Sample records for feedback loops based

  1. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  2. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  3. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  4. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  5. Plate with decentralised velocity feedback loops: Power absorption and kinetic energy considerations

    NASA Astrophysics Data System (ADS)

    Gardonio, P.; Miani, S.; Blanchini, F.; Casagrande, D.; Elliott, S. J.

    2012-04-01

    This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce 'sky-hook' damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.

  6. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana

    PubMed Central

    Locke, James C W; Kozma-Bognár, László; Gould, Peter D; Fehér, Balázs; Kevei, Éva; Nagy, Ferenc; Turner, Matthew S; Hall, Anthony; Millar, Andrew J

    2006-01-01

    Our computational model of the circadian clock comprised the feedback loop between LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and TIMING OF CAB EXPRESSION 1 (TOC1), and a predicted, interlocking feedback loop involving TOC1 and a hypothetical component Y. Experiments based on model predictions suggested GIGANTEA (GI) as a candidate for Y. We now extend the model to include a recently demonstrated feedback loop between the TOC1 homologues PSEUDO-RESPONSE REGULATOR 7 (PRR7), PRR9 and LHY and CCA1. This three-loop network explains the rhythmic phenotype of toc1 mutant alleles. Model predictions fit closely to new data on the gi;lhy;cca1 mutant, which confirm that GI is a major contributor to Y function. Analysis of the three-loop network suggests that the plant clock consists of morning and evening oscillators, coupled intracellularly, which may be analogous to coupled, morning and evening clock cells in Drosophila and the mouse. PMID:17102804

  7. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  8. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  9. Generalized fast feedback system in the SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, L.; Allison, S.; Gromme, T.

    A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less

  10. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction.

    PubMed

    Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael

    2018-02-13

    Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.

  11. Information-reduced Carrier Synchronization of Iterative Decoded BPSK and QPSK using Soft Decision (Extrinsic) Feedback

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban; Jones, Christopher

    2008-01-01

    This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.

  12. A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle.

    PubMed

    Sriram, K; Bernot, G; Képès, F

    2007-11-01

    A novel topology of regulatory networks abstracted from the budding yeast cell cycle is studied by constructing a simple nonlinear model. A ternary positive feedback loop with only positive regulations is constructed with elements that activates the subsequent element in a clockwise fashion. A ternary negative feedback loop with only negative regulations is constructed with the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations. The novelty of the topology is that the corresponding elements in these two homogeneous feedback loops are linked by the binary positive feedback loops with only positive regulations. This results in the emergence of mixed feedback loops in the network that displays complex behaviour like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the arrangement of the feedback loops brings in the notion of checkpoint in the model. The model also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the events that govern the cell cycle are considered for the present study. In budding yeast, the sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback loops. The transcription factors that involve in the positive regulation in a clockwise orientation generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The mutual regulation between the corresponding elements in the transcription factors and the cyclins and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed for the whole system can be related to the different events of the cell cycle in terms of dynamical system theory. The checkpoint mechanism that plays an important role in different phases of the cell cycle are accounted for by silencing appropriate feedback loops in the model.

  13. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  14. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  15. Interactive Information Seeking and Retrieving: A Third Feedback Framework.

    ERIC Educational Resources Information Center

    Spink, Amanda

    1996-01-01

    Presents an overview of feedback within the cybernetics and social frameworks. These feedback concepts are then compared with the interactive feedback concept evolving within the framework of information seeking and retrieving, based on their conceptualization of the feedback loop and notion of information. (Author/AEF)

  16. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    PubMed

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  17. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  18. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  19. Biocybernetic system evaluates indices of operator engagement in automated task

    NASA Technical Reports Server (NTRS)

    Pope, A. T.; Bogart, E. H.; Bartolome, D. S.

    1995-01-01

    A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.

  20. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  1. An evaluation of the feedback loops in the poverty focus of world bank operations.

    PubMed

    Fardoust, Shahrokh; Kanbur, Ravi; Luo, Xubei; Sundberg, Mark

    2018-04-01

    The World Bank Group in 2013 made the elimination of extreme poverty by 2030 a central institutional focus and purpose. This paper, based on an evaluation conducted by the Independent Evaluation Group of the World Bank Group, examines how, and how well, the Bank uses feedback loops to enhance the poverty focus of its operations. Feedback loops are important for every element of the results chain running from data, to diagnostics, to strategy formulation and finally to strategy implementation. The evaluation uses a range of instruments, including surveys of stakeholders and World Bank staff, focus group meetings, country case studies and systematic reviews of Bank lending and non-lending operations. We find that while the Bank generates useful information on poverty reduction from its projects and programs, the feedback loops - from outcomes to data analysis to diagnostics to strategy formulation and implementation - have generally been weak, with sizable variation across countries. Copyright © 2017 The World Bank. Published by Elsevier Ltd.. All rights reserved.

  2. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  3. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  4. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

    NASA Astrophysics Data System (ADS)

    Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.

    2011-06-01

    The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

  5. Relaxation oscillations and hierarchy of feedbacks in MAPK signaling

    NASA Astrophysics Data System (ADS)

    Kochańczyk, Marek; Kocieniewski, Paweł; Kozłowska, Emilia; Jaruszewicz-Błońska, Joanna; Sparta, Breanne; Pargett, Michael; Albeck, John G.; Hlavacek, William S.; Lipniacki, Tomasz

    2017-01-01

    We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

  6. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  7. Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses

    PubMed Central

    Osborn, Luke; Kaliki, Rahul; Soares, Alcimar; Thakor, Nitish

    2016-01-01

    Upper limb amputees lack the valuable tactile sensing that helps provide context about the surrounding environment. Here we utilize tactile information to provide active touch feedback to a prosthetic hand. First, we developed fingertip tactile sensors for producing biomimetic spiking responses for monitoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents found in the human body. Second, we designed and implemented two neuromimetic event-based algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experiments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects that broke or slipped during grasping decreased by over 50% and the average time to complete a grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feedback with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is a novel approach to improving the function of upper limb prostheses. PMID:27777640

  8. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  9. Stabilization and control of the carrier-envelope phase of high-power femtosecond laser pulses using the direct locking technique.

    PubMed

    Imran, Tayyab; Lee, Yong S; Nam, Chang H; Hong, Kyung-Han; Yu, Tae J; Sung, Jae H

    2007-01-08

    We have stabilized and electronically controlled the carrier-envelope phase (CEP) of high-power femtosecond laser pulses, generated in a grating-based chirped-pulse amplification kHz Ti:sapphire laser, using the direct locking technique [Opt. Express 13, 2969 (2005)] combined with a slow feedback loop. An f-2f spectral interferometer has shown the CEP stabilities of 1.2 rad with the direct locking loop applied to the oscillator and of 180 mrad with an additional slow feedback loop, respectively. The electronic CEP modulations that can be easily realized in the direct locking loop are also demonstrated with the amplified pulses.

  10. Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Ren, Fei; He, Yun-Xing

    2018-03-01

    By incorporating market impact and momentum traders into an agent-based model, we investigate the conditions for the occurrence of self-reinforcing feedback loops and the coevolutionary mechanism of prices and strategies. For low market impact, the price fluctuations are originally large. The existence of momentum traders has little impact on the change of price fluctuations but destroys the equilibrium between the trend-following and trend-rejecting strategies. The trend-following herd behaviors become dominant. A self-reinforcing feedback loop exists. For high market impact, the existence of momentum traders leads to an increase in price fluctuations. The trend-following strategies of rational individuals are suppressed while the trend-following strategies of momentum traders are promoted. The crowd-anticrowd behaviors become dominant. A negative feedback loop exists. A theoretical analysis indicates that, for low market impact, the majority effect is beneficial for the trend-followers to earn more, which in turn promotes the trend-following strategies. For high market impact, the minority effect causes the trend-followers to suffer great losses, which in turn suppresses the trend-following strategies.

  11. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  12. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  13. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    PubMed Central

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  14. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  15. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  16. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  17. Mathematical modeling of planar cell polarity signaling in the Drosophila melanogaster wing

    NASA Astrophysics Data System (ADS)

    Amonlirdviman, Keith

    Planar cell polarity (PCP) signaling refers to the coordinated polarization of cells within the plane of various epithelial tissues to generate sub-cellular asymmetry along an axis orthogonal to their apical-basal axes. For example, in the Drosophila wing, PCP is seen in the parallel orientation of hairs that protrude from each of the approximately 30,000 epithelial cells to robustly point toward the wing tip. Through a poorly understood mechanism, cell clones mutant for some PCP signaling components, including some, but not all alleles of the receptor frizzled, cause polarity disruptions of neighboring, wild-type cells, a phenomenon referred to as domineering nonautonomy. Previous models have proposed diffusible factors to explain nonautonomy, but no such factors have yet been found. This dissertation describes the mathematical modeling of PCP in the Drosophila wing, based on a contact dependent signaling hypothesis derived from experimental results. Intuition alone is insufficient to deduce that this hypothesis, which relies on a local feedback loop acting at the cell membrane, underlies the complex patterns observed in large fields of cells containing mutant clones, and others have argued that it cannot account for observed phenotypes. Through reaction-diffusion, partial differential equation modeling and simulation, the feedback loop is shown to fully reproduce PCP phenotypes, including domineering nonautonomy. The sufficiency of this model and the experimental validation of model predictions argue that previously proposed diffusible factors need not be invoked to explain PCP signaling and reveal how specific protein-protein interactions lead to autonomy or domineering nonautonomy. Based on these results, an ordinary differential equation model is derived to study the relationship of the feedback loop with upstream signaling components. The cadherin Fat transduces a cue to the local feedback loop, biasing the polarity direction of each cell toward the wing tip. The feedback loop then amplifies and propagates PCP across the pupal wing, but polarity information does not always propagate correctly across cells lacking Fat function. Using the simplified model, the presence and severity of polarity defects in fat clones is shown to be an inherent consequence of the feedback loop when confronted with irregular variations in cell geometry.

  18. Closed-loop model identification of cooperative manipulators holding deformable objects

    NASA Astrophysics Data System (ADS)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  19. Implementing Audio Digital Feedback Loop Using the National Instruments RIO System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, G.; Byrd, J. M.

    2006-11-20

    Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.

  20. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  1. Preliminary demonstration of a robust controller design method

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1980-01-01

    Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.

  2. Feedback Regulation and Its Efficiency in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki

    2016-03-01

    Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.

  3. Closed-loop and robust control of quantum systems.

    PubMed

    Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.

  4. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  5. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  6. Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2015-03-01

    Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.

  7. The magnetosphere as system

    NASA Astrophysics Data System (ADS)

    Siscoe, G. L.

    2012-12-01

    What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.

  8. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  9. Feedback: A Systems Approach to Evaluation and Course Design. Working Papers No. 21.

    ERIC Educational Resources Information Center

    Holmes, John

    Two types of feedback are examined, and their use in controlling the processes of instructional development and improvement are discussed. Closed-loop feedback, the most direct, uses immediate feedback about a process or product to make immediate adjustments in it. Open-loop feedback, in which input cannot be changed immediately, uses feedback to…

  10. Stability analysis and compensation of a boost regulator with two-loop control

    NASA Technical Reports Server (NTRS)

    Wester, G. W.

    1974-01-01

    A useful stability measure has been demonstrated by Wester (1973) for switching regulators with a single feedback loop by applying the Nyquist criterion to the approximate loop gain determined by a time-averaging technique. This approach is extended and applied to the characterization, stability analysis, and compensation design of a switching regulator with two-loop control. The role and relative significance of each control loop is clarified on the basis of a description of circuit operation, and the major and minor loops are identified. In view of the inapplicability of linear feedback theory, describing functions of the feedback loops and power stage are derived, using small-signal analysis. Several phenomena revealed from an analysis of the major loop gain are discussed.

  11. Rigid Body Rate Inference from Attitude Variation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  12. On the Extraction of Angular Velocity from Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  13. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  14. Closing the Feedback Loop Is Not Enough: The Assessment Spiral

    ERIC Educational Resources Information Center

    Wehlburg, Catherine M.

    2007-01-01

    For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…

  15. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  16. Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment.

    PubMed

    Lauriola, Mattia; Enuka, Yehoshua; Zeisel, Amit; D'Uva, Gabriele; Roth, Lee; Sharon-Sevilla, Michal; Lindzen, Moshit; Sharma, Kirti; Nevo, Nava; Feldman, Morris; Carvalho, Silvia; Cohen-Dvashi, Hadas; Kedmi, Merav; Ben-Chetrit, Nir; Chen, Alon; Solmi, Rossella; Wiemann, Stefan; Schmitt, Fernando; Domany, Eytan; Yarden, Yosef

    2014-10-03

    Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR's positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR's feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.

  17. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways.

    PubMed

    Kim, D; Rath, O; Kolch, W; Cho, K-H

    2007-07-05

    The Wnt and the extracellular signal regulated-kinase (ERK) pathways are both involved in the pathogenesis of various kinds of cancers. Recently, the existence of crosstalk between Wnt and ERK pathways was reported. Gathering all reported results, we have discovered a positive feedback loop embedded in the crosstalk between the Wnt and ERK pathways. We have developed a plausible model that represents the role of this hidden positive feedback loop in the Wnt/ERK pathway crosstalk based on the integration of experimental reports and employing established basic mathematical models of each pathway. Our analysis shows that the positive feedback loop can generate bistability in both the Wnt and ERK signaling pathways, and this prediction was further validated by experiments. In particular, using the commonly accepted assumption that mutations in signaling proteins contribute to cancerogenesis, we have found two conditions through which mutations could evoke an irreversible response leading to a sustained activation of both pathways. One condition is enhanced production of beta-catenin, the other is a reduction of the velocity of MAP kinase phosphatase(s). This enables that high activities of Wnt and ERK pathways are maintained even without a persistent extracellular signal. Thus, our study adds a novel aspect to the molecular mechanisms of carcinogenesis by showing that mutational changes in individual proteins can cause fundamental functional changes well beyond the pathway they function in by a positive feedback loop embedded in crosstalk. Thus, crosstalk between signaling pathways provides a vehicle through which mutations of individual components can affect properties of the system at a larger scale.

  18. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  19. Closed-Loop Control of Vortex Formation in Separated Flows

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil

    2010-01-01

    In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.

  20. Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takei, Y.; Yamasaki, N.Y; Mitsuda, K.

    2009-12-16

    A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz withmore » standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.« less

  1. Beyond R0 Maximisation: On Pathogen Evolution and Environmental Dimensions.

    PubMed

    Lion, Sébastien; Metz, Johan A J

    2018-06-01

    A widespread tenet is that evolution of pathogens maximises their basic reproduction ratio, R 0 . The breakdown of this principle is typically discussed as exception. Here, we argue that a radically different stance is needed, based on evolutionarily stable strategy (ESS) arguments that take account of the 'dimension of the environmental feedback loop'. The R 0 maximisation paradigm requires this feedback loop to be one-dimensional, which notably excludes pathogen diversification. By contrast, almost all realistic ecological ingredients of host-pathogen interactions (density-dependent mortality, multiple infections, limited cross-immunity, multiple transmission routes, host heterogeneity, and spatial structure) will lead to multidimensional feedbacks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Closed-Loop and Robust Control of Quantum Systems

    PubMed Central

    Wang, Lin-Cheng

    2013-01-01

    For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H ∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680

  3. The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Kang, Xiaxia; Yang, Ling

    Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.

  4. A theory of circular organization and negative feedback: defining life in a cybernetic context.

    PubMed

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  5. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    NASA Astrophysics Data System (ADS)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  6. Modeling gene regulatory network motifs using statecharts

    PubMed Central

    2012-01-01

    Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967

  7. Circuitry, systems and methods for detecting magnetic fields

    DOEpatents

    Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  8. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  9. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  10. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    PubMed

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the left hand on open-loop trials exhibited the same large PGAs under all feedback schedules: blocked, random, or alternating. In other words, there was no evidence for homogenization. Taken together, these results suggest that in addition to the real-time demands of the task, such as the target's size and position and the availability of visual feedback, the initial (i.e., pre-movement) programming of right-hand grasping relies on what happened on the previous trial, whereas the programming of left-hand grasping is more cognitively supervised and exploits explicit information about trial order to prepare for an upcoming trial.

  11. A program to evaluate a control system based on feedback of aerodynamic pressure differentials

    NASA Technical Reports Server (NTRS)

    Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.

  12. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory

    NASA Astrophysics Data System (ADS)

    Choi, Junil; Love, David J.; Bidigare, Patrick

    2014-10-01

    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.

  13. Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.

    PubMed

    Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori

    2015-01-01

    Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.

  14. Structural Damage Detection Using Virtual Passive Controllers

    NASA Technical Reports Server (NTRS)

    Lew, Jiann-Shiun; Juang, Jer-Nan

    2001-01-01

    This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.

  15. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  16. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  17. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  18. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  19. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    PubMed

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  20. Complexity in built environment, health, and destination walking: a neighborhood-scale analysis.

