Sample records for feedback polynomial matrix

  1. Necessary and sufficient conditions for the complete controllability and observability of systems in series using the coprime factorization of a rational matrix

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Nahum, C. D.

    1975-01-01

    The series connection of two linear time-invariant systems that have minimal state space system descriptions is considered. From these descriptions, strict-system-equivalent polynomial matrix system descriptions in the manner of Rosenbrock are derived. They are based on the factorization of the transfer matrix of the subsystems as a ratio of two right or left coprime polynomial matrices. They give rise to a simple polynomial matrix system description of the tandem connection. Theorem 1 states that for the complete controllability and observability of the state space system description of the series connection, it is necessary and sufficient that certain 'denominator' and 'numerator' groups are coprime. Consequences for feedback systems are drawn in Corollary 1. The role of pole-zero cancellations is explained by Lemma 3 and Corollaires 2 and 3.

  2. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    NASA Astrophysics Data System (ADS)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  3. Robust consensus control with guaranteed rate of convergence using second-order Hurwitz polynomials

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael; Corless, Martin

    2017-10-01

    This paper considers homogeneous networks of general, linear time-invariant, second-order systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilisable. We show that consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. To achieve this, we provide a new and simple derivation of the conditions for a second-order polynomial with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback.

  4. Global asymptotic stabilisation of rational dynamical systems based on solving BMI

    NASA Astrophysics Data System (ADS)

    Esmaili, Farhad; Kamyad, A. V.; Jahed-Motlagh, Mohammad Reza; Pariz, Naser

    2017-08-01

    In this paper, the global asymptotic stabiliser design of rational systems is studied in detail. To develop the idea, the state equations of the system are transformed to a new coordinate via polynomial transformation and the state feedback control law. This in turn is followed by the satisfaction of the linear growth condition (i.e. Lipschitz at zero). Based on a linear matrix inequality solution, the system in the new coordinate is globally asymptotically stabilised and then, leading to the global asymptotic stabilisation of the primary system. The polynomial transformation coefficients are derived by solving the bilinear matrix inequality problem. To confirm the capability of this method, three examples are highlighted.

  5. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  6. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  7. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  8. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.

  9. ? and ? nonquadratic stabilisation of discrete-time Takagi-Sugeno systems based on multi-instant fuzzy Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2015-01-01

    The problem of state feedback control design for discrete-time Takagi-Sugeno (TS) (T-S) fuzzy systems is investigated in this paper. A Lyapunov function, which is quadratic in the state and presents a multi-polynomial dependence on the fuzzy weighting functions at the current and past instants of time, is proposed.This function contains, as particular cases, other previous Lyapunov functions already used in the literature, being able to provide less conservative conditions of control design for TS fuzzy systems. The structure of the proposed Lyapunov function also motivates the design of a new stabilising compensator for Takagi-Sugeno fuzzy systems. The main novelty of the proposed state feedback control law is that the gain is composed of matrices with multi-polynomial dependence on the fuzzy weighting functions at a set of past instants of time, including the current one. The conditions for the existence of a stabilising state feedback control law that minimises an upper bound to the ? or ? norms are given in terms of linear matrix inequalities. Numerical examples show that the approach can be less conservative and more efficient than other methods available in the literature.

  10. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  11. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  12. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

    PubMed Central

    Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network. PMID:27959927

  13. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    PubMed

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  14. Algorithms for Solvents and Spectral Factors of Matrix Polynomials

    DTIC Science & Technology

    1981-01-01

    spectral factors of matrix polynomials LEANG S. SHIEHt, YIH T. TSAYt and NORMAN P. COLEMANt A generalized Newton method , based on the contracted gradient...of a matrix poly- nomial, is derived for solving the right (left) solvents and spectral factors of matrix polynomials. Two methods of selecting initial...estimates for rapid convergence of the newly developed numerical method are proposed. Also, new algorithms for solving complete sets of the right

  15. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  16. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. More on rotations as spin matrix polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtright, Thomas L.

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  18. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  19. Numerical solutions for Helmholtz equations using Bernoulli polynomials

    NASA Astrophysics Data System (ADS)

    Bicer, Kubra Erdem; Yalcinbas, Salih

    2017-07-01

    This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.

  20. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  1. Analytical Solutions for the Resonance Response of Goupillaud-type Elastic Media Using Z-transform Methods

    DTIC Science & Technology

    2012-02-01

    using z-transform methods. The determinant of the resulting global system matrix in the z-space |Am| is a palindromic polynomial with real...resulting global system matrix in the z-space |Am| is a palindromic polynomial with real coefficients. The zeros of the palindromic polynomial are distinct...Goupillaud-type multilayered media. In addition, the present treatment uses a global matrix method that is attributed to Knopoff [16], rather than the

  2. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  3. Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations

    DTIC Science & Technology

    2012-06-01

    the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into

  4. Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.

    2017-11-01

    This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.

  5. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  6. Matrix of moments of the Legendre polynomials and its application to problems of electrostatics

    NASA Astrophysics Data System (ADS)

    Savchenko, A. O.

    2017-01-01

    In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.

  7. Design, parametrization, and pole placement of stabilizing output feedback compensators via injective cogenerator quotient signal modules.

    PubMed

    Blumthaler, Ingrid; Oberst, Ulrich

    2012-03-01

    Control design belongs to the most important and difficult tasks of control engineering and has therefore been treated by many prominent researchers and in many textbooks, the systems being generally described by their transfer matrices or by Rosenbrock equations and more recently also as behaviors. Our approach to controller design uses, in addition to the ideas of our predecessors on coprime factorizations of transfer matrices and on the parametrization of stabilizing compensators, a new mathematical technique which enables simpler design and also new theorems in spite of the many outstanding results of the literature: (1) We use an injective cogenerator signal module ℱ over the polynomial algebra [Formula: see text] (F an infinite field), a saturated multiplicatively closed set T of stable polynomials and its quotient ring [Formula: see text] of stable rational functions. This enables the simultaneous treatment of continuous and discrete systems and of all notions of stability, called T-stability. We investigate stabilizing control design by output feedback of input/output (IO) behaviors and study the full feedback IO behavior, especially its autonomous part and not only its transfer matrix. (2) The new technique is characterized by the permanent application of the injective cogenerator quotient signal module [Formula: see text] and of quotient behaviors [Formula: see text] of [Formula: see text]-behaviors B. (3) For the control tasks of tracking, disturbance rejection, model matching, and decoupling and not necessarily proper plants we derive necessary and sufficient conditions for the existence of proper stabilizing compensators with proper and stable closed loop behaviors, parametrize all such compensators as IO behaviors and not only their transfer matrices and give new algorithms for their construction. Moreover we solve the problem of pole placement or spectral assignability for the complete feedback behavior. The properness of the full feedback behavior ensures the absence of impulsive solutions in the continuous case, and that of the compensator enables its realization by Kalman state space equations or elementary building blocks. We note that every behavior admits an IO decomposition with proper transfer matrix, but that most of these decompositions do not have this property, and therefore we do not assume the properness of the plant. (4) The new technique can also be applied to more general control interconnections according to Willems, in particular to two-parameter feedback compensators and to the recent tracking framework of Fiaz/Takaba/Trentelman. In contrast to these authors, however, we pay special attention to the properness of all constructed transfer matrices which requires more subtle algorithms.

