NASA Astrophysics Data System (ADS)
Ružička, Bohdan; Číp, Ondřej; Lazar, Josef
2006-02-01
At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.
Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M
2015-11-30
We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST
NASA Astrophysics Data System (ADS)
Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.
2017-12-01
The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
Arbitrary waveform generator to improve laser diode driver performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, Jr, Edward Steven
2015-11-03
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
Camposeo, Andrea; Del Carro, Pompilio; Persano, Luana; Cyprych, Konrad; Szukalski, Adam; Sznitko, Lech; Mysliwiec, Jaroslaw; Pisignano, Dario
2014-10-28
Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.
Transversely bounded DFB lasers. [bounded distributed-feedback lasers
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G.; Yeh, C.
1975-01-01
Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.
NASA Astrophysics Data System (ADS)
Quintero-Quiroz, C.; Sorrentino, Taciano; Torrent, M. C.; Masoller, Cristina
2016-04-01
We study the dynamics of semiconductor lasers with optical feedback and direct current modulation, operating in the regime of low frequency fluctuations (LFFs). In the LFF regime the laser intensity displays abrupt spikes: the intensity drops to zero and then gradually recovers. We focus on the inter-spike-intervals (ISIs) and use a method of symbolic time-series analysis, which is based on computing the probabilities of symbolic patterns. We show that the variation of the probabilities of the symbols with the modulation frequency and with the intrinsic spike rate of the laser allows to identify different regimes of noisy locking. Simulations of the Lang-Kobayashi model are in good qualitative agreement with experimental observations.
Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser
NASA Astrophysics Data System (ADS)
Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.
2008-06-01
A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.
Suppression of thermal frequency noise in erbium-doped fiber random lasers.
Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang
2014-02-15
Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6 Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.
Cascaded Raman lasing in a PM phosphosilicate fiber with random distributed feedback
NASA Astrophysics Data System (ADS)
Lobach, Ivan A.; Kablukov, Sergey I.; Babin, Sergey A.
2018-02-01
We report on the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization maintaining phosphosilicate fiber operating beyond zero dispersion wavelength ( 1400 nm). With increasing pump power from a Yb-doped fiber laser at 1080 nm, the random laser generates subsequently 8 W at 1262 nm and 9 W at 1515 nm with polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 nm and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random lasing.
Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang
2016-01-01
A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
Model for a pulsed terahertz quantum cascade laser under optical feedback.
Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D
2016-09-05
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser.
Hagelschuer, Till; Wienold, Martin; Richter, Heiko; Schrottke, Lutz; Grahn, Holger T; Hübers, Heinz-Wilhelm
2017-11-27
We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D 2 O and CH 3 OD in an absorption cell.
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.
Field-programmable gate array-controlled sweep velocity-locked laser pulse generator
NASA Astrophysics Data System (ADS)
Chen, Zhen; Hefferman, Gerald; Wei, Tao
2017-05-01
A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.
Temperature feedback control for long-term carrier-envelope phase locking
Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS
2012-07-24
A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.
Response of microchip solid-state laser to external frequency-shifted feedback and its applications
Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning
2013-01-01
The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening. PMID:24105389
Response of microchip solid-state laser to external frequency-shifted feedback and its applications.
Tan, Yidong; Zhang, Shulian; Zhang, Song; Zhang, Yongqing; Liu, Ning
2013-10-09
The response of the microchip solid-state Nd:YAG laser, which is subjected to external frequency-shifted feedback, is experimentally and theoretically analysed. The continuous weak response of the laser to the phase and amplitude of the feedback light is achieved by controlling the feedback power level, and this system can be used to achieve contact-free measurement of displacement, vibration, liquid evaporation and thermal expansion with nanometre accuracy in common room conditions without precise environmental control. Furthermore, a strong response, including chaotic harmonic and parametric oscillation, is observed, and the spectrum of this response, as examined by a frequency-stabilised Nd:YAG laser, indicates laser spectral linewidth broadening.
Lobach, Ivan A; Kablukov, Sergey I; Babin, Sergey A
2017-09-15
We report on, to the best of our knowledge, the first demonstration of a linearly polarized cascaded Raman fiber laser based on a simple half-open cavity with a broadband composite reflector and random distributed feedback in a polarization-maintaining phosphosilicate fiber with a zero dispersion wavelength at ∼1400 nm. Pumped by a 1080 nm Yb-doped fiber laser, the random laser delivers more than 8 W at 1262 nm and 9 W at 1515 nm with a polarization extinction ratio of 27 dB. The generation linewidths amount to about 1 and 3 nm, respectively, being almost independent of power, in correspondence with the theory of a cascaded random fiber lasing.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
NASA Astrophysics Data System (ADS)
Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir
2011-03-01
In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.
Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.
Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru
2006-12-01
We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.
Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display
NASA Astrophysics Data System (ADS)
Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.
1999-07-01
In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.
Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H
2007-01-08
We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
Optical feedback effects on terahertz quantum cascade lasers: modelling and applications
NASA Astrophysics Data System (ADS)
Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter
2016-11-01
Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-02
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
NASA Astrophysics Data System (ADS)
An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Nghia, N. T.; Hoa, D. Q.
2017-10-01
Characteristics of suppressed relaxation oscillation of a distributed feedback dye laser (DFDL) based on the energy transfer process in a mixture of spherical gold nanoparticles-doped solid-state polymethylmetacrylate dissolved 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye was theoretically and experimentally studied. Single pulse generation regime of the DFDL can be obtained with a suitable gold nanoparticle concentration and ratio of pump power over lasing threshold. Numerical analysis and experimental approach showed that in this regime, the first-pulse laser pulsewidth is rather unchanged while varying the gold nanoparticles concentration in the range of 2.0 × 109-2.0 × 1010 par cm-3. The enhancement of first pulse and the suppression of the secondary pulses by bi-direction energy transfer of spherical gold nanoparticles were experimentally observed.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
NASA Astrophysics Data System (ADS)
Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim
2017-02-01
Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
2000-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
1998-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.
Self-organization of pulsing and bursting in a CO{sub 2} laser with opto-electronic feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freire, Joana G.; Instituto de Altos Estudos da Paraíba, Rua Infante Dom Henrique 100-1801, 58039-150 João Pessoa; CELC, Departamento de Matemática, Universidade de Lisboa, 1649-003 Lisboa
We report a detailed investigation of the stability of a CO{sub 2} laser with feedback as described by a six-dimensional rate-equations model which provides satisfactory agreement between numerical and experimental results. We focus on experimentally accessible parameters, like bias voltage, feedback gain, and the bandwidth of the feedback loop. The impact of decay rates and parameters controlling cavity losses are also investigated as well as control planes which imply changes of the laser physical medium. For several parameter combinations, we report stability diagrams detailing how laser spiking and bursting is organized over extended intervals. Laser pulsations are shown to emergemore » organized in several hitherto unseen regular and irregular phases and to exhibit a much richer and complex range of behaviors than described thus far. A significant observation is that qualitatively similar organization of laser spiking and bursting can be obtained by tuning rather distinct control parameters, suggesting the existence of unexpected symmetries in the laser control space.« less
Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A
2017-10-15
Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50 MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.
Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.
Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G
2013-10-21
In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Semyashkina, Yulia V.
2016-04-01
Dynamics of temperature signal in operation area and laser power at nevus, papilloma, and keratoma in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and with temperature feedback (APC) mode are presented. Feedback allows maintaining temperature in the area of laser treatment at a preset level by regulating power of diode laser radiation (automatic power control). Temperature in the area of laser treatment was controlled by measuring the amplitude of thermal radiation, which occurs when tissue is heated by laser radiation. Removal of neoplasm was carried out in CW mode with laser radiation average power of 12.5+/-0.5 W; mean temperature in the area of laser treatment was 900+/-10°C for nevus, 800+/-15°C for papilloma, and 850+/-20°C for keratoma. The same laser radiation maximal power (12.5 W) and targeted temperature (900°C) were set for nevus removal in APC mode. The results of investigation are real time oscillograms of the laser power and temperature in the area of laser treatment at neoplasms removal in two described above modes. Simultaneously with the measurement of laser power and the temperature in the area of laser treatment video recording of surgeon manipulations was carried out. We discuss the correlation between the power of the laser radiation, the temperature in the area of laser treatment and consistency of surgeon manipulation. It is shown that the method of removal (excision with or without traction, scanning) influences the temperature in the area of laser treatment. It was found, that at removal of nevus with temperature feedback (APC) mode to achieve comparable with CW mode temperature in the area of laser treatment (900+/-10°C) 20-50% less laser power is required. Consequently, removing these neoplasms in temperature feedback mode can be less traumatic than the removal in CW mode.
Crisis route to chaos in semiconductor lasers subjected to external optical feedback
NASA Astrophysics Data System (ADS)
Wishon, Michael J.; Locquet, Alexandre; Chang, C. Y.; Choi, D.; Citrin, D. S.
2018-03-01
Semiconductor lasers subjected to optical feedback have been intensively used as archetypical testbeds for high-speed (sub-ns) and high-dimensional nonlinear dynamics. By simultaneously extracting all the dynamical variables, we demonstrate that for larger current, the commonly named "quasiperiodic" route is in fact based on mixed external-cavity solutions that lock the oscillation frequency of the intensity, voltage, and separation in optical frequency through a mechanism involving successive rejections along the unstable manifold of an antimode. We show that chaos emerges from a crisis resulting from the inability to maintain locking as the unstable manifold becomes inaccessible.
Theory of repetitively pulsed operation of diode lasers subject to delayed feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napartovich, A P; Sukharev, A G
2015-03-31
Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)
An auto-locked diode laser system for precision metrology
NASA Astrophysics Data System (ADS)
Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.
2017-05-01
We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.
Lathdavong, Lemthong; Shao, Jie; Kluczynski, Pawel; Lundqvist, Stefan; Axner, Ove
2011-06-10
Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4 cm(-1), and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (c(H2O)≤40%) at T≤1000 °C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.
Direct laser additive fabrication system with image feedback control
Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru
2013-09-01
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi
2013-09-15
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less
GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.
2017-02-01
GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, A.; Abdulrhmann, S.; Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg
2016-06-15
We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding themore » second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.« less
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
NASA Astrophysics Data System (ADS)
Ristanic, Daniela; Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried
2015-01-01
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm-1 at 1586 cm-1. The room temperature laser threshold current density is 3 kA/cm2 and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.
NASA Astrophysics Data System (ADS)
Talla Mbé, Jimmi Hervé; Woafo, Paul
2018-03-01
We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.
Polarization feedback laser stabilization
Esherick, Peter; Owyoung, Adelbert
1988-01-01
A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.
Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.
Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard
2017-01-15
Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1 ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.
Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2013-01-01
This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266
Laser tumor treatment in oral and maxillofacial surgery
NASA Astrophysics Data System (ADS)
Neukam, F. W.; Stelzle, F.
Cancer treatment is an integral part of oral and maxillofacial surgery. Oral cancer in particular is a highly prevalent neoplasm. Standard treatment for most of the tumors is radical surgery combined with stage-based neo-/adjuvant therapy. Laser surgery has become a reliable treatment option for oral cancer as well as for precancerous lesions. Widely used lasers in oral and maxillofacial tumor surgery are the CO2 laser, the Er:YAG laser, the Nd:YAG laser and the KTM laser. The use of lasers in tumor surgery has several advantages: remote application, precise cutting, hemostasis, low cicatrization, reduced postoperative pain and swelling, can be combined with endoscopic, microscopic and robotic surgery. However, laser surgery has some major drawbacks: In contrast to conventional incisions with scalpels, the surgeon gets no feedback during laser ablation. There is no depth sensation and no tissue specificity with a laser incision, increasing the risk of iatrogenic damage to nerves and major blood vessels. Future prospects may solve these problems by means of an optical feedback mechanism that provides a tissue-specific laser ablation. First attempts have been made to perform remote optical tissue differentiation. Additionally, real time optical tumor detection during laser surgery would allow for a very precise and straight forward cancer resection, enhancing organ preservation and hence the quality of life for patients with cancer in the head and neck region.
Brownian motion properties of optoelectronic random bit generators based on laser chaos.
Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge
2016-07-11
The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Feedback-controlled laser fabrication of micromirror substrates.
Petrak, Benjamin; Konthasinghe, Kumarasiri; Perez, Sonia; Muller, Andreas
2011-12-01
Short (40-200 μs) single focused CO(2) laser pulses of energy ≳100 μJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of ≈20-100 μm and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (≈20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5% in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.
Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.
Amini, Amin; Banitsas, Konstantinos; Young, William R
2018-05-23
Parkinson's is a neurodegenerative condition associated with several motor symptoms including tremors and slowness of movement. Freezing of gait (FOG); the sensation of one's feet being "glued" to the floor, is one of the most debilitating symptoms associated with advanced Parkinson's. FOG not only contributes to falls and related injuries, but also compromises quality of life as people often avoid engaging in functional daily activities both inside and outside the home. In the current study, we describe a novel system designed to detect FOG and falling in people with Parkinson's (PwP) as well as monitoring and improving their mobility using laser-based visual cues cast by an automated laser system. The system utilizes a RGB-D sensor based on Microsoft Kinect v2 and a laser casting system consisting of two servo motors and an Arduino microcontroller. This system was evaluated by 15 PwP with FOG. Here, we present details of the system along with a summary of feedback provided by PwP. Despite limitations regarding its outdoor use, feedback was very positive in terms of domestic usability and convenience, where 12/15 PwP showed interest in installing and using the system at their homes. Implications for Rehabilitation Providing an automatic and remotely manageable monitoring system for PwP gait analysis and fall detection. Providing an automatic, unobtrusive and dynamic visual cue system for PwP based on laser line projection. Gathering feedback from PwP about the practical usage of the implemented system through focus group events.
Polarization feedback laser stabilization
Esherick, P.; Owyoung, A.
1987-09-28
A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.
Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian
2013-11-01
We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.
All-Union Conference on Laser Optics, 4th, Leningrad, USSR, January 13-18, 1984, Proceedings
NASA Astrophysics Data System (ADS)
Bukhenskii, M. F.
1984-08-01
The papers presented in this volume provide an overview of current theoretical and experimental research in laser optics. Topics discussed include electronically controlled tunable lasers, nonlinear phenomena in fiber-optic waveguides, holographic distributed-feedback dye lasers, and new developments in solid-state lasers. Papers are also presented on the generation of picosecond pulses through self-Q-switching in a distributed-feedback laser, temporal compression of light pulses during stimulated backscattering, and optimization of second harmonic generation in a multimode Nd:glass laser.
Feasibility of a feedback control of atomic self-organization in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, D. A., E-mail: ivanov-den@yandex.ru; Ivanova, T. Yu.
Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficientmore » from the laser power perspective than the original scheme without the electronic feedback.« less
NASA Astrophysics Data System (ADS)
Xu, Ling; Tan, Yidong; Zhang, Shulian
2018-03-01
The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.
Random lasing from Rhodamine 6G doped ethanediol solution based on the cicada wing nanocones
NASA Astrophysics Data System (ADS)
Zhang, Hua; Feng, Guoying; Zhang, Hong; Yang, Chao; Yin, Jiajia; Dai, Shenyu; Zhou, Shouhuan
2016-06-01
Random lasing from Rhdomaine 6G (Rh6G) doped ethanediol solution based on the cicada wing nanostructures as scatterers has been demonstrated. The optical positive feedback of the random laser is provided by these nanocones on the cicada wing, where the scale of the nanocones and the distance between them is about 150 nm and 200 nm, respectively. Al-coated reflector has been introduced to reduce the loss of the pump energy from the bottom, and moreover lower the laser threshold, which is about 126.0 μJ/pulse. Due to the liquid gain medium, the lifetime of this random laser is longer than conventional random lasers. This random laser shows the potential applications in biological random laser and photonic devices.
Integrated packaging of 2D MOEMS mirrors with optical position feedback
NASA Astrophysics Data System (ADS)
Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.
2015-02-01
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
Focusing light into desired patterns through turbid media by feedback-based wavefront shaping
NASA Astrophysics Data System (ADS)
Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong
2016-07-01
We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.
Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.
2013-01-01
We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.
Distributed feedback InGaN/GaN laser diodes
NASA Astrophysics Data System (ADS)
Slight, Thomas J.; Watson, Scott; Yadav, Amit; Grzanka, Szymon; Stanczyk, Szymon; Docherty, Kevin E.; Rafailov, Edik; Perlin, Piotr; Najda, Steve; Leszczyński, Mike; Kelly, Anthony E.