    PubMed

    Carlson, Cynthia; Aytur, Semra; Gardner, Kevin; Rogers, Shannon

    2012-04-01

    This study investigates the relationships between the built environment, the physical attributes of the neighborhood, and the residents' perceptions of those attributes. It focuses on destination walking and self-reported health, and does so at the neighborhood scale. The built environment, in particular sidewalks, road connectivity, and proximity of local destinations, correlates with destination walking, and similarly destination walking correlates with physical health. It was found, however, that the built environment and health metrics may not be simply, directly correlated but rather may be correlated through a series of feedback loops that may regulate risk in different ways in different contexts. In particular, evidence for a feedback loop between physical health and destination walking is observed, as well as separate feedback loops between destination walking and objective metrics of the built environment, and destination walking and perception of the built environment. These feedback loops affect the ability to observe how the built environment correlates with residents' physical health. Previous studies have investigated pieces of these associations, but are potentially missing the more complex relationships present. This study proposes a conceptual model describing complex feedback relationships between destination walking and public health, with the built environment expected to increase or decrease the strength of the feedback loop. Evidence supporting these feedback relationships is presented.

  1. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  2. Integrated flight/propulsion control system design based on a centralized approach

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.

    1989-01-01

    An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.

  3. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    PubMed

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  4. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  5. Reliable Control Using Disturbance Observer and Equivalent Transfer Function for Position Servo System in Current Feedback Loop Failure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi

    A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.

  6. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    PubMed

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  7. Simultaneous gains tuning in boiler/turbine PID-based controller clusters using iterative feedback tuning methodology.

    PubMed

    Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan

    2012-09-01

    Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Power flow control based solely on slow feedback loop for heart pump applications.

    PubMed

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  9. Complete analog control of the carrier-envelope-phase of a high-power laser amplifier.

    PubMed

    Feng, C; Hergott, J-F; Paul, P-M; Chen, X; Tcherbakoff, O; Comte, M; Gobert, O; Reduzzi, M; Calegari, F; Manzoni, C; Nisoli, M; Sansone, G

    2013-10-21

    In this work we demonstrate the development of a complete analog feedback loop for the control of the carrier-envelope phase (CEP) of a high-average power (20 W) laser operating at 10 kHz repetition rate. The proposed method combines a detection scheme working on a single-shot basis at the full-repetition-rate of the laser system with a fast actuator based either on an acousto-optic or on an electro-optic crystal. The feedback loop is used to correct the CEP fluctuations introduced by the amplification process demonstrating a CEP residual noise of 320 mrad measured on a single-shot basis. The comparison with a feedback loop operating at a lower sampling rate indicates an improvement up to 45% in the residual noise. The measurement of the CEP drift for different integration times clearly evidences the importance of the single-shot characterization of the residual CEP drift. The demonstrated scheme could be efficiently applied for systems approaching the 100 kHz repetition rate regime.

  10. Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers

    PubMed Central

    Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.

    2010-01-01

    A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450

  11. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    PubMed

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  12. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    PubMed

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.

  13. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  14. Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application.

    PubMed

    Vozeh, S; Steimer, J L

    1985-01-01

    The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.

  15. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  16. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  17. Decision feedback loop for tracking a polyphase modulated carrier

    NASA Technical Reports Server (NTRS)

    Simon, M. K. (Inventor)

    1974-01-01

    A multiple phase modulated carrier tracking loop for use in a frequency shift keying system is described in which carrier tracking efficiency is improved by making use of the decision signals made on the data phase transmitted in each T-second interval. The decision signal is used to produce a pair of decision-feedback quadrature signals for enhancing the loop's performance in developing a loop phase error signal.

  18. Finite Feedback Cycling in Structural Equation Models

    ERIC Educational Resources Information Center

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  19. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  20. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains

    PubMed Central

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS. PMID:27924253

  1. Closing the Feedback Loop: Ensuring Effective Action from Student Feedback

    ERIC Educational Resources Information Center

    Watson, Sarah

    2003-01-01

    Feedback from students can inform improvement in higher education institutions and be part of the students' role in university management. To be effective it is important to"close the loop": from student views, through identifying issues and delegating responsibility for action, to informing students of the action resulting from their expressed…

  2. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  3. Research on the man in the loop control system of the robot arm based on gesture control

    NASA Astrophysics Data System (ADS)

    Xiao, Lifeng; Peng, Jinbao

    2017-03-01

    The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.

  4. Network efficient power control for wireless communication systems.

    PubMed

    Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.

  5. Network Efficient Power Control for Wireless Communication Systems

    PubMed Central

    Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350

  6. Feedback Synthesizes Neural Codes for Motion.

    PubMed

    Clarke, Stephen E; Maler, Leonard

    2017-05-08

    In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A fast-locking PLL with all-digital locked-aid circuit

    NASA Astrophysics Data System (ADS)

    Kao, Shao-Ku; Hsieh, Fu-Jen

    2013-02-01

    In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.

  8. Open-loop-feedback control of serum drug concentrations: pharmacokinetic approaches to drug therapy.

    PubMed

    Jelliffe, R W

    1983-01-01

    Recent developments to optimize open-loop-feedback control of drug dosage regimens, generally applicable to pharmacokinetically oriented therapy with many drugs, involve computation of patient-individualized strategies for obtaining desired serum drug concentrations. Analyses of past therapy are performed by least squares, extended least squares, and maximum a posteriori probability Bayesian methods of fitting pharmacokinetic models to serum level data. Future possibilities for truly optimal open-loop-feedback therapy with full Bayesian methods, and conceivably for optimal closed-loop therapy in such data-poor clinical situations, are also discussed. Implementation of these various therapeutic strategies, using automated, locally controlled infusion devices, has also been achieved in prototype form.

  9. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  10. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  11. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  12. High alpha feedback control for agile half-loop maneuvers of the F-18 airplane

    NASA Technical Reports Server (NTRS)

    Stalford, Harold

    1988-01-01

    A nonlinear feedback control law for the F/A-18 airplane that provides time-optimal or agile maneuvering of the half-loop maneuver at high angles of attack is given. The feedback control law was developed using the mathematical approach of singular perturbations, in which the control devices considered were conventional aerodynamic control surfaces and thrusting. The derived nonlinear control law was used to simulate F/A-18 half-loop maneuvers. The simulated results at Mach 0.6 and 0.9 compared well with pilot simulations conducted at NASA.

  13. Offset quadrature communications with decision-feedback carrier synchronization

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Smith, J. G.

    1974-01-01

    In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.

  14. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  15. Optical frequency stabilization in infrared region using improved dual feed-back loop

    NASA Astrophysics Data System (ADS)

    Ružička, B.; Číp, O.; Lazar, J.

    2007-03-01

    Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  16. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  17. Parity-time–symmetric optoelectronic oscillator

    PubMed Central

    2018-01-01

    An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325

  18. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  19. Towards random matrix model of breaking the time-reversal invariance of elastic waves in chaotic cavities by feedback

    NASA Astrophysics Data System (ADS)

    Antoniuk, Oleg; Sprik, Rudolf

    2010-03-01

    We developed a random matrix model to describe the statistics of resonances in an acoustic cavity with broken time-reversal invariance. Time-reversal invariance braking is achieved by connecting an amplified feedback loop between two transducers on the surface of the cavity. The model is based on approach [1] that describes time- reversal properties of the cavity without a feedback loop. Statistics of eigenvalues (nearest neighbor resonance spacing distributions and spectral rigidity) has been calculated and compared to the statistics obtained from our experimental data. Experiments have been performed on aluminum block of chaotic shape confining ultrasound waves. [1] Carsten Draeger and Mathias Fink, One-channel time- reversal in chaotic cavities: Theoretical limits, Journal of Acoustical Society of America, vol. 105, Nr. 2, pp. 611-617 (1999)

  20. Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions

    DTIC Science & Technology

    2005-01-01

    C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller

  1. Closed loop kinesthetic feedback for postural control rehabilitation.

    PubMed

    Vérité, Fabien; Bachta, Wael; Morel, Guillaume

    2014-01-01

    Postural control rehabilitation may benefit from the use of smart devices providing biofeedback. This approach consists of increasing the patients perception of their postural state. Namely, postural state is monitored and fed back in real time to the patients through one or more sensory channels. This allows implementing rehabilitation exercises where the patients control their posture with the help of additional sensory inputs. In this paper, a closed loop control of the Center-Of-Pressure (CoP) based on kinesthetic feedback is proposed as a new form of biofeedback. The motion of a one Degree of Freedom (DoF) translational device, lightly touched by the patient's forefinger, is servoed to the patient's CoP position extracted from the measurements of a force plate on which he/she stands. As a result, the patient's CoP can be controllably displaced. A first set of experiments is used to prove the feasibility of this closed-loop control under ideal conditions favoring the perception of the kinesthetic feedback, while the subject is totally unaware of the context. A second set of experiments is then proposed to evaluate the robustness of this approach under experimental conditions that are more realistic with regards to the clinical context of a rehabilitation program involving biofeedback-based exercises.

  2. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    PubMed

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

  3. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder

    PubMed Central

    Wittenborn, A. K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N.

    2016-01-01

    Background Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. Method We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. Results The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Conclusions Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention. PMID:26621339

  4. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.

  5. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-11-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

  6. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  8. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease.

    PubMed

    Gorzelic, P; Schiff, S J; Sinha, A

    2013-04-01

    To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  9. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    PubMed

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  11. Brain-actuated gait trainer with visual and proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.

    2017-10-01

    Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  12. Brain-actuated gait trainer with visual and proprioceptive feedback.

    PubMed

    Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Del R Millán, José

    2017-10-01

    Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. (i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.

  13. Output feedback regulator design for jet engine control systems

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on the output feedback regulator formulation is described and applied to turbofan engine model. Full order model dynamics, were incorporated in the example design. The effect of actuator dynamics on closed loop performance was investigaged. Also, the importance of turbine inlet temperature as an element of the dynamic feedback was studied. Step responses were given to indicate the improvement in system performance with this control. Calculation times for all experiments are given in CPU seconds for comparison purposes.

  14. Psychophysiological Control of Acognitive Task Using Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick; Pope, Alan T. (Technical Monitor)

    2001-01-01

    The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when the EEG index is high) results in a marked decrease of the vigilance decrement over a 40 minute session. This effect is in direct contrast to performance of a positive feedback group, as well as a number of other control groups which demonstrated the typical vigilance decrement. Interestingly, however, the negative feedback group performed at virtually the same level as a yoked control group. The yoked control group received the same order of changes in event rate that were generated by the negative feedback subjects using the closed-loop system. Thus it would appear to be possible to optimize vigilance performance by controlling the stimuli which subjects are asked to process.

  15. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  16. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  17. Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display

    NASA Astrophysics Data System (ADS)

    Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.

    1999-07-01

    In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.

  18. Single link flexible beam testbed project. Thesis

    NASA Technical Reports Server (NTRS)

    Hughes, Declan

    1992-01-01

    This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.

  19. An Integrated Loop Model of Corrective Feedback and Oral English Learning: A Case of International Students in the United States

    ERIC Educational Resources Information Center

    Lee, Eun Jeong

    2017-01-01

    The author in this study introduces an integrated corrective feedback (CF) loop to schematize the interplay between CF and independent practice in L2 oral English learning among advanced-level adult ESL students. The CF loop integrates insights from the Interaction, Output, and Noticing Hypotheses to show how CF can help or harm L2 learners'…

  20. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  1. A social feedback loop for speech development and its reduction in autism

    PubMed Central

    Warlaumont, Anne S.; Richards, Jeffrey A.; Gilkerson, Jill; Oller, D. Kimbrough

    2014-01-01

    We analyze the microstructure of child-adult interaction during naturalistic, daylong, automatically labeled audio recordings (13,836 hours total) of children (8- to 48-month-olds) with and without autism. We find that adult responses are more likely when child vocalizations are speech-related. In turn, a child vocalization is more likely to be speech-related if the previous speech-related child vocalization received an immediate adult response. Taken together, these results are consistent with the idea that there is a social feedback loop between child and caregiver that promotes speech-language development. Although this feedback loop applies in both typical development and autism, children with autism produce proportionally fewer speech-related vocalizations and the responses they receive are less contingent on whether their vocalizations are speech-related. We argue that such differences will diminish the strength of the social feedback loop with cascading effects on speech development over time. Differences related to socioeconomic status are also reported. PMID:24840717

  2. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  3. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  4. Homeostatic theory of obesity

    PubMed Central

    2015-01-01

    Health is regulated by homeostasis, a property of all living things. Homeostasis maintains equilibrium at set-points using feedback loops for optimum functioning of the organism. Imbalances in homeostasis causing overweight and obesity are evident in more than 1 billion people. In a new theory, homeostatic obesity imbalance is attributed to a hypothesized ‘Circle of Discontent’, a system of feedback loops linking weight gain, body dissatisfaction, negative affect and over-consumption. The Circle of Discontent theory is consistent with an extensive evidence base. A four-armed strategy to halt the obesity epidemic consists of (1) putting a stop to victim-blaming, stigma and discrimination; (2) devalorizing the thin-ideal; (3) reducing consumption of energy-dense, low-nutrient foods and drinks; and (4) improving access to plant-based diets. If fully implemented, interventions designed to restore homeostasis have the potential to halt the obesity epidemic. PMID:28070357

  5. Robot-Arm Dynamic Control by Computer

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  6. Integrated packaging of 2D MOEMS mirrors with optical position feedback

    NASA Astrophysics Data System (ADS)

    Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.

    2015-02-01

    Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.

  7. SRC-2 is an essential coactivator for orchastrating metabolism and circadian rhythm

    USDA-ARS?s Scientific Manuscript database

    Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:C...

  8. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback

    PubMed Central

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. PMID:29342146

  9. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    PubMed

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.

  10. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  11. Real-time control of walking using recordings from dorsal root ganglia.

    PubMed

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-10-01

    The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  12. A Role of Base Plate Jerk Feedback Scheme for Suppression of the Self Vibration in a Pneumatic Positioning Stage

    NASA Astrophysics Data System (ADS)

    Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji

    In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.

  13. Quantitative implementation of the endogenous molecular-cellular network hypothesis in hepatocellular carcinoma.

    PubMed

    Wang, Gaowei; Zhu, Xiaomei; Gu, Jianren; Ao, Ping

    2014-06-06

    A quantitative hypothesis for cancer genesis and progression-the endogenous molecular-cellular network hypothesis, intended to include both genetic and epigenetic causes of cancer-has been proposed recently. Using this hypothesis, here we address the molecular basis for maintaining normal liver and hepatocellular carcinoma (HCC), and the potential strategy to cure or relieve HCC. First, we elaborate the basic assumptions of the hypothesis and establish a core working network of HCC according to the hypothesis. Second, we quantify the working network by a nonlinear dynamical system. We show that the working network reproduces the main known features of normal liver and HCC at both the modular and molecular levels. Lastly, the validated working network reveals that (i) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (ii) inhibiting proliferation and inflammation-related positive feedback loops and simultaneously inducing a liver-specific positive feedback loop is predicated as a potential strategy to cure or relieve HCC; and (iii) the genesis and regression of HCC are asymmetric. In light of the characteristic properties of the nonlinear dynamical system, we demonstrate that positive feedback loops must exist as a simple and general molecular basis for the maintenance of heritable phenotypes, such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  14. Passivity-based control of linear time-invariant systems modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Galindo, R.; Ngwompo, R. F.

    2018-02-01

    Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.

  15. Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance.

    PubMed

    Sastrawan, J; Jones, C; Akhalwaya, I; Uys, H; Biercuk, M J

    2016-08-01

    We introduce concepts from optimal estimation to the stabilization of precision frequency standards limited by noisy local oscillators. We develop a theoretical framework casting various measures for frequency standard variance in terms of frequency-domain transfer functions, capturing the effects of feedback stabilization via a time series of Ramsey measurements. Using this framework, we introduce an optimized hybrid predictive feedforward measurement protocol that employs results from multiple past measurements and transfer-function-based calculations of measurement covariance to improve the accuracy of corrections within the feedback loop. In the presence of common non-Markovian noise processes these measurements will be correlated in a calculable manner, providing a means to capture the stochastic evolution of the local oscillator frequency during the measurement cycle. We present analytic calculations and numerical simulations of oscillator performance under competing feedback schemes and demonstrate benefits in both correction accuracy and long-term oscillator stability using hybrid feedforward. Simulations verify that in the presence of uncompensated dead time and noise with significant spectral weight near the inverse cycle time predictive feedforward outperforms traditional feedback, providing a path towards developing a class of stabilization software routines for frequency standards limited by noisy local oscillators.

  16. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.

    PubMed

    Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph

    2017-11-01

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions

    PubMed Central

    Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie

    2013-01-01

    Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880

  18. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    NASA Astrophysics Data System (ADS)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  19. PID Tuning Using Extremum Seeking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killingsworth, N; Krstic, M

    2005-11-15

    Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.« less

  20. New Transverse Bunch-by-Bunch Feedback System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K. H.; Kuo, C. H.; Hsu, S. Y.

    2007-01-19

    An FPGA based transverse bunch-by-bunch feedback system was implemented and commissioned to replace the existing analog transverse feedback system in order to suppress more effectively multi-bunch instabilities caused by the resistive wall of the vacuum chamber, cavity-like structures and ions related instability. This system replaces existing analog transverse feedback system to enlarge the tunability of the working point. Lower chromaticity is possible with feedback system that is very helpful for injection efficiency improvement. Top-up and high current operation is benefit for this upgrade. One feedback loop suppresses horizontal and vertical multi-bunch instabilities simultaneously. The clean and simple structure makes themore » system simple and reliable. This study also presents the preliminary result of commissioning the new transverse feedback system.« less

  1. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  2. Flight-test experience in digital control of a remotely piloted vehicle.