  8. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  9. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    PubMed

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  10. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  11. Derivatives of random matrix characteristic polynomials with applications to elliptic curves

    NASA Astrophysics Data System (ADS)

    Snaith, N. C.

    2005-12-01

    The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.

  12. Periodic binary sequence generators: VLSI circuits considerations

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1984-01-01

    Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.

  13. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  14. On generalized Melvin solution for the Lie algebra E_6

    NASA Astrophysics Data System (ADS)

    Bolokhov, S. V.; Ivashchuk, V. D.

    2017-10-01

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.

  15. A comparison of companion matrix methods to find roots of a trigonometric polynomial

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2013-08-01

    A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements, the ECM algorithm is noticeably inferior to the complex-valued companion matrix in simplicity, ease of programming, and accuracy.

  16. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  17. Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2017-04-01

    As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.

  18. Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    DTIC Science & Technology

    2009-03-01

    60 3.8 Positive ωi Static Thrust Fan Characterization Polynomial Coefficients . . 62 3.9 Negative ωi Static Thrust Fan...Characterization Polynomial Coefficients . 62 4.1 Coefficients for SimSAT II’s Air Drag Polynomial Function . . . . . . . . . . . 78 5.1 OLOC Simulation...maneuver. Researchers using OCT identified that naturally occurring aerodynamic drag and gravity forces could be exploited in such a way that the CMGs

  19. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  20. A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1993-01-01

    A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.

  1. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  2. Polynomial solution of quantum Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Tierz, Miguel

    2017-05-01

    We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.

  3. The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chunxia; Li, Shi-Hao

    2018-06-01

    This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

  4. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  5. A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems

    DOE PAGES

    Li, Ruipeng; Xi, Yuanzhe; Vecharynski, Eugene; ...

    2016-08-16

    Polynomial filtering can provide a highly effective means of computing all eigenvalues of a real symmetric (or complex Hermitian) matrix that are located in a given interval, anywhere in the spectrum. This paper describes a technique for tackling this problem by combining a thick-restart version of the Lanczos algorithm with deflation ("locking'') and a new type of polynomial filter obtained from a least-squares technique. Furthermore, the resulting algorithm can be utilized in a “spectrum-slicing” approach whereby a very large number of eigenvalues and associated eigenvectors of the matrix are computed by extracting eigenpairs located in different subintervals independently from onemore » another.« less

  6. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  7. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  8. Multi-indexed (q-)Racah polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2012-09-01

    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.

  9. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  10. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  11. A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Harris, J. D.

    1971-01-01

    The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.

  12. The generalized pole assignment problem. [dynamic output feedback problems

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Two dynamic output feedback problems for a linear, strictly proper system are considered, along with their interrelationships. The problems are formulated in the frequency domain and investigated in terms of linear equations over rings of polynomials. Necessary and sufficient conditions are expressed using genericity.

  13. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    PubMed

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  14. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  15. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices.

    PubMed

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.

  16. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices

    PubMed Central

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164–168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work. PMID:26479495

  17. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restrictedmore » to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)« less

  18. Kostant polynomials and the cohomology ring for G/B

    PubMed Central

    Billey, Sara C.

    1997-01-01

    The Schubert calculus for G/B can be completely determined by a certain matrix related to the Kostant polynomials introduced in section 5 of Bernstein, Gelfand, and Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ. Math. Surv. 28, 1–26]. The polynomials are defined by vanishing properties on the orbit of a regular point under the action of the Weyl group. For each element w in the Weyl group the polynomials also have nonzero values on the orbit points corresponding to elements which are larger in the Bruhat order than w. The main theorem given here is an explicit formula for these values. The matrix of orbit values can be used to determine the cup product for the cohomology ring for G/B, using only linear algebra or as described by Lascoux and Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982) C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs of all the theorems will appear in a forthcoming paper. PMID:11038536

  19. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  20. Universal shocks in the Wishart random-matrix ensemble.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  1. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  2. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  3. A sparse matrix-vector multiplication based algorithm for accurate density matrix computations on systems of millions of atoms

    NASA Astrophysics Data System (ADS)

    Ghale, Purnima; Johnson, Harley T.

    2018-06-01

    We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.

  4. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  5. Linear precoding based on polynomial expansion: reducing complexity in massive MIMO.

    PubMed

    Mueller, Axel; Kammoun, Abla; Björnson, Emil; Debbah, Mérouane

    Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively "antenna-efficient" regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.

  6. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  7. Wavefront reconstruction algorithm based on Legendre polynomials for radial shearing interferometry over a square area and error analysis.

    PubMed

    Kewei, E; Zhang, Chen; Li, Mengyang; Xiong, Zhao; Li, Dahai

    2015-08-10

    Based on the Legendre polynomials expressions and its properties, this article proposes a new approach to reconstruct the distorted wavefront under test of a laser beam over square area from the phase difference data obtained by a RSI system. And the result of simulation and experimental results verifies the reliability of the method proposed in this paper. The formula of the error propagation coefficients is deduced when the phase difference data of overlapping area contain noise randomly. The matrix T which can be used to evaluate the impact of high-orders Legendre polynomial terms on the outcomes of the low-order terms due to mode aliasing is proposed, and the magnitude of impact can be estimated by calculating the F norm of the T. In addition, the relationship between ratio shear, sampling points, terms of polynomials and noise propagation coefficients, and the relationship between ratio shear, sampling points and norms of the T matrix are both analyzed, respectively. Those research results can provide an optimization design way for radial shearing interferometry system with the theoretical reference and instruction.

  8. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  9. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    NASA Astrophysics Data System (ADS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.

  10. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  11. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  12. A Compact Formula for Rotations as Spin Matrix Polynomials

    DOE PAGES

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-08-12

    Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.