2018-02-01
We have realised InGaN/GaN distributed feedback laser diodes emitting at a single wavelength in the 42X nm wavelength range. Laser diodes based on Gallium Nitride (GaN) are useful devices in a wide range of applications including atomic spectroscopy, data storage and optical communications. To fully exploit some of these application areas there is a need for a GaN laser diode with high spectral purity, e.g. in atomic clocks, where a narrow line width blue laser source can be used to target the atomic cooling transition. Previously, GaN DFB lasers have been realised using buried or surface gratings. Buried gratings require complex overgrowth steps which can introduce epi-defects. Surface gratings designs, can compromise the quality of the p-type contact due to dry etch damage and are prone to increased optical losses in the grating regions. In our approach the grating is etched into the sidewall of the ridge. Advantages include a simpler fabrication route and design freedom over the grating coupling strength.Our intended application for these devices is cooling of the Sr+ ion and for this objective the laser characteristics of SMSR, linewidth, and power are critical. We investigate how these characteristics are affected by adjusting laser design parameters such as grating coupling coefficient and cavity length.
Green high-power tunable external-cavity GaN diode laser at 515 nm.
Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael
2016-09-15
A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode laser system.
Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback.
Freire, Joana G; Gallas, Jason A C
2010-09-01
Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feedback. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more general than presumed so far, being not limited by Shilnikov's theorem. Laser hubs open the possibility of measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
Zheng, Chuantao; Wang, Yiding
2017-01-01
A Pound-Drever-Hall (PDH)-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT) and proportional-integral-derivative (PID) feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line. PMID:29207470
Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristanic, Daniela; Schwarz, Benedikt, E-mail: benedikt.schwarz@tuwien.ac.at; Reininger, Peter
A method to improve the sensitivity and selectivity of a monolithically integrated mid-infrared sensor using a distributed feedback laser (DFB) is presented in this paper. The sensor is based on a quantum cascade laser/detector system built from the same epitaxial structure and with the same fabrication approach. The devices are connected via a dielectric-loaded surface plasmon polariton waveguide with a twofold function: it provides high light coupling efficiency and a strong interaction of the light with the environment (e.g., a surrounding fluid). The weakly coupled DFB quantum cascade laser emits narrow mode light with a FWHM of 2 cm{sup −1} atmore » 1586 cm{sup −1}. The room temperature laser threshold current density is 3 kA∕cm{sup 2} and a pulsed output power of around 200 mW was measured. With the superior laser noise performance, due to narrow mode emission and the compensation of thermal fluctuations, the lower limit of detection was expanded by one order of magnitude to the 10 ppm range.« less
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
NASA Astrophysics Data System (ADS)
Liu, Lijuan; Zhang, Guiyang; Kong, Xiaobo; Liu, Yonggang; Xuan, Li
2018-01-01
A high conversion efficiency distributed feedback (DFB) laser from a dye-doped holographic polymer dispersed liquid crystal (HPDLC) transmission grating structure was reported. The alignment polyimide (PI) films were used to control the orientation of the phase separated liquid crystals (LCs) to increase the refractive index difference between the LC and the polymer, so it can provide better light feedback. The lasing wavelength located at 645.8 nm near the maximum of the amplified spontaneous emission (ASE) spectrum with the lowest threshold 0.97 μ J/pulse and the highest conversion efficiency 1.6% was obtained. The laser performance under electric field were also investigated and illustrated. The simple configuration, one-step fabrication organic dye laser shows the potential to realize ultra-low cost plastic lasers.
Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun
2015-06-29
Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector
NASA Astrophysics Data System (ADS)
Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.
Terahertz plasmonic laser radiating in an ultra-narrow beam
Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...
2016-07-07
Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less
Tan, Song; Liu, Wan-feng; Wang, Li-jun; Zhang, Jin-chuan; Li, Lu; Liu, Jun-qi; Liu, Feng-qi; Wang, Zhan-guo
2012-05-01
There have been considerable interests in methane detection based on infrared absorption spectroscopy for industrial and environment monitoring. The authors report on the realization of photoacoustic detection of methane (CH4) using mid-infrared distributed-feedback quantum cascade laser (DFB-QCL). The absorption line at 1316.83 cm(-1) was selected for CH4 detection, which can be reached by the self-manufactured DFB-QCL source operating in pulsed mode near 7.6 microm at room-temperature. The CH4 gas is filled to a Helmholtz resonant photoacoustic cell, which was equipped with a commercial electret microphone. The DFB-QCL was operated at 234 Hz with an 80 mW optical peak power. A detection limit of 189 parts per billion in volume was derived when the signal-to-noise ratio equaled 1.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao; Wienhold, Tobias; Vannahme, Christoph; Jakobs, Peter-Jürgen; Bacher, Andreas; Muslija, Alban; Mappes, Timo; Lemmer, Uli
2013-11-18
Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
Ultracompact vibrometry measurement with nanometric accuracy using optical feedback
NASA Astrophysics Data System (ADS)
Jha, Ajit; Azcona, Francisco; Royo, Santiago
2015-05-01
The nonlinear dynamics of a semiconductor laser with optical feedback (OF) combined with direct current modulation of the laser is demonstrated to suffice for the measurement of subwavelength changes in the position of a vibrating object. So far, classical Optical Feedback Interferometry (OFI) has been used to measure the vibration of an object given its amplitude is greater than half the wavelength of emission, and the resolution of the measurement limited to some tenths of the wavelength after processing. We present here a methodology which takes advantage of the combination of two different phenomena: continuous wave frequency modulation (CWFM), induced by direct modulation of the laser, and non-linear dynamics inside of the laser cavity subject to optical self-injection (OSI). The methodology we propose shows how to detect vibration amplitudes smaller than half the emission wavelength with resolutions way beyond λ/2, extending the typical performance of OFI setups to very small amplitudes. A detailed mathematical model and simulation results are presented to support the proposed methodology, showing its ability to perform such displacement measurements of frequencies in the MHz range, depending upon the modulation frequency. Such approach makes the technique a suitable candidate, among other applications, to economic laser-based ultrasound measurements, with applications in nondestructive testing of materials (thickness, flaws, density, stresses), among others. The results of simulations of the proposed approach confirm the merit of the figures as detection of amplitudes of vibration below λ/2) with resolutions in the nanometer range.
Temperature feedback control for long-term carrier-envelope phase locking.
Yun, Chenxia; Chen, Shouyuan; Wang, He; Chini, Michael; Chang, Zenghu
2009-09-20
We report a double feedback loop for the improvement of the carrier-envelope phase stabilization of a chirped mirror based femtosecond laser oscillator. By combining the control of the Ti:sapphire crystal temperature and the modulation of the pump power, the carrier envelope offset frequency, fCEO, was locked for close to 20 h, which is much longer than the typical phase stabilization time with only pump power modulation.
Ignition feedback regenerative free electron laser (FEL) amplifier
Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max
2001-01-01
An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.
Thermo-optic locking of a semiconductor laser to a microcavity resonance.
McRae, T G; Lee, Kwan H; McGovern, M; Gwyther, D; Bowen, W P
2009-11-23
We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-01
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.
Jacquin, Olivier; Lacot, Eric; Glastre, Wilfried; Hugon, Olivier; Guillet de Chatellus, Hugues
2011-08-01
Using an Nd:YVO₄ microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performance than heterodyne interferometry for a wide range of laser powers and detection levels of noise. The experimental results are in good agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Ironside, C. N.; Haji, Mohsin; Hou, Lianping; Akbar, Jehan; Kelly, Anthony E.; Seunarine, K.; Romeira, Bruno; Figueiredo, José M. L.
2011-05-01
Optoelectronic oscillators can provide low noise oscillators at radio frequencies in the 0.5-40 GHz range and in this paper we review two recently introduced approaches to optoelectronic oscillators. Both approaches use an optical fibre feedback loop. One approach is based on passively modelocked laser diodes and in a 40 GHz oscillator achieves up to 30 dB noise reduction. The other approach is based on resonant tunneling diode optoelectronic devices and in a 1.4 GHz oscillator can achieve up to 30 dB noise reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Katsumasa; Shioyama, Yoshiyuki; Nomoto, Satoru
2007-05-01
Purpose: The voluntary breath-hold (BH) technique is a simple method to control the respiration-related motion of a tumor during irradiation. However, the abdominal and chest wall position may not be accurately reproduced using the BH technique. The purpose of this study was to examine whether visual feedback can reduce the fluctuation in wall motion during BH using a new respiratory monitoring device. Methods and Materials: We developed a laser-based BH monitoring and visual feedback system. For this study, five healthy volunteers were enrolled. The volunteers, practicing abdominal breathing, performed shallow end-expiration BH (SEBH), shallow end-inspiration BH (SIBH), and deep end-inspirationmore » BH (DIBH) with or without visual feedback. The abdominal and chest wall positions were measured at 80-ms intervals during BHs. Results: The fluctuation in the chest wall position was smaller than that of the abdominal wall position. The reproducibility of the wall position was improved by visual feedback. With a monitoring device, visual feedback reduced the mean deviation of the abdominal wall from 2.1 {+-} 1.3 mm to 1.5 {+-} 0.5 mm, 2.5 {+-} 1.9 mm to 1.1 {+-} 0.4 mm, and 6.6 {+-} 2.4 mm to 2.6 {+-} 1.4 mm in SEBH, SIBH, and DIBH, respectively. Conclusions: Volunteers can perform the BH maneuver in a highly reproducible fashion when informed about the position of the wall, although in the case of DIBH, the deviation in the wall position remained substantial.« less
[Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].
Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming
2009-08-01
The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.
Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virte, Martin; Karsaklian Dal Bosco, Andreas; Wolfersberger, Delphine
2011-10-15
A laser diode subject to a phase-conjugate optical feedback can exhibit rich nonlinear dynamics and chaos. We report here on two bifurcation mechanisms that appear when increasing the amount of light being fed back to the laser. First, we report on a full suppression of chaos from a crisis induced by a saddle-node bifurcation on self-pulsing, so-called external-cavity-mode solutions (ECMs). Second, the feedback-dependent torus and saddle-node bifurcations on ECMs may be responsible for large regions of bistability between ECMs of different and high (beyond gigahertz) frequencies.
Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1998-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.
Feedback and Acousto Optic Isolation Effects on Laser Stability.
1977-03-01
This paper analyzes the effect of optical feedback on laser frequency stability and the acousto optic isolator concept, which was demonstrated...nonlinearity such as saturation in the laser medium. The analysis mathematically corroborates the initial acousto optic isolator concept and the...limited experimental data available. In the study of the acousto optic isolator, it was determined that an acceptable analytic expression for the
Distributed feedback imprinted electrospun fiber lasers.
Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario
2014-10-01
Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rf Feedback free electron laser
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1981-01-01
A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong
2013-06-01
Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.
Plasmonic distributed feedback lasers at telecommunications wavelengths.
Marell, Milan J H; Smalbrugge, Barry; Geluk, Erik Jan; van Veldhoven, Peter J; Barcones, Beatrix; Koopmans, Bert; Nötzel, Richard; Smit, Meint K; Hill, Martin T
2011-08-01
We investigate electrically pumped, distributed feedback (DFB) lasers, based on gap-plasmon mode metallic waveguides. The waveguides have nano-scale widths below the diffraction limit and incorporate vertical groove Bragg gratings. These metallic Bragg gratings provide a broad bandwidth stop band (~500 nm) with grating coupling coefficients of over 5000/cm. A strong suppression of spontaneous emission occurs in these Bragg grating cavities, over the stop band frequencies. This strong suppression manifests itself in our experimental results as a near absence of spontaneous emission and significantly reduced lasing thresholds when compared to similar length Fabry-Pérot waveguide cavities. Furthermore, the reduced threshold pumping requirements permits us to show strong line narrowing and super linear light current curves for these plasmon mode devices even at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Ba, T.; Triki, M.; Vicet, A., E-mail: a.vicet@univ-montp2.fr
2015-02-15
An antimonide distributed feedback quantum wells diode laser operating at 3.32 μm at near room temperature in the continuous wave regime has been used to perform ethylene detection based on quartz enhanced photoacoustic spectroscopy. An absorption line centered at 3007.52 cm{sup −1} was investigated and a normalized noise equivalent absorption coefficient (1σ) of 3.09 10{sup −7} cm{sup −1} W Hz{sup −1/2} was obtained. The linearity and the stability of the detection have been evaluated. Biological samples’ respiration has been measured to validate the feasibility of the detection setup in an agronomic environment, especially on ripening apples.
Li, Qiliang; Lu, Shanshan; Bao, Qi; Chen, Dewang; Hu, Miao; Zeng, Ran; Yang, Guowei; Li, Shuqin
2018-01-10
In this paper, we propose a chaos-based scheme allowing for trilateral communication among three mutually coupled chaotic semiconductor lasers. The coupling through a partially transparent optical mirror between two lasers induces the chaotic dynamics. We numerically solve the delay rate equations of three lasers and demonstrate that the dynamics is completely synchronous. Herein, each laser is not only a transmitter but a receiver; three different messages are encoded by simultaneously modulating bias current of the three lasers. By monitoring the synchronization error between transmitter and receiver, and comparing the error with the message of the local laser, we can decipher the message of the sender. The investigation indicates that these messages introduced on the two ends of each link among three lasers can be simultaneously transmitted and restored, so the system can realize simultaneous trilateral communication. In this scheme, an eavesdropper can monitor the synchronization error, but one has no way to obtain the bits that are being sent, so the trilateral communication is secure.
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory
2017-11-01
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao; Hosoda, Takashi; Shterengas, Leon
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-10-18
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
NASA Astrophysics Data System (ADS)
Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee
2016-09-01
We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.
High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James
2013-01-01
Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ AlInGaAsSb multi-quantum well structures. The device fabrication utilizes etched index-coupled gratings in the top AlGaAsSb cladding of the laser chip along the ridge waveguide, whereas commercial lasers that emit close to this wavelength include loss-coupled metal gratings that limit the output power of the laser. Semiconductor-laser-based spectrometers can be used to replace gas sensors currently used in industry and government. With the availability of high-power laser sources at mid-infrared wavelengths, sensors can target strong fundamental gas absorption lines to maximize instrument sensitivity.
NASA Astrophysics Data System (ADS)
Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.
2009-10-01
Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback.
Li, Yan; Wu, Zheng-Mao; Zhong, Zhu-Qiang; Yang, Xian-Jie; Mao, Song; Xia, Guang-Qiong
2014-08-11
Based on the framework of spin-flip model (SFM), the output characteristics of a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to variable-polarization fiber Bragg grating (FBG) feedback (VPFBGF) have been investigated. With the aid of the self-correlation function (SF) and the permutation entropy (PE) function, the time-delay signature (TDS) of chaos in the VPFBGF-VCSEL is evaluated, and then the influences of the operation parameters on the TDS of chaos are analyzed. The results show that the TDS of chaos can be suppressed efficiently through selecting suitable coupling coefficient and feedback rate of the FBG, and is weaker than that of chaos generated by traditional variable-polarization mirror feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback VCSELs (PPFBGF-VCSELs).
Pointing and Jitter Control for the USNA Multi-Beam Combining System
2013-05-10
previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state
Rf feedback free electron laser
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-11-02
A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Linearization of microwave photonic link based on nonlinearity of distributed feedback laser
NASA Astrophysics Data System (ADS)
Kang, Zi-jian; Gu, Yi-ying; Zhu, Wen-wu; Fan, Feng; Hu, Jing-jing; Zhao, Ming-shan
2016-02-01
A microwave photonic link (MPL) with spurious-free dynamic range (SFDR) improvement utilizing the nonlinearity of a distributed feedback (DFB) laser is proposed and demonstrated. First, the relationship between the bias current and nonlinearity of a semiconductor DFB laser is experimentally studied. On this basis, the proposed linear optimization of MPL is realized by the combination of the external intensity Mach-Zehnder modulator (MZM) modulation MPL and the direct modulation MPL with the nonlinear operation of the DFB laser. In the external modulation MPL, the MZM is biased at the linear point to achieve the radio frequency (RF) signal transmission. In the direct modulation MPL, the third-order intermodulation (IMD3) components are generated for enhancing the SFDR of the external modulation MPL. When the center frequency of the input RF signal is 5 GHz and the two-tone signal interval is 10 kHz, the experimental results show that IMD3 of the system is effectively suppressed by 29.3 dB and the SFDR is increased by 7.7 dB.