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    The development of a remotely piloted vehicle system consisting of a remote pilot cockpit and a ground-based digital computer coupled to the aircraft through telemetry data links is described. The feedback control laws are implemented in a FORTRAN program. Flight-test experience involving high feedback gain limits for attitude and attitude rate feedback variables, filtering of sampled data, and system operation during intermittent telemetry data link loss is discussed. Comparisons of closed-loop flight tests with analytical calculations, and pilot comments on system operation are included.

  3. Dynamic coal mine model. [Generic feedback-loop model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, M.S.

    1978-01-01

    This study examines the determinants of the productive life cycle of a single hypothetical coal mine. The article addresses the questions of how long the mine will operate, what its annual production will be, and what percentage of the resource base will be recovered. As greatly expanded production requires capital investment, the investment decision is singled out as the principal determinant of the mine's dynamic behavior. A simple dynamic feedback loop model was constructed, the performance of which is compared with actual data to see how well the model can reproduce known behavior. Exogenous variables, such as the price ofmore » coal, the wage rate, operating costs, and the tax structure, are then changed to see how these changes affect the mine's performance.« less

  4. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control

    NASA Technical Reports Server (NTRS)

    Grantham, Walter J.; Lee, Byoung-Soo

    1987-01-01

    A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.

  5. Temperature feedback control for long-term carrier-envelope phase locking.

    PubMed

    Yun, Chenxia; Chen, Shouyuan; Wang, He; Chini, Michael; Chang, Zenghu

    2009-09-20

    We report a double feedback loop for the improvement of the carrier-envelope phase stabilization of a chirped mirror based femtosecond laser oscillator. By combining the control of the Ti:sapphire crystal temperature and the modulation of the pump power, the carrier envelope offset frequency, fCEO, was locked for close to 20 h, which is much longer than the typical phase stabilization time with only pump power modulation.

  6. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  7. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    PubMed

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  8. General, database-driven fast-feedback system for the Stanford Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouse, F.; Allison, S.; Castillo, S.

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less

  9. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    PubMed

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  10. Symposium Proceedings on Quantitative Feedback Theory Held in Fairborn, Ohio on 2-4 August 1992.

    DTIC Science & Technology

    1992-08-01

    modification. This permits a drastic reduction in the cost of feedback, in terms of loop bandwidth and effect of sensor noise . This is the first...High- frequency Bound ( UHB ) but its main use is to ensure that at high frequencies the controlled system cannot go unstable and has sufficient noise ...a 5-cascaded multiple-loop feedback system giving significant reductions in sensor noise amplification (peak reduced by a factor of 4), is

  11. A Model of Instructional Supervision That Meets Today's Needs.

    ERIC Educational Resources Information Center

    Beck, John J.; Seifert, Edward H.

    1983-01-01

    The proposed Instructional Technologist Model is based on a closed loop feedback system allowing for continuous monitoring of teachers by expert instructional technologists. Principals are thereby released for instructional evaluation and general educational management. (MJL)

  12. Turbulent boundary layer under the control of different schemes

    NASA Astrophysics Data System (ADS)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  13. Turbulent boundary layer under the control of different schemes.

    PubMed

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  14. Turbulent boundary layer under the control of different schemes

    PubMed Central

    Zhou, Y.; Wu, Z.

    2017-01-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed. PMID:28690409

  15. A Learning Progression for Feedback Loop Reasoning at Lower Elementary Level

    ERIC Educational Resources Information Center

    Hokayem, Hayat; Ma, Jingjing; Jin, Hui

    2015-01-01

    This study examines to what extent elementary students use feedback loop reasoning, a key component of systems thinking, to reason about interactions among organisms in ecosystems. We conducted clinical interviews with 44 elementary students (1st through 4th grades). We asked students to explain how populations change in two contexts: a…

  16. A social feedback loop for speech development and its reduction in autism.

    PubMed

    Warlaumont, Anne S; Richards, Jeffrey A; Gilkerson, Jill; Oller, D Kimbrough

    2014-07-01

    We analyzed the microstructure of child-adult interaction during naturalistic, daylong, automatically labeled audio recordings (13,836 hr total) of children (8- to 48-month-olds) with and without autism. We found that an adult was more likely to respond when the child's vocalization was speech related rather than not speech related. In turn, a child's vocalization was more likely to be speech related if the child's previous speech-related vocalization had received an immediate adult response rather than no response. Taken together, these results are consistent with the idea that there is a social feedback loop between child and caregiver that promotes speech development. Although this feedback loop applies in both typical development and autism, children with autism produced proportionally fewer speech-related vocalizations, and the responses they received were less contingent on whether their vocalizations were speech related. We argue that such differences will diminish the strength of the social feedback loop and have cascading effects on speech development over time. Differences related to socioeconomic status are also reported. © The Author(s) 2014.

  17. Analysis and application of a velocity command motor as a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1990-01-01

    A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.

  18. Gain drift compensation with no-feedback-loop developed for the X-IFU/ATHENA readout chain

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Goldwurm, A.

    2016-07-01

    The focal plane of the X-ray Integral Field Unit (X-IFU) instrument of the Athena observatory is composed of about 4000 micro-calorimeters. These sensors, based on superconducting Transition Edge Sensors, are read out through a frequency multiplexer and a base-band feedback to linearize SQUIDs. However, the loop gain of this feedback is lower than 10 in the modulated TES signal bandwidth, which is not enough to fix the gain of the full readout chain. Calibration of the instrument is planned to be done at a time scale larger than a dozen minutes and the challenging energy resolution goal of 2.5 eV at 6 keV will probably require a gain stability larger than 10-4 over a long duration. A large part of this gain is provided by a Low-Noise Amplifier (LNA) in the Warm Front-End Electronics (WFEE). To reach such gain stability over more than a dozen minutes, this non-cooled amplifier has to cope with the temperature and supply voltage variations. Moreover, mainly for noise reasons, common large loop gain with feedback can not be used. We propose a new amplifier topology using diodes as loads of a differential amplifier to provide a fixed voltage gain, independent of the temperature and of the bias fluctuations. This amplifier is designed using a 350 nm SiGe BiCMOS technology and is part of an integrated circuit developed for the WFEE. Our simulations provide the expected gain drift and noise performances of such structure. Comparison with standard resistive loaded differential pair clearly shows the advantages of the proposed amplifier topology with a gain drift decreasing by more than an order of magnitude. Performances of this diode loaded amplifier are discussed in the context of the X-IFU requirements.

  19. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  20. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops

    PubMed Central

    Mullins, Caitlin; Fishell, Gord

    2017-01-01

    Understanding the mechanisms underlying autism spectrum disorders (ASD) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops, and provide detailed commentary for exemplar genes within each module. PMID:26985722

  1. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  2. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  3. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.

    2017-05-01

    A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  4. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    PubMed Central

    Goumiri, I. R.; Sabbagh, S. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.

    2017-01-01

    A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained. PMID:28435207

  5. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    DOE PAGES

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; ...

    2017-02-23

    In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  6. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  7. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders

    NASA Astrophysics Data System (ADS)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2016-11-01

    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  8. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  9. Real-time control of walking using recordings from dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  10. Real-time control of walking using recordings from dorsal root ganglia

    PubMed Central

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-01-01

    Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579

  11. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  12. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration

    PubMed Central

    Diz-Muñoz, Alba; Thurley, Kevin; Chintamen, Sana; Altschuler, Steven J.; Fletcher, Daniel A.; Weiner, Orion D.

    2016-01-01

    For efficient polarity and migration, cells need to regulate the magnitude and spatial distribution of actin assembly. This process is coordinated by reciprocal interactions between the actin cytoskeleton and mechanical forces. Actin polymerization-based protrusion increases tension in the plasma membrane, which in turn acts as a long-range inhibitor of actin assembly. These interactions form a negative feedback circuit that limits the magnitude of membrane tension in neutrophils and prevents expansion of the existing front and the formation of secondary fronts. It has been suggested that the plasma membrane directly inhibits actin assembly by serving as a physical barrier that opposes protrusion. Here we show that efficient control of actin polymerization-based protrusion requires an additional mechanosensory feedback cascade that indirectly links membrane tension with actin assembly. Specifically, elevated membrane tension acts through phospholipase D2 (PLD2) and the mammalian target of rapamycin complex 2 (mTORC2) to limit actin nucleation. In the absence of this pathway, neutrophils exhibit larger leading edges, higher membrane tension, and profoundly defective chemotaxis. Mathematical modeling suggests roles for both the direct (mechanical) and indirect (biochemical via PLD2 and mTORC2) feedback loops in organizing cell polarity and motility—the indirect loop is better suited to enable competition between fronts, whereas the direct loop helps spatially organize actin nucleation for efficient leading edge formation and cell movement. This circuit is essential for polarity, motility, and the control of membrane tension. PMID:27280401

  13. Optical feedback technique extends frequency response of photoconductors

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1975-01-01

    Feedback circuit consists of high-gain light-to-voltage converter with frequency-limited nonlinear photoconductor inside feedback loop. Feedback element is visible light-emitting diode with light-out versus current-in characteristic that is linear over several decades.

  14. Integration of Haptics in Agricultural Robotics

    NASA Astrophysics Data System (ADS)

    Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.

    2017-08-01

    Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.

  15. Performance of a modified feedback loop adaptive array with TVRO satellite signals

    NASA Technical Reports Server (NTRS)

    Steadman, Karl N.; Gupta, Inder J.; Walton, Eric K.

    1990-01-01

    Performance of an experimental adaptive antenna array system is evaluated using television receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceller with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops used two spatialy separated antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.

  16. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  17. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-02-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.

  18. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.

    PubMed

    Siegle, Joshua H; López, Aarón Cuevas; Patel, Yogi A; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard 'open-loop' visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  19. Feedback-controlled laser fabrication of micromirror substrates.

    PubMed

    Petrak, Benjamin; Konthasinghe, Kumarasiri; Perez, Sonia; Muller, Andreas

    2011-12-01

    Short (40-200 μs) single focused CO(2) laser pulses of energy ≳100 μJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of ≈20-100 μm and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (≈20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5% in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.

  20. Optical microresonator for application to an opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Mei; Vivien, Laurent; Cassan, Eric; Luong, Vu Hai Nam; Nguyen, Lam Duy; Journet, Bernard

    2010-02-01

    Optoelectronic oscillators are classically based on a feedback fiber loop acting as a delay line for high spectral purity. One of the problems due to long fiber loops is the size and the requirement of temperature control. Going toward integrated solutions requires the introduction of optical resonators with a very high quality factor. A structure based on silicon on insulator material has been designed for application to an oscillator working at 8 GHz. The micro-resonator has a stadium shape with a ridge of 30 nm height, 1 μm width, a millimetric radius and a gap of some microns in agreement with the required free spectral range. A quality factor of 500000 can be achieved leading to an equivalent fiber loop of 2 km.

  1. A new RISE-based adaptive control of PKMs: design, stability analysis and experiments

    NASA Astrophysics Data System (ADS)

    Bennehar, M.; Chemori, A.; Bouri, M.; Jenni, L. F.; Pierrot, F.

    2018-03-01

    This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.

  2. Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Nalbantoglu, Volkan; Balas, Gary

    1997-01-01

    Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.

  3. Competition and quality in health care markets: a differential-game approach.

    PubMed

    Brekke, Kurt R; Cellini, Roberto; Siciliani, Luigi; Straume, Odd Rune

    2010-07-01

    We investigate the effect of competition on quality in health care markets with regulated prices taking a differential game approach, in which quality is a stock variable. Using a Hotelling framework, we derive the open-loop solution (health care providers set the optimal investment plan at the initial period) and the feedback closed-loop solution (providers move investments in response to the dynamics of the states). Under the closed-loop solution competition is more intense in the sense that providers observe quality in each period and base their investment on this information. If the marginal provision cost is constant, the open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained by static models. If the marginal provision cost is increasing, investment and quality are lower in the closed-loop solution (when competition is more intense). In this case, static models tend to exaggerate the positive effect of competition on quality.

  4. Role of Cell-to-Cell Variability in Activating a Positive Feedback Antiviral Response in Human Dendritic Cells

    PubMed Central

    Hu, Jianzhong; Nudelman, German; Shimoni, Yishai; Kumar, Madhu; Ding, Yaomei; López, Carolina; Hayot, Fernand; Wetmur, James G.; Sealfon, Stuart C.

    2011-01-01

    In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop. PMID:21347441

  5. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  6. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo

    NASA Astrophysics Data System (ADS)

    Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.

    2018-04-01

    Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.

  7. Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations

    DTIC Science & Technology

    2012-06-01

    the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into

  8. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling

    NASA Astrophysics Data System (ADS)

    Kapania, Nitin R.; Gerdes, J. Christian

    2015-12-01

    This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.

  9. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    PubMed

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  10. Influence of the feedback loops in the trp operon of B. subtilis on the system dynamic response and noise amplitude.

    PubMed

    Zamora-Chimal, Criseida; Santillán, Moisés; Rodríguez-González, Jesús

    2012-10-07

    In this paper we introduce a mathematical model for the tryptophan operon regulatory pathway in Bacillus subtilis. This model considers the transcription-attenuation, and the enzyme-inhibition regulatory mechanisms. Special attention is paid to the estimation of all the model parameters from reported experimental data. With the aid of this model we investigate, from a mathematical-modeling point of view, whether the existing multiplicity of regulatory feedback loops is advantageous in some sense, regarding the dynamic response and the biochemical noise in the system. The tryptophan operon dynamic behavior is studied by means of deterministic numeric simulations, while the biochemical noise is analyzed with the aid of stochastic simulations. The model feasibility is tested comparing its stochastic and deterministic results with experimental reports. Our results for the wildtype and for a couple of mutant bacterial strains suggest that the enzyme-inhibition feedback loop, dynamically accelerates the operon response, and plays a major role in the reduction of biochemical noise. Also, the transcription-attenuation feedback loop makes the trp operon sensitive to changes in the endogenous tryptophan level, and increases the amplitude of the biochemical noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The p53–Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity

    PubMed Central

    Pant, Vinod; Xiong, Shunbin; Jackson, James G.; Post, Sean M.; Abbas, Hussein A.; Quintás-Cardama, Alfonso; Hamir, Amirali N.; Lozano, Guillermina

    2013-01-01

    The p53–Mdm2 feedback loop is perceived to be critical for regulating stress-induced p53 activity and levels. However, this has never been tested in vivo. Using a genetically engineered mouse with mutated p53 response elements in the Mdm2 P2 promoter, we show that feedback loop-deficient Mdm2P2/P2 mice are viable and aphenotypic and age normally. p53 degradation kinetics after DNA damage in radiosensitive tissues remains similar to wild-type controls. Nonetheless, DNA damage response is elevated in Mdm2P2/P2 mice. Enhanced p53-dependent apoptosis sensitizes hematopoietic stem cells (HSCs), causing drastic myeloablation and lethality. These results suggest that while basal Mdm2 levels are sufficient to regulate p53 in most tissues under homeostatic conditions, the p53–Mdm2 feedback loop is critical for regulating p53 activity and sustaining HSC function after DNA damage. Therefore, transient disruption of p53–Mdm2 interaction could be explored as a potential adjuvant/therapeutic strategy for targeting stem cells in hematological malignancies. PMID:23973961

  12. Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides.

    PubMed

    Jetha, Arif; Kernan, Laura; Kurowski, Alicia

    2017-01-05

    Workplace stress is a complex phenomenon that may often be dynamic and evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Eight key informants with prior experience in a large study of US nursing home workers participated in model building. Participants brainstormed the range of components related to workplace stress. Components were grouped together based on common themes and translated into feedback loops. The SDM was parameterized through key informant insight on the shape and magnitude of the relationship between model components. Model construction was also supported utilizing survey data collected as part of the larger study. All data was entered into the software program, Vensim. Simulations were conducted to examine how adaptations to model components would influence workplace stress. The SDM included perceptions of organizational conditions (e.g., job demands and job control), workplace social support (i.e., managerial and coworker social support), workplace safety, and demands outside of work (i.e. work-family conflict). Each component was part of a reinforcing feedback loop. Simulations exhibited that scenarios with increasing job control and decreasing job demands led to a decline in workplace stress. Within the context of the system, the effects of workplace social support, workplace safety, and work-family conflict were relatively minor. SDM methodology offers a unique perspective for researchers and practitioners to view workplace stress as a dynamic process. The portrayal of multiple recursive feedback loops can guide the development of policies and programs within complex organizational contexts with attention both to interactions among causes and avoidance of adverse unintended consequences. While additional research is needed to further test the modeling approach, findings might underscore the need to direct workplace interventions towards changing organizational conditions for nursing aides.

  13. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  14. Performance of a modified feedback loop adaptive array with TVRO satellite signals

    NASA Technical Reports Server (NTRS)

    Steadman, K.; Gupta, I. J.; Walton, E. K.

    1990-01-01

    The performance of an experimental adaptive antenna array system is evaluated using television-receive-only (TVRO) satellite signals. The experimental system is a sidelobe canceler with two auxiliary channels. Modified feedback loops are used to enhance the suppression of weak interfering signals. The modified feedback loops use two spatially separate antennas, each with an individual amplifier for each auxiliary channel. Thus, the experimental system uses five antenna elements. Instead of using five separate antennas, a reflector antenna with multiple feeds is used to receive signals from various TVRO satellites. The details of the earth station are given. It is shown that the experimental system can null up to two signals originating from interfering TVRO satellites while receiving the signals from a desired TVRO satellite.