  13. Vector-valued Jack polynomials and wavefunctions on the torus

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    2017-06-01

    The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.

  14. Transfer matrix computation of generalized critical polynomials in percolation

    DOE PAGES

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-09-27

    Percolation thresholds have recently been studied by means of a graph polynomial PB(p), henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph B, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of P B(p) in [0, 1] either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increasing size of B. Initially P B(p) was defined by a contraction-deletion identity, similar to that satisfied by the Tuttemore » polynomial. Here, we give an alternative probabilistic definition of P B(p), which allows for much more efficient computations, by using the transfer matrix, than was previously possible with contraction-deletion. We present bond percolation polynomials for the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, much larger than the previous limit of 36 edges using contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. For the largest bases, we obtain the thresholds p c(4, 82) = 0.676 803 329 · · ·, p c(kagome) = 0.524 404 998 · · ·, p c(3, 122) = 0.740 420 798 · · ·, comparable to the best simulation results. We also show that the alternative definition of P B(p) can be applied to study site percolation problems.« less

  15. J3Gen: A PRNG for Low-Cost Passive RFID

    PubMed Central

    Melià-Seguí, Joan; Garcia-Alfaro, Joaquin; Herrera-Joancomartí, Jordi

    2013-01-01

    Pseudorandom number generation (PRNG) is the main security tool in low-cost passive radio-frequency identification (RFID) technologies, such as EPC Gen2. We present a lightweight PRNG design for low-cost passive RFID tags, named J3Gen. J3Gen is based on a linear feedback shift register (LFSR) configured with multiple feedback polynomials. The polynomials are alternated during the generation of sequences via a physical source of randomness. J3Gen successfully handles the inherent linearity of LFSR based PRNGs and satisfies the statistical requirements imposed by the EPC Gen2 standard. A hardware implementation of J3Gen is presented and evaluated with regard to different design parameters, defining the key-equivalence security and nonlinearity of the design. The results of a SPICE simulation confirm the power-consumption suitability of the proposal. PMID:23519344

  16. Universal Racah matrices and adjoint knot polynomials: Arborescent knots

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2016-04-01

    By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.

  17. Consensus seeking in a network of discrete-time linear agents with communication noises

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhou, Chao; Wang, Ming

    2015-07-01

    This paper studies the mean square consensus of discrete-time linear time-invariant multi-agent systems with communication noises. A distributed consensus protocol, which is composed of the agent's own state feedback and the relative states between the agent and its neighbours, is proposed. A time-varying consensus gain a[k] is applied to attenuate the effect of noises which inherits in the inaccurate measurement of relative states with neighbours. A polynomial, namely 'parameter polynomial', is constructed. And its coefficients are the parameters in the feedback gain vector of the proposed protocol. It turns out that the parameter polynomial plays an important role in guaranteeing the consensus of linear multi-agent systems. By the proposed protocol, necessary and sufficient conditions for mean square consensus are presented under different topology conditions: (1) if the communication topology graph has a spanning tree and every node in the graph has at least one parent node, then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, ∑∞k = 0a2[k] < ∞ and all roots of the parameter polynomial are in the unit circle; (2) if the communication topology graph has a spanning tree and there exits one node without any parent node (the leader-follower case), then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, limk → ∞a[k] = 0 and all roots of the parameter polynomial are in the unit circle; (3) if the communication topology graph does not have a spanning tree, then the mean square consensus can never be achieved. Finally, one simulation example on the multiple aircrafts system is provided to validate the theoretical analysis.

  18. Colored knot polynomials for arbitrary pretzel knots and links

    DOE PAGES

    Galakhov, D.; Melnikov, D.; Mironov, A.; ...

    2015-04-01

    A very simple expression is conjectured for arbitrary colored Jones and HOMFLY polynomials of a rich (g+1)-parametric family of pretzel knots and links. The answer for the Jones and HOMFLY is fully and explicitly expressed through the Racah matrix of Uq(SU N), and looks related to a modular transformation of toric conformal block. Knot polynomials are among the hottest topics in modern theory. They are supposed to summarize nicely representation theory of quantum algebras and modular properties of conformal blocks. The result reported in the present letter, provides a spectacular illustration and support to this general expectation.

  19. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  20. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  1. Control Synthesis of Discrete-Time T-S Fuzzy Systems: Reducing the Conservatism Whilst Alleviating the Computational Burden.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Peng, Chen

    2017-09-01

    The augmented multi-indexed matrix approach acts as a powerful tool in reducing the conservatism of control synthesis of discrete-time Takagi-Sugeno fuzzy systems. However, its computational burden is sometimes too heavy as a tradeoff. Nowadays, reducing the conservatism whilst alleviating the computational burden becomes an ideal but very challenging problem. This paper is toward finding an efficient way to achieve one of satisfactory answers. Different from the augmented multi-indexed matrix approach in the literature, we aim to design a more efficient slack variable approach under a general framework of homogenous matrix polynomials. Thanks to the introduction of a new extended representation for homogeneous matrix polynomials, related matrices with the same coefficient are collected together into one sole set and thus those redundant terms of the augmented multi-indexed matrix approach can be removed, i.e., the computational burden can be alleviated in this paper. More importantly, due to the fact that more useful information is involved into control design, the conservatism of the proposed approach as well is less than the counterpart of the augmented multi-indexed matrix approach. Finally, numerical experiments are given to show the effectiveness of the proposed approach.

  2. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  3. Torus Knot Polynomials and Susy Wilson Loops

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2014-12-01

    We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.

  4. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  5. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  6. Calculation of Radar Probability of Detection in K-Distributed Sea Clutter and Noise

    DTIC Science & Technology

    2011-04-01

    Laguerre polynomials are generated from a recurrence relation, and the nodes and weights are calculated from the eigenvalues and eigenvectors of a...B.P. Flannery, Numerical Recipes in Fortran, Second Edition, Cambridge University Press (1992). 12. W. Gautschi, Orthogonal Polynomials (in Matlab...the integration, with the nodes and weights calculated using matrix methods, so that a general purpose numerical integration routine is not required

  7. Polynomial approximation of functions of matrices and its application to the solution of a general system of linear equations

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1987-01-01

    During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.

  8. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Pazner, Will; Persson, Per-Olof

    2018-02-01

    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.

  9. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  10. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  11. Current advances on polynomial resultant formulations

    NASA Astrophysics Data System (ADS)

    Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar

    2017-08-01

    Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.

  12. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  13. State-vector formalism and the Legendre polynomial solution for modelling guided waves in anisotropic plates

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin

    2018-01-01

    We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.