High-power all-fiber ultra-low noise laser
NASA Astrophysics Data System (ADS)
Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio
2018-06-01
High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.
MQW Optical Feedback Modulators And Phase Shifters
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
1995-01-01
Laser diodes equipped with proposed multiple-quantum-well (MQW) optical feedback modulators prove useful in variety of analog and digital optical-communication applications, including fiber-optic signal-distribution networks and high-speed, low-crosstalk interconnections among super computers or very-high-speed integrated circuits. Development exploits accompanying electro-optical aspect of QCSE - variation in index of refraction with applied electric field. Also exploits sensitivity of laser diodes to optical feedback. Approach is reverse of prior approach.
Spatiotemporal mode-locking in multimode fiber lasers
NASA Astrophysics Data System (ADS)
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2017-10-01
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.
Jang, Andrew T; Chan, Kenneth H; Fried, Daniel
2017-09-01
The purpose of this study is to assemble a laser system for the selective removal of dental composite from tooth surfaces, that is feasible for clinical use incorporating a spectral feedback system, a scanning system, articulating arm and a clinical hand-piece, and evaluate the performance of that system on extracted teeth. Ten extracted teeth were collected and small fillings were placed on the occlusal surface of each tooth. A clinical system featuring a CO 2 laser operating at 50 Hz and spectral optical feedback was used to remove the composite. Removal was confirmed using a cross polarized optical coherence tomography (CP-OCT) system designed for clinical use. The system was capable of rapidly removing composite from small preparations on tooth occlusal surfaces with a mean loss of enamel of less than 20 μm. We have demonstrated that spectral feedback can be successfully employed in an automated system for composite removal by incorporating dual photodiodes and a galvanometer controlled CO 2 laser. Additionally, the use of registered OCT images presents as a viable method for volumetric benchmarking. Overall, this study represents the first implementation of spectral feedback into a clinical hand-piece and serves as a benchmark for a future clinical study. Lasers Surg. Med. 49:658-665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Experimental examination of frequency locking effect in acousto-optic system
NASA Astrophysics Data System (ADS)
Mantsevich, S. N.; Balakshy, V. I.
2018-04-01
The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.
The waveguide laser - A review
NASA Technical Reports Server (NTRS)
Degnan, J. J.
1976-01-01
The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.
NASA Technical Reports Server (NTRS)
Newman, Bronjelyn; Halpern, Joshua B.
1997-01-01
Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.
Holographic injection locking of a broad area laser diode via a photorefractive thin-film device.
van Voorst, P D; de Wit, M R; Offerhaus, H L; Tay, S; Thomas, J; Peyghambarian, N; Boller, K-J
2007-12-24
We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser.
Feedback stabilization of quantum cascade laser beams for stand-off applications
NASA Astrophysics Data System (ADS)
Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert
2017-05-01
Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers
NASA Astrophysics Data System (ADS)
Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.
Restorative retinal laser therapy: Present state and future directions.
Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K
Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging of acoustic fields using optical feedback interferometry.
Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry
2014-12-01
This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.
Choi, Daeyoung; Wishon, Michael J; Chang, C Y; Citrin, D S; Locquet, A
2018-01-01
We observe experimentally two regimes of intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity as the feedback level is increased. The first regime encountered corresponds to multistate intermittency involving two or three states composed of several combinations of periodic, quasiperiodic, and subharmonic dynamics. The second regime is observed for larger feedback levels and involves intermittency between period-doubled and chaotic regimes. This latter type of intermittency displays statistical properties similar to those of on-off intermittency.
Fiber distributed feedback laser
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)
1976-01-01
Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.
Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback
NASA Astrophysics Data System (ADS)
Rodwell, M. J. W.; Weingarten, K. J.; Bloom, D. M.; Baer, T.; Kolner, B. H.
1986-10-01
The timing fluctuations of a mode-locked Nd:YAG laser are reduced by electronic feedback. Timing fluctuations at rates of 50 to 250 Hz are reduced by more than 20 dB, the total timing fluctuations are reduced from 2.9 to 0.9 psec rms, and long-term drift is reduced to 0.5 psec/min. Applications include time-resolved probing experiments and synchronization of lasers.
Free-standing membrane polymer laser on the end of an optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie
2016-01-25
One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.
Wang, Yue; Tsiminis, Georgios; Kanibolotsky, Alexander L; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A
2013-06-17
Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.
Improved photoacoustic dosimetry for retinal laser surgery
NASA Astrophysics Data System (ADS)
Dufour, Suzie; Brown, Robert B.; Gallant, Pascal; Mermut, Ozzy
2018-02-01
Lasers are employed for numerous medical interventions by exploiting ablative, disruptive or thermal effects. In ocular procedures, lasers have been used for decades to treat diseases such as diabetic retinopathy, macular edema and aged related macular degeneration via photocoagulation of retinal tissues. Although laser photocoagulation is well established in today's practice, efforts to improve clinical outcomes by reducing the collateral damage from thermal diffusion is leading to novel treatments using shorter (μs) laser pulses (e.g. selective retinal therapy) which result in physical rather than thermal damage. However, for these new techniques to be widely utilized, a method is required to ensure safe but sufficient dosage has been applied, since no visible effects can be seen by ophthalmoscopy directly post treatment. Photoacoustic feedback presents an attractive solution, as the signal is dependent directly on absorbed dosage. Here, we present a method that takes advantage of temporal pulse formatting technology to minimize variation in absorbed dose in ophthalmic laser treatment and provide intelligent dosimetry feedback based on photoacoustic (PA) response. This method tailors the pulse to match the frequency response of the sample and/or detection chain. Depending on the system, this may include the absorbing particle size, the laser beam diameter, the laser pulse duration, tissue acoustic properties and the acoustic detector frequency response. A significant improvement (<7x) of photoacoustic signal-to-noise ratio over equivalent traditional pulse formats have been achieved, while spectral analysis of the detected signal provides indications of cavitation events and other sample properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-15
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achievedmore » is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.« less
Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)
2015-01-01
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.
Self-localized structures in vertical-cavity surface-emitting lasers with external feedback.
Paulau, P V; Gomila, D; Ackemann, T; Loiko, N A; Firth, W J
2008-07-01
In this paper, we analyze a model of broad area vertical-cavity surface-emitting lasers subjected to frequency-selective optical feedback. In particular, we analyze the spatio-temporal regimes arising above threshold and the existence and dynamical properties of cavity solitons. We build the bifurcation diagram of stationary self-localized states, finding that branches of cavity solitons emerge from the degenerate Hopf bifurcations marking the homogeneous solutions with maximal and minimal gain. These branches collide in a saddle-node bifurcation, defining a maximum pump current for soliton existence that lies below the threshold of the laser without feedback. The properties of these cavity solitons are in good agreement with those observed in recent experiments.
NASA Technical Reports Server (NTRS)
Matsuoka, N.; Yamaguchi, S.; Nanri, K.; Fujioka, T.; Richter, D.; Tittel, F. K.
2001-01-01
A Yb fiber laser pumped cw narrow-linewidth tunable mid-IR source based on a difference frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal for trace gas detection was demonstrated. A high power Yb fiber laser and a distributed feedback (DFB) laser diode were used as DFG pump sources. This source generated mid-IR at 3 microns with a powers of 2.5 microW and a spectral linewidth of less than 30 MHz. A frequency tuning range of 300 GHz (10 cm-1) was obtained by varying the current and temperature of the DFB laser diode. A high-resolution NH3 absorption Doppler-broadened spectrum at 3295.4 cm-1 (3.0345 microns) was obtained at a cell pressure of 27 Pa from which a detection sensitivity of 24 ppm m was estimated.
Hakobyan, Sargis; Wittwer, Valentin J; Gürel, Kutan; Mayer, Aline S; Schilt, Stéphane; Südmeyer, Thomas
2017-11-15
We demonstrate, to the best of our knowledge, the first carrier-envelope offset (CEO) frequency stabilization of a GHz femtosecond laser based on opto-optical modulation (OOM) of a semiconductor saturable absorber mirror (SESAM). The 1.05-GHz laser is based on a Yb:CALGO gain crystal and emits sub-100-fs pulses with 2.1-W average power at a center wavelength of 1055 nm. The SESAM plays two key roles: it starts and stabilizes the mode-locking operation and is simultaneously used as an actuator to control the CEO frequency. This second functionality is implemented by pumping the SESAM with a continuous-wave 980-nm laser diode in order to slightly modify its nonlinear reflectivity. We use the standard f-to-2f method for detection of the CEO frequency, which is stabilized by applying a feedback signal to the current of the SESAM pump diode. We compare the SESAM-OOM stabilization with the traditional method of gain modulation via control of the pump power of the Yb:CALGO gain crystal. While the bandwidth for gain modulation is intrinsically limited to ∼250 kHz by the laser cavity dynamics, we show that the OOM provides a feedback bandwidth above 500 kHz. Hence, we were able to obtain a residual integrated phase noise of 430 mrad for the stabilized CEO beat, which represents an improvement of more than 30% compared to gain modulation stabilization.
Wavelength locking of single emitters and multi-emitter modules: simulation and experiments
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe
2016-03-01
Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.
Single electron beam rf feedback free electron laser
Brau, C.A.; Stein, W.E.; Rockwood, S.D.
1981-02-11
A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Rapid and efficient formation of propagation invariant shaped laser beams.
Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir
2018-02-19
A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.
Wenke, G; Zhu, Y
1983-12-01
The coupling of CSP lasers to single-mode fibers with different coupling structures made on the fiber face is investigated. In this case easy to make coupling arrangements such as tapers and microlenses, result in a high launching efficiency (approximately 2-dB loss), in contrast to launching from gain-guided lasers with strong astigmatism and a broader far-field pattern. Index-guiding lasers exhibit, however, a higher sensitivity to optical feedback. Laser output power and wavelength are changed due to reflections from the fiber tip. Critical distances exist which lead to a highly unstable laser spectrum. A comparison of the influence of various fiber faces on laser power and wavelength stability is presented. It is concluded that a tapered fiber end with a large working distance reduces the influence on the laser's performance.
Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene
NASA Astrophysics Data System (ADS)
Zolotovskii, Igor O.; Dadoenkova, Yuliya S.; Moiseev, Sergey G.; Kadochkin, Aleksei S.; Svetukhin, Vyacheslav V.; Fotiadi, Andrei A.
2018-05-01
We propose a model of a slow surface plasmon-polariton distributed-feedback laser with pump by drift current. The amplification in the dielectric-semiconducting film-dielectric waveguide structure is created by fast drift current in the graphene layer, placed at the semiconductor/dielectric interface. The feedback is provided due to a periodic change in the thickness of the semiconducting film. We have shown that in such a system it is possible to achieve surface plasmon-polariton generation in the terahertz region.
Laterally Coupled Quantum-Dot Distributed-Feedback Lasers
NASA Technical Reports Server (NTRS)
Qui, Yueming; Gogna, Pawan; Muller, Richard; Maker, paul; Wilson, Daniel; Stintz, Andreas; Lester, Luke
2003-01-01
InAs quantum-dot lasers that feature distributed feedback and lateral evanescent- wave coupling have been demonstrated in operation at a wavelength of 1.3 m. These lasers are prototypes of optical-communication oscillators that are required to be capable of stable single-frequency, single-spatial-mode operation. A laser of this type (see figure) includes an active layer that comprises multiple stacks of InAs quantum dots embedded within InGaAs quantum wells. Distributed feedback is provided by gratings formed on both sides of a ridge by electron lithography and reactive-ion etching on the surfaces of an AlGaAs/GaAs waveguide. The lateral evanescent-wave coupling between the gratings and the wave propagating in the waveguide is strong enough to ensure operation at a single frequency, and the waveguide is thick enough to sustain a stable single spatial mode. In tests, the lasers were found to emit continuous-wave radiation at temperatures up to about 90 C. Side modes were found to be suppressed by more than 30 dB.
Multi-peak structure of generation spectrum of random distributed feedback fiber Raman lasers.
Vatnik, I D; Zlobina, E A; Kablukov, S I; Babin, S A
2017-02-06
We study spectral features of the generation of random distributed feedback fiber Raman laser arising from two-peak shape of the Raman gain spectral profile realized in the germanosilicate fibers. We demonstrate that number of peaks can be calculated using power balance model considering different subcomponents within each Stokes component.
Near-field analysis of metallic DFB lasers at telecom wavelengths.
Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R
2013-05-06
We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.
NASA Astrophysics Data System (ADS)
Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.
2014-03-01
Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of < 3mm-mrad. The EU project BRIDLE (www.bridle.eu) is developing novel diode laser sources for such systems, and several technological advances are sought. For increased system brightness and optimal ber-coupling the diode lasers should operate with reduced BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with < 50% effciency at output power, Pout < 6 W, with BPP < 1.8 mm-mrad and offV 95 36 . The emission wavelength is about 970 nm and the spectral width is < 0.7 nm (95% power). The BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.
Short cavity DFB fiber laser based vector hydrophone for low frequency signal detection
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Faxiang; Jiang, Shaodong; Min, Li; Li, Ming; Peng, Gangding; Ni, Jiasheng; Wang, Chang
2017-12-01
A short cavity distributed feedback (DFB) fiber laser is used for low frequency acoustic signal detection. Three DFB fiber lasers with different central wavelengths are chained together to make three-element vector hydrophone with proper sensitivity enhancement design, which has extensive and significant applications to underwater acoustic monitoring for the national defense, oil, gas exploration, and so on. By wavelength-phase demodulation, the lasing wavelength changes under different frequency signals can be interpreted, and the sensitivity is tested about 33 dB re pm/g. The frequency response range is rather flat from 5 Hz to 300 Hz.
Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection
Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano
2006-01-01
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles
2013-09-23
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
NASA Astrophysics Data System (ADS)
Cheng, Joyce Y.; Fan, Kenneth; Fried, Daniel
2006-02-01
One perceived disadvantage of caries removal using lasers is the loss of the tactile feedback associated with the handpiece. However, alternative methods of acoustic and optical feedback become available with the laser that can be exploited to provide information about the chemical composition of the material ablated, the ablation efficiency and rate, the depth of the incision, and the surface and plume temperature during ablation. Such information can be used to increase the selectivity of ablation, avoid peripheral thermal damage and excessive heat deposition in the tooth, and provide a mechanism of robotic automation. The objective of this study was to test the hypothesis that a compact fiberoptic spectrometer could be used to differentiate between the ablation of sound and carious enamel and dentin and between dental hard tissues and composite. Sound and carious tooth surfaces along with composite restorative materials were scanned with λ=0.355, 2.79 and 9.3 μm laser pulses at irradiation intensities ranging from 0.5-100 J/cm2 and spectra were acquired from λ=250-900-nm using a compact fiber-optic spectrometer. Emission spectra varied markedly with the laser wavelength and pulse duration. Optical feedback was not successful in differentiating between sound and carious enamel and dentin even with the addition of various chromophores to carious lesion areas. However, the spectral feedback was successfully used to differentiate between composites and sound enamel and dentin enabling the selective removal of composite from tooth surfaces using a computer controlled λ=9.3-μm pulsed CO II laser and scanning system.
Liu, Bo; Braiman, Yehuda
2018-02-06
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
NASA Astrophysics Data System (ADS)
Liu, Bo; Braiman, Yehuda
2018-05-01
We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
Amplitude Noise Reduction of Ion Lasers with Optical Feedback
NASA Technical Reports Server (NTRS)
Herring, Gregory C.
2011-01-01
A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Braiman, Yehuda
In this paper, we introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ~25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. Finally, we found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.
Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces.
Chan, Kenneth H; Hirasuna, Krista; Fried, Daniel
2014-02-01
Resin-based composites are used for many applications in dentistry. They are difficult to remove without damage to the underlying enamel since they adhere strongly and are color matched to the tooth. The objective of this study was to determine if an automated laser scanning system with spectral feedback could be used for selective removal of residual orthodontic composite from tooth surfaces with minimal damage to the underlying enamel. A CO 2 laser operating at a wavelength of 9.3 μm with a pulse duration of 10-15 μs and a pulse repetition rate of ~200 Hz was used to selectively remove composite from the buccal surfaces of extracted teeth. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Conventional and digital microscopes were used to assess the amount of enamel lost during removal. The amount of enamel lost averaged between 20 and 25 μm for irradiation intensities from 3.8 to 4.2 J/cm 2 , respectively. An average maximum temperature rise of 1.9±1.5°C was recorded, with no teeth approaching the critical value of 5.5°C. The average time for composite removal from an area of 5 mm 2 was 19.3±4.1 s, fast enough for clinical feasibility. Residual composite can be rapidly removed from tooth surfaces using a CO 2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal loss of sound enamel.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.
Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.
Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K
Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...
2016-12-19
A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less
Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A
2016-07-01
A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.
Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric
2016-12-01
In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.
Final Report for High Precision Short-Pulse Laser Ablation System for Medical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, B.M.; Feit, M.; Rubenchik, A.
2000-03-04
During the three year LDRD funding period, we studied the ablation characteristics of biological tissues using ultrashort pulse lasers (USPL) with pulse widths varying from 100 femtoseconds to tens of picoseconds. During the first year, we performed extensive theoretical studies to develop an improved understanding of the USPL ablation process. Two optical signals were tested for feasibility of use in real-time feedback systems during high repetition rate ablation. In the second year, we devised a real-time, feedback-controlled USPL ablation system, based on luminescence, which may be useful for sensitive micro-spinal surgeries. Effective laser parameters were identified to reduce collateral damage.more » The final year of the project focused on quantification of the pressure pulse induced by USPL ablation of water surfaces representing biological tissues. Results of these studies were presented in invited talks at domestic and international conferences and numerous journal articles were published (see bibliography). This effort has increased our scientific understanding of physical processes important for the therapeutic biomedical application of ultrashort pulse lasers, and has taken the first steps toward practical realization of such applications.« less
Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skolski, J. Z. P., E-mail: j.z.p.skolski@utwente.nl; Vincenc Obona, J.; Römer, G. R. B. E.
2014-03-14
A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelengthmore » of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.« less
Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang
2017-05-15
Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.
Heterogeneous Integration for Reduced Phase Noise and Improved Reliability of Semiconductor Lasers
NASA Astrophysics Data System (ADS)
Srinivasan, Sudharsanan
Significant savings in cost, power and space are possible in existing optical data transmission networks, sensors and metrology equipment through photonic integration. Photonic integration can be broadly classified into two categories, hybrid and monolithic integration. The former involves assembling multiple single functionality optical devices together into a single package including any optical coupling and/or electronic connections. On the other hand monolithic integration assembles many devices or optical functionalities on a single chip so that all the optical connections are on chip and require no external alignment. This provides a substantial improvement in reliability and simplifies testing. Monolithic integration has been demonstrated on both indium phosphide (InP) and silicon (Si) substrates. Integration on larger 300mm Si substrates can further bring down the cost and has been a major area of research in recent years. Furthermore, with increasing interest from industry, the hybrid silicon platform is emerging as a new technology for integrating various active and passive optical elements on a single chip. This is both in the interest of bringing down manufacturing cost through scaling along with continued improvement in performance and to produce multi-functional photonic integrated circuits (PIC). The goal of this work is twofold. First, we show four laser demonstrations that use the hybrid silicon platform to lower phase noise due to spontaneous emission, based on the following two techniques, viz. confinement factor reduction and negative optical feedback. The first two demonstrations are of mode-locked lasers and the next two are of tunable lasers. Some of the key results include; (a) 14dB white frequency noise reduction of a 20GHz radio-frequency (RF) signal from a harmonically mode-locked long cavity laser with greater than 55dB supermode noise suppression, (b) 8dB white frequency noise reduction from a colliding pulse mode-locked laser by reducing the number of quantum wells and a further 6dB noise reduction using coherent photon seeding from long on-chip coupled cavity, (c) linewidth reduction of a tunable laser down to 160kHz using negative optical feedback from coupled ring resonator mirrors, and (d) linewidth reduction of a widely tunable laser down to 50kHz using on-chip coupled cavity feedback effect. Second, we present the results of a reliability study conducted to investigate the influence of molecular wafer bonding between Si and InP on the lifetime of distributed feedback lasers, a common laser source used in optical communication. No degradation in lasing threshold or slope efficiency was observed after aging the lasers for 5000hrs at 70°C and 2500hrs at 85°C. However, among the three chosen bonding interface layer options, the devices with an interface superlattice layer showed a higher yield for lasers and lower dark current values in the on-chip monitor photodiodes after aging.
Teaching practice of the course of Laser Principle and Application based on PBL mode
NASA Astrophysics Data System (ADS)
Li, Yongliang; Lv, Beibei; Wang, Siqi
2017-08-01
The primary task of university education is to stimulate students' autonomic learning and cultivate students' creative thinking. This paper put to use problem based learning (PBL) teaching mode, to enable students master flexible knowledge as the goal, and a detailed analysis of the implementation method and concrete measures of PBL teaching reform in the course of Laser Principle and Application, then compared with the former teaching methods. From the feedback of students and teaching experience, we get good teaching effect and prove the feasibility of PBL teaching mode in practice.
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
NASA Astrophysics Data System (ADS)
Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.
2010-10-01
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.
2010-10-15
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. A 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-fieldmore » (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.« less
Atomic clocks based on extened-cavity diode laser in multimode operation
NASA Astrophysics Data System (ADS)
Yim, Sin; Cho, D.
2011-05-01
We demonstrated the possibilities to develope an atomic clock based on coherent population trapping (CPT) without using a local oscillator and a modulator. Instead of using a modulator, we use two modes from a single extended-cavity diode laser in multimode operation. Two different types of feedback system are applied to stabilize a difference frequency between the two modes and eliminate the need for an extra frequency modulation. In the first type, we employ an electronic feedback using dispersion of the CPT resonance as an error signal. The two modes are phase locked with reference to a dispersion signal from a CPT resonance of 85Rb at 3.036 GHz ground hyperfine splitting. We use D1 transition at 794.8 nm with lin ⊥lin polarizations to obtain large-contrast CPT signal. Allan deviation of the beat frequency between the two modes is 1 ×10-10 at 200-s integration time. In the second type, we employ optoelectronic feedback to construct an opto-electronic oscillator (OEO). In an OEO, the beating signal between two modes is recovered by a fast photodiode, and its output is amplified and fed back to the laser diode by using a direct modulation of an injection current. When the OEO loop is closed, oscillation frequency depends on variations of the loop length. In order to stabilize an OEO loop length and thereby its oscillation frequency, CPT cell is inserted to play a role of microwave band pass filter. Allan deviation of the CPT-stabilized OEO is 2 ×10-10 at 100-s integration time.
Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.
Vannahme, Christoph; Klinkhammer, Sönke; Lemmer, Uli; Mappes, Timo
2011-04-25
Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in the field or at the point-of-care, a plastic lab-on-a-chip with integrated organic semiconductor lasers is presented here. First order distributed feedback lasers based on the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM), deep ultraviolet induced waveguides, and a nanostructured microfluidic channel are integrated into a poly(methyl methacrylate) (PMMA) substrate. A simple and parallel fabrication process is used comprising thermal imprint, DUV exposure, evaporation of the laser material, and sealing by thermal bonding. The excitation of two fluorescent marker model systems including labeled antibodies with light emitted by integrated lasers is demonstrated.
Jechow, Andreas; Schedel, Marco; Stry, Sandra; Sacher, Joachim; Menzel, Ralf
2007-10-15
A continuous-wave distributed feedback diode laser emitting at 976 nm was frequency doubled by the use of a periodically poled lithium niobate waveguide crystal with a channel size of 3 microm x 5 microm and an interaction length of 10 mm. A laser to waveguide coupling efficiency of 75% could be achieved resulting in 304 mW of incident infrared light inside the waveguide. Blue laser light emission of 159 mW at 488 nm has been generated, which equals to a conversion efficiency of 52%. The resulting wall plug efficiency was 7.4%.
Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.
2018-02-01
In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.
NASA Astrophysics Data System (ADS)
Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.
1988-11-01
A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
Regenerative memory in time-delayed neuromorphic photonic resonators
NASA Astrophysics Data System (ADS)
Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.
2016-01-01
We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
NASA Astrophysics Data System (ADS)
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop
NASA Astrophysics Data System (ADS)
Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng
2018-01-01
We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.
Bidirectional private key exchange using delay-coupled semiconductor lasers.
Porte, Xavier; Soriano, Miguel C; Brunner, Daniel; Fischer, Ingo
2016-06-15
We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11 Mbit/s over a public channel.
Aguilar, Alberto; Mauclair, Cyril; Faure, Nicolas; Colombier, Jean-Philippe; Stoian, Razvan
2017-11-28
Optical feedback is often evoked in laser-induced periodic nanostructures. Visualizing the coupling between surfaces and light requires highly-resolved imaging methods. We propose in-situ structured-illumination-microscopy to observe ultrafast-laser-induced nanostructures during fabrication on metallic glass surfaces. This resolves the pulse-to-pulse development of periodic structures on a single irradiation site and indicates the optical feedback on surface topographies. Firstly, the quasi-constancy of the ripples pattern and the reinforcement of the surface relief with the same spatial positioning indicates a phase-locking mechanism that stabilizes and amplifies the ordered corrugation. Secondly, on sites with uncorrelated initial corrugation, we observe ripple patterns spatially in-phase. These feedback aspects rely on the electromagnetic interplay between the laser pulse and the surface relief, stabilizing the pattern in period and position. They are critically dependent on the space-time coherence of the exciting pulse. This suggests a modulation of energy according to the topography of the surface with a pattern phase imposed by the driving pulse. A scattering and interference model for ripple formation on surfaces supports the experimental observations. This relies on self-phase-stabilized far-field interaction between surface scattered wavelets and the incoming pulse front.
Influence of the UV-induced fiber loss on the distributed feedback fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi
2003-06-01
It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.
NASA Astrophysics Data System (ADS)
Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2018-03-01
We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (<0.29 nm) and was used as a single-wavelength source. A volume Bragg grating was used as an output coupler for the external-cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.
Sáez-Rodriguez, D; Cruz, J L; Díez, A; Andrés, M V
2011-05-15
We present a fiber laser made in a single piece of conventional doped-core fiber that operates by combined feedback of the fundamental core mode LP((0,1)) and the high-order cladding mode LP((0,10)). The laser is an all-fiber structure that uses two fiber Bragg gratings and a long-period grating to select the modes circulating in the cavity; the laser emits at the coupling wavelength between the core mode LP((0,1)) and the counterpropagating cladding mode LP((0,10)) in the Bragg gratings. This work demonstrates the feasibility of high-order mode fiber lasers assisted by long-period gratings. © 2011 Optical Society of America
Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry
2015-01-10
We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.
Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics
NASA Technical Reports Server (NTRS)
Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John
1996-01-01
We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.
InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate
NASA Astrophysics Data System (ADS)
Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo
2018-02-01
A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.
Shape memory polymer (SMP) gripper with a release sensing system
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Silva, Luiz Da
2000-01-01
A system for releasing a target material, such as an embolic coil from an SMP located at the end of a catheter utilizing an optical arrangement for releasing the material. The system includes a laser, laser driver, display panel, photodetector, fiber optics coupler, fiber optics and connectors, a catheter, and an SMP-based gripper, and includes a release sensing and feedback arrangement. The SMP-based gripper is heated via laser light through an optic fiber causing the gripper to release a target material (e.g., embolic coil for therapeutic treatment of aneurysms). Various embodiments are provided for coupling the laser light into the SMP, which includes specific positioning of the coils, removal of the fiber cladding adjacent the coil, a metal coating on the SMP, doping the SMP with a gradient absorbing dye, tapering the fiber optic end, coating the SMP with low refractive index material, and locating an insert between the fiber optic and the coil.
Delay induced high order locking effects in semiconductor lasers
NASA Astrophysics Data System (ADS)
Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.
2017-11-01
Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.
Delay induced high order locking effects in semiconductor lasers.
Kelleher, B; Wishon, M J; Locquet, A; Goulding, D; Tykalewicz, B; Huyet, G; Viktorov, E A
2017-11-01
Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types--a quantum dot based device and a quantum well based device-are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.
Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manfred, K. M.; Ritchie, G. A. D.; Lang, N.
2015-06-01
The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diodemore » lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.« less
Discrete wavelength-locked external cavity laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)
2005-01-01
An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.
Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.
1994-01-01
An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.
Watkins, A.D.; Smartt, H.B.; Taylor, P.L.
1994-01-04
An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
NASA Astrophysics Data System (ADS)
Feng, Guo-Sheng; Wu, Ji-Zhou; Wang, Xiao-Feng; Zheng, Ning-Xuan; Li, Yu-Qing; Ma, Jie; Xiao, Lian-Tuan; Jia, Suo-Tang
2015-10-01
We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, and 11434007), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
NASA Astrophysics Data System (ADS)
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng
2009-06-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.
NASA Astrophysics Data System (ADS)
Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory
2018-02-01
Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.
NASA Astrophysics Data System (ADS)
Seifert, Eric; Roh, Young-Jung; Fritz, Andreas; Park, Young Gun; Kang, Seungbum; Theisen-Kunde, Dirk; Brinkmann, Ralf
2013-06-01
Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Fast terahertz imaging using a quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan, E-mail: yr235@cam.ac.uk; Wallis, Robert; Jessop, David Stephen
2015-07-06
A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon densitymore » coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Marrewijk, N.; Mirzaei, B.; Hayton, D.
2015-10-07
In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less
Resonator design and performance estimation for a space-based laser transmitter
NASA Astrophysics Data System (ADS)
Agrawal, Lalita; Bhardwaj, Atul; Pal, Suranjan; Kamalakar, J. A.
2006-12-01
Development of a laser transmitter for space applications is a highly challenging task. The laser must be rugged, reliable, lightweight, compact and energy efficient. Most of these features are inherently achieved by diode pumping of solid state lasers. Overall system reliability can further be improved by appropriate optical design of the laser resonator besides selection of suitable electro-optical and opto-mechanical components. This paper presents the design details and the theoretically estimated performance of a crossed-porro prism based, folded Z-shaped laser resonator. A symmetrically pumped Nd: YAG laser rod of 3 mm diameter and 60 mm length is placed in the gain arm with total input peak power of 1800 W from laser diode arrays. Electro-optical Q-switching is achieved through a combination of a polarizer, a fractional waveplate and LiNbO 3 Q-switch crystal (9 x 9 x 25 mm) placed in the feedback arm. Polarization coupled output is obtained by optimizing azimuth angle of quarter wave plate placed in the gain arm. Theoretical estimation of laser output energy and pulse width has been carried out by varying input power levels and resonator length to analyse the performance tolerances. The designed system is capable of meeting the objective of generating laser pulses of 10 ns duration and 30 mJ energy @ 10 Hz.
Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing.
Munkhbat, Battulga; Ziegler, Johannes; Pöhl, Hannes; Wörister, Christian; Sivun, Dmitry; Scharber, Markus C; Klar, Thomas A; Hrelescu, Calin
2016-10-20
Here, we report that hybrid multilayered plasmonic nanostars can be universally used as feedback agents for coherent random lasing in polar or nonpolar solutions containing gain material. We show that silver-enhancement of gold nanostars reduces the pumping threshold for coherent random lasing substantially for both a typical dye (R6G) and a typical fluorescent polymer (MEH-PPV). Further, we reveal that the lasing intensity and pumping threshold of random lasers based on silver-enhanced gold nanostars are not influenced by the silica coating, in contrast to gold nanostar-based random lasers, where silica-coated gold nanostars support only amplified spontaneous emission but no coherent random lasing.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tao, Jun; Yu, Chang-rui; Li, Ye
2014-02-01
Based on the technology of tunable diode laser absorption spectroscopy, modulation of the center wavelength of 2004 nm distributed feedback laser diode at a room-temperature, the second harmonic amplitude of CO2 at 2004nm can be obtained. The CO2 concentration can be calculated via the Beer-Lambert law. Sinusoidal modulation parameter is an important factor that affects the sensitivity and accuracy of the system, through the research on the relationship between sinusoidal modulation signal frequency, amplitude and Second harmonic linetype, we finally achieve the detection limit of 10ppm under 12 m optical path.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2010-01-01
We experimentally demonstrate linewidth-tolerant real-time 40-Gbit/s(10-Gsymbol/s) 16-quadrature amplitude modulation. We achieved bit-error rates of <10(-9) using an external-cavity laser diode with a linewidth of 200 kHz and <10(-7) using a distributed-feedback laser diode with a linewidth of 30 MHz, thanks to the phase-noise canceling capability provided by self-homodyne detection using a pilot carrier. Pre-equalization based on digital signal processing was employed to suppress intersymbol interference caused by the limited-frequency bandwidth of electrical components.
Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud
2009-05-25
Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.
Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers
NASA Astrophysics Data System (ADS)
Jayaprasath, E.; Sivaprakasam, S.
2017-11-01
Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.
NASA Astrophysics Data System (ADS)
Tsai, Wen-Shing; Lu, Hai-Han; Li, Chung-Yi; Chen, Bo-Rui; Lin, Hung-Hsien; Lin, Dai-Hua
2016-04-01
A hybrid lightwave transmission system based on light injection/optoelectronic feedback techniques and fiber-visible laser light communication (VLLC) integration is proposed and experimentally demonstrated. To be the first one of its kind in employing light injection and optoelectronic feedback techniques in a fiber-VLLC integration lightwave transmission system, the light is successfully directly modulated with Community Access Television (CATV), 16-QAM, and 16-QAM-OFDM signals. Over a 40 km SMF and a 10 m free-space VLLC transport, good performances of carrier-to-noise ratio (CNR)/composite second-order (CSO)/composite triple-beat (CTB)/bit error rate (BER) are achieved for CATV/16-QAM/16-QAM-OFDM signals transmission. Such a hybrid lightwave transmission system would be very useful since it can provide broadband integrated services including CATV, Internet, and telecommunication services over both distribute fiber and in-building networks.
Self-sustained micro mechanical oscillator with linear feedback
Chen, Changyao; Zanette, Damian H.; Guest, Jeffrey R.; ...
2016-07-01
Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that determines the output frequency stays linear. Here we propose a new self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback remains linear. We introduce a model to describe the workingmore » principle of the self-sustained oscillations and validate it with experiments performed on a nonlinear microelectromechanical (MEMS) based oscillator.« less
Lee, Min Won; Baladi, Fadwa; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A
2016-10-01
Rogue waves are observed for the first time, to the best of our knowledge, in a 980 nm laser diode subject to filtered optical feedback via a fiber Bragg grating. By counting the number of rogue waves in a fixed time window, a rogue wave map is established experimentally as a function of both the optical feedback ratio and the laser current. The comparison with low frequency fluctuations (LFFs) reveals that the rogue waves observed in our system are, in fact, LFF jump-ups.
Feedback quantum control of molecular electronic population transfer
NASA Astrophysics Data System (ADS)
Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.
1997-11-01
Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.
Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.
2018-03-01
This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.
Fiber Optic Laser Accelerometer
2007-11-06
embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by
NASA Astrophysics Data System (ADS)
Yan, Sen-lin
2014-12-01
We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.
NASA Astrophysics Data System (ADS)
Panozzo, M.; Quintero-Quiroz, C.; Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.
2017-11-01
Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the inter-dropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model are in good qualitative agreement with the observations.
Primary Radiometry for the mise-en-pratique: The Laser-Based Radiance Method Applied to a Pyrometer
NASA Astrophysics Data System (ADS)
Briaudeau, S.; Sadli, M.; Bourson, F.; Rougi, B.; Rihan, A.; Zondy, J.-J.
2011-12-01
A new setup has been implemented at LCM-LNE-CNAM for the determination "of the spectral responsivity of radiation thermometers for the determination" of the thermodynamic temperature of high-temperature blackbodies at the temperature of a metal-carbon eutectic phase transition. In this new setup, an innovative acoustic-optic modulator feedback loop is used to stabilize the radiance of a wavelength tunable laser. The effect of residual optical interferences on the calibration of a test pyrometer is analyzed. The full uncertainty budget is presented.
Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian
2015-01-01
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.
Acceleration Strain Transducer with Increased Sensitivity
2009-09-22
utilizing a fiber laser sensor. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity...fiber laser or a distributed feedback fiber laser. In a Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber...designs can produce the same type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.
Faraday anomalous dispersion optical tuners
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas
Elia, Angela; Di Franco, Cinzia; Spagnolo, Vincenzo; Lugarà, Pietro Mario; Scamarcio, Gaetano
2009-01-01
We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O) using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 μm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm−1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters. PMID:22574040
Adaptation to the edge of chaos in a self-starting Kerr-lens mode-locked laser
NASA Astrophysics Data System (ADS)
Hsu, C. C.; Lin, J. H.; Hsieh, W. F.
2009-08-01
We experimentally and numerically demonstrated that self-focusing acts as a slow-varying control parameter that suppresses the transient chaos to reach a stable mode-locking (ML) state in a self-starting Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback control. Based on Fox-Li’s approach, including the self-focusing effect, the theoretical simulation reveals that the self-focusing effect is responsible for the self-adaptation. The self-adaptation occurs at the boundary between the chaotic and continuous output regions in which the laser system begins with a transient chaotic state with fractal correlation dimension, and then evolves with reducing dimension into the stable ML state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
Deshpande, Nikhil; Chauhan, Manish; Pacchierotti, Claudio; Prattichizzo, Domenico; Caldwell, Darwin G; Mattos, Leonardo S
2016-08-01
In this paper, a novel, motorized, multi-degrees-of-freedom (DoF), microsurgical forceps tool is presented, which is based on a master-slave teleoperation architecture. The slave device is a 7-DoF manipulator with: (i) 6-DoF positioning and orientation, (ii) 1 open/close gripper DoF; and (iii) an integrated force/torque sensor for tissue grip-force measurement. The master device is a 7-DoF haptic interface which teleoperates the slave device, and provides haptic feedback in its gripper interface. The combination of the device and the surgeon interface replaces the manual, hand-held device providing easy-to-use and ergonomic tissue control, simplifying the surgical tasks. This makes the system suitable to real surgical scenarios in the operating room (OR). The performance of the system was analysed through the evaluation of teleoperation control and characterization of gripping force. The new system offers an overall positioning error of less than 400 μm demonstrating its safety and accuracy. Improved system precision, usability, and ergonomics point to the potential suitability of the device for the OR and its ability to advance haptic-feedback-enhanced transoral laser microsurgeries.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.
1990-01-01
The power spectrum of the relative intensity noise (RIN) of single-frequency diode-pumped Nd:YAG lasers is observed to be shot-noise limited at frequencies above 20 MHz for a photocurrent of up to 4.4 mA. Relaxation oscillations result in noise 60-70 dB above shot noise at a few hundred kHz. These relaxation oscillations have been suppressed using electronic feedback.
Sugavanam, S; Yan, Z; Kamynin, V; Kurkov, A S; Zhang, L; Churkin, D V
2014-02-10
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting sub-nanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves.
Optical feedback structures and methods of making
None
2014-11-18
An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.
Thermo-spectral properties of plastic lasers
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Aviles, Michael; Andrews, James H.; Crescimanno, Michael; Petrus, Joshua B.; Mazzocco, Anthony; Singer, Kenneth D.; Baer, Eric; Song, Hyunmin
2013-09-01
We study the effects of temperature changes on the operating wavelength of all-polymer microresonator lasers, particularly on multilayered defect distributed feedback and distributed Bragg reflector lasers. The parameters that change the operating wavelength are discussed with comparisons between experiments and simulations.
Jaworski, Piotr; Nikodem, Michał
2018-01-01
In this paper, we present a system for sequential detection of multiple gases using laser-based wavelength modulation spectroscopy (WMS) method combined with a Herriot-type multi-pass cell. Concentration of hydrogen sulfide (H2S), methane (CH4), carbon dioxide (CO2), and ammonia (NH3) are retrieved using three distributed feedback laser diodes operating at 1574.5 nm (H2S and CO2), 1651 nm (CH4), and 1531 nm (NH3). Careful adjustment of system parameters allows for H2S sensing at single parts-per-million by volume (ppmv) level with strongly reduced interference from adjacent CO2 transitions even at atmospheric pressure. System characterization in laboratory conditions is presented and the results from initial tests in real-world application are demonstrated. PMID:29425175
Spectroscopic detection of biological NO with a quantum cascade laser
NASA Technical Reports Server (NTRS)
Menzel, L.; Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.;
2001-01-01
Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.
Chung, King
2004-01-01
This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871
Spectrally high performing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Toor, Fatima
Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that emits at lambda = 10.8 mum for positive and lambda = 8.6 mum for negative polarity current with microsecond time delay is presented. Such a system is the first demonstration of a time and wavelength multiplexed system that uses a single QC laser. Fourth, work on the design and fabrication of a single-mode distributed feedback (DFB) QC laser emitting at lambda ≈ 7.7 mum to be used in a QC laser based photoacoustic sensor is presented. The DFB QC laser had a temperature tuning co-efficient of 0.45 nm/K for a temperature range of 80 K to 320 K, and a side mode suppression ratio of greater than 30 dB. Finally, study on the lateral mode patterns of wide ridge QC lasers is presented. The results include the observation of degenerate and non-degenerate lateral modes in wide ridge QC lasers emitting at lambda ≈ 5.0 mum. This study was conducted with the end goal of using wide ridge QC lasers in a novel technique to spatiospectrally combine multiple transverse modes to obtain an ultra high power single spot QC laser beam.
NASA Astrophysics Data System (ADS)
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R
2011-11-21
Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. © 2011 Optical Society of America
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
Turbulence hierarchy in a random fibre laser
González, Iván R. Roa; Lima, Bismarck C.; Pincheira, Pablo I. R.; Brum, Arthur A.; Macêdo, Antônio M. S.; Vasconcelos, Giovani L.; de S. Menezes, Leonardo; Raposo, Ernesto P.; Gomes, Anderson S. L.; Kashyap, Raman
2017-01-01
Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov’s theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform. PMID:28561064
An integrated optical sensor for GMAW feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.L.; Watkins, A.D.; Larsen, E.D.
1992-08-01
The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less
An integrated optical sensor for GMAW feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.L.; Watkins, A.D.; Larsen, E.D.
1992-01-01
The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiana-Alsina, J.; Torrent, M. C.; Masoller, C.
Low-frequency fluctuations (LFFs) represent a dynamical instability that occurs in semiconductor lasers when they are operated near the lasing threshold and subject to moderate optical feedback. LFFs consist of sudden power dropouts followed by gradual, stepwise recoveries. We analyze experimental time series of intensity dropouts and quantify the complexity of the underlying dynamics employing two tools from information theory, namely, Shannon's entropy and the Martin, Plastino, and Rosso statistical complexity measure. These measures are computed using a method based on ordinal patterns, by which the relative length and ordering of consecutive interdropout intervals (i.e., the time intervals between consecutive intensitymore » dropouts) are analyzed, disregarding the precise timing of the dropouts and the absolute durations of the interdropout intervals. We show that this methodology is suitable for quantifying subtle characteristics of the LFFs, and in particular the transition to fully developed chaos that takes place when the laser's pump current is increased. Our method shows that the statistical complexity of the laser does not increase continuously with the pump current, but levels off before reaching the coherence collapse regime. This behavior coincides with that of the first- and second-order correlations of the interdropout intervals, suggesting that these correlations, and not the chaotic behavior, are what determine the level of complexity of the laser's dynamics. These results hold for two different dynamical regimes, namely, sustained LFFs and coexistence between LFFs and steady-state emission.« less
Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D
2010-07-28
Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.
Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.
Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji
2012-07-02
Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.
Linear laser diode arrays for improvement in optical disk recording for space stations
NASA Technical Reports Server (NTRS)
Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.
1990-01-01
The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.
Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers
NASA Astrophysics Data System (ADS)
Sun, Fangyuan; Wang, Lijie; Zhao, Yufei; Hou, Guanyu; Shu, Shili; Zhang, Jun; Peng, Hangyu; Tian, Sicong; Tong, Cunzhu; Wang, Lijun
2018-06-01
The spectral beam combining (SBC) of Bragg reflection waveguide photonic crystal (BRW-PC) diode lasers was studied for the first time. An off-axis feedback system was constructed using a stripe mirror and a spatial filter to control beam quality in the external cavity. It was found that the BRW-PC diode lasers with a low divergence and a circular beam provided a simplified and cost-effective SBC. The off-axis feedback broke the beam quality limit of a single element, and an M 2 factor of 3.8 times lower than that of a single emitter in the slow axis was demonstrated.
QCL-based nonlinear sensing of independent targets dynamics.
Mezzapesa, F P; Columbo, L L; Dabbicco, M; Brambilla, M; Scamarcio, G
2014-03-10
We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations.
NASA Astrophysics Data System (ADS)
Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong
2017-10-01
In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.
NASA Astrophysics Data System (ADS)
Luc, Vu V.; Eliseev, P. G.; Man'ko, Margarita A.; Tsotsorya, M. V.
1988-11-01
An investigation was made of the change in the voltage across laser diodes emitting in the 1.3 μm range as a result of introduction of an external optical feedback in the form of an electrical response to interruption of the feedback ("optoelectronic" signal). Measurements were made on single-mode buried stripe heterostructures, using both unpackaged laboratory lasers and also serially manufactured ILPN-202 devices with radiation coupled out via a fiber waveguide. The optoelectronic signal reached 10-16 mV, but when a fiber waveguide was used, it was only 0.1-0.8 mV, depending on the quality of the contact between the laser and the fiber. Experiments showed that the ILPN-202 lasers could be used without any additional optics as sensors capable of detection of submicron displacements with a sensitivity in excess of 10 kV/m.
Laser pulse stretcher method and apparatus
Hawkins, Jon K.; Williams, William A.
1990-01-01
The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L
2016-11-29
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.
Dynamics of a multimode semiconductor laser with optical feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koryukin, I. V.
A new model of a multi-longitudinal-mode semiconductor laser with weak optical feedback is proposed. This model generalizes the well-known Tang-Statz-deMars equations, which are derived from the first principles and adequately describe solid-state lasers to a semiconductor active medium. Steady states of the model and the spectrum of relaxation oscillations are found, and the laser dynamics in the chaotic regime of low-frequency fluctuations of intensity is investigated. It is established that the dynamic properties of the proposed model depend mainly on the carrier diffusion, which controls mode-mode coupling in the active medium via spread of gratings of spatial inversion. The resultsmore » obtained are compared with the predictions of previous semiphenomenological models and the scope of applicability of these models is determined.« less
Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency
NASA Astrophysics Data System (ADS)
Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.
2016-03-01
The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.
Hippler, Michael
2015-08-04
We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.
Acceleration Strain Transducer
2007-11-05
accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity fiber laser or a distributed feedback fiber laser. In a... Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber with a Bragg grating written in the fiber core at either end of...the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by various methods well known in the
Wada, Kenji; Matsukura, Satoru; Tanaka, Amaka; Matsuyama, Tetsuya; Horinaka, Hiromichi
2015-09-07
A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10(-8). This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.
Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal
2010-01-01
Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Yavuz, Ozgun; Makey, Ghaith; Ilday, Omer; Omer Ilday Team
Laser Induced Periodic Surface Structuring (LIPSS) is one of the most prominent directions in laser-material interaction due to both practical and theoretical importance, especially after the discovery of Nonlinear Laser Lithography (NLL), which opens new area for industrial application of LIPSS as an effective tool for controllable, highly ordered large area nanostructuring. LIPSS appear on the surface under laser beam in the form of periodical lines. The LIPSS, that appear perpendicular to laser polarization are called ``normal'', in contrast to ``anomalous'' LIPSS appearing parallel to the polarization. Although, NLL technique was already demonstrated for ``normal'' and ``anomalous'' LIPSS separately, up to now, there is no clear understanding of switching mechanism between these two modes. In presented paper we have shown that the mechanism relies on interplay between two feedbacks: long range, low intensity dipole-like scattering of light along the surface, and short range, high intensity plasmon-polariton wave. For the first time, we are able to create both types of LIPSS on the same surface by controlling these two feedbacks, obtaining highly-ordered large-area structured patterns in both modes.
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Wang, Shaoxin; Wang, Qidong; Mu, Quanquan; Cao, Zhaoliang; Xuan, Li
2017-05-07
Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered at 605.5 nm, 611.9 nm, and 671.1 nm. The temperature-dependence tuning range for the tri-wavelength dye-doped HPDLC DFB laser was as high as 8 nm. The lasing emission from the 9th order HPDLC DFB laser with MEH-PPV as active medium was also investigated, which showed excellent s-polarization characterization. The diffraction order is 9th and 8th for the dual-wavelength lasing with DCM as the active medium. The results of this work provide a method for constructing the compact and cost-effective all solid-state smart laser systems, which may find application in scientific and applied research where multi-wavelength radiation is required.