  15. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  16. Performance constraints and compensation for teleoperation with delay

    NASA Technical Reports Server (NTRS)

    Mclaughlin, J. S.; Staunton, B. D.

    1989-01-01

    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.

  17. System Dynamics

    NASA Astrophysics Data System (ADS)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  18. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  19. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  20. PREDICT: Privacy and Security Enhancing Dynamic Information Monitoring

    DTIC Science & Technology

    2015-08-03

    consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided local...12], consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided...these methods achieve high sensing coverage with low cost using cloaked locations [3]. In follow-on work, the issue of mobility is addressed. Task

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  2. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  3. Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances

    NASA Technical Reports Server (NTRS)

    Horowitz, I. M.; Sidi, M.

    1971-01-01

    There is given a minimum-phase plant transfer function, with prescribed bounds on its parameter values. The plant is imbedded in a two-degree-of freedom feedback system, which is to be designed such that the system time response to a deterministic input lies within specified boundaries. Subject to the above, the design should be such as to minimize the effect of sensor noise at the input to the plant. This report presents a design procedure for this purpose, based on frequency response concepts. The time-domain tolerances are translated into equivalent frequency response tolerances. The latter lead to bounds on the loop transmission function in the form of continuous curves on the Nichols chart. The properties of the loop transmission function which satisfy these bounds with minimum effect of sensor noise, are derived.

  4. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  5. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  6. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  7. A fast, robust and tunable synthetic gene oscillator.

    PubMed

    Stricker, Jesse; Cookson, Scott; Bennett, Matthew R; Mather, William H; Tsimring, Lev S; Hasty, Jeff

    2008-11-27

    One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust and persistent, with tunable oscillatory periods as fast as 13 min. The oscillator was designed using a previously modelled network architecture comprising linked positive and negative feedback loops. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature and the media source. Computational modelling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.

    In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  9. Modeling of testosterone regulation by pulse-modulated feedback: An experimental data study

    NASA Astrophysics Data System (ADS)

    Mattsson, Per; Medvedev, Alexander

    2013-10-01

    The continuous part of a hybrid (pulse-modulated) model of testosterone feedback regulation is extended with infinite-dimensional and nonlinear dynamics, to better explain the testosterone concentration profiles observed in clinical data. A linear least-squares based optimization algorithm is developed for the purpose of detecting impulses of gonadotropin-realsing hormone from measured concentration of luteinizing hormone. The parameters in the model are estimated from hormone concentration measured in human males, and simulation results from the full closed-loop system are provided.

  10. Atomic clocks based on extened-cavity diode laser in multimode operation

    NASA Astrophysics Data System (ADS)

    Yim, Sin; Cho, D.

    2011-05-01

    We demonstrated the possibilities to develope an atomic clock based on coherent population trapping (CPT) without using a local oscillator and a modulator. Instead of using a modulator, we use two modes from a single extended-cavity diode laser in multimode operation. Two different types of feedback system are applied to stabilize a difference frequency between the two modes and eliminate the need for an extra frequency modulation. In the first type, we employ an electronic feedback using dispersion of the CPT resonance as an error signal. The two modes are phase locked with reference to a dispersion signal from a CPT resonance of 85Rb at 3.036 GHz ground hyperfine splitting. We use D1 transition at 794.8 nm with lin ⊥lin polarizations to obtain large-contrast CPT signal. Allan deviation of the beat frequency between the two modes is 1 ×10-10 at 200-s integration time. In the second type, we employ optoelectronic feedback to construct an opto-electronic oscillator (OEO). In an OEO, the beating signal between two modes is recovered by a fast photodiode, and its output is amplified and fed back to the laser diode by using a direct modulation of an injection current. When the OEO loop is closed, oscillation frequency depends on variations of the loop length. In order to stabilize an OEO loop length and thereby its oscillation frequency, CPT cell is inserted to play a role of microwave band pass filter. Allan deviation of the CPT-stabilized OEO is 2 ×10-10 at 100-s integration time.

  11. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  12. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2017-12-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  13. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  14. The 'sensory tolerance limit': A hypothetical construct determining exercise performance?

    PubMed

    Hureau, Thomas J; Romer, Lee M; Amann, Markus

    2018-02-01

    Neuromuscular fatigue compromises exercise performance and is determined by central and peripheral mechanisms. Interactions between the two components of fatigue can occur via neural pathways, including feedback and feedforward processes. This brief review discusses the influence of feedback and feedforward mechanisms on exercise limitation. In terms of feedback mechanisms, particular attention is given to group III/IV sensory neurons which link limb muscle with the central nervous system. Central corollary discharge, a copy of the neural drive from the brain to the working muscles, provides a signal from the motor system to sensory systems and is considered a feedforward mechanism that might influence fatigue and consequently exercise performance. We highlight findings from studies supporting the existence of a 'critical threshold of peripheral fatigue', a previously proposed hypothesis based on the idea that a negative feedback loop operates to protect the exercising limb muscle from severe threats to homeostasis during whole-body exercise. While the threshold theory remains to be disproven within a given task, it is not generalisable across different exercise modalities. The 'sensory tolerance limit', a more theoretical concept, may address this issue and explain exercise tolerance in more global terms and across exercise modalities. The 'sensory tolerance limit' can be viewed as a negative feedback loop which accounts for the sum of all feedback (locomotor muscles, respiratory muscles, organs, and muscles not directly involved in exercise) and feedforward signals processed within the central nervous system with the purpose of regulating the intensity of exercise to ensure that voluntary activity remains tolerable.

  15. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  16. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    NASA Astrophysics Data System (ADS)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  17. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    PubMed

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  18. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  19. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  20. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    PubMed

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  1. System and method of designing models in a feedback loop

    DOEpatents

    Gosink, Luke C.; Pulsipher, Trenton C.; Sego, Landon H.

    2017-02-14

    A method and system for designing models is disclosed. The method includes selecting a plurality of models for modeling a common event of interest. The method further includes aggregating the results of the models and analyzing each model compared to the aggregate result to obtain comparative information. The method also includes providing the information back to the plurality of models to design more accurate models through a feedback loop.

  2. Modeling Aggressive Medulloblastoma Using Human Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2017-09-01

    and Myc in turn induces expression of AT1R creating a positive feedback loop and development of aggression tumor phenotype. The therapeutic...strengths are the relevant expertise of the applicant and his collaborating team, the novel paracrine positive feedback loop in EC-tumor cell...to as MYC-driven MB. The molecular mechanisms that drive MYC hyper -activation in MB remain incompletely understood. MB cells in actual tumors interact

  3. Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer.

    PubMed

    Zhao, Jing; Ye, Wei; Wu, Juan; Liu, Lijuan; Yang, Lina; Gao, Lu; Chen, Biliang; Zhang, Fanglin; Yang, Hong; Li, Yu

    2015-07-01

    CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.

  4. Uncovering the spatially distant feedback loops of global trade: A network and input-output approach.

    PubMed

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; He, Jiaying; Hubacek, Klaus

    2017-05-15

    Land-use change is increasingly driven by global trade. The term "telecoupling" has been gaining ground as a means to describe how human actions in one part of the world can have spatially distant impacts on land and land-use in another. These interactions can, over time, create both direct and spatially distant feedback loops, in which human activity and land use mutually impact one another over great expanses. In this paper, we develop an analytical framework to clarify spatially distant feedbacks in the case of land use and global trade. We use an innovative mix of multi-regional input-output (MRIO) analysis and stochastic actor-oriented models (SAOMs) for analyzing the co-evolution of changes in trade network patterns with those of land use, as embodied in trade. Our results indicate that the formation of trade ties and changes in embodied land use mutually impact one another, and further, that these changes are linked to disparities in countries' wealth. Through identifying this feedback loop, our results support ongoing discussions about the unequal trade patterns between rich and poor countries that result in uneven distributions of negative environmental impacts. Finally, evidence for this feedback loop is present even when controlling for a number of underlying mechanisms, such as countries' land endowments, their geographical distance from one another, and a number of endogenous network tendencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Autopilot for frequency-modulation atomic force microscopy.

    PubMed

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  6. Autopilot for frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  7. Drag reduction of a car model by linear genetic programming control

    NASA Astrophysics Data System (ADS)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  8. Gain drift compensation with no feedback-loop developed for the X-Ray Integral Field Unit/ATHENA readout chain

    NASA Astrophysics Data System (ADS)

    Prêle, Damien; Voisin, Fabrice; Beillimaz, Cyril; Chen, Si; Goldwurm, Andrea

    2016-10-01

    The focal plane of the X-Ray Integral Field Unit (X-IFU) instrument of the Advanced Telescope for High-Energy Astrophysics observatory is composed of 3840 microcalorimeters. These sensors, based on superconducting transition edge sensors (TES), are read out through a frequency multiplexer. A "base-band feedback" suppresses all the carriers of the multiplexed signal in the superconducting quantum interference devices input coil (cryogenic readout). However, the loop gain of this feedback is too small (less than 10 in the present baseline of the phase A mission) to strongly compensate the readout gain drifts. An onboard x-ray source is considered to calibrate the gain of the full instrument. However, in-flight calibration time must be minimized, which leads to a requirement on the gain stability larger than 10-4 over a long duration (between each calibration) to reach the challenging energy resolution goal of 2.5 eV at 6 keV of the X-IFU. A significant part of this gain is provided by a low-noise amplifier in the warm front-end electronics (WFEE). To reach such gain stability over more than a dozen minutes, this noncooled amplifier has to cope with the temperature and supply voltage variations. Moreover, mainly for noise reasons, a common large loop gain with feedback cannot be used. We propose a new amplifier topology using diodes as loads of a differential amplifier to provide a fixed voltage gain, independent of the temperature and of the bias fluctuations. This amplifier is designed using 350-nm SiGe BiCMOS technology and is part of an integrated circuit developed for the WFEE. Our simulations provide the expected gain and noise performances. Comparison with standard resistive loaded differential pair clearly shows the advantages of the proposed amplifier topology with a gain drift decreased by more than an order of magnitude. Performances of this diode loaded amplifier are discussed in the context of the X-IFU requirements.

  9. Method for spinning up a three-axis controlled spacecraft

    NASA Technical Reports Server (NTRS)

    Vorlicek, Preston L. (Inventor)

    1988-01-01

    A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).

  10. Control of a flexible link by shaping the closed loop frequency response function through optimised feedback filters

    NASA Astrophysics Data System (ADS)

    Del Vescovo, D.; D'Ambrogio, W.

    1995-01-01

    A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.

  11. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).

  12. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation,more » solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. Lastly, we describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.« less

  14. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  15. Loop Analysis of Causal Feedback in Epidemiology: An Illustration Relating To Urban Neighborhoods and Resident Depressive Experiences

    PubMed Central

    2008-01-01

    The causal feedback implied by urban neighborhood conditions that shape human health experiences, that in turn shape neighborhood conditions through a complex causal web, raises a challenge for traditional epidemiological causal analyses. This article introduces the loop analysis method, and builds off of a core loop model linking neighborhood property vacancy rate, resident depressive symptoms, rate of neighborhood death, and rate of neighborhood exit in a feedback network. I justify and apply loop analysis to the specific example of depressive symptoms and abandoned urban residential property to show how inquiries into the behavior of causal systems can answer different kinds of hypotheses, and thereby compliment those of causal modeling using statistical models. Neighborhood physical conditions that are only indirectly influenced by depressive symptoms may nevertheless manifest in the mental health experiences of their residents; conversely, neighborhood physical conditions may be a significant mental health risk for the population of neighborhood residents. I find that participatory greenspace programs are likely to produce adaptive responses in depressive symptoms and different neighborhood conditions, which are different in character to non-participatory greenspace interventions. PMID:17706851

  16. Digital control of a direct current converter for a hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Hernandez, Juan Manuel

    The nonlinear feedback loops permitting the large signal control of pulse width modulators in direct current converters are discussed. A digital feedback loop on a converter controlling the coupling of a direct current machine is described. It is used in the propulsion of a hybrid vehicle (thermal-electric) with regenerative braking. The protection of the power switches is also studied. An active protection of the MOST bipolar transistor association is proposed.

  17. Power supply with air core transformer and seperated power supplies for high dynamic range

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor)

    2001-01-01

    A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.

  18. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  19. On regulators with a prescribed degree of stability. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ng, P. T. P.

    1981-01-01

    Several important aspects of the Regulator with a Prescribed Degree of Stability (RPDS) methodology and its applications are considered. The solution of the time varying RPDS problem as well as the characterization of RPDS closed loop eigenstructure properties are obtained. Based on the asymptotic behavior of RPDS root loci, a one step algorithm for designing Regulators with Prescribed Damping Ratio (RPDR) is developed. The robustness properties of RPDS are characterized in terms of the properties of the return difference and the inverse return difference matrices for the RPDS state feedback loop. This class of regulators is found to possess excellent multiloop margins with respect to stability and degree of stability properties. The ability of RPDS design to tolerate changing operating conditions and unmodelled dynamics are illustrated with a multiterminal dc/ac power system example. The output feedback realization of RPDS requires the use of Linear Quadratic Gaussian (LQG) methodology.

  20. Methods and apparatus for broadband frequency comb stabilization

    DOEpatents

    Cox, Jonathan A; Kaertner, Franz X

    2015-03-17

    Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.

  1. Experiments with arbitrary networks in time-multiplexed delay systems

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  2. FRET imaging and in silico simulation: analysis of the signaling network of nerve growth factor-induced neuritogenesis.

    PubMed

    Nakamura, Takeshi; Aoki, Kazuhiro; Matsuda, Michiyuki

    2008-08-01

    Genetically encoded probes based on Förster resonance energy transfer (FRET) enable us to decipher spatiotemporal information encoded in complex tissues such as the brain. Firstly, this review focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and are incorporated into a single molecule, i.e. unimolecular probes. Advantages of these probes lie in their easy loading into cells, the simple acquisition of FRET images, and the clear evaluation of data. Next, we introduce our recent study which encompasses FRET imaging and in silico simulation. In nerve growth factor-induced neurite outgrowth in PC12 cells, we found positive and negative signaling feedback loops. We propose that these feedback loops determine neurite-budding sites. We would like to emphasize that it is now time to accelerate crossover research in neuroscience, optics, and computational biology.

  3. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  4. Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems

    DTIC Science & Technology

    2015-12-01

    performing a surveillance mission. The demonstration platform consisted of RTA systems for the inner- loop control, outer- loop guidance, ownship flight...For the inner- loop , the concept of employing multiple transition controllers in the reversionary control system was studied. For all feedback levels...5 RTA Protection Applied to Inner- Loop Control Systems .................................................61 5.1 General Description of Morphing Wing

  5. Large deviation analysis of a simple information engine

    NASA Astrophysics Data System (ADS)

    Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.

    2015-11-01

    Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.

  6. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  7. Evaluating the strength of the land$-$atmosphere moisture feedback in Earth system models using satellite observations

    DOE PAGES

    Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; ...

    2016-12-09

    The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation,more » solar radiation, and vapor pressure deficit during 2002–2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. Lastly, we describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.« less

  8. Closed Loop Vibrational Control: Theory and Applications

    DTIC Science & Technology

    1993-10-01

    the open loop system dynamics will be close to that of Bit. However, in general, in a closed loop system with a specified feedback co-’ - oller , for...Juang, and G. Rodriguez , "Formulations and Applications of Large Structure Actuator and Sensor Placements," Second VPI & SU/AIAA Symposium on Dynamics

  9. OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes

    PubMed Central

    Medjkane, Souhila; Perichon, Martine; Yin, Qinyan; Flemington, Erik; Weitzman, Matthew D.; Weitzman, Jonathan B.

    2013-01-01

    The intracellular parasite Theileria is the only eukaryote known to transform its mammalian host cells. We investigated the host mechanisms involved in parasite-induced transformation phenotypes. Tumour progression is a multistep process, yet ‘oncogene addiction’ implies that cancer cell growth and survival can be impaired by inactivating a single gene, offering a rationale for targeted molecular therapies. Furthermore, feedback loops often act as key regulatory hubs in tumorigenesis. We searched for microRNAs involved in addiction to regulatory loops in leukocytes infected with Theileria parasites. We show that Theileria transformation involves induction of the host bovine oncomiR miR-155, via the c-Jun transcription factor and AP-1 activity. We identified a novel miR-155 target, DET1, an evolutionarily-conserved factor involved in c-Jun ubiquitination. We show that miR-155 expression led to repression of DET1 protein, causing stabilization of c-Jun and driving the promoter activity of the BIC transcript containing miR-155. This positive feedback loop is critical to maintain the growth and survival of Theileria-infected leukocytes; transformation is reversed by inhibiting AP-1 activity or miR-155 expression. This is the first demonstration that Theileria parasites induce the expression of host non-coding RNAs and highlights the importance of a novel feedback loop in maintaining the proliferative phenotypes induced upon parasite infection. Hence, parasite infection drives epigenetic rewiring of the regulatory circuitry of host leukocytes, placing miR-155 at the crossroads between infection, regulatory circuits and transformation. PMID:23637592

  10. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  11. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design. PMID:22748295

  12. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    PubMed

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  13. Simple Optoelectronic Feedback in Microwave Oscillators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

  14. Closed-loop fiber optic gyroscope with homodyne detection

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  15. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  16. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  18. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  19. A review of active control approaches in stabilizing combustion systems in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin

    2018-02-01

    Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.