  14. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  15. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE PAGES

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    2017-06-22

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  16. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  17. Coherent orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less

  18. Resonance Phenomena in Goupillaud-type Media

    DTIC Science & Technology

    2010-10-01

    time-harmonic forcing function at one end, with the other end fixed. Analytical stress solutions are derived from a global system of recursion...relationships using z-transform methods, where the determinant of the resulting global system matrix |Am| in the z-space is a palindromic polynomial with real...media (35). The present treatment uses a global matrix method that is attributed to Knopoff (36), rather than the Thomsen-Haskell transfer matrix

  19. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  20. Fast Minimum Variance Beamforming Based on Legendre Polynomials.

    PubMed

    Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae

    2016-09-01

    Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.

  1. Asymptotic analysis of the density of states in random matrix models associated with a slowly decaying weight

    NASA Astrophysics Data System (ADS)

    Kuijlaars, A. B. J.

    2001-08-01

    The asymptotic behavior of polynomials that are orthogonal with respect to a slowly decaying weight is very different from the asymptotic behavior of polynomials that are orthogonal with respect to a Freud-type weight. While the latter has been extensively studied, much less is known about the former. Following an earlier investigation into the zero behavior, we study here the asymptotics of the density of states in a unitary ensemble of random matrices with a slowly decaying weight. This measure is also naturally connected with the orthogonal polynomials. It is shown that, after suitable rescaling, the weak limit is the same as the weak limit of the rescaled zeros.

  2. A computer program to find the kernel of a polynomial operator

    NASA Technical Reports Server (NTRS)

    Gejji, R. R.

    1976-01-01

    This paper presents a FORTRAN program written to solve for the kernel of a matrix of polynomials with real coefficients. It is an implementation of Sain's free modular algorithm for solving the minimal design problem of linear multivariable systems. The structure of the program is discussed, together with some features as they relate to questions of implementing the above method. An example of the use of the program to solve a design problem is included.

  3. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    PubMed

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  4. Polynomial Supertree Methods Revisited

    PubMed Central

    Brinkmeyer, Malte; Griebel, Thasso; Böcker, Sebastian

    2011-01-01

    Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study comparing the performance of MRP and the polynomial supertree methods MinCut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC, PhySIC_IST, and super distance matrix. We consider both quality and resolution of the reconstructed supertrees. Our findings illustrate the tradeoff between accuracy and running time in supertree construction, as well as the pros and cons of voting- and veto-based supertree approaches. Based on our results, we make some general suggestions for supertree methods yet to come. PMID:22229028

  5. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  6. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.

  7. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrixmore » is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10 different input distributions or histograms.« less

  8. Transfer matrix computation of critical polynomials for two-dimensional Potts models

    DOE PAGES

    Jacobsen, Jesper Lykke; Scullard, Christian R.

    2013-02-04

    We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial P B(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = e K — 1 of P B(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasingmore » the size of B in an appropriate way. In earlier work, P B(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of P B(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 8 2), kagome, and (3, 12 2) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures v c obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain v c(4, 8 2) = 3.742 489 (4), v c(kagome) = 1.876 459 7 (2), and v c(3, 12 2) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.« less

  9. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  10. The Karlin-McGregor formula for a variant of a discrete version of Walsh's spider

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. Alberto

    2009-10-01

    We consider a variant of a discrete space version of Walsh's spider, see Walsh (1978 Temps Locaux, Asterisque vol 52-53 (Paris: Soc. Math. de France)) as well as Evans and Sowers (2003 Ann. Probab. 31 486-527 and its references). This process can be seen as an instance of a quasi-birth-and-death process, a class of random walks for which the classical theory of Karlin and McGregor can be nicely adapted as in Dette, Reuther, Studden and Zygmunt (2006 SIAM J. Matrix Anal. Appl. 29 117-42), Grünbaum (2007 Probability, Geometry and Integrable Systems ed Pinsky and Birnir vol 55 (Berkeley, CA: MSRI publication) pp. 241-60, see also arXiv math PR/0703375), Grünbaum (2007 Dagstuhl Seminar Proc. 07461 on Numerical Methods in Structured Markov Chains ed Bini), Grünbaum (2008 Proceedings of IWOTA) and Grünbaum and de la Iglesia (2008 SIAM J. Matrix Anal. Appl. 30 741-63). We give here a weight matrix that makes the corresponding matrix-valued orthogonal polynomials orthogonal to each other. We also determine the polynomials themselves and thus obtain all the ingredients to apply a matrix-valued version of the Karlin-McGregor formula. Dedicated to Jack Schwartz, who passed away on March 2, 2009.

  11. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  12. Large-N and Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.

  13. Research on the application of a decoupling algorithm for structure analysis

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1980-01-01

    The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.

  14. Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100

    Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less

  15. Factorization of differential expansion for non-rectangular representations

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2018-04-01

    Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.

  16. BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees.

    PubMed

    Fleischauer, Markus; Böcker, Sebastian

    2018-01-01

    Supertree methods enable the reconstruction of large phylogenies. The supertree problem can be formalized in different ways in order to cope with contradictory information in the input. Some supertree methods are based on encoding the input trees in a matrix; other methods try to find minimum cuts in some graph. Recently, we introduced Bad Clade Deletion (BCD) supertrees which combines the graph-based computation of minimum cuts with optimizing a global objective function on the matrix representation of the input trees. The BCD supertree method has guaranteed polynomial running time and is very swift in practice. The quality of reconstructed supertrees was superior to matrix representation with parsimony (MRP) and usually on par with SuperFine for simulated data; but particularly for biological data, quality of BCD supertrees could not keep up with SuperFine supertrees. Here, we present a beam search extension for the BCD algorithm that keeps alive a constant number of partial solutions in each top-down iteration phase. The guaranteed worst-case running time of the new algorithm is still polynomial in the size of the input. We present an exact and a randomized subroutine to generate suboptimal partial solutions. Both beam search approaches consistently improve supertree quality on all evaluated datasets when keeping 25 suboptimal solutions alive. Supertree quality of the BCD Beam Search algorithm is on par with MRP and SuperFine even for biological data. This is the best performance of a polynomial-time supertree algorithm reported so far.

  17. Polynomial fuzzy observer designs: a sum-of-squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O

    2012-10-01

    This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  19. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, Marcel

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  20. The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix

    NASA Astrophysics Data System (ADS)

    Antipov, Yuri A.

    2014-10-01

    A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.

  1. Elastic strain field due to an inclusion of a polyhedral shape with a non-uniform lattice misfit

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Dvurechenskii, A. V.