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
Compact silicon photonics-based multi laser module for sensing
NASA Astrophysics Data System (ADS)
Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.
2018-02-01
A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
Fiber Bragg Grating vibration sensor with DFB laser diode
NASA Astrophysics Data System (ADS)
Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir
2012-01-01
The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.
Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark
2011-11-21
Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeeva, V I; Shapiro, Boris I; Kuch'yanov, Aleksandr S
2003-06-30
Ultrashort pulses of duration {approx}13 ps are first obtained in a passively mode-locked Nd:YAG laser with a negative feedback using a thin gelatine-film saturable absorber containing organic-dye J-aggregates. (control of laser radiation parameters)
Wavelength-Agile External-Cavity Diode Laser for DWDM
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S.; Bomse, David S.
2006-01-01
A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.
Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.
Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung
2014-06-02
The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.
Distributed feedback interband cascade lasers with top grating and corrugated sidewalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Feng; Stocker, Michael; Pham, John
Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFBmore » ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Hirasuna, Krista
Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-06-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-03-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers
NASA Astrophysics Data System (ADS)
Westberg, J.; Sterczewski, L. A.; Wysocki, G.
2017-04-01
Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth
NASA Astrophysics Data System (ADS)
Zhu, Zebin; Xu, Guangyao; Ni, Kai; Zhou, Qian; Wu, Guanhao
2018-04-01
We present a compact system of synchronization for two fiber-based optical frequency comb lasers. We use a free-running continuous wave laser as an intermediary to obtain the relative noise of two combs and employ an intra-cavity electro-optic modulator (EOM) to achieve active phase feedback for fast synchronization. The EOM bandwidth is 150 kHz and the relative linewidth is suppressed markedly from 300 kHz to sub-hertz values. The relative effective timing jitter of the two pulse trains is also decreased from 680 fs to 25 fs. The proposed method shows promise for developing a high-performance, low-cost, fiber-based dual-comb interferometer for ranging or spectroscopy.
Teichert, Holger; Fernholz, Thomas; Ebert, Volker
2003-04-20
We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.
Modeling of solid-state and excimer laser processes for 3D micromachining
NASA Astrophysics Data System (ADS)
Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.
2005-04-01
An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.
Random fiber laser based on artificially controlled backscattering fibers.
Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong
2018-01-10
The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.
Phase and Frequency Control of Laser Arrays for Pulse Synthesis
2015-01-02
with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22
Liew, S K; Carlson, N W
1992-05-20
A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.
Hybrid optical and electronic laser locking using slow light due to spectral holes
NASA Astrophysics Data System (ADS)
Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.
2013-06-01
We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.
Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)
2013-01-01
resonant modulation of semiconductor lasers beyond relaxation oscillation frequency,” Appl. Phys. Lett., 63, 1459–1461 (1993). [26] J. Helms and K. Petermann ...5, 4–6 (1993). [28] K. Petermann , “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Elec- tron., 1, 480–489
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments
NASA Astrophysics Data System (ADS)
Hazlett, Eric
With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists
Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments
NASA Astrophysics Data System (ADS)
Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah
2016-05-01
With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
Complex delay dynamics of high power quantum cascade oscillators
NASA Astrophysics Data System (ADS)
Grillot, F.; Newell, T. C.; Gavrielides, A.; Carras, M.
2017-08-01
Quantum cascade lasers (QCL) have become the most suitable laser sources from the mid-infrared to the THz range. This work examines the effects of external feedback in different high power mid infrared QCL structures and shows that different conditions of the feedback wave can produce complex dynamics hence stabilization, destabilization into strong mode-competition or undamping nonlinear oscillations. As a dynamical system, reinjection of light back into the cavity also can also provoke apparition of chaotic oscillations, which must be avoided for a stable operation both at mid-infrared and THz wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillermin, M.; Colombier, J. P.; Audouard, E.
2010-07-15
With an interest in pulsed laser deposition and remote spectroscopy techniques, we explore here the potential of laser pulses temporally tailored on ultrafast time scales to control the expansion and the excitation degree of various ablation products including atomic species and nanoparticulates. Taking advantage of automated pulse-shaping techniques, an adaptive procedure based on spectroscopic feedback is applied to regulate the irradiance and enhance the optical emission of monocharged aluminum ions with respect to the neutral signal. This leads to optimized pulses usually consisting in a series of femtosecond peaks distributed on a longer picosecond sequence. The ablation features induced bymore » the optimized pulse are compared with those determined by picosecond pulses generated by imposed second-order dispersion or by double pulse sequences with adjustable picosecond separation. This allows to analyze the influence of fast- and slow-varying envelope features on the material heating and the resulting plasma excitation degree. Using various optimal pulse forms including designed asymmetric shapes, we analyze the establishment of surface pre-excitation that enables conditions of enhanced radiation coupling. Thin films elaborated by unshaped femtosecond laser pulses and by optimized, stretched, or double pulse sequences are compared, indicating that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. A thermodynamic scenario involving supercritical heating is proposed to explain enhanced ionization rates and lower particulates density for optimal pulses. Numerical one-dimensional hydrodynamic simulations for the excited matter support the interpretation of the experimental results in terms of relative efficiency of various relaxation paths for excited matter above or below the thermodynamic stability limits. The calculation results underline the role of the temperature and density gradients along the ablated plasma plume which lead to the spatial distinct locations of excited species. Moreover, the nanoparticles sizes are computed based on liquid layer ejection followed by a Rayleigh and Taylor instability decomposition, in good agreement with the experimental findings.« less
Chen, Shaoqiang; Sato, Aya; Ito, Takashi; Yoshita, Masahiro; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2012-10-22
This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H
2018-05-15
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4 cm -1 is resolvable.
Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun
2017-07-01
In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun
2017-07-01
In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.
A Post-Processing Receiver for the Lunar Laser Communications Demonstration Project
NASA Technical Reports Server (NTRS)
Srinivasan, Meera; Birnbaum, Kevin; Cheng, Michael; Quirk, Kevin
2013-01-01
The Lunar Laser Communications Demonstration Project undertaken by MIT Lincoln Laboratory and NASA's Goddard Space Flight Center will demonstrate high-rate laser communications from lunar orbit to the Earth. NASA's Jet Propulsion Laboratory is developing a backup ground station supporting a data rate of 39 Mbps that is based on a non-real-time software post-processing receiver architecture. This approach entails processing sample-rate-limited data without feedback in the presence high uncertainty in downlink clock characteristics under low signal flux conditions. In this paper we present a receiver concept that addresses these challenges with descriptions of the photodetector assembly, sample acquisition and recording platform, and signal processing approach. End-to-end coded simulation and laboratory data analysis results are presented that validate the receiver conceptual design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Andrew; Shaddock, Daniel A.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
The Laser Interferometer Space Antenna (LISA) will be the first dedicated space based gravitational wave detector. LISA will consist of a triangular formation of spacecraft, forming an interferometer with 5x10{sup 6} km long arms. Annual length variations of the interferometer arms prevent exact laser frequency noise cancellation. Despite prestabilization to an optical cavity the expected frequency noise is many orders of magnitude larger than the required levels. Arm locking is a feedback control method that will further stabilize the laser frequency by referencing it to the 5x10{sup 6} km arms. Although the original arm locking scheme produced a substantial noisemore » reduction, the technique suffered from slowly decaying start-up transients and excess noise at harmonic frequencies of the inverse round-trip time. Dual arm locking, presented here, improves on the original scheme by combining information from two interferometer arms for feedback control. Compared to conventional arm locking, dual arm locking exhibits significantly reduced start-up transients, no noise amplification at frequencies within the LISA signal band, and more than 50 fold improvement in noise suppression at low frequencies. In this article we present a detailed analysis of the dual arm locking control system and present simulation results showing a noise reduction of 10 000 at a frequency of 10 mHz.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
Characteristics research on self-amplified distributed feedback fiber laser
NASA Astrophysics Data System (ADS)
Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding
2014-09-01
A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U
2012-12-01
In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.
Simultaneous RGB lasing from a single-chip polymer device.
Yamashita, Kenichi; Takeuchi, Nobutaka; Oe, Kunishige; Yanagi, Hisao
2010-07-15
This Letter describes the fabrication and operation of a single-chip white-laser device. The laser device has a multilayered structure consisting of three laser layers. Each laser layer comprises polymer claddings and a waveguide core doped with organic dye. In each laser layer, grating corrugations were fabricated by UV-nanoimprint lithography that act as distributed-feedback cavity structures. Under optical pumping, lasing output with red, green, and blue colors was simultaneously obtained from the sample edge.
DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses
NASA Technical Reports Server (NTRS)
Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.
2014-01-01
The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.
Laser confocal feedback tomography and nano-step height measurement
Tan, Yidong; Wang, Weiping; Xu, Chunxin; Zhang, Shulian
2013-01-01
A promising method for tomography and step height measurement is proposed, which combines the high sensitivity of the frequency-shifted feedback laser and the axial positioning ability of confocal microscopy. By demodulating the feedback-induced intensity modulation signals, the obtained amplitude and phase information are used to respectively determine the coarse and fine measurement of the samples. Imaging the micro devices and biological samples by the demodulated amplitude, this approach is proved to be able to achieve the cross-sectional image in highly scattered mediums. And then the successful height measurement of nano-step on a glass-substrate grating by combination of both amplitude and phase information indicates its axial high resolution (better than 2 nm) in a non-ambiguous range of about ten microns. PMID:24145717
Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.
Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi
2017-02-01
Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.
Displacement sensor based on intra-cavity tuning of dual-frequency gas laser
NASA Astrophysics Data System (ADS)
Niu, Haisha; Niu, Yanxiong; Liu, Ning; Li, Jiyang
2018-01-01
A nanometer-resolution displacement measurement instrument based on tunable cavity frequency-splitting method is presented. One beam is split into two orthogonally polarized beams when anisotropic element inserted in the cavity. The two beams with fixed frequency difference are modulated by the movement of the reflection mirror. The changing law of the power tuning curves between the total output and the two orthogonally polarized beams is researched, and a method splitting one tuning cycle to four equal parts is proposed based on the changing law, each part corresponds to one-eighth wavelength of displacement. A laser feedback interferometer (LFI) and piezoelectric ceramic are series connected to the sensor head to calibrate the displacement that less than one-eighth wavelength. The displacement sensor achieves to afford measurement range of 20mm with resolution of 6.93nm.
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya
2018-02-01
The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.
Selforganized Structure Formation in Organized Microstructuring by Laser-Jet Etching
NASA Astrophysics Data System (ADS)
Rabbow, T. J.; Plath, P. J.; Mora, A.; Haase, M.
Laser-jet induced wet etching of stainless steel in 5M H3PO4 has been investigated. By this method, it is possible to cut and microstructure metals and alloys that form passive layers in strong etchants. Due to the laser heating of the metal and the adjacent layers of the etchant, the passive layer is removed and an active dissolution of the base metal together with the formation of hydrogen is observed. The reactions are limited by the transport of fresh acid and the removal of dissolved metal. A jet of etchant reduces the transport limitations. For definite ranges of the laser power, the feed velocity and the etchant jet velocity, a regime of periodic structure formation of the kerf, often called ripples, has been found. The ripple length depends on all three parameters. The ripple formation can be brought into correlation with a periodic change of the intensity of the reflected light as well as oscillations of the potential workpiece. It could be shown that the periodic structure formation is connected to a spreading of an etching front from the laser activated area, that temporarily moves ahead to the laser. This leads to modulations of the interface for the laser absorption, which results, for example, in oscillations of the intensity of the reflected light. This means the laser induced etching reaction attracts a feedback based on the conditions of absorption for the laser. For those parameters of feed velocity, laser power and etchant jet velocity, without ripple formation the laser induced etching front is of a constant distance to the laser which results in steady conditions at the interface for the absorption of the laser.
Photonic integrated circuits unveil crisis-induced intermittency.
Karsaklian Dal Bosco, Andreas; Akizawa, Yasuhiro; Kanno, Kazutaka; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki
2016-09-19
We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents. We emphasize on the crucial importance of the distribution of the steady-state solutions introduced by the time-delayed feedback on the existence of this intermittent dynamics.
Semiconductor Laser with a Self-Pumped Phase Conjugate External Cavity
1992-10-01
laser light is considered planar. In actuality, the HLP 1400 laser diode used in this experiment has a gaussian profile. This approximation is frequently...return beam is in phase with either the light transmitted through or reflected off the rear facet of the diode laser. In Fig. 3.2, E, is the light ...In the first case an anti-reflection coated laser diode was used. It emitted a broadband spectrum without the feedback. The PCM just lowered the
Expectation-Based Control of Noise and Chaos
NASA Technical Reports Server (NTRS)
Zak, Michael
2006-01-01
A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.
NASA Astrophysics Data System (ADS)
Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias
2015-07-01
Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.
10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings
NASA Astrophysics Data System (ADS)
Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.
2018-02-01
Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.
High-speed optical feeder-link system using adaptive optics
NASA Astrophysics Data System (ADS)
Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner
1997-05-01
We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-01-01
The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).
Peculiarities of spike multimode generation of a superradiant distributed feedback laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovskaya, E R; Ginzburg, N S; Sergeev, A S
2011-08-31
Using one-dimensional semiclassical Maxwell - Bloch equations with account for the coherent polarisation dynamics, we have studied spike generation regimes of a superradiant distributed feedback laser in the case of inhomogeneous broadening of the spectral line of an active medium. By analysing the dynamic spectra of inversion of the active medium and laser radiation, we have revealed the relationship of individual spikes of radiation and their modulation with specific parts in the spectral line of the active medium and mode beatings. It has been shown that the broadening and shift of the lasing spectrum with respect to the initial electromagneticmore » Bragg-cavity modes is accompanied by a strong spectral gradient of inversion that is typical of the superradiant regimes. (control of radiation parameters)« less
Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju
2015-11-16
Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.
NASA Astrophysics Data System (ADS)
Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju
2015-11-01
Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
NASA Astrophysics Data System (ADS)
Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie
2018-05-01
In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers.
Kuriki, Yoma; Nakayama, Joma; Takano, Kosuke; Uchida, Atsushi
2018-03-05
We experimentally investigate delay-based photonic reservoir computing using semiconductor lasers with optical feedback and injection. We apply different types of temporal mask signals, such as digital, chaos, and colored-noise mask signals, as the weights between the input signal and the virtual nodes in the reservoir. We evaluate the performance of reservoir computing by using a time-series prediction task for the different mask signals. The chaos mask signal shows superior performance than that of the digital mask signals. However, similar prediction errors can be achieved for the chaos and colored-noise mask signals. Mask signals with larger amplitudes result in better performance for all mask signals in the range of the amplitude accessible in our experiment. The performance of reservoir computing is strongly dependent on the cut-off frequency of the colored-noise mask signals, which is related to the resonance of the relaxation oscillation frequency of the laser used as the reservoir.
Measuring THz QCL feedback using an integrated monolithic transceiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanke, Michael Clement
2010-08-01
THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detectormore » components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled significantly as a function of the external path length.« less
NASA Astrophysics Data System (ADS)
Hess, M. R.; Petrovic, V.; Kuester, F.
2017-08-01
Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.
Feedback-controlled radiation pressure cooling
NASA Astrophysics Data System (ADS)
Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.
2008-03-01
We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.
NASA Astrophysics Data System (ADS)
Li, Jing Xia; Xu, Hang; Liu, Li; Su, Peng Cheng; Zhang, Jian Guo
2015-05-01
We report a chaotic optical time-domain reflectometry for fiber fault location, where a chaotic probe signal is generated by driving a distributed feedback laser diode with an improved Colpitts chaotic oscillator. The results show that the unterminated fiber end, the loose connector, and the mismatch connector can be precisely located. A measurement range of approximately 91 km and a range independent resolution of 6 cm are achieved. This implementation method is easy to integrate and is cost effective, which gives it great potential for commercial applications.
Mechanisms in adaptive feedback control: photoisomerization in a liquid.
Hoki, Kunihito; Brumer, Paul
2005-10-14
The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.
NASA Astrophysics Data System (ADS)
Kellogg, D. A.; Holonyak, N.