  20. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  1. Autonomous Closed-Loop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Dan; Cappelaere, Pat

    2016-01-01

    This presentation describes the closed loop satellite autonomy methods used to connect users and the assets on Earth Orbiter- 1 (EO-1) and similar satellites. The base layer is a distributed architecture based on Goddard Mission Services Evolution Concept (GMSEC) thus each asset still under independent control. Situational awareness is provided by a middleware layer through common Application Programmer Interface (API) to GMSEC components developed at GSFC. Users setup their own tasking requests, receive views into immediate past acquisitions in their area of interest, and into future feasibilities for acquisition across all assets. Automated notifications via pubsub feeds are returned to users containing published links to image footprints, algorithm results, and full data sets. Theme-based algorithms are available on-demand for processing.

  2. Feedback Augmented Sub-Ranging (FASR) Quantizer

    NASA Technical Reports Server (NTRS)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

  3. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368

  4. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic)

    NASA Astrophysics Data System (ADS)

    Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna

    2018-04-01

    This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon, including increases of the biomass of Cyanobacteria and picophytoplankton. However, it can also constrain this increase.

  5. Enterprise Systems Analysis

    DTIC Science & Technology

    2016-03-14

    flows , or continuous state changes, with feedback loops and lags modeled in the flow system. Agent based simulations operate using a discrete event...DeLand, S. M., Rutherford, B . M., Diegert, K. V., & Alvin, K. F. (2002). Error and uncertainty in modeling and simulation . Reliability Engineering...intrinsic complexity of the underlying social systems fundamentally limits the ability to make

  6. Usage Intention Framework Model: A Fuzzy Logic Interpretation of the Classical Utaut Model

    ERIC Educational Resources Information Center

    Sandaire, Johnny

    2009-01-01

    A fuzzy conjoint analysis (FCA: Turksen, 1992) model for enhancing management decision in the technology adoption domain was implemented as an extension to the UTAUT model (Venkatesh, Morris, Davis, & Davis, 2003). Additionally, a UTAUT-based Usage Intention Framework Model (UIFM) introduced a closed-loop feedback system. The empirical evidence…

  7. Understanding Discourse on Work and Job-Related Well-Being in Public Social Media

    PubMed Central

    Liu, Tong; Homan, Christopher M.; Alm, Cecilia Ovesdotter; White, Ann Marie; Lytle, Megan C.; Kautz, Henry A.

    2016-01-01

    We construct a humans-in-the-loop supervised learning framework that integrates crowdsourcing feedback and local knowledge to detect job-related tweets from individual and business accounts. Using data-driven ethnography, we examine discourse about work by fusing language-based analysis with temporal, geospational, and labor statistics information. PMID:27795613

  8. Roderick MacKinnon and Ion Channels - Potassium Channels and Sodium

    Science.gov Websites

    very first potassium channel structure, which revealed the way that positively charged potassium ions explain how a fundamental feedback loop worked. Now, with the structure of the voltage-dependent ion channel, based on research carried out at The Rockefeller University, the National Synchrotron Light

  9. Assessment and Innovation: One Darn Thing Leads to Another

    ERIC Educational Resources Information Center

    Rutz, Carol; Lauer-Glebov, Jacqulyn

    2005-01-01

    Using recent experience at Carleton College in Minnesota as a case history, the authors offer a model for assessment that provides more flexibility than the well-known assessment feedback loop, which assumes a linear progression within a hierarchical administrative structure. The proposed model is based on a double helix, with values and feedback…

  10. Comparisons of Robustness and Sensitivity between Cancer and Normal Cells by Microarray Data

    PubMed Central

    Chu, Liang-Hui; Chen, Bor-Sen

    2008-01-01

    Robustness is defined as the ability to uphold performance in face of perturbations and uncertainties, and sensitivity is a measure of the system deviations generated by perturbations to the system. While cancer appears as a robust but fragile system, few computational and quantitative evidences demonstrate robustness tradeoffs in cancer. Microarrays have been widely applied to decipher gene expression signatures in human cancer research, and quantification of global gene expression profiles facilitates precise prediction and modeling of cancer in systems biology. We provide several efficient computational methods based on system and control theory to compare robustness and sensitivity between cancer and normal cells by microarray data. Measurement of robustness and sensitivity by linear stochastic model is introduced in this study, which shows oscillations in feedback loops of p53 and demonstrates robustness tradeoffs that cancer is a robust system with some extreme fragilities. In addition, we measure sensitivity of gene expression to perturbations in other gene expression and kinetic parameters, discuss nonlinear effects in feedback loops of p53 and extend our method to robustness-based cancer drug design. PMID:19259409

  11. Assessment of Closed-Loop Control Using Multi-Mode Sensor Fusion For a High Reynolds Number Transonic Jet

    NASA Astrophysics Data System (ADS)

    Low, Kerwin; Elhadidi, Basman; Glauser, Mark

    2009-11-01

    Understanding the different noise production mechanisms caused by the free shear flows in a turbulent jet flow provides insight to improve ``intelligent'' feedback mechanisms to control the noise. Towards this effort, a control scheme is based on feedback of azimuthal pressure measurements in the near field of the jet at two streamwise locations. Previous studies suggested that noise reduction can be achieved by azimuthal actuators perturbing the shear layer at the jet lip. The closed-loop actuation will be based on a low-dimensional Fourier representation of the hydrodynamic pressure measurements. Preliminary results show that control authority and reduction in the overall sound pressure level was possible. These results provide motivation to move forward with the overall vision of developing innovative multi-mode sensing methods to improve state estimation and derive dynamical systems. It is envisioned that estimating velocity-field and dynamic pressure information from various locations both local and in the far-field regions, sensor fusion techniques can be utilized to ascertain greater overall control authority.

  12. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  13. Closing the Feedback Loop: A Productive Interplay between Practice-Based Research and School Development through Cross-Professional Collaboration in Secondary Education

    ERIC Educational Resources Information Center

    Schenke, Wouter; van Driel, Jan H.; Geijsel, Femke P.; Volman, Monique L. L.

    2017-01-01

    A recurrent discussion in the field of education is how to build linkages between educational research and school practice. Cross-professional collaboration between researchers and school practitioners can contribute to the interplay between practice-based research and school development. The aim of our study is to obtain a better understanding of…

  14. Monitoring Digital Closed-Loop Feedback Systems

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.

  15. Nonlinearity measure and internal model control based linearization in anti-windup design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perev, Kamen

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less

  16. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  17. Quantifying the ice-albedo feedback through decoupling

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  18. Feedback and Sentence Learning.

    ERIC Educational Resources Information Center

    Guthrie, John T.

    The theoretical functions of external feedback in SR and closed loop models of verbal learning are presented. Contradictory predictions from the models are tested with a three by three factorial experiment including three types of feedback and three amounts of rehearsal. There were 90 adult students run individually and they were required to learn…

  19. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology

    NASA Astrophysics Data System (ADS)

    Siegle, Joshua H.; Cuevas López, Aarón; Patel, Yogi A.; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob

    2017-08-01

    Objective. Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. Approach. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard ‘open-loop’ visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. Main results. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. Significance. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.

  20. Multiple feedback control apparatus for power conditioning equipment

    NASA Technical Reports Server (NTRS)

    Biess, John (Inventor); Yu, Yuan (Inventor)

    1977-01-01

    An improved feedback control system to govern the cyclic operation of the power switch of a non-dissipative power conditioning equipment. The apparatus includes two or three control loops working in unison. The first causes the output DC level to be compared with a reference, and the error amplified for control purposes. The second utilizes the AC component of the voltage across the output filter inductor or the current through the output filter capacitor, and the third loop senses the output transients.

  1. ONE SHAKE GATE FORMER

    DOEpatents

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  2. Accessibility, stabilizability, and feedback control of continuous orbital transfer.

    PubMed

    Gurfil, Pini

    2004-05-01

    This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.

  3. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    PubMed

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  4. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  5. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  6. Plasmids as stochastic model systems

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Plasmids are self-replicating gene clusters present in on average 2-100 copies per bacterial cell. To reduce random fluctuations and thereby avoid extinction, they ubiquitously autoregulate their own synthesis using negative feedback loops. Here I use van Kampen's Ω-expansion for a two-dimensional model of negative feedback including plasmids and ther replication inhibitors. This analytically summarizes the standard perspective on replication control -- including the effects of sensitivity amplification, exponential time-delays and noisy signaling. I further review the two most common molecular sensitivity mechanisms: multistep control and cooperativity. Finally, I discuss more controversial sensitivity schemes, such as noise-enhanced sensitivity, the exploitation of small-number combinatorics and double-layered feedback loops to suppress noise in disordered environments.

  7. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  8. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  9. Voltage regulator/amplifier is self-regulated

    NASA Technical Reports Server (NTRS)

    Day, W. E.; Phillips, D. E.

    1967-01-01

    Signal modulated, self-regulating voltage regulator/amplifier controls the output b-plus voltage in modulated regulator systems. It uses self-oscillation with feedback to a control circuit with a discontinuous amplitude action feedback loop.

  10. Effect of visual and tactile feedback on kinematic synergies in the grasping hand.

    PubMed

    Patel, Vrajeshri; Burns, Martin; Vinjamuri, Ramana

    2016-08-01

    The human hand uses a combination of feedforward and feedback mechanisms to accomplish high degree of freedom in grasp control efficiently. In this study, we used a synergy-based control model to determine the effect of sensory feedback on kinematic synergies in the grasping hand. Ten subjects performed two types of grasps: one that included feedback (real) and one without feedback (memory-guided), at two different speeds (rapid and natural). Kinematic synergies were extracted from rapid real and rapid memory-guided grasps using principal component analysis. Synergies extracted from memory-guided grasps revealed greater preservation of natural inter-finger relationships than those found in corresponding synergies extracted from real grasps. Reconstruction of natural real and natural memory-guided grasps was used to test performance and generalizability of synergies. A temporal analysis of reconstruction patterns revealed the differing contribution of individual synergies in real grasps versus memory-guided grasps. Finally, the results showed that memory-guided synergies could not reconstruct real grasps as accurately as real synergies could reconstruct memory-guided grasps. These results demonstrate how visual and tactile feedback affects a closed-loop synergy-based motor control system.

  11. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  12. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    PubMed

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  13. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  14. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  15. A rationale for human operator pulsive control behavior

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1979-01-01

    When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.

  16. Underlying Mechanisms of Cooperativity, Input Specificity, and Associativity of Long-Term Potentiation Through a Positive Feedback of Local Protein Synthesis.

    PubMed

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2018-01-01

    Long-term potentiation (LTP) is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF) signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.

  17. Observer-Based Adaptive Fault-Tolerant Tracking Control of Nonlinear Nonstrict-Feedback Systems.

    PubMed

    Wu, Chengwei; Liu, Jianxing; Xiong, Yongyang; Wu, Ligang

    2017-06-28

    This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of ''explosion of complexity''. Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.

  18. Autopilot for frequency-modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less

  19. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.

    PubMed

    Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J

    2012-10-01

    This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.

  20. Assisted closed-loop optimization of SSVEP-BCI efficiency

    PubMed Central

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo

    2012-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214

  1. Assisted closed-loop optimization of SSVEP-BCI efficiency.

    PubMed

    Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo

    2013-01-01

    We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  2. A digital wireless system for closed-loop inhibition of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  3. Short and long sympathetic-sensory feedback loops in white fat

    PubMed Central

    Ryu, Vitaly

    2014-01-01

    We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (∼50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions. PMID:24717676

  4. Better Bet-Hedging with coupled positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Narula, Jatin; Igoshin, Oleg

    2011-03-01

    Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.

  5. Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories.

    PubMed

    Faruque, Imraan A; Muijres, Florian T; Macfarlane, Kenneth M; Kehlenbeck, Andrew; Humbert, J Sean

    2018-06-01

    This paper presents "optimal identification," a framework for using experimental data to identify the optimality conditions associated with the feedback control law implemented in the measurements. The technique compares closed loop trajectory measurements against a reduced order model of the open loop dynamics, and uses linear matrix inequalities to solve an inverse optimal control problem as a convex optimization that estimates the controller optimality conditions. In this study, the optimal identification technique is applied to two examples, that of a millimeter-scale micro-quadrotor with an engineered controller on board, and the example of a population of freely flying Drosophila hydei maneuvering about forward flight. The micro-quadrotor results show that the performance indices used to design an optimal flight control law for a micro-quadrotor may be recovered from the closed loop simulated flight trajectories, and the Drosophila results indicate that the combined effect of the insect longitudinal flight control sensing and feedback acts principally to regulate pitch rate.

  6. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  7. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Constant peak-power single-frequency linearly-polarized all-fiber laser for coherent detection based on closed-loop feedback technology

    NASA Astrophysics Data System (ADS)

    Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui

    2015-10-01

    In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.

  9. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  10. [Cardiovascular circulation feedback control treatment instrument].

    PubMed

    Ge, Yu-zhi; Zhu, Xing-huan; Sheng, Guo-tai; Cao, Ping-liang; Liu, Dong-sheng; Wu, Zhi-ting

    2005-07-01

    The cardiovascular circulation feedback control treatment instrument (CFCTI) is an automatic feedback control treatment system, which has the function of monitoring, alarming, trouble self-diagnosis and testing on the line in the closed loop. The instrument is designed based on the successful clinical experiences and the data are inputted into the computer in real-time through a pressure sensor and A/D card. User interface window is set up for the doctor's choosing different medicine. The orders are outputted to control the dose of medicine through the transfusion system. The response to medicine is updated continually. CFCTI can avoid the man-made errors and the long interval of sampling. Its reliability and accuracy in rescuing the critical patients are much higher than the traditional methods.

  11. Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?

    PubMed

    McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh

    2014-05-01

    Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.

  12. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  13. Validation of snow characteristics and snow albedo feedback in the Canadian Regional Climate Model simulations over North America

    NASA Astrophysics Data System (ADS)

    Fang, B.; Sushama, L.; Diro, G. T.

    2015-12-01

    Snow characteristics and snow albedo feedback (SAF) over North America, as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5), when driven by ERA-40/ERA-Interim, CanESM2 and MPI-ESM-LR at the lateral boundaries, are analyzed in this study. Validation of snow characteristics is performed by comparing simulations against available observations from MODIS, ISCCP and CMC. Results show that the model is able to represent the main spatial distribution of snow characteristics with some overestimation in snow mass and snow depth over the Canadian high Arctic. Some overestimation in surface albedo is also noted for the boreal region which is believed to be related to the snow unloading parameterization, as well as the overestimation of snow albedo. SAF is assessed both in seasonal and climate change contexts when possible. The strength of SAF is quantified as the amount of additional net shortwave radiation at the top of the atmosphere as surface albedo decreases in association with a 1°C increase in surface temperature. Following Qu and Hall (2007), this is expressed as the product of the variation in planetary albedo with surface albedo and the change in surface albedo for 1°C change in surface air temperature during the season, which in turn is determined by the strength of the snow cover and snowpack metamorphosis feedback loops. Analysis of the latter term in the seasonal cycle suggests that for CRCM5 simulations, the snow cover feedback loop is more dominant compared to the snowpack metamorphosis feedback loop, whereas for MODIS, the two feedback loops have more or less similar strength. Moreover, the SAF strength in the climate change context appears to be weaker than in the seasonal cycle and is sensitive to the driving GCM and the RCP scenario.

  14. Disturbed P53-MDM2 Feedback Loop Contributes to Thoracic Aortic Dissection Formation and May be a Result of TRIM25 Overexpression.

    PubMed

    Gong, Bin; Wang, Zhiwei; Zhang, Min; Hu, Zhipeng; Ren, Zongli; Tang, Zheng; Jiang, Wanli; Cheng, Lianghao; Huang, Jun; Ren, Wei; Wang, Qingtao

    2017-04-01

    The development of thoracic aortic dissection (TAD) is attributed to a broad range of degenerative, genetic, structural, oxidative, apoptotic, and acquired disease states. In this study, we examined the role of the disturbed p53-MDM2 (murine double minute 2) feedback loop in the formation of TAD, and one of a potential feedback loop regulator, TRIM25 (tripartite motif protein-25). Surgical specimens of the aorta from TAD patients (n = 10) and controls (n = 10) were tested for α-smooth muscle actin (α-SMA), p53, MDM2, and TRIM25 by western blot, immunohistochemical staining, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), respectively. When compared with controls, western blot shows that the protein levels of p53, MDM2, and TRIM25 were increased significantly in the aortic media of TAD patients. qRT-PCR further verified that the mRNA expression of MDM2 and TRIM25 was also increased 6- and 4-folds, respectively, in the TAD media of the aortic wall. Immunohistochemistry results showed significantly decreased staining of α-SMA, smooth muscle cells, and more collagen deposition in the media of the aortic wall from patients with TAD. This study provided a new insight into the disturbed p53-MDM2 feedback loop in the pathogenesis of TAD, and this may be because of the TRIM25 overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.