    2017-03-01

    An analytical solution in a closed form is obtained for the three-dimensional elastic strain distribution in an unlimited medium containing an inclusion with a coordinate-dependent lattice mismatch (an eigenstrain). Quantum dots consisting of a solid solution with a spatially varying composition are examples of such inclusions. It is assumed that both the inclusion and the surrounding medium (the matrix) are elastically isotropic and have the same Young's modulus and Poisson ratio. The inclusion shape is supposed to be an arbitrary polyhedron, and the coordinate dependence of the lattice misfit, with respect to the matrix, is assumed to be a polynomial of any degree. It is shown that, both inside and outside the inclusion, the strain tensor is expressed as a sum of contributions of all faces, edges, and vertices of the inclusion. Each of these contributions, as a function of the observation point's coordinates, is a product of some polynomial and a simple analytical function, which is the solid angle subtended by the face from the observation point (for a contribution of a face), or the potential of the uniformly charged edge (for a contribution of an edge), or the distance from the vertex to the observation point (for a contribution of a vertex). The method of constructing the relevant polynomial functions is suggested. We also found out that similar expressions describe an electrostatic or gravitational potential, as well as its first and second derivatives, of a polyhedral body with a charge/mass density that depends on coordinates polynomially.

  2. On the Daubechies-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavelet basis is constructed and superconvergence is proven. That is, it will be proven that under the assumption of periodic boundary conditions that the differentiation matrix is accurate of order 2M, even though the approximation subspace can represent exactly only polynomials up to degree M-1, where M is the number of vanishing moments of the associated wavelet. It is illustrated that Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small-scale structure is present.

  3. Quantum Support Vector Machine for Big Data Classification

    NASA Astrophysics Data System (ADS)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-01

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  4. A Note on Alternating Minimization Algorithm for the Matrix Completion Problem

    DOE PAGES

    Gamarnik, David; Misra, Sidhant

    2016-06-06

    Here, we consider the problem of reconstructing a low-rank matrix from a subset of its entries and analyze two variants of the so-called alternating minimization algorithm, which has been proposed in the past.We establish that when the underlying matrix has rank one, has positive bounded entries, and the graph underlying the revealed entries has diameter which is logarithmic in the size of the matrix, both algorithms succeed in reconstructing the matrix approximately in polynomial time starting from an arbitrary initialization.We further provide simulation results which suggest that the second variant which is based on the message passing type updates performsmore » significantly better.« less

  5. Minimal Polynomial Method for Estimating Parameters of Signals Received by an Antenna Array

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. T.; Flaksman, A. G.; Elokhin, A. V.; Kuptsov, V. V.

    2018-01-01

    The effectiveness of the projection minimal polynomial method for solving the problem of determining the number of sources of signals acting on an antenna array (AA) with an arbitrary configuration and their angular directions has been studied. The method proposes estimating the degree of the minimal polynomial of the correlation matrix (CM) of the input process in the AA on the basis of a statistically validated root-mean-square criterion. Special attention is paid to the case of the ultrashort sample of the input process when the number of samples is considerably smaller than the number of AA elements, which is important for multielement AAs. It is shown that the proposed method is more effective in this case than methods based on the AIC (Akaike's Information Criterion) or minimum description length (MDL) criterion.

  6. A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X.

    2001-08-01

    A few years ago the authors introduced a new approach to study asymptotic questions for orthogonal polynomials. In this paper we give an overview of our method and review the results which have been obtained in Deift et al. (Internat. Math. Res. Notices (1997) 759, Comm. Pure Appl. Math. 52 (1999) 1491, 1335), Deift (Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, Vol. 3, New York University, 1999), Kriecherbauer and McLaughlin (Internat. Math. Res. Notices (1999) 299) and Baik et al. (J. Amer. Math. Soc. 12 (1999) 1119). We mainly consider orthogonal polynomials with respect to weights on the real line which are either (1) Freud-type weights d[alpha](x)=e-Q(x) dx (Q polynomial or Q(x)=x[beta], [beta]>0), or (2) varying weights d[alpha]n(x)=e-nV(x) dx (V analytic, limx-->[infinity] V(x)/logx=[infinity]). We obtain Plancherel-Rotach-type asymptotics in the entire complex plane as well as asymptotic formulae with error estimates for the leading coefficients, for the recurrence coefficients, and for the zeros of the orthogonal polynomials. Our proof starts from an observation of Fokas et al. (Comm. Math. Phys. 142 (1991) 313) that the orthogonal polynomials can be determined as solutions of certain matrix valued Riemann-Hilbert problems. We analyze the Riemann-Hilbert problems by a steepest descent type method introduced by Deift and Zhou (Ann. Math. 137 (1993) 295) and further developed in Deift and Zhou (Comm. Pure Appl. Math. 48 (1995) 277) and Deift et al. (Proc. Nat. Acad. Sci. USA 95 (1998) 450). A crucial step in our analysis is the use of the well-known equilibrium measure which describes the asymptotic distribution of the zeros of the orthogonal polynomials.

  7. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  8. A feedback control model for network flow with multiple pure time delays

    NASA Technical Reports Server (NTRS)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  9. Cucheb: A GPU implementation of the filtered Lanczos procedure

    NASA Astrophysics Data System (ADS)

    Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef

    2017-11-01

    This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.

  10. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  11. A discrete method for modal analysis of overhead line conductor bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migdalovici, M.A.; Sireteanu, T.D.; Albrecht, A.A.

    The paper presents a mathematical model and a semi-analytical procedure to calculate the vibration modes and eigenfrequencies of single or bundled conductors with spacers which are needed for evaluation of the wind induced vibration of conductors and for optimization of spacer-dampers placement. The method consists in decomposition of conductors in modules and the expansion by polynomial series of unknown displacements on each module. A complete system of polynomials are deduced for this by Legendre polynomials. Each module is considered either boundary conditions at the extremity of the module or the continuity conditions between the modules and also a number ofmore » projections of module equilibrium equation on the polynomials from the expansion series of unknown displacement. The global system of the eigenmodes and eigenfrequencies is of the matrix form: A X + {omega}{sup 2} M X = 0. The theoretical considerations are exemplified on one conductor and on bundle of two conductors with spacers. From this, a method for forced vibration calculus of a single or bundled conductors is also presented.« less

  12. Using Goals, Feedback, Reinforcement, and a Performance Matrix to Improve Customer Service in a Large Department Store

    ERIC Educational Resources Information Center

    Eikenhout, Nelson; Austin, John

    2005-01-01

    This study employed an ABAC and multiple baseline design to evaluate the effects of (B) feedback and (C) a package of feedback, goalsetting, and reinforcement (supervisor praise and an area-wide celebration as managed through a performance matrix, on a total of 14 various customer service behaviors for a total of 115 employees at a large…

  13. Factorizing the factorization - a spectral-element solver for elliptic equations with linear operation count

    NASA Astrophysics Data System (ADS)

    Huismann, Immo; Stiller, Jörg; Fröhlich, Jochen

    2017-10-01

    The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.