2001-04-01
Data are presented on coupled ten-stripe AlGaAs-GaAs-InGaAs quantum well heterostructure (QWH) lasers recoupled stochastically at the cleaved end mirrors. Recoupling of neighboring elements of a ten-stripe laser is accomplished by the scattering (random feedback) afforded by applying ˜10-μm-diam Al powder or 0.3 μm α-Al2O3 polishing compound in microscopy immersion oil or in epoxy at the cleaved ends (mirrors). Data on QWH samples with the end mirrors coated with the scatterer (Al or Al2O3 powder in "liquid") exhibit spectral and far-field broadening, as well as increased laser threshold because of the reduced cavity Q. Single mode operation is possible with the conventional evanescent wave coupling of the ten-stripe QWH and is destroyed, even the laser operation itself, with the scattering recoupling (dephasing) at the end mirrors, which is reversible (removable). The narrow ten-stripe QWH laser with strong end-mirror scattering, a long amplifier with random feedback, indicates that a photopumped III-V or II-VI powder (a random "wall" cavity) has little or no merit.
Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform
NASA Astrophysics Data System (ADS)
Tao, Yufeng; Wang, Ming; Xia, Wei
2016-06-01
A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.
Salter, Robert; Chu, Johnny; Hippler, Michael
2012-10-21
A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
A fast high-precision six-degree-of-freedom relative position sensor
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan
2016-03-01
Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.
NASA Astrophysics Data System (ADS)
Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther
2018-02-01
Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser.
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-06-22
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%.
Performance Optimization Design for a High-Speed Weak FBG Interrogation System Based on DFB Laser
Yao, Yiqiang; Li, Zhengying; Wang, Yiming; Liu, Siqi; Dai, Yutang; Gong, Jianmin; Wang, Lixin
2017-01-01
A performance optimization design for a high-speed fiber Bragg grating (FBG) interrogation system based on a high-speed distributed feedback (DFB) swept laser is proposed. A time-division-multiplexing sensor network with identical weak FBGs is constituted to realize high-capacity sensing. In order to further improve the multiplexing capacity, a waveform repairing algorithm is designed to extend the dynamic demodulation range of FBG sensors. It is based on the fact that the spectrum of an FBG keeps stable over a long period of time. Compared with the pre-collected spectra, the distorted spectra waveform are identified and repaired. Experimental results show that all the identical weak FBGs are distinguished and demodulated at the speed of 100 kHz with a linearity of above 0.99, and the range of dynamic demodulation is extended by 40%. PMID:28640187
NASA Astrophysics Data System (ADS)
Baum, O. I.; Yuzhakov, A. V.; Bolshunov, A. V.; Siplivyi, V. I.; Khomchik, O. V.; Zheltov, G. I.; Sobol, E. N.
2017-09-01
We present the results of recent studies that develop principally new approaches to solving the problem of visual impairment and provide the basis for new laser technologies in ophthalmology for the treatment of glaucoma, myopia and hypermetropia. The considered theoretical models and optical methods for detecting laser-induced structural changes in eye tissues pave the way to the invention of control systems with feedback, providing efficient and safe laser treatment.
Sample positioning in microgravity
NASA Technical Reports Server (NTRS)
Sridharan, Govind (Inventor)
1991-01-01
Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved.
Sample positioning in microgravity
NASA Technical Reports Server (NTRS)
Sridharan, Govind (Inventor)
1993-01-01
Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved.
Implementing Audio Digital Feedback Loop Using the National Instruments RIO System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, G.; Byrd, J. M.
2006-11-20
Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.
Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcini, Alessandro; Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino; Barland, Stephane
2006-12-15
The limits of applicability of the Lang-Kobayashi (LK) model for a semiconductor laser with optical feedback are analyzed. The model equations, equipped with realistic values of the parameters, are investigated below the solitary laser threshold where low-frequency fluctuations (LFF's) are usually observed. The numerical findings are compared with experimental data obtained for the selected polarization mode from a vertical cavity surface emitting laser (VCSEL) subject to polarization selective external feedback. The comparison reveals the bounds within which the dynamics of the LK model can be considered as realistic. In particular, it clearly demonstrates that the deterministic LK model, for realisticmore » values of the linewidth enhancement factor {alpha}, reproduces the LFF's only as a transient dynamics towards one of the stationary modes with maximal gain. A reasonable reproduction of real data from VCSEL's can be obtained only by considering the noisy LK or alternatively deterministic LK model for extremely high {alpha} values.« less
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Highly Stable Nanolattice Structures using Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Yavuz, Ozgun; Tokel, Onur; Ergecen, Emre; Pavlov, Ihor; Makey, Ghaith; Ilday, Fatih Omer
Periodic nanopatterning is crucial for multiple technologies, including photovoltaics and display technologies. Conventional optical lithography techniques require complex masks, while e-beam and ion-beam lithography require expensive equipment. With the Nonlinear Laser Lithography (NLL) technique, we had recently shown that various surfaces can be covered with extremely periodic nanopatterns with ultrafast lasers through a single-step, maskless and inexpensive method. Here, we expand NLL nanopatterns to flexible materials, and also present a fully predictive model for the formation of NLL nanostructures as confirmed with experiments. In NLL, a nonlocal positive feedback mechanism (dipole scattering) competes with a rate limiting negative feedback mechanism. Here, we show that judicious use of the laser polarisation can constrain the lattice symmetry, while the nonlinearities regulate periodicity. We experimentally demonstrate that in addition to one dimensional periodic stripes, two dimensional lattices can be produced on surfaces. In particular, hexagonal and square lattices were produced, which are highly desired for display technologies. Notably, with this approach, we can tile flexible substrates, which can find applications in next generation display technologies.
Tunable organic distributed feedback dye laser device excited through Förster mechanism
NASA Astrophysics Data System (ADS)
Tsutsumi, Naoto; Hinode, Taiki
2017-03-01
Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
Interferometric optical online dosimetry for selective retina treatment (SRT)
NASA Astrophysics Data System (ADS)
Stoehr, Hardo; Ptaszynski, Lars; Fritz, Andreas; Brinkmann, Ralf
2007-07-01
Selective retina treatment (SRT) is a new laser based method to treat retinal diseases associated with disorders of the retinal pigment epithelium (RPE). Applying microsecond laser pulses tissue damage spatially confined to the retinal pigment epithelium (RPE) is achieved. The RPE cell damage is caused by transient microbubbles emerging at the strongly absorbing melanin granules inside the RPE cells. Due to the spatial confinement to the RPE the photoreceptors can be spared and vision can be maintained in the treated retinal areas. A drawback for effective clinical SRT is that the laser induced lesions are ophthalmoscopically invisible. Therefore, a real-time feedback system for dosimetry is necessary in order to avoid undertreatment or unwanted collateral damage to the adjacent tissue. We develop a dosimetry system which uses optical interferometry for the detection of the transient microbubbles. The system is based on an optical fiber interferometer operated with a laser diode at 830nm. We present current results obtained with a laser slit lamp using porcine RPE explants in vitro and complete porcine eye globes ex vivo. The RPE cell damage is determined by Calcein fluorescence viability assays. With a threshold criterium for RPE cell death derived from the measured interferometric signal transients good agreement with the results of the viability assays is achieved.
NASA Astrophysics Data System (ADS)
Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme
2017-02-01
Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.
Narrowband random lasing in a Bismuth-doped active fiber
Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.
2016-01-01
Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm. PMID:27435232
An atomic magnetometer with autonomous frequency stabilization and large dynamic range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.
2015-06-15
The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
Self-cavity lasing in optically pumped single crystals of p-sexiphenyl
NASA Astrophysics Data System (ADS)
Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio
2016-08-01
Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.
Active lamp pulse driver circuit. [optical pumping of laser media
NASA Technical Reports Server (NTRS)
Logan, K. E. (Inventor)
1983-01-01
A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.
Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2017-02-01
Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Temperature-feedback direct laser reshaping of silicon nanostructures
NASA Astrophysics Data System (ADS)
Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.
2017-12-01
Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.
Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhenhua; Wu, Leilei; Zhu, Shu
This paper presents a chip-scale random lasing action utilizing polydimethylsiloxane (PDMS) wrinkles with random periods as disordered medium. Nanoscale wrinkles with long range disorder structures are formed on the oxidized surface of a PDMS slab and confirmed by atomic force microscopy. Light multiply scattered at each PDMS wrinkle-dye interfaces is optically amplified in the presence of pump gain. The shift of laser emission wavelength when pumping at different regions indicates the randomness of the winkle period. In addition, a relatively low threshold of about 27 μJ/mm{sup 2} is realized, which is comparable with traditional optofluidic dye laser. This is due tomore » the unique sinusoidal Bragg-grating-like random structure. Contrast to conventional microfluidic dye laser that inevitably requires the accurate design and implementation of microcavity to provide optical feedback, the convenience in both fabrication and operation makes PDMS wrinkle based random laser a promising underlying element in lab-on-a-chip systems and integrated microfluidic networks.« less
Packaging and testing of multi-wavelength DFB laser array using REC technology
NASA Astrophysics Data System (ADS)
Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia
2014-02-01
Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.
Weldon, Vincent; McInerney, David; Phelan, Richard; Lynch, Michael; Donegan, John
2006-04-01
Tuneable laser diodes were characterized and compared for use as tuneable sources in gas absorption spectroscopy. Specifically, the characteristics of monolithic widely tuneable single frequency lasers, such as sampled grating distributed Bragg reflector laser and modulated grating Y-branch laser diodes, recently developed for optical communications, with operating wavelengths in the 1,520 nm
Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P
2014-06-01
A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.
Asymmetric quantum well broadband thyristor laser
NASA Astrophysics Data System (ADS)
Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing
2017-11-01
A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.
NASA Astrophysics Data System (ADS)
Panjehpour, Masoud; Overholt, Bergein F.; Frazier, Donita L.; Klebanow, Edward R.
1991-05-01
Conventional hyperthermia treatment of superficial tumors in the oral cavity is difficult due to inability in accessing the lesion. A new hyperthermia technique employing near infrared Nd:YAG irradiation delivered through an optical fiber is introduced for heating oral and nasal tumors in animals. This system consisted of an Nd:YAG laser, a He-Ne laser, a computer controlled optical shutter, an interstitial thermometer, computer and a printer. The tumors were heated via surface illumination of the lesion. A thermocouple implanted in the base of the tumor provided temperature feedback for laser energy regulation. Three spontaneously occurring canine (two squamous cell carcinoma on the gum, one pigmented melanoma on the hard palate) and one feline tumor (squamous cell carcinoma on the nose) have been treated with the Nd:YAG laser-induced hyperthermia delivered following radiation therapy. The tumor temperature was maintained between 43.2-43.5 degree(s)C for one hour. Nd:YAG hyperthermia allowed efficient delivery of heat to veterinary oral and nasal lesions otherwise impossible to treat with conventional heating techniques.
Active mode-locked operation of a diode pumped colour-centre laser
NASA Astrophysics Data System (ADS)
Mazighi, K.; Doualan, J. L.; Hamel, J.; Margerie, J.; Mounier, D.; Ostrovsky, A.
1991-09-01
The cw laser diode pumping of an (F +2) ∗ colour centre laser has been recently demonstrated in our laboratory. The intensity of the pumping diode can easily be hf modulated. We present here the first experiments in which the colour centre laser is synchronously pumped at the mode spacing frequency, resulting in the emission of clean, regularly spaced pulses. The opto-electronic feedback is a very promising method of obtaining such a pulsed operation of a diode pumped colour centre laser without the use of an external hf oscillator.
de Matos, Christiano J S; de S Menezes, Leonardo; Brito-Silva, Antônio M; Martinez Gámez, M A; Gomes, Anderson S L; de Araújo, Cid B
2007-10-12
We investigate the effects of two-dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250 nm rutile (TiO2) particles in a rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber generating the first random fiber laser and a novel quasi-one-dimensional random laser geometry. A comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least 2 orders of magnitude higher.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
Shell-Type Micromechanical Oscillator
2003-04-01
interferometric setup. A positive feedback loop was implemented by amplifying the red laser signal (related to the oscillator deflection) and using...resonator was actuated by a sharply focused, modulated Ar+ ion (blue) laser beam and detected by a red HeNe laser using an interferometric setup. A positive...top. Fig. 1 shows optical micrograph obtained by DIC (Differential Interference Contrast, known also as Nomarsky contrast). An array of three domes
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.
Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S
2015-07-01
An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.
NASA Astrophysics Data System (ADS)
Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.
2016-04-01
We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.
An open source digital servo for atomic, molecular, and optical physics experiments
NASA Astrophysics Data System (ADS)
Leibrandt, D. R.; Heidecker, J.
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
NASA Technical Reports Server (NTRS)
Wu, M. C.; Boenke, M. M.; Wang, S.; Clark, W. M., Jr.; Stevens, E. H.
1988-01-01
The performance of a GaAs/GaAlAs distributed Bragg reflector (DBR) laser using a focused ion beam implanted grating (FIB-DBR) is reported for the first time. Stripes of Si(2+) with a period of 2300 A and a dose about 10 to the 14th/sq cm are directly implanted into the passive large optical cavity layer to provide the distributed feedback. Surface-emitting light from the second-order grating is observed. Threshold current of 110 mA and single DBR mode operation from 20 to 40 C are obtained. The wavelength tuning rate with temperature is 0.8 A/C. The coupling coefficient is estimated to be 15/cm. The results show that FIB technology is practical for distributed feedback and DBR lasers and optoelectronic integrated circuits.
An open source digital servo for atomic, molecular, and optical physics experiments
Leibrandt, D. R.; Heidecker, J.
2016-01-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014
Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.
Wu, Tsung-Han; Kieu, K; Peyghambarian, N; Jones, R J
2011-03-14
We report on a low noise all-fiber erbium fs frequency comb based on a simple and robust tapered-fiber carbon nanotube (tf-CNT) design. We mitigate dominant noise sources to show that the free-running linewidth of the carrier-envelope offset frequency (fceo) can be comparable to the best reported performance to date for fiber-based frequency combs. A free-running fceo linewidth of ~20 kHz is demonstrated, corresponding to an improvement of ~30 times over previous work based on a CNT mode-locked fiber laser [Opt. Express 18, 1667 (2010)]. We also demonstrate the use of an acousto-optic modulator external to the laser cavity to stabilize fceo, enabling a 300 kHz feedback control bandwidth. The offset frequency is phase-locked with an in-loop integrated phase noise of ~0.8 rad from 10Hz to 400kHz. We show a resolution-limited linewidth of ~1 Hz, demonstrating over 90% of the carrier power within the coherent fceo signal. The results demonstrate that the relatively simple tf-CNT fiber laser design can provide a compact, robust and high-performance fs frequency comb.
NASA Astrophysics Data System (ADS)
Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro
2008-12-01
The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.
Environmental stability of actively mode locked fibre lasers
NASA Astrophysics Data System (ADS)
Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John
2016-10-01
Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).
Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen
2014-11-01
As one of the main greenhouse gases in the atmosphere, CO2 has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2 accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up. By choosing the infrared absorption line of CO2 at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.
Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen
2014-11-01
As one of the main greenhouse gases in the atmosphere, CO2has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up.By choosing the infrared absorption line of CO2at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.
Pattern-Recognition Algorithm for Locking Laser Frequency
NASA Technical Reports Server (NTRS)
Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George
2006-01-01
A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.
970-nm ridge waveguide diode laser bars for high power DWBC systems
NASA Astrophysics Data System (ADS)
Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther
2018-02-01
de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.
Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.
Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A
2013-05-28
An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser generation in opal-like single-crystal and heterostructure photonic crystals
NASA Astrophysics Data System (ADS)
Kuchyanov, A. S.; Plekhanov, A. I.
2016-11-01
This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.
High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%
NASA Astrophysics Data System (ADS)
Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.
2018-06-01
We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.
Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome
2007-10-01
We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.
NASA Astrophysics Data System (ADS)
Li, Jianwei D.; Malone, Joseph D.; El-Haddad, Mohamed T.; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-02-01
Surgical interventions for ocular diseases involve manipulations of semi-transparent structures in the eye, but limited visualization of these tissue layers remains a critical barrier to developing novel surgical techniques and improving clinical outcomes. We addressed limitations in image-guided ophthalmic microsurgery by using microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (iSS-SESLO-OCT). We previously demonstrated in vivo human ophthalmic imaging using SS-SESLO-OCT, which enabled simultaneous acquisition of en face SESLO images with every OCT cross-section. Here, we integrated our new 400 kHz iSS-SESLO-OCT, which used a buffered Axsun 1060 nm swept-source, with a surgical microscope and TrueVision stereoscopic viewing system to provide image-based feedback. In vivo human imaging performance was demonstrated on a healthy volunteer, and simulated surgical maneuvers were performed in ex vivo porcine eyes. Denselysampled static volumes and volumes subsampled at 10 volumes-per-second were used to visualize tissue deformations and surgical dynamics during corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. En face SESLO images enabled orientation and co-registration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. TrueVision heads-up display allowed for side-by-side viewing of the surgical field with SESLO and OCT previews for real-time feedback, and we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Integration of these complementary imaging modalities may benefit surgical outcomes by enabling real-time intraoperative visualization of surgical plans, instrument positions, tissue deformations, and image-based surrogate biomarkers correlated with completion of surgical goals.