    PubMed

    Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W

    2002-01-01

    In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.

  16. A novel P53/POMC/Gαs/SASH1 autoregulatory feedback loop activates mutated SASH1 to cause pathologic hyperpigmentation.

    PubMed

    Zhou, Ding'an; Wei, Zhiyun; Kuang, Zhongshu; Luo, Huangchao; Ma, Jiangshu; Zeng, Xing; Wang, Ke; Liu, Beizhong; Gong, Fang; Wang, Jing; Lei, Shanchuan; Wang, Dongsheng; Zeng, Jiawei; Wang, Teng; He, Yong; Yuan, Yongqiang; Dai, Hongying; He, Lin; Xing, Qinghe

    2017-04-01

    p53-Transcriptional-regulated proteins interact with a large number of other signal transduction pathways in the cell, and a number of positive and negative autoregulatory feedback loops act upon the p53 response. P53 directly controls the POMC/α-MSH productions induced by ultraviolet (UV) and is associated with UV-independent pathological pigmentation. When identifying the causative gene of dyschromatosis universalis hereditaria (DUH), we found three mutations encoding amino acid substitutions in the gene SAM and SH3 domain containing 1 (SASH1), and SASH1 was associated with guanine nucleotide-binding protein subunit-alpha isoforms short (Gαs). However, the pathological gene and pathological mechanism of DUH remain unknown for about 90 years. We demonstrate that SASH1 is physiologically induced by p53 upon UV stimulation and SASH and p53 is reciprocally induced at physiological and pathophysiological conditions. SASH1 is regulated by a novel p53/POMC/α-MSH/Gαs/SASH1 cascade to mediate melanogenesis. A novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. Our study demonstrates that a novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    PubMed Central

    Yao, Li-Qing; Tan, Chang-Jun; Huang, Xiao-Yong; Ke, Ai-Wu; Dai, Zhi; Fan, Jia; Zhou, Jian

    2012-01-01

    Background Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRβ in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRβ, we confirmed that subsequent activation of AKT and ERK was PDGFRβ-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRβ-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions Activation of PI3K/AKT and MAPK pathway through a PDGFRβ-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach to improve the anti-tumor effect of rapamycin, particularly in preventing or treating HCC recurrence after liver transplantation. PMID:22428038

  18. Strong suppression of shot noise in a feedback-controlled single-electron transistor

    NASA Astrophysics Data System (ADS)

    Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.

    2017-03-01

    Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.

  19. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.

    PubMed

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A

    2014-10-01

    Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  20. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression

    PubMed Central

    Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-01-01

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer. PMID:25327561

  1. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression.

    PubMed

    Li, Guangchao; Zhao, Likun; Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-09-30

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer.

  2. Germline Genetic Variants Disturbing the Let-7/LIN28 Double-Negative Feedback Loop Alter Breast Cancer Susceptibility

    PubMed Central

    Fan, Lei; Li, Ji-Yu; Yang, Chen; Huang, A-Ji; Shao, Zhi-Ming

    2011-01-01

    Previous studies have shown that let-7 can repress the post-transcriptional translation of LIN28, and LIN28 in turn could block the maturation of let-7, forming a double-negative feedback loop. In this study, we investigated the effect of germline genetic variants on regulation of the homeostasis of the let-7/LIN28 loop and breast cancer risk. We initially demonstrated that the T/C variants of rs3811463, a single nucleotide polymorphism (SNP) located near the let-7 binding site in LIN28, could lead to differential regulation of LIN28 by let-7. Specifically, the C allele of rs3811463 weakened let-7–induced repression of LIN28 mRNA, resulting in increased production of LIN28 protein, which could in turn down-regulate the level of mature let-7. This effect was then validated at the tissue level in that the normal breast tissue of individuals with the rs3811463-TC genotype expressed significantly lower levels of let-7 and higher levels of LIN28 protein than those individuals with the rs3811463-TT genotype. Because previous in vitro and ex vivo experiments have consistently suggested that LIN28 could promote cellular transformation, we then systematically evaluated the relationship between rs3811463 as well as other common LIN28 SNPs and the risk of breast cancer in a stepwise manner. The first hospital-based association study (n = 2,300) demonstrated that two SNPs were significantly associated with breast cancer risk, one of which was rs3811463, while the other was rs6697410. The C allele of the rs3811463 SNP corresponded to an increased risk of breast cancer with an odds ratio (OR) of 1.25 (P = 0.0091), which was successfully replicated in a second independent study (n = 1,156) with community-based controls. The combined P-value of the two studies was 8.0×10−5. Taken together, our study demonstrates that host genetic variants could disturb the regulation of the let-7/LIN28 double-negative feedback loop and alter breast cancer risk. PMID:21912531

  3. Stereoscopic distance perception

    NASA Technical Reports Server (NTRS)

    Foley, John M.

    1989-01-01

    Limited cue, open-loop tasks in which a human observer indicates distances or relations among distances are discussed. By open-loop tasks, it is meant tasks in which the observer gets no feedback as to the accuracy of the responses. What happens when cues are added and when the loop is closed are considered. The implications of this research for the effectiveness of visual displays is discussed. Errors in visual distance tasks do not necessarily mean that the percept is in error. The error could arise in transformations that intervene between the percept and the response. It is argued that the percept is in error. It is also argued that there exist post-perceptual transformations that may contribute to the error or be modified by feedback to correct for the error.

  4. INFLUENZA-INDUCED UP-REGULATION OF TLR3 IN RESPIRATORY EPITHELIAL CELLS MAY OCCUR THROUGH A POSITIVE FEEDBACK LOOP INVOLVING TYPE I INTERFERON

    EPA Science Inventory

    Toll-like receptor 3 (TLR3) plays an important role in the host defense responses against viral infections, including Influenza virus infections. Based on our previous observations showing that Influenza infection of respiratory epithelial cells results in an up-regulation of Tol...

  5. Regulation during Cooperative and Collaborative Learning: A Theory-Based Review of Terms and Concepts

    ERIC Educational Resources Information Center

    Schoor, Cornelia; Narciss, Susanne; Körndle, Hermann

    2015-01-01

    This article reviews the terms and concepts that have been used for describing regulation of learning during cooperative and collaborative learning and suggests differentiating them on the basis of which parts of a regulatory feedback loop model are being shared. During cooperative and collaborative learning, not only self-regulation but also the…

  6. A novel feedforward compensation canceling input filter-regulator interaction

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    The interaction between the input and the control loop of switching regulators often results in deterimental effects, such as loop instability, degradation of transient response, and audiosusceptibility, etc. The concept of pole-zero cancelation is employed to mitigate some of these detrimental effects and is implemented using a novel feedforward loop, in addition to existing feedback loops of a buck regulator. Experimental results are presented which show excellent correlation with theory.

  7. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  8. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    PubMed

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  9. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    PubMed

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    PubMed

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  11. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity

    PubMed Central

    2014-01-01

    Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374

  12. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  13. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  14. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  15. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.

  16. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  17. Active-Controlled Fluid Film Based on Wave-Bearing Technology

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Hendricks, Robert C.

    2011-01-01

    It has been known since 1967 that the steady-state and dynamic performance, including the stability of a wave bearing, are highly dependent on the wave amplitude. A wave-bearing profile can be readily obtained by elastically distorting the stationary bearing sleeve surface. The force that distorts the elastic sleeve surface could be an applied force or pressure. The magnitude and response of the distorting force would be defined by the relation between the bearing surface stiffness and the bearing pressure, or load, in a feedback loop controller. Using such devices as piezoelectric or other electromechanical elements, one could step control or fully control the bearing. The selection between these systems depends on the manner in which the distortion forces are applied, the running speed, and the reaction time of the feedback loop. With these techniques, both liquid- (oil-) or gas- (air-) lubricated wave bearings could be controlled. This report gives some examples of the dependency of the bearing's performance on the wave amplitude. The analysis also was proven experimentally.

  18. Insights from Placing Photosynthetic Light Harvesting into Context.

    PubMed

    Demmig-Adams, Barbara; Stewart, Jared J; Burch, Tyson A; Adams, William W

    2014-08-21

    Solar-energy conversion through natural photosynthesis forms the base of virtually all food chains on Earth and provides fiber, materials, and fuels, as well as inspiration for the design of biomimetic energy-conversion systems. We summarize well-known as well as recently discovered feedback loops between natural light-harvesting systems and whole-organism function in natural settings. We propose that the low effective quantum yield of natural light-harvesting systems in high light is caused by downstream limitations rather than unavoidable intrinsic vulnerabilities. We evaluate potential avenues, and their costs and benefits, for increasing the maximal rate and photon yield of photosynthesis in high light in plants and photosynthetic microbes. By summarizing mechanisms observable only in complex systems (whole plants, algae, or, in some cases, intact leaves), we aim to stimulate future research efforts on reciprocal feedback loops between light harvesting and downstream processes in whole organisms and to provide additional arguments for the significance of research on photosynthetic light harvesting.

  19. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.

    PubMed

    Wei, Wei; Wang, Xiao-Jing

    2016-12-07

    We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Control systems for platform landings cushioned by air bags

    NASA Astrophysics Data System (ADS)

    Ross, Edward W.

    1987-07-01

    This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.

  1. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  2. Entry flight control system downmoding evaluation

    NASA Technical Reports Server (NTRS)

    Barnes, H. A.

    1978-01-01

    A method to desensitize the entry flight control system to structural vibration feedback which might induce an oscillatory instability is described. Trends in vehicle response and handling characteristics as a function of gain combinations in the FCS forward and rate feedback loops were described as observed in a man-in-the-loop simulation. Among the flight conditions considered are the effects of downmoding with APU failures, off-nominal trajectory conditions, sensed angle of attack errors, the impact on RCS fuel consumption, performance in the presence of aero variations, recovery from large FCS upsets, and default gains.

  3. Adaptive antenna arrays for satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1989-01-01

    The feasibility of using adaptive antenna arrays to provide interference protection in satellite communications was studied. The feedback loops as well as the sample matric inversion (SMI) algorithm for weight control were studied. Appropriate modifications in the two were made to achieve the required interference suppression. An experimental system was built to test the modified feedback loops and the modified SMI algorithm. The performance of the experimental system was evaluated using bench generated signals and signals received from TVRO geosynchronous satellites. A summary of results is given. Some suggestions for future work are also presented.

  4. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  5. Closing the Loop on Student Feedback: The Case of Australian and Scottish Universities

    ERIC Educational Resources Information Center

    Shah, Mahsood; Cheng, Ming; Fitzgerald, Robert

    2017-01-01

    Universities have a long history of collecting student feedback using surveys and other mechanisms. The last decade has witnessed a significant shift in how student feedback is systematically collected, analysed, reported, and used by governments and institutions. This shift is due to a number of factors, including changes in government policy…

  6. A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem

    ERIC Educational Resources Information Center

    Singh, Abhay; Jayaraman, Arul; Hahn, Juergen

    2007-01-01

    Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…

  7. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    NASA Astrophysics Data System (ADS)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  8. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the piezoelectric transducer. This positive AC feedback, in combination with the slow feedback to the voltage-variable resistors, causes the overall loop gain to be just large enough to keep the oscillator running. The positive feedback loop includes two 16-channel multiplexers, which are not shown in the figure. One multiplexer is used to select the desired piezoelectric transducer. The other multiplexer, which is provided for use in the event that there are significant differences among the damping times of the 16 piezoelectric transducers, facilitates changing the value of one of the resistors in the positive-feedback loop to accommodate the damping time of the selected transducer.

  9. Computer automation for feedback system design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mathematical techniques and explanations of various steps used by an automated computer program to design feedback systems are summarized. Special attention was given to refining the automatic evaluation suboptimal loop transmission and the translation of time to frequency domain specifications.

  10. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop.

    PubMed

    Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun

    2015-02-01

    Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Electronic Maxwell demon in the coherent strong-coupling regime

    NASA Astrophysics Data System (ADS)

    Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp

    2018-05-01

    We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.

  12. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    PubMed

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Towards the use of Structural Loop Analysis to Study System Behaviour of Socio-Ecological Systems.

    NASA Astrophysics Data System (ADS)

    Abram, Joseph; Dyke, James

    2016-04-01

    Maintaining socio-ecological systems in desirable states is key to developing a growing economy, alleviating poverty and achieving a sustainable future. While the driving forces of an environmental system are often well known, the dynamics impacting these drivers can be hidden within a tangled structure of causal chains and feedback loops. A lack of understanding of a system's dynamic structure and its influence on a system's behaviour can cause unforeseen side-effects during model scenario testing and policy implementation. Structural Loop analysis of socio-ecological system models identifies dominant feedback structures during times of behavioural shift, allowing the user to monitor key influential drivers during model simulation. This work carries out Loop Eigenvalue Elasticity Analysis (LEEA) on three system dynamic models, exploring tipping points in lake systems undergoing eutrophication. The purpose is to explore the potential benefits and limitations of the technique in the field of socio-ecology. The LEEA technique shows promise for socio-ecological systems which undergo regime shifts or express oscillatory trends, but shows limited usefulness with large models. The results of this work highlight changes in feedback loop dominance, years prior to eutrophic tipping events in lake systems. LEEA could be used as an early warning signal to impending system changes, complementary to other known early warning signals. This approach could improve our understanding during critical times of a system's behaviour, changing how we approach model analysis and the way scenario testing and policy implementation are addressed in socio-ecological system models.

  15. Modeling and control of non-square MIMO system using relay feedback.

    PubMed

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Speed synchronization control for integrated automotive motor-transmission powertrain system with random delays

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Fang, Zongde

    2015-12-01

    This paper presents a robust speed synchronization controller design for an integrated motor-transmission powertrain system in which the driving motor and multi-gearbox are directly coupled. As the controller area network (CAN) is commonly used in the vehicle powertrain system, the possible network-induced random delays in both feedback and forward channel are considered and modeled by using two Markov chains in the controller design process. For the application perspective, the control law adopted here is a generalized proportional-integral (PI) control. By employing the system-augmentation technique, a delay-free stochastic closed-loop system is obtained and the generalized PI controller design problem is converted to a static output feedback (SOF) controller design problem. Since there are external disturbances involved in the closed-loop system, the energy-to-peak performance is considered to guarantee the robustness of the controller. And the controlled output is chosen as the speed synchronization error. To further improve the transient response of the closed-loop system, the pole placement is also employed in the energy-to-peak performance based speed synchronization control. The mode-dependent control gains are obtained by using an iterative linear matrix inequality (LMI) algorithm. Simulation results show the effectiveness of the proposed control approach.

  17. Loudspeakers: Modeling and control

    NASA Astrophysics Data System (ADS)

    Al-Ali, Khalid Mohammad

    This thesis documented a comprehensive study of loudspeaker modeling and control. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure was presented that derived from a consideration of physical principles. In addition, a low-frequency (20 Hz to 100 Hz), feedback control method designed to improve the nonlinear performance of the loudspeaker and a suitable performance measure for use in design and evaluation were proposed. Data from experiments performed on a variety of actual loudspeakers confirmed the practicality of the theory developed in this work. The lumped-parameter loudspeaker model, although simple, captured much of the nonlinear behavior of the loudspeaker. In addition, the model formulation allowed a straightforward application of modern control system methods and lent itself well to modern parametric identification techniques. The nonlinear performance of the loudspeaker system was evaluated using a suitable distortion measure that was proposed and compared with other distortion measures currently used in practice. Furthermore, the linearizing effect of feedback using a linear controller (both static and dynamic) was studied on a class of nonlinear systems. The results illustrated that the distortion reduction was potentially significant and a useful upper bound on the closed-loop distortion was found based on the sensitivity function of the system's linearization. A feedback scheme based on robust control theory was chosen for application to the loudspeaker system. Using the pressure output of the loudspeaker system for feedback, the technique offered significant advantages over those previously attempted. Illustrative examples were presented that proved the applicability of the theory developed in this dissertation to a variety of loudspeaker systems. The examples included a vented loudspeaker model and actual loudspeakers enclosed in both vented and sealed configurations. In each example, predictable and measurable distortion reduction at the output of the closed-loop system was recorded.

  18. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  19. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  20. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei

    2016-11-01

    Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.

  1. The Paracrine Feedback Loop Between Vitamin D3 (1,25(OH)2D3) and PTHrP in Prehypertrophic Chondrocytes

    PubMed Central

    Bach, Frances C; Rutten, Kirsten; Hendriks, Kristyanne; Riemers, Frank M; Cornelissen, Peter; de Bruin, Alain; Arkesteijn, Ger J; Wubbolts, Richard; Horton, William A; Penning, Louis C; Tryfonidou, Marianna A

    2014-01-01

    The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH-related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10−8 M 1,25(OH)2D3 or PTHrP, Col2-pd2EGFP transgenic mice, and primary Col2-pd2EGFP growth plate chondrocytes isolated by FACS, using RT-qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α- and 24-hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. PMID:24777663

  2. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    NASA Astrophysics Data System (ADS)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  3. Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces.

    PubMed

    Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G

    2011-10-01

    In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs.

  4. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  5. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  6. Functional characteristics of a double positive feedback loop coupled with autorepression

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhasis; Bose, Indrani

    2008-12-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

  7. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  8. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  9. Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1992-01-01

    Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.