  14. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  15. Dissociative Electron Attachment to Rovibrationally Excited Molecules

    DTIC Science & Technology

    1987-08-31

    obtained in some recent papers.4’ - In Sec. IV of the present L,(0, (00 paper we will obtain some general recursion relations among where these matrix... general five-term From the generating function of Hermite polynomials , recursion relation (32) is obtained which is valid for the matrix elements of...for the generation of the functions for increasing 1. One convenient way to evaluate a Q, function is to write it in terms of Gaussian hypergeometric

  16. Fast Eigensolver for Computing 3D Earth's Normal Modes

    NASA Astrophysics Data System (ADS)

    Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.

    2017-12-01

    We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.

  17. Squeezing in a 2-D generalized oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.

    1994-01-01

    A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.

  18. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Mathematics Teacher, 1985

    1985-01-01

    Discusses: (1) use of matrix techniques to write secret codes (includes ready-to-duplicate worksheets); (2) a method of multiplication and division of polynomials in one variable that is not tedius, time-consuming, or dependent on guesswork; and (3) adding and subtracting rational expressions and solving rational equations. (JN)

  19. Injection molding lens metrology using software configurable optical test system

    NASA Astrophysics Data System (ADS)

    Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian

    2016-10-01

    Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.

  20. Kirchhoff index of linear hexagonal chains

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Zhang, Heping

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of linear hexagonal chain Ln consists of the Laplacian spectrum of path P2n+1 and eigenvalues of a symmetric tridiagonal matrix of order 2n + 1. By applying the relationship between roots and coefficients of the characteristic polynomial of the above matrix, explicit closed-form formula for Kirchhoff index of Ln is derived in terms of Laplacian spectrum. To our surprise, the Krichhoff index of Ln is approximately to one half of its Wiener index. Finally, we show that holds for all graphs G in a class of graphs including Ln.0

  1. On the degree conjecture for separability of multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-01

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

  2. Generalized Eigenvalues for pairs on heritian matrices

    NASA Technical Reports Server (NTRS)

    Rublein, George

    1988-01-01

    A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.

  3. Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Khorshidi, A.

    2013-04-01

    Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).

  4. Near constant-time optimal piecewise LDR to HDR inverse tone mapping

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Su, Guan-Ming; Yin, Peng

    2015-02-01

    In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.

  5. Schur polynomials and biorthogonal random matrix ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierz, Miguel

    The study of the average of Schur polynomials over a Stieltjes-Wigert ensemble has been carried out by Dolivet and Tierz [J. Math. Phys. 48, 023507 (2007); e-print arXiv:hep-th/0609167], where it was shown that it is equal to quantum dimensions. Using the same approach, we extend the result to the biorthogonal case. We also study, using the Littlewood-Richardson rule, some particular cases of the quantum dimension result. Finally, we show that the notion of Giambelli compatibility of Schur averages, introduced by Borodin et al. [Adv. Appl. Math. 37, 209 (2006); e-print arXiv:math-ph/0505021], also holds in the biorthogonal setting.

  6. From r-spin intersection numbers to Hodge integrals

    NASA Astrophysics Data System (ADS)

    Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian

    2016-01-01

    Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a widehat{GL}(∞) group. Then, from a W 1+∞ constraint of the partition function of r-spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.

  7. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  8. Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.

  9. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1981-01-01

    Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.

  10. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  11. Hierarchical cluster-based partial least squares regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models.

    PubMed

    Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald

    2011-06-01

    Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.

  12. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    PubMed Central

    2011-01-01

    Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852

  13. Integration of CAI into a Freshmen Liberal Arts Math Course in the Community College.

    ERIC Educational Resources Information Center

    McCall, Michael B.; Holton, Jean L.

    1982-01-01

    Discusses four computer-assisted-instruction programs used in a college-level mathematics course to introduce computer literacy and improve mathematical skills. The BASIC programs include polynomial functions, trigonometric functions, matrix algebra, and differential calculus. Each program discusses mathematics theory and introduces programming…

  14. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  15. Image distortion analysis using polynomial series expansion.

    PubMed

    Baggenstoss, Paul M

    2004-11-01

    In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.

  16. Recent results on output feedback problems

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    Given a real linear system sigma = (A, B, C) with m inputs, p outputs and degree n, the problem of generic pole placement by output feedback is studied, which is to compute the constant C(m,p) such that the inequality C(m,p) not less than n is necessary and sufficient for generically positioning the poles of the generic linear system by constant output feedback. A constant C prime (m,p) is determined, which gives a sufficient condition for generic pole placement and which, to the best of the author's knowledge, is at least as good an estimate of C(m,p) as any in the literature. Some results on the construction of solutions in case mp = n are announced, based on the degree formula of Brockett and Byrnes and the Galois theory. In particular, a question raised by Anderson, Bose, and Jury, on the existence of a rational procedure for computing the feedback law from the desired characteristic polynomial is answered.

  17. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  18. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  19. Crossover ensembles of random matrices and skew-orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less

  20. On the degree conjecture for separability of multipartite quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-15

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less

  1. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Alex W.; Rivas, Angel; Huelga, Susana F.

    2010-09-15

    By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less

  2. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming

    2017-10-01

    Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.

  3. From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction

    NASA Astrophysics Data System (ADS)

    de Tilière, Béatrice

    2013-04-01

    Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.

  4. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  5. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    ERIC Educational Resources Information Center

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  6. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less

  7. Polynomials for crystal frameworks and the rigid unit mode spectrum

    PubMed Central

    Power, S. C.