Clinical feasibility test on a minimally invasive laser therapy system in microsurgery of nerves.
Mack, K F; Leinung, M; Stieve, M; Lenarz, T; Schwab, B
2008-01-01
The clinical feasibility test described here evaluates the basis for a laser therapy system that enables tumour tissue to be separated from nerves in a minimally invasive manner. It was first investigated whether, using an Er:YAG laser, laser-induced nerve (specifically, facial nerve) responses in the rabbit in vivo can be reliably detected with the hitherto standard monitoring techniques. Peripherally recordable neuromuscular signals (i.e. compound action potentials, CAPs) were used to monitor nerve function and to establish a feedback loop. The first occurrence of laser-evoked CAPs was taken as the criterion for deciding when to switch off the laser. When drawing up criteria governing the control and termination of the laser application, the priority was the maintenance of nerve function. Five needle-electrode arrays specially developed for this purpose, each with a miniature preamplifier, were then placed into the facial musculature instead of single-needle electrodes. The system was tested in vivo under realistic surgical conditions (i.e. facial-nerve surgery in the rabbit). This modified multi-channel electromyography (EMG) system enabled laser-evoked CAPs to be detected that have amplitudes 10 times smaller than those picked up by commercially available systems. This optimization, and the connection of the neuromuscular unit with the Er:YAG laser via the electrode array to create a feedback loop, were designed to make it possible to maintain online control of the laser ablation process in the vicinity of neuronal tissue, thus ensuring that tissue excision is both reliable and does not affect function. Our results open up new possibilities in minimally invasive surgery near neural structures.
Lesion strength control by automatic temperature guided retinal photocoagulation.
Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf
2016-09-01
Laser photocoagulation is an established treatment for a variety of retinal diseases. However, when using the same irradiation parameter, the size and strength of the lesions are unpredictable due to unknown inter- and intraindividual optical properties of the fundus layers. The aim of this work is to investigate a feedback system to generate desired lesions of preselectable strengths by automatically controlling the irradiation time. Optoacoustics were used for retinal temperature monitoring. A 532-nm continuous wave Nd:YAG laser was used for photocoagulation. A 75-ns/523-nm Q-switched Nd:YLF laser simultaneously excited temperature-dependent pressure transients, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. The temperature data were analyzed during the irradiation by a LabVIEW routine. The treatment laser was switched off automatically when the required lesion strength was achieved. Five different feedback control algorithms for different lesion sizes were developed and tested on rabbits in vivo. With a laser spot diameter of 133???m, five different lesion types with ophthalmoscopically visible diameters ranging mostly between 100 and 200???m, and different appearances were achieved by automatic exposure time control. The automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.
Lesion strength control by automatic temperature guided retinal photocoagulation
NASA Astrophysics Data System (ADS)
Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf
2016-09-01
Laser photocoagulation is an established treatment for a variety of retinal diseases. However, when using the same irradiation parameter, the size and strength of the lesions are unpredictable due to unknown inter- and intraindividual optical properties of the fundus layers. The aim of this work is to investigate a feedback system to generate desired lesions of preselectable strengths by automatically controlling the irradiation time. Optoacoustics were used for retinal temperature monitoring. A 532-nm continuous wave Nd:YAG laser was used for photocoagulation. A 75-ns/523-nm Q-switched Nd:YLF laser simultaneously excited temperature-dependent pressure transients, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. The temperature data were analyzed during the irradiation by a LabVIEW routine. The treatment laser was switched off automatically when the required lesion strength was achieved. Five different feedback control algorithms for different lesion sizes were developed and tested on rabbits in vivo. With a laser spot diameter of 133 μm, five different lesion types with ophthalmoscopically visible diameters ranging mostly between 100 and 200 μm, and different appearances were achieved by automatic exposure time control. The automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.
Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G
2013-02-11
We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Long-wavelength (1.3-1.5 micron) quantum dot lasers based on GaAs
NASA Astrophysics Data System (ADS)
Kovsh, Alexey R.; Ledentsov, Nikolai N.; Mikhrin, Sergei S.; Zhukov, Alexey E.; Livshits, Daniil A.; Maleev, Nikolay A.; Maximov, Mikhail V.; Ustinov, Victor M.; Gubenko, Alexey E.; Gadjiev, Igor M.; Portnoi, Efim L.; Wang, Jyh Shyang; Chi, Jim Y.; Ouyang, Donald N.; Bimberg, Dieter; Lott, James A.
2004-06-01
The molecular beam epitaxy of self-assembled quantum dots (QDs) has reached a level such that the principal advantages of QD lasers can now be fully realized. We overview the most important recent results achieved to date including excellent device performance of 1.3 μm broad area and ridge waveguide lasers (Jth<150A/cm2, Ith=1.4 mA, differential efficiency above 70%, CW 300 mW single lateral mode operation), suppression of non-linearity of QD lasers, which results to improved beam quality, reduced wavelength chirp and sensitivity to optical feedback. Effect of suppression of side wall recombination in QD lasers is also described. These effects give a possibility to further improve and simplify processing and fabrication of laser modules targeting their cost reduction. Recent realization of 2 mW single mode CW operation of QD VCSEL with all-semiconductor DBR is also presented. Long-wavelength QD lasers are promising candidate for mode-locking lasers for optical computer application. Very recently 1.7-ps-wide pulses at repetition rate of 20 GHz were obtained on mode-locked QD lasers with clear indication of possible shortening of pulse width upon processing optimization. First step of unification of laser technology for telecom range with QD-lasers grown on GaAs has been done. Lasing at 1.5 μm is achieved with threshold current density of 0.8 kA/cm2 and pulsed output power 7W.
NASA Astrophysics Data System (ADS)
Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.
2017-02-01
We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.
NASA Astrophysics Data System (ADS)
Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.
2016-06-01
Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.
Veras, Eduardo J; De Laurentis, Kathryn J; Dubey, Rajiv
2008-01-01
This paper describes the design and implementation of a control system that integrates visual and haptic information to give assistive force feedback through a haptic controller (Omni Phantom) to the user. A sensor-based assistive function and velocity scaling program provides force feedback that helps the user complete trajectory following exercises for rehabilitation purposes. This system also incorporates a PUMA robot for teleoperation, which implements a camera and a laser range finder, controlled in real time by a PC, were implemented into the system to help the user to define the intended path to the selected target. The real-time force feedback from the remote robot to the haptic controller is made possible by using effective multithreading programming strategies in the control system design and by novel sensor integration. The sensor-based assistant function concept applied to teleoperation as well as shared control enhances the motion range and manipulation capabilities of the users executing rehabilitation exercises such as trajectory following along a sensor-based defined path. The system is modularly designed to allow for integration of different master devices and sensors. Furthermore, because this real-time system is versatile the haptic component can be used separately from the telerobotic component; in other words, one can use the haptic device for rehabilitation purposes for cases in which assistance is needed to perform tasks (e.g., stroke rehab) and also for teleoperation with force feedback and sensor assistance in either supervisory or automatic modes.
V-shaped resonators for addition of broad-area laser diode arrays
Liu, Bo; Liu, Yun; Braiman, Yehuda Y.
2012-12-25
A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.
NASA Technical Reports Server (NTRS)
Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.
1995-01-01
Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.
Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging
Murari, Kartikeya; Mavadia, Jessica; Xi, Jiefeng; Li, Xingde
2011-01-01
We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution. PMID:21750775
Bakry, Ahmed
2014-01-01
This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izmailov, I.A.; Kochelap, V.A.; Mel'nikov, L.Y.
1982-05-01
It is proposed that a feedback resulting from scattering be used to achieve lasing in a disperse reactive medium. The example of a simple two-level system shows that under advanced lasing conditions the quantum efficiency of the radiation emission approaches the quantum efficiency of the excitation of the upper level, and the emission spectrum becomes much narrower. Feasibility of chemical pumping of such a laser is estimated on the basis of calculations of heterophase burning of a drop of a fuel in an oxidizing atmosphere. The growth increment of light is calculated and the threshold conditions for the excitation ofmore » lasing are found. Examples are given to illustrate the feasibility of purely chemical pumping of a laser with a nonresonant feedback. It is shown that dense reactive media can be used in such lasers.« less
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
Bubbling in delay-coupled lasers.
Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E
2009-06-01
We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.
Li, Chunguang; Dong, Lei; Zheng, Chuantao; Lin, Jun; Wang, Yiding
2018-01-01
A ppbv-level quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane (C2H6) sensor was demonstrated by using a 3.3 μm continuous-wave (CW), distributed feedback (DFB) interband cascade laser (ICL). The ICL was employed for targeting a strong C2H6 absorption line located at 2996.88 cm−1 in its fundamental absorption band. Wavelength modulation spectroscopy (WMS) combined with the second harmonic (2f) detection technique was utilized to increase the signal-to-noise ratio (SNR) and simplify data acquisition and processing. Gas pressure and laser frequency modulation depth were optimized to be 100 Torr and 0.106 cm−1, respectively, for maximizing the 2f signal amplitude. Performance of the QEPAS sensor was evaluated using specially prepared C2H6 samples. A detection limit of 11 parts per billion in volume (ppbv) was obtained with a 1-s integration time based on an Allan-Werle variance analysis, and the detection precision can be further improved to ~1.5 ppbv by increasing the integration time up to 230 s. PMID:29495610
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
NASA Technical Reports Server (NTRS)
Hertzberg, M.
1971-01-01
Development of a combustion theory based on the laminarized solutions to the energy and flow conservation equations, which is more realistic in recognizing the nature of the heating-rate problem and in obtaining a practical solution to estimating its magnitude. A new experimental approach is used for studying the combustion behavior of pure monopropellants and composite propellants which uses a laser beam to supply additional heat feedback to a burning surface. New experimental data are presented for the laser-induced combustion rate and ignition delay of pure ammonium perchlorate. The pure monopropellant theory is generalized to include such nonadiabatic effects, and the new experimental data are in good agreement with the nonadiabatic theory.-
Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD
NASA Astrophysics Data System (ADS)
Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi
2017-04-01
The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.
Design of laser diode driver with constant current and temperature control system
NASA Astrophysics Data System (ADS)
Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang
2017-10-01
A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.
NASA Astrophysics Data System (ADS)
Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
2017-05-01
The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
Radio-Frequency Down-Conversion via Sampled Analog Optical Links
2010-08-09
temporal intensity Popt(ω) includes intensity noise quantities arising from the optical source (e.g. laser intensity noise, amplified spontaneous emission...nm distributed feedback laser RF Down-Conversion via Sampled Links 5 (DFB, EM4, Inc.) the output of which is modulated via a low-biased Mach-Zehnder...Figure 5 (a). For comparison purposes the RF gain of one arm of the balanced link (utilizing a continuous- wave laser source) is measured and
NASA Astrophysics Data System (ADS)
Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.
2014-05-01
Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.
1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product
NASA Technical Reports Server (NTRS)
Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.
2002-01-01
Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.
Electro-optic device having a laterally varying region
NASA Technical Reports Server (NTRS)
Andrews, James T. (Inventor); Ladany, Ivan (Inventor)
1989-01-01
A distributed feedback laser comprising a semiconductor body having a channel which varies in width in the laterial direction and is periodic in the longitudinal direction. When the laser is electrically excited constructive interference of reflected light gives rise to a stable single wavelength output due to the periodic variations in the channel.
Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms.
Mei, Yefeng; Guo, Xianxin; Zhao, Luwei; Du, Shengwang
2017-10-13
We report the demonstration of a mirrorless optical parametric oscillator with a tunable threshold in laser-cooled atoms with four-wave mixing (FWM) using electromagnetically induced transparency. Driven by two classical laser beams, the generated Stokes and anti-Stokes fields counterpropagate and build up efficient intrinsic feedback through the nonlinear FWM process. This feedback does not involve any cavity or spatially distributed microstructures. We observe the transition of photon correlation properties from the biphoton quantum regime (below the threshold) to the oscillation regime (above the threshold). The pump threshold can be tuned by varying the operating parameters. We achieve the oscillation with a threshold as low as 15 μW.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking.
Lu, Z G; Liu, J R; Poole, P J; Song, C Y; Chang, S D
2018-04-30
We have used an external cavity self-injection feedback locking (SIFL) system to simultaneously reduce the optical linewidth of over 39 individual wavelength channels of an InAs/InP quantum dot (QD) coherent comb laser (CCL). Linewidth reduction from a few MHz to less than 200 kHz is observed. Measured phase noise spectra clearly indicate a significant decrease in phase noise in the frequency range above 2 kHz. The RF beating signal between two adjacent channels also shows a substantial reduction in 3-dB linewidth from 10 kHz to 300 Hz with the SIFL system, and a corresponding drop in baseline level (-27 dB to -50 dB).
Analysis and design of optically pumped far infrared oscillators and amplifiers
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1978-01-01
A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.
NASA Astrophysics Data System (ADS)
Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.
2017-12-01
Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.
Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat
2000-01-01
This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K
2018-01-04
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.
High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance
Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin
2018-01-01
A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor. PMID:29300310
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers
NASA Astrophysics Data System (ADS)
Deninger, Anselm J.; Roggenbuck, A.; Schindler, S.; Preu, S.
2015-03-01
To date, exploiting the full bandwidth of state-of-the-art InGaAs photomixers for generation and detection of continuous-wave (CW) THz radiation (typ. ~50 GHz to ~3 THz) required complex and costly external-cavity diode lasers with motorized resonator control. Distributed feedback (DFB) lasers, by contrast, are compact and inexpensive, but the tuning range per diode is limited to ~600 GHz at 1.5 μm. In this paper, we show that a combination of three DFB diodes covers the complete frequency range from 0 - 2750 GHz without any gaps. In combination with InGaAs-based photomixers for terahertz generation and detection, the system achieves a dynamic range of > 100 dB at 56 GHz, 64 dB at 1000 GHz, and 26 dB at 2500 GHz. A field-programmable gate array (FPGA)-based lock-in amplifier permits a flexible adjustment of the integration time from 0.5 ms to 600 ms. Employing an optimized "fast scan" mode, a spectrum of ~1200 GHz - the bandwidth of each subset of two lasers - and 40 MHz steps is acquired in less than one minute, still maintaining a reasonable dynamic range. To the best of our knowledge, the bandwidth of 2.75 THz presents a new record for DFB-based CW-terahertz systems.
Recovering Signals from Optical Fiber Interferometric Sensors
1991-06-01
GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or
Multiperiod-grating surface-emitting lasers
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor)
1992-01-01
Surface-emitting distributed feedback (DFB) lasers are disclosed with hybrid gratings. A first-order grating is provided at one or both ends of the active region of the laser for retroreflection of light back into the active region, and a second-order or nonresonant grating is provided at the opposite end for coupling light out perpendicular to the surfaces of the laser or in some other selected direction. The gratings may be curved to focus light retroreflected into the active region and to focus light coupled out to a point. When so focused to a point, the DFB laser may be part of a monolithic read head for a laser recorded disk, or an optical coupler into an optical fiber.
Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
Klinkhammer, Sönke; Liu, Xin; Huska, Klaus; Shen, Yuxin; Vanderheiden, Sylvia; Valouch, Sebastian; Vannahme, Christoph; Bräse, Stefan; Mappes, Timo; Lemmer, Uli
2012-03-12
The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solutions on cm-scale surface gratings of different periods. We report optically pumped continuously tunable laser emission of 13 nm in the blue, 16 nm in the green and 19 nm in the red spectral region on a single chip respectively. Tuning behavior can be described with the Bragg-equation and the measured thickness profile. The laser threshold is low enough that inexpensive laser diodes can be used as pump sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonenko, A A; Dorogush, E S; Malyshev, S A
Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of Fabry – Perot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency canmore » be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)« less