  10. Strong feedback limit of the Goodwin circadian oscillator

    NASA Astrophysics Data System (ADS)

    Woller, Aurore; Gonze, Didier; Erneux, Thomas

    2013-03-01

    The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.

  11. Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos.

    PubMed

    Chatterjee, Monish R; Mohamed, Ali; Almehmadi, Fares S

    2018-04-01

    Use of acousto-optic (A-O) chaos via the feedback loop in a Bragg cell for signal encryption began as a conceptual demonstration around 2008. Radio frequency (RF) chaos from a hybrid A-O feedback device may be used for secure communications of analog and digital signals. In this paper, modulation of RF chaos via first-order feedback is discussed with results corroborated by nonlinear dynamics, bifurcation maps, and Lyapunov analyses. Applications based on encryption with profiled optical beams, and extended to medical and embedded steganographic data, and video signals are discussed. It is shown that the resulting encryption is significantly robust with key tolerances potentially less than 0.1%. Results are also presented for the use of chaotic encryption for image restoration during propagation through atmospheric turbulence.

  12. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Forsbacka, Matthew

    2004-01-01

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.

  13. Conformity under uncertainty: reliance on gender stereotypes in online hiring decisions.

    PubMed

    Uhlmann, Eric Luis; Silberzahn, Raphael

    2014-02-01

    We apply Bentley et al.'s theoretical framework to better understand gender discrimination in online labor markets. Although such settings are designed to encourage employer behavior in the northwest corner of Homo economicus, actual online hiring decisions tend to drift southeast into a "confirmation bias plus weak feedback loops" pattern of discrimination based on inaccurate social stereotypes.

  14. Engineering Robust Yeasts for Biorefinery Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taek Soon; Niles, Brad; Chow, Ruthie

    2016-06-22

    Isoprene is highly-valued terpene based-chemical feedstock and can be derived from either petroleum or from fermentation of plant biomass. This project enabled more efficient isoprene fermentation using renewable resources and at yields that can compete economically with non-renewable sources. This Phase I project applied a novel synthetic biology approach, the Artificial Positive Feedback Loop (APFL) technology, to improve production yields of isoprene.

  15. Hybrid Control for Multi-Agent Systems in Complex Sensing Environments

    DTIC Science & Technology

    2012-02-28

    controllers , the overall closed-loop system is time -varying but can potentially exhibit better stability and performance... system is time -varying and yet, once 4 feedback-interconnected with a suitable controller , it can potentially yield better stability and performance...resolution Sensing, Control and Switched Systems 13 4 Metric-Based Receding Horizon Control 14 5 Decentralized Control and Finite Wordlength Channels 15

  16. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Westberg, J.; Sterczewski, L. A.; Wysocki, G.

    2017-04-01

    Fabry-Pérot (FP) quantum cascade lasers (QCLs) provide purely electronically controlled monolithic sources for broadband mid-infrared (mid-IR) multiheterodyne spectroscopy (MHS), which benefits from the large gain bandwidth of the QCLs without sacrificing the narrowband properties commonly associated with the single mode distributed feedback variant. We demonstrate a FP-QCL based multiheterodyne spectrometer with a short-term noise-equivalent absorption of ˜3 × 10-4/ √{ H z } , a mid-IR spectral coverage of 25 cm-1, and very short acquisition time (10 μs) capability. The broadband potential is demonstrated by measuring the absorption spectra of ammonia and isobutane under atmospheric pressure conditions. The stability of the system is enhanced by a two-stage active frequency inter-locking procedure, where the two QCLs are pre-locked with a slow feedback loop based on an analog frequency discriminator, followed by a high bandwidth optical phase-locked loop. The locking system provides a relative frequency stability in the sub kHz range over seconds of integration time. The strength of the technique lies in the ability to acquire spectral information from all optical modes simultaneously and individually, which bodes for a versatile and cost effective spectrometer for mid-IR chemical gas sensing.

  17. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    NASA Astrophysics Data System (ADS)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  18. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    PubMed Central

    Mazurek, K A; Holinski, B J; Everaert, D G; Stein, R B; Etienne-Cummings, R; Mushahwar, V K

    2012-01-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1=6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm; ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future. PMID:22328615

  19. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton.

    PubMed

    Yin, Yue H; Fan, Yuan J; Xu, Li D

    2012-07-01

    Although a lower extremity exoskeleton shows great prospect in the rehabilitation of the lower limb, it has not yet been widely applied to the clinical rehabilitation of the paralyzed. This is partly caused by insufficient information interactions between the paralyzed and existing exoskeleton that cannot meet the requirements of harmonious control. In this research, a bidirectional human-machine interface including a neurofuzzy controller and an extended physiological proprioception (EPP) feedback system is developed by imitating the biological closed-loop control system of human body. The neurofuzzy controller is built to decode human motion in advance by the fusion of the fuzzy electromyographic signals reflecting human motion intention and the precise proprioception providing joint angular feedback information. It transmits control information from human to exoskeleton, while the EPP feedback system based on haptic stimuli transmits motion information of the exoskeleton back to the human. Joint angle and torque information are transmitted in the form of air pressure to the human body. The real-time bidirectional human-machine interface can help a patient with lower limb paralysis to control the exoskeleton with his/her healthy side and simultaneously perceive motion on the paralyzed side by EPP. The interface rebuilds a closed-loop motion control system for paralyzed patients and realizes harmonious control of the human-machine system.

  20. Role of inhibitory feedback for information processing in thalamocortical circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Joerg; Schuster, Heinz Georg; Claussen, Jens Christian

    2006-03-15

    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson et al. [Nature (London) 417, 854 (2002)] on the thalamocortical loop. We use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics experimental observationsmore » of Le Masson et al. Typically, thalamic neurons posses two different firing modes, depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits, the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations, which mask the incoming input, and thereby reduce the information transfer significantly.« less

  1. A disturbance based control/structure design algorithm

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark D.; Slater, Gary L.

    1989-01-01

    Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jinqi; Cook, Aaron A.; Bergmeier, Wolfgang

    The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf–MEK–ERKmore » signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2. -- Highlights: •ERK2 phosphorylates the guanine nucleotide exchange factor RasGRP2 at Ser394. •Phosphorylated RasGRP2 has decreased capacity to active Rap1b in vitro and in cells. •Phosphorylation of RasGRP2 by ERK1/2 introduces a negative-feedback loop into the BRaf-MEK-ERK pathway.« less

  3. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop

    PubMed Central

    Miles, Wayne O.; Lepesant, Julie M. J.; Bourdeaux, Jessie; Texier, Manuela; Kerenyi, Marc A.; Nakakido, Makoto; Hamamoto, Ryuji; Orkin, Stuart H.; Dyson, Nicholas J.

    2015-01-01

    The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies. PMID:26438601

  4. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  5. Optimizing the feedback control of Galvo scanners for laser manufacturing systems

    NASA Astrophysics Data System (ADS)

    Mirtchev, Theodore; Weeks, Robert; Minko, Sergey

    2010-06-01

    This paper summarizes the factors that limit the performance of moving-magnet galvo scanners driven by closed-loop digital servo amplifiers: torsional resonances, drifts, nonlinearities, feedback noise and friction. Then it describes a detailed Simulink® simulator that takes into account these factors and can be used to automatically tune the controller for best results with given galvo type and trajectory patterns. It allows for rapid testing of different control schemes, for instance combined position/velocity PID loops and displays the corresponding output in terms of torque, angular position and feedback sensor signal. The tool is configurable and can either use a dynamical state-space model of galvo's open-loop response, or can import the experimentally measured frequency domain transfer function. Next a drive signal digital pre-filtering technique is discussed. By performing a real-time Fourier analysis of the raw command signal it can be pre-warped to minimize all harmonics around the torsional resonances while boosting other non-resonant high frequencies. The optimized waveform results in much smaller overshoot and better settling time. Similar performance gain cannot be extracted from the servo controller alone.

  6. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  7. Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control

    NASA Astrophysics Data System (ADS)

    Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong

    2013-04-01

    In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.

  8. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter in special cases. The antisymmetric MR (AMR) is composed of two coupled MLM's. The AMR has the characteristics of an add-drop filter in the general case, and coupled resonator induced transparency (CRIT) filter in a special case. The symmetric MDFB (SMDFB) is composed of multiple coupled MLM's. The antisymmetric MDFB (AMDFB) is composed of multiple coupled MLM's. The SMDFB and AMDFB can be utilized as band-pass, Fano, or Lorentzian filters, or Rabi splitters. Distributed meandering waveguide elements with extremely rich spectral and phase responses can be designed with creative combinations of distributed meandering waveguides structures for various novel photonic circuits. References [1 ] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Circuits," J. Lightwave Technol, vol. 33, no. 9, pp. 1691-1702, May 2015. [2] N. J. Doran and D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. vol. 13, no. 1, pp. 56-58, Jan. 1988. [3] L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. vol. 32, no. 7, pp. 781-783, Apr. 2007. [4] Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, "Tunable two-stage self-coupled optical waveguide resonators," Opt. Lett. vol. 38, no. 8, pp. 1215-1217, Apr. 2013. [5] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Novel distributed feedback lightwave circuit elements," in Proc. SPIE, San Francisco, 2015, vol. 9366, p. 93660A. [6] C. B. Dağ, M. A. Anıl, and A. Serpengüzel, "Meandering Waveguide Distributed Feedback Lightwave Elements: Phasor Diagram Analysis," in Proc. PIERS, Prague, 1986-1990 (2015).

  9. A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1986-01-01

    In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.

  10. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  11. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  12. Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli.

    PubMed

    Rodrigo, Guillermo; Bajic, Djordje; Elola, Ignacio; Poyatos, Juan F

    2016-10-31

    By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures.

  13. A dual-loop model of the human controller

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A representative model of the human controller in single-axis compensatory tracking tasks that exhibits an internal feedback loop which is not evident in single-loop models now in common use is presented. This hypothetical inner-loop involves a neuromuscular command signal derived from the time rate of change of controlled element output which is due to control activity. It is not contended that the single-loop human controller models now in use are incorrect, but that they contain an implicit but important internal loop closure, which, if explicitly considered, can account for a good deal of the adaptive nature of the human controller in a systematic manner.

  14. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  15. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.

  16. Computational methods for optimal linear-quadratic compensators for infinite dimensional discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.

  17. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    NASA Technical Reports Server (NTRS)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  18. The Search for Perpetual Motion: Fatigue, Friction, and Drag in Quality Improvement.

    PubMed

    Cumbler, Ethan; Pierce, Read

    Most people who have worked on continuous quality improvement (QI) with teams in the clinical microsystem have experienced "change fatigue." Application of the "Limit-to-Growth" system archetype to QI teams within health care can be used to understand negative feedback loops generated by successful QI that can limit future progress. Awareness of these factors can result in actions designed to reduce drag on forward momentum. Leaders in health care QI can anticipate and minimize negative feedback loops that accumulate to slow subsequent progress of highly functioning improvement teams within clinical microsystems.

  19. Wide-beam sensors for controlling dual-delay systems

    NASA Astrophysics Data System (ADS)

    Edwards, J. B.; Twemlow, J. K.

    1982-09-01

    A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.

  20. Air Force research in human sensory feedback for telepresence

    NASA Technical Reports Server (NTRS)

    Julian, Ronald G.

    1993-01-01

    Telepresence operations require high quality information transfer between the human master and the remotely located slave. Present Air Force research focuses on the human aspects of the information needed to complete the control/feedback loop. Work in three key areas of human sensory feedback for manipulation of objects are described. Specific projects in each key area are outlined, including research tools (hardware), planned research, and test results. Nonmanipulative feedback technologies are mentioned to complete the advanced teleoperation discussions.

  1. Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Drake, J. R.; Brunsell, P. R.; Yadikin, D.; Cecconello, M.; Malmberg, J. A.; Gregoratto, D.; Paccagnella, R.; Bolzonella, T.; Manduchi, G.; Marrelli, L.; Ortolani, S.; Spizzo, G.; Zanca, P.; Bondeson, A.; Liu, Y. Q.

    2005-07-01

    Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.

  2. Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model

    PubMed Central

    Ehrens, Daniel; Sritharan, Duluxan; Sarma, Sridevi V.

    2015-01-01

    It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Closed-loop therapy could therefore entail detecting when the network goes unstable, and then stimulating with an exogenous current to stabilize the network. In this study, a non-linear stochastic model of a neuronal network was used to simulate both seizure and non-seizure activity. In particular, synaptic weights between neurons were chosen such that the network's fixed point is stable during non-seizure periods, and a subset of these connections (the most fragile) were perturbed to make the same fixed point unstable to model seizure events; and, the model randomly transitions between these two modes. The goal of this study was to measure spike train observations from this epileptic network and then apply a feedback controller that (i) detects when the network goes unstable, and then (ii) applies a state-feedback gain control input to the network to stabilize it. The stability detector is based on a 2-state (stable, unstable) hidden Markov model (HMM) of the network, and detects the transition from the stable mode to the unstable mode from using the firing rate of the most fragile node in the network (which is the output of the HMM). When the unstable mode is detected, a state-feedback gain is applied to generate a control input to the fragile node bringing the network back to the stable mode. Finally, when the network is detected as stable again, the feedback control input is switched off. High performance was achieved for the stability detector, and feedback control suppressed seizures within 2 s after onset. PMID:25784851

  3. Development of a Design Methodology for Reconfigurable Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; McLean, C.

    2000-01-01

    A methodology is presented for the design of flight control systems that exhibit stability and performance-robustness in the presence of actuator failures. The design is based upon two elements. The first element consists of a control law that will ensure at least stability in the presence of a class of actuator failures. This law is created by inner-loop, reduced-order, linear dynamic inversion, and outer-loop compensation based upon Quantitative Feedback Theory. The second element consists of adaptive compensators obtained from simple and approximate time-domain identification of the dynamics of the 'effective vehicle' with failed actuator(s). An example involving the lateral-directional control of a fighter aircraft is employed both to introduce the proposed methodology and to demonstrate its effectiveness and limitations.

  4. A unified perspective on robot control - The energy Lyapunov function approach

    NASA Technical Reports Server (NTRS)

    Wen, John T.

    1990-01-01

    A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.

  5. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  6. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  7. Velocity feedback control with a flywheel proof mass actuator

    NASA Astrophysics Data System (ADS)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  8. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1979-01-01

    In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.

  9. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  10. Dynamic optimization of ISR sensors using a risk-based reward function applied to ground and space surveillance scenarios

    NASA Astrophysics Data System (ADS)

    DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.

    2012-06-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.

  11. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles

    PubMed Central

    Laine, Christopher M.; Valero-Cuevas, Francisco J.

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405

  12. Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles.

    PubMed

    Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J

    2018-01-01

    Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.

  13. Application of system dynamics for developing financially self-sustaining management policies for water and wastewater systems.

    PubMed

    Rehan, R; Knight, M A; Haas, C T; Unger, A J A

    2011-10-15

    Recently enacted regulations in Canada and elsewhere require water utilities to be financially self-sustaining over the long-term. This implies full cost recovery for providing water and wastewater services to users. This study proposes a new approach to help water utilities plan to meet the requirements of the new regulations. A causal loop diagram is developed for a financially self-sustaining water utility which frames water and wastewater network management as a complex system with multiple interconnections and feedback loops. The novel System Dynamics approach is used to develop a demonstration model for water and wastewater network management. This is the first known application of System Dynamics to water and wastewater network management. The network simulated is that of a typical Canadian water utility that has under invested in maintenance. Model results show that with no proactive rehabilitation strategy the utility will need to substantially increase its user fees to achieve financial sustainability. This increase is further exacerbated when price elasticity of water demand is considered. When the utility pursues proactive rehabilitation, financial sustainability is achieved with lower user fees. Having demonstrated the significance of feedback loops for financial management of water and wastewater networks, the paper makes the case for a more complete utility model that considers the complexity of the system by incorporating all feedback loops. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes.

    PubMed

    Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye

    2009-09-01

    Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

  15. Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study.

    PubMed

    Desmurget, M; Gréa, H; Grethe, J S; Prablanc, C; Alexander, G E; Grafton, S T

    2001-04-15

    Reaching movements performed without vision of the moving limb are continuously monitored, during their execution, by feedback loops (designated nonvisual). In this study, we investigated the functional anatomy of these nonvisual loops using positron emission tomography (PET). Seven subjects had to "look at" (eye) or "look and point to" (eye-arm) visual targets whose location either remained stationary or changed undetectably during the ocular saccade (when vision is suppressed). Slightly changing the target location during gaze shift causes an increase in the amount of correction to be generated. Functional anatomy of nonvisual feedback loops was identified by comparing the reaching condition involving large corrections (jump) with the reaching condition involving small corrections (stationary), after subtracting the activations associated with saccadic movements and hand movement planning [(eye-arm-jumping minus eye-jumping) minus (eye-arm-stationary minus eye-stationary)]. Behavioral data confirmed that the subjects were both accurate at reaching to the stationary targets and able to update their movement smoothly and early in response to the target jump. PET difference images showed that these corrections were mediated by a restricted network involving the left posterior parietal cortex, the right anterior intermediate cerebellum, and the left primary motor cortex. These results are consistent with our knowledge of the functional properties of these areas and more generally with models emphasizing parietal-cerebellar circuits for processing a dynamic motor error signal.

  16. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.

    PubMed

    Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A

    2017-08-01

    Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA-375, RASD1, and ERα.