    2014-01-01

    To each discrete translationally periodic bar-joint framework in , we associate a matrix-valued function defined on the d-torus. The rigid unit mode (RUM) spectrum of is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and is shown to correspond to the singular points of the function and also to the set of wavevectors of harmonic excitations which have vanishing energy in the long wavelength limit. To a crystal framework in Maxwell counting equilibrium, which corresponds to being square, the determinant of gives rise to a unique multi-variable polynomial . For ideal zeolites, the algebraic variety of zeros of on the d-torus coincides with the RUM spectrum. The matrix function is related to other aspects of idealized framework rigidity and flexibility, and in particular leads to an explicit formula for the number of supercell-periodic floppy modes. In the case of certain zeolite frameworks in dimensions two and three, direct proofs are given to show the maximal floppy mode property (order N). In particular, this is the case for the cubic symmetry sodalite framework and some other idealized zeolites. PMID:24379422

  8. Observability under recurrent loss of data

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok; Halevi, Yoram

    1992-01-01

    An account is given of the concept of extended observability in finite-dimensional linear time-invariant systems under recurrent loss of data, where the state vector has to be reconstructed from an ensemble of sensor data at nonconsecutive samples. An at once necessary and sufficient condition for extended observability that can be expressed via a recursive relation is presented, together with such conditions for this as may be related to the characteristic polynomial of the state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time setting.

  9. Atypicality of Most Few-Body Observables

    NASA Astrophysics Data System (ADS)

    Hamazaki, Ryusuke; Ueda, Masahito

    2018-02-01

    The eigenstate thermalization hypothesis (ETH), which dictates that all diagonal matrix elements within a small energy shell be almost equal, is a major candidate to explain thermalization in isolated quantum systems. According to the typicality argument, the maximum variations of such matrix elements should decrease exponentially with increasing the size of the system, which implies the ETH. We show, however, that the typicality argument does not apply to most few-body observables for few-body Hamiltonians when the width of the energy shell decreases at most polynomially with increasing the size of the system.

  10. Application of overlay modeling and control with Zernike polynomials in an HVM environment

    NASA Astrophysics Data System (ADS)

    Ju, JaeWuk; Kim, MinGyu; Lee, JuHan; Nabeth, Jeremy; Jeon, Sanghuck; Heo, Hoyoung; Robinson, John C.; Pierson, Bill

    2016-03-01

    Shrinking technology nodes and smaller process margins require improved photolithography overlay control. Generally, overlay measurement results are modeled with Cartesian polynomial functions for both intra-field and inter-field models and the model coefficients are sent to an advanced process control (APC) system operating in an XY Cartesian basis. Dampened overlay corrections, typically via exponentially or linearly weighted moving average in time, are then retrieved from the APC system to apply on the scanner in XY Cartesian form for subsequent lot exposure. The goal of the above method is to process lots with corrections that target the least possible overlay misregistration in steady state as well as in change point situations. In this study, we model overlay errors on product using Zernike polynomials with same fitting capability as the process of reference (POR) to represent the wafer-level terms, and use the standard Cartesian polynomials to represent the field-level terms. APC calculations for wafer-level correction are performed in Zernike basis while field-level calculations use standard XY Cartesian basis. Finally, weighted wafer-level correction terms are converted to XY Cartesian space in order to be applied on the scanner, along with field-level corrections, for future wafer exposures. Since Zernike polynomials have the property of being orthogonal in the unit disk we are able to reduce the amount of collinearity between terms and improve overlay stability. Our real time Zernike modeling and feedback evaluation was performed on a 20-lot dataset in a high volume manufacturing (HVM) environment. The measured on-product results were compared to POR and showed a 7% reduction in overlay variation including a 22% terms variation. This led to an on-product raw overlay Mean + 3Sigma X&Y improvement of 5% and resulted in 0.1% yield improvement.

  11. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  12. Finding the Best-Fit Polynomial Approximation in Evaluating Drill Data: the Application of a Generalized Inverse Matrix / Poszukiwanie Najlepszej ZGODNOŚCI W PRZYBLIŻENIU Wielomianowym Wykorzystanej do Oceny Danych Z ODWIERTÓW - Zastosowanie UOGÓLNIONEJ Macierzy Odwrotnej

    NASA Astrophysics Data System (ADS)

    Karakus, Dogan

    2013-12-01

    In mining, various estimation models are used to accurately assess the size and the grade distribution of an ore body. The estimation of the positional properties of unknown regions using random samples with known positional properties was first performed using polynomial approximations. Although the emergence of computer technologies and statistical evaluation of random variables after the 1950s rendered the polynomial approximations less important, theoretically the best surface passing through the random variables can be expressed as a polynomial approximation. In geoscience studies, in which the number of random variables is high, reliable solutions can be obtained only with high-order polynomials. Finding the coefficients of these types of high-order polynomials can be computationally intensive. In this study, the solution coefficients of high-order polynomials were calculated using a generalized inverse matrix method. A computer algorithm was developed to calculate the polynomial degree giving the best regression between the values obtained for solutions of different polynomial degrees and random observational data with known values, and this solution was tested with data derived from a practical application. In this application, the calorie values for data from 83 drilling points in a coal site located in southwestern Turkey were used, and the results are discussed in the context of this study. W górnictwie wykorzystuje się rozmaite modele estymacji do dokładnego określenia wielkości i rozkładu zawartości pierwiastka użytecznego w rudzie. Estymację położenia i właściwości skał w nieznanych obszarach z wykorzystaniem próbek losowych o znanym położeniu przeprowadzano na początku z wykorzystaniem przybliżenia wielomianowego. Pomimo tego, że rozwój technik komputerowych i statystycznych metod ewaluacji próbek losowych sprawiły, że po roku 1950 metody przybliżenia wielomianowego straciły na znaczeniu, nadal teoretyczna powierzchnia najlepszej zgodności przechodząca przez zmienne losowe wyrażana jest właśnie poprzez przybliżenie wielomianowe. W geofizyce, gdzie liczba próbek losowych jest zazwyczaj bardzo wysoka, wiarygodne rozwiązania uzyskać można jedynie przy wykorzystaniu wielomianów wyższych stopni. Określenie współczynników w tego typu wielomia nach jest skomplikowaną procedurą obliczeniową. W pracy tej poszukiwane współczynniki wielomianu wyższych stopni obliczono przy zastosowaniu metody uogólnionej macierzy odwrotnej. Opracowano odpowiedni algorytm komputerowy do obliczania stopnia wielomianu, zapewniający najlepszą regresję pomiędzy wartościami otrzymanymi z rozwiązań bazujących na wielomianach różnych stopni i losowymi danymi z obserwacji, o znanych wartościach. Rozwiązanie to przetestowano z użyciem danych uzyskanych z zastosowań praktycznych. W tym zastosowaniu użyto danych o wartości opałowej pochodzących z 83 odwiertów wykonanych w zagłębiu węglowym w południowo- zachodniej Turcji, wyniki obliczeń przedyskutowano w kontekście zagadnień uwzględnionych w niniejszej pracy.