    PubMed

    Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan

    2018-05-02

    For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer. © 2018 Wiley Periodicals, Inc.

  18. Use of an open-loop system to increase physical activity

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effectiveness of an open-loop system that reinforces physical activity with TV watching to increase children’s physical activity. Non-overweight, sedentary boys and girls (8-12 y) were randomized to a group that received feedback of activity counts + reinforcement for physic...

  19. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2010-01-01

    Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442

  20. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  1. A methodology for the synthesis of robust feedback systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Milich, David Albert

    1988-01-01

    A new methodology is developed for the synthesis of linear, time-variant (LTI) controllers for multivariable LTI systems. The resulting closed-loop system is nominally stable and exhibits a known level of performance. In addition, robustness of the feedback system is guaranteed, i.e., stability and performance are retained in the presence of multiple unstructured uncertainty blocks located at various points in the feedback loop. The design technique is referred to as the Causality Recovery Methodology (CRM). The CRM relies on the Youla parameterization of all stabilizing compensators to ensure nominal stability of the feedback system. A frequency-domain inequality in terms of the structured singular value mu defines the robustness specification. The optimal compensator, with respect to the mu condition, is shown to be noncausal in general. The aim of the CRM is to find a stable, causal transfer function matrix that approximates the robustness characteristics of the optimal solution. The CRM, via a series of infinite-dimensional convex programs, produces a closed-loop system whose performance robustness is at least as good as that of any initial design. The algorithm is approximated by a finite dimensional process for the purposes of implementation. Two numerical examples confirm the potential viability of the CRM concept; however, the robustness improvement comes at the expense of increased computational burden and compensator complexity.

  2. Linking the Pilot Structural Model and Pilot Workload

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine

    2018-01-01

    Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.

  3. Robust output feedback H∞ control for networked control systems based on the occurrence probabilities of time delays

    NASA Astrophysics Data System (ADS)

    Guo, Chenyu; Zhang, Weidong; Bao, Jie

    2012-02-01

    This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.

  4. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  5. System properties, feedback control and effector coordination of human temperature regulation.

    PubMed

    Werner, Jürgen

    2010-05-01

    The aim of human temperature regulation is to protect body processes by establishing a relative constancy of deep body temperature (regulated variable), in spite of external and internal influences on it. This is basically achieved by a distributed multi-sensor, multi-processor, multi-effector proportional feedback control system. The paper explains why proportional control implies inherent deviations of the regulated variable from the value in the thermoneutral zone. The concept of feedback of the thermal state of the body, conveniently represented by a high-weighted core temperature (T (c)) and low-weighted peripheral temperatures (T (s)) is equivalent to the control concept of "auxiliary feedback control", using a main (regulated) variable (T (c)), supported by an auxiliary variable (T (s)). This concept implies neither regulation of T (s) nor feedforward control. Steady-states result in the closed control-loop, when the open-loop properties of the (heat transfer) process are compatible with those of the thermoregulatory processors. They are called operating points or balance points and are achieved due to the inherent property of dynamical stability of the thermoregulatory feedback loop. No set-point and no comparison of signals (e.g. actual-set value) are necessary. Metabolic heat production and sweat production, though receiving the same information about the thermal state of the body, are independent effectors with different thresholds and gains. Coordination between one of these effectors and the vasomotor effector is achieved by the fact that changes in the (heat transfer) process evoked by vasomotor control are taken into account by the metabolic/sweat processor.

  6. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  7. Driving student-centred calculus: results of a comprehensive case study for Kaizen learning in the Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Heim, Bernhard; Rupp, Florian; Viet, Nils; Stockhausen, Paul v.; Gallenkämper, Jonas; Kreuzer, Judith

    2015-04-01

    The art of teaching freshmen students is undergoing a rapid paradigm change. Classical forms of teaching are not applicable any more and an unmanageable offer of new multimedia tools and concepts is glutting the market. Moreover, compared to previous courses, the class size triples. In view of these challenges, we implemented a new teaching concept best described as Kaizen learning. By Kaizen learning, we define a teaching philosophy that is based on a concise mix of short learning units (with feedback loops and tests) and of carefully chosen repetitions (also with feedback loops and tests) to calibrate a course for the students. Here, this intensive blended, student-centred learning paradigm is analysed together with its direct impact on the students' performance. This case study leads to easy-to-implement key drivers for successfully teaching science in Oman, such as (1) human-human interaction, (2) clearly communicated expectations, (3) avoidance of a short-term learning attitude, (4) a no-calculator policy, (5) continuous Kaizen learning, and (6) balanced combination of traditional teaching and e-learning.

  8. Fundamental Physics and Practical Applications of Electromagnetic Local Flow Control in High Speed Flows (Rutgers)

    DTIC Science & Technology

    2010-02-16

    field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than

  9. A plasma rotation control scheme for NSTX and NSTX-U

    NASA Astrophysics Data System (ADS)

    Goumiri, Imene

    2016-10-01

    Plasma rotation has been proven to play a key role in stabilizing large scale instabilities and improving plasma confinement by suppressing micro-turbulence. A model-based feedback system which controls the plasma rotation profile on the National Spherical Torus Experiment (NSTX) and its upgrade (NSTX-U) is presented. The first part of this work uses experimental measurements from NSTX as a starting point and models the control of plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Whether based on the data-driven model for NSTX or purely predictive modeling for NSTX-U, a reduced order model based feedback controller was designed. Predictive simulations using the TRANSP plasma transport code with the actuator input determined by the controller (controller-in-the-loop) show that the controller drives the plasma's rotation to the desired profiles in less than 100 ms given practical constraints on the actuators and the available real-time rotation measurements. This is the first time that TRANSP has been used as a plasma in simulator in a closed feedback loop test. Another approach to control simultaneously the toroidal rotation profile as well as βN is then shown for NSTX-U. For this case, the neutral beams (actuators) have been augmented in the modeling to match the upgrade version which spread the injection throughout the edge of the plasma. Control robustness in stability and performance has then been tested and used to predict the limits of the resulting controllers when the energy confinement time (τE) and the momentum diffusivity coefficient (χϕ) vary.

  10. Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.

    PubMed

    Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong

    2014-07-01

    In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  12. Neural Approximation-Based Adaptive Control for a Class of Nonlinear Nonstrict Feedback Discrete-Time Systems.

    PubMed

    Yan-Jun Liu; Shu Li; Shaocheng Tong; Chen, C L Philip

    2017-07-01

    In this paper, an adaptive control approach-based neural approximation is developed for a class of uncertain nonlinear discrete-time (DT) systems. The main characteristic of the considered systems is that they can be viewed as a class of multi-input multioutput systems in the nonstrict feedback structure. The similar control problem of this class of systems has been addressed in the past, but it focused on the continuous-time systems. Due to the complicacies of the system structure, it will become more difficult for the controller design and the stability analysis. To stabilize this class of systems, a new recursive procedure is developed, and the effect caused by the noncausal problem in the nonstrict feedback DT structure can be solved using a semirecurrent neural approximation. Based on the Lyapunov difference approach, it is proved that all the signals of the closed-loop system are semiglobal, ultimately uniformly bounded, and a good tracking performance can be guaranteed. The feasibility of the proposed controllers can be validated by setting a simulation example.

  13. Enhancement of vehicle dynamics via an innovative magnetorheological fluid limited slip differential

    NASA Astrophysics Data System (ADS)

    Russo, Riccardo; Strano, Salvatore; Terzo, Mario

    2016-03-01

    A new automotive controllable differential is proposed and tested, firstly in software environment and, successively, following a hardware in the loop procedure based on the employment of the physical prototype. The device is based on the employment of magnetorheological fluid, whose magnetization allows to generate the locking torque and, consequently, the corrective yaw moment. A vehicle model has been derived and adopted for the design of a yaw moment controller based on the sliding mode approach. Some feedbacks requested by the controller have been estimated by means of an extended Kalman filter. The obtained results show the effectiveness of the device in terms of vehicle dynamics improvement. Indeed, the results reached by the vehicle in presence of the new differential confirm the improved performances for both steady and unsteady state manoeuvres. Moreover, the hardware in the loop testing allows to overcome the limits due to the modelling of the differential, fully validating the physical prototype.

  14. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft.

    DTIC Science & Technology

    1986-05-31

    Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,

  15. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Turner, J. D.; Chun, H. M.

    1986-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.

  16. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  17. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  18. Identification of pilot-vehicle dynamics from simulation and flight test

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.

  19. Using Control Theory to Teach Control Theory (or Any Other Course).

    ERIC Educational Resources Information Center

    Mansfield, George

    1979-01-01

    Describes an undergraduate automatic controls course in which the teaching-learning process is regarded as a closed loop feedback system. The three basic components of the system: the controller, the plant, and the learning sensors are identified as the teacher, the student, and student feedback respectively. (SMB)

  20. Nonlinear cellular dynamics of keratinocytes in normal and psoriatic epidermis under action of UV radiation

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Medvedev, Boris A.; Gribko, Tatyana V.

    2004-05-01

    The semi-phenomenological model of epidermal cell dynamics is submitted. The model takes into account three types of basal layer keratinocytes (stem, transient amplifying, terminally differentiated), distribution of first two types cells on mitotic cycle stages and resting states, keratinocytes-lymphocytes interactions that provide a positive feedback loop, influence of more differentiated cells on their progenitors that provide a negative feedback loop. Simplified model are developed and its stationary solutions are received. The opportunity of interpretation of some received modes as corresponding to various stages of psoriasis is discussed. Influence of UV-radiation on transitions between various modes of epidermis functioning is qualitatively analyzed.

  1. ? PID output-feedback control under event-triggered protocol

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.

    2018-07-01

    This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.

  2. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina

    2015-10-06

    Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.

  3. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.

  4. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

    PubMed

    Mansouri, Misagh; Reinbolt, Jeffrey A

    2012-05-11

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB

    PubMed Central

    Mansouri, Misagh; Reinbolt, Jeffrey A.

    2013-01-01

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351

  6. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1994-01-01

    During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.

  7. Frequency adaptation in controlled stochastic resonance utilizing delayed feedback method: two-pole approximation for response function.

    PubMed

    Tutu, Hiroki

    2011-06-01

    Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.

  8. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  9. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.

    PubMed

    Pruneda-Paz, Jose L; Breton, Ghislain; Para, Alessia; Kay, Steve A

    2009-03-13

    Transcriptional feedback loops constitute the molecular circuitry of the plant circadian clock. In Arabidopsis, a core loop is established between CCA1 and TOC1. Although CCA1 directly represses TOC1, the TOC1 protein has no DNA binding domains, which suggests that it cannot directly regulate CCA1. We established a functional genomic strategy that led to the identification of CHE, a TCP transcription factor that binds specifically to the CCA1 promoter. CHE is a clock component partially redundant with LHY in the repression of CCA1. The expression of CHE is regulated by CCA1, thus adding a CCA1/CHE feedback loop to the Arabidopsis circadian network. Because CHE and TOC1 interact, and CHE binds to the CCA1 promoter, a molecular linkage between TOC1 and CCA1 gene regulation is established.

  10. Near-IR laser frequency standard stabilized using FM-spectroscopy

    NASA Astrophysics Data System (ADS)

    Ružička, Bohdan; Číp, Ondřej; Lazar, Josef

    2006-02-01

    At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.

  11. Review of optoelectronic oscillators based on modelocked lasers and resonant tunneling diode optoelectronics

    NASA Astrophysics Data System (ADS)

    Ironside, C. N.; Haji, Mohsin; Hou, Lianping; Akbar, Jehan; Kelly, Anthony E.; Seunarine, K.; Romeira, Bruno; Figueiredo, José M. L.

    2011-05-01

    Optoelectronic oscillators can provide low noise oscillators at radio frequencies in the 0.5-40 GHz range and in this paper we review two recently introduced approaches to optoelectronic oscillators. Both approaches use an optical fibre feedback loop. One approach is based on passively modelocked laser diodes and in a 40 GHz oscillator achieves up to 30 dB noise reduction. The other approach is based on resonant tunneling diode optoelectronic devices and in a 1.4 GHz oscillator can achieve up to 30 dB noise reduction.

  12. Passivity-Based Control for Two-Wheeled Robot Stabilization

    NASA Astrophysics Data System (ADS)

    Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu

    2018-04-01

    A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.

  13. Barriers to effective feedback in undergraduate medical education: Case study from Saudi Arabia.

    PubMed

    Alrebish, Saleh Ali

    2018-01-01

    Students' feedback is an essential source of data for evaluation and improvement of the quality of education. Nonetheless, feedback may be routinely practised for accreditation purposes, and it is considered as a ritual employed by students, which makes its effectiveness questionable. The aim of this study is to explore and analyze the students' perceptions about the importance of feedback and the barriers for effective feedback and suggest proper ways to overcome these barriers. This cross-sectional, anonymous, questionnaire-based study was conducted in the College of Medicine, Qassim University. A total of 299 medical students, composed of 185 male and 114 female, from different levels during December 2015 participated. Mean value, standard deviation, and proportion were used to quantify the quantitative and categorical study and outcome variables. 47% of students responded to the questionnaire with more participation of juniors and females. Half of the students believed that feedback is not important and agreed for the presence of barriers for effective feedback. 5 th level students exhibited higher resistance for participation in feedback, and there was a significant difference between male and female students. Promisingly, most of the participant did not believe the presence cultural barrier for feedback. Saudi medical students are willing to involve in effective feedback. Some barriers that make feedback practised as tokenistic is present. They can be overcome through proper orientation and appropriate closing the loop with response to the feedback declared to students. Further investigation is needed to explore barriers to feedback in higher education settings and help designing an approach to enhance the effectiveness of feedback on a national level.

  14. Global output feedback control for a class of high-order feedforward nonlinear systems with input delay.

    PubMed

    Zha, Wenting; Zhai, Junyong; Fei, Shumin

    2013-07-01

    This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft

    DTIC Science & Technology

    2017-06-01

    International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing

  16. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  17. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  18. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  19. Simple adaptive control system design for a quadrotor with an internal PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-01

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  20. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  1. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    PubMed

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Convection and the Soil-Moisture Precipitation Feedback

    NASA Astrophysics Data System (ADS)

    Schar, C.; Froidevaux, P.; Keller, M.; Schlemmer, L.; Langhans, W.; Schmidli, J.

    2014-12-01

    The soil moisture - precipitation (SMP) feedback is of key importance for climate and climate change. A positive SMP feedback tends to amplify the hydrological response to external forcings (and thereby fosters precipitation and drought extremes), while a negative SMP feedback tends to moderate the influence of external forcings (and thereby stabilizes the hydrological cycle). The sign of the SMP feedback is poorly constrained by the current literature. Theoretical, modeling and observational studies partly disagree, and have suggested both negative and positive feedback loops. Can wet soil anomalies indeed result in either an increase or a decrease of precipitation (positive or negative SMP feedback, respectively)? Here we investigate the local SMP feedback using real-case and idealized convection-resolving simulations. An idealized simulation strategy is developed, which is able to replicate both signs of the feedback loop, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches, where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the mid-tropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection), and high CAPE over wet patches (for the generation of precipitation). The results of this study will also be discussed in relation to climate change scenarios that exhibit large biases in surface temperature and interannual variability over mid-latitude summer climates, both over Europe and North America. It is argued that parameterized convection may contribute towards such biases by overemphasizing a positive SMP feedback.

  3. Changes in regional and temporal patterns of activity associated with aging during the performance of a lexical set-shifting task.

    PubMed

    Martins, Ruben; Simard, France; Provost, Jean-Sebastien; Monchi, Oury

    2012-06-01

    Some older individuals seem to use compensatory mechanisms to maintain high-level performance when submitted to cognitive tasks. However, whether and how these mechanisms affect fronto-striatal activity has never been explored. The purpose of this study was to investigate how aging affects brain patterns during the performance of a lexical analog of the Wisconsin Card Sorting Task, which has been shown to strongly depend on fronto-striatal activity. In the present study, both younger and older individuals revealed significant fronto-striatal loop activity associated with planning and execution of set-shifts, though age-related striatal activity reduction was observed. Most importantly, while the younger group showed the involvement of a "cognitive loop" during the receiving negative feedback period (which indicates that a set-shift will be required to perform the following trial) and the involvement of a "motor loop" during the matching after negative feedback period (when the set-shift must be performed), older participants showed significant activation of both loops during the matching after negative feedback period only. These findings are in agreement with the "load-shift" model postulated by Velanova et al. (Velanova K, Lustig C, Jacoby LL, Buckner RL. 2007. Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex. 17:1033-1046.) and indicate that the model is not limited to memory retrieval but also applies to executive processes relying on fronto-striatal regions.

  4. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  5. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  6. Tensor Spectral Clustering for Partitioning Higher-order Network Structures.

    PubMed

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2015-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  7. Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    PubMed Central

    Benson, Austin R.; Gleich, David F.; Leskovec, Jure

    2016-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399

  8. Nonlinear feedback control for high alpha flight

    NASA Technical Reports Server (NTRS)

    Stalford, Harold

    1990-01-01

    Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions.

  9. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  10. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  11. Tissue modification with feedback: the smart scalpel

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  12. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  13. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  14. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    PubMed

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  15. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  16. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    PubMed

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  17. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  18. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  19. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    PubMed

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  20. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    PubMed

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

Top