  13. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    NASA Astrophysics Data System (ADS)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  14. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Márquez, Bicky A., E-mail: bmarquez@ivic.gob.ve; Suárez-Vargas, José J., E-mail: jjsuarez@ivic.gob.ve; Ramírez, Javier A.

    2014-09-01

    Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.

  15. Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Pezelier, Baptiste

    2018-02-01

    In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.

  16. Estimation of genetic parameters related to eggshell strength using random regression models.

    PubMed

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  17. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  18. Testing Refinement Criteria in Adaptive Discontinuous Galerkin Simulations of Dry Atmospheric Convection

    DTIC Science & Technology

    2011-12-22

    matrix Mik = ∫ Ωe ψiψkdΩ; for the sake of simplicity, we did not write the dependence on x of the basis functions although it should be understood that the...polynomial order N throughout all the elements Ωe in the domain Ω = ⋃Ne e =1 Ωe and if we insist that the elements have straight edges, then the matrix M−1...µlim to change between different elements. The total viscosity parameter for each element e is given by µe = max (µtc, µlim, e ) , (25) 7 where µtc is

  19. Comparison between Adaptive and Uniform Discontinuous Galerkin Simulations in Dry 2D Bubble Experiments

    DTIC Science & Technology

    2012-11-08

    ψk with the mass matrix Mik = ∫ Ωe ψiψkdΩ; for the sake of simplicity, we did not write the dependence on x of the basis functions although it should...polynomial order N throughout all the elements Ωe in the domain Ω = ⋃Ne e =1 Ωe and if we insist that the elements have straight edges, then the matrix M−1...constant within each element of our grid but we allow µlim to change between different elements. The total viscosity parameter for each element e is

  20. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  1. The application of trigonal curve to the Mikhailov-Shabat-Sokolov flows

    NASA Astrophysics Data System (ADS)

    He, Guoliang; Geng, Xianguo; Wu, Lihua

    2016-08-01

    Resorting to the characteristic polynomial of Lax matrix for the Mikhailov-Shabat-Sokolov hierarchy associated with a {3 × 3} matrix spectral problem, we introduce a trigonal curve, from which we deduce the associated Baker-Akhiezer function, meromorphic functions and Dubrovin-type equations. The straightening out of the Mikhailov-Shabat-Sokolov flows is exactly given through the Abel map. On the basis of these results and the theory of trigonal curve, we obtain the explicit theta function representations of the Baker-Akhiezer function, the meromorphic functions, and in particular, that of solutions for the entire Mikhailov-Shabat-Sokolov hierarchy.

  2. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  3. A new decentralised controller design method for a class of strongly interconnected systems

    NASA Astrophysics Data System (ADS)

    Duan, Zhisheng; Jiang, Zhong-Ping; Huang, Lin

    2017-02-01

    In this paper, two interconnected structures are first discussed, under which some closed-loop subsystems must be unstable to make the whole interconnected system stable, which can be viewed as a kind of strongly interconnected systems. Then, comparisons with small gain theorem are discussed and large gain interconnected characteristics are shown. A new approach for the design of decentralised controllers is presented by determining the Lyapunov function structure previously, which allows the existence of unstable subsystems. By fully utilising the orthogonal space information of input matrix, some new understandings are presented for the construction of Lyapunov matrix. This new method can deal with decentralised state feedback, static output feedback and dynamic output feedback controllers in a unified framework. Furthermore, in order to reduce the design conservativeness and deal with robustness, a new robust decentralised controller design method is given by combining with the parameter-dependent Lyapunov function method. Some basic rules are provided for the choice of initial variables in Lyapunov matrix or new introduced slack matrices. As byproducts, some linear matrix inequality based sufficient conditions are established for centralised static output feedback stabilisation. Effects of unstable subsystems in nonlinear Lur'e systems are further discussed. The corresponding decentralised controller design method is presented for absolute stability. The examples illustrate that the new method is significantly effective.

  4. Analytic Development of a Reference Profile for the First Entry in a Skip Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo

    2010-01-01

    This note shows that a feasible reference drag profile for the first entry portion of a skip entry can be generated as a polynomial expression of the velocity. The coefficients of that polynomial are found through the resolution of a system composed of m + 1 equations, where m is the degree of the drag polynomial. It has been shown that a minimum of five equations (m = 4) are required to establish the range and the initial and final conditions on velocity and flight path angle. It has been shown that at least one constraint on the trajectory can be imposed through the addition of one extra equation in the system, which must be accompanied by the increase in the degree of the drag polynomial. In order to simplify the resolution of the system of equations, the drag was considered as being a probability density function of the velocity, with the velocity as a distribution function of the drag. Combining this notion with the introduction of empirically derived constants, it has been shown that the system of equations required to generate the drag profile can be successfully reduced to a system of linear algebraic equations. For completeness, the resulting drag profiles have been flown using the feedback linearization method of differential geometric control as a guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. Satisfactory results were achieved when the gains in the error dynamics were changed at a certain point along the trajectory that is dependent on the velocity and the curvature of the drag as a function of the velocity. Future work should study the capacity to update the drag profile in flight when dispersions are introduced. Also, future studies should attempt to link the first entry, as presented and controlled in this note, with a more standard control concept for the second entry, such as the Apollo entry guidance, to try to assess the overall skip entry performance. A guidance law that includes an integral feedback term, as is the case in the actual Space Shuttle entry guidance and as is proposed in Ref 29, could be tried in future studies to assess whether its use results in an improvement of the tracking performance, and to evaluate the design needs when determining the control gains.

  5. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  6. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

    NASA Astrophysics Data System (ADS)

    Beheshti, Alireza

    2018-03-01

    The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

  7. A BiCGStab2 variant of the IDR(s) method for solving linear equations

    NASA Astrophysics Data System (ADS)

    Abe, Kuniyoshi; Sleijpen, Gerard L. G.

    2012-09-01

    The hybrid Bi-Conjugate Gradient (Bi-CG) methods, such as the BiCG STABilized (BiCGSTAB), BiCGstab(l), BiCGStab2 and BiCG×MR2 methods are well-known solvers for solving a linear equation with a nonsymmetric matrix. The Induced Dimension Reduction (IDR)(s) method has recently been proposed, and it has been reported that IDR(s) is often more effective than the hybrid BiCG methods. IDR(s) combining the stabilization polynomial of BiCGstab(l) has been designed to improve the convergence of the original IDR(s) method. We therefore propose IDR(s) combining the stabilization polynomial of BiCGStab2. Numerical experiments show that our proposed variant of IDR(s) is more effective than the original IDR(s) and BiCGStab2 methods.

  8. Investigation of rank 2 and higher output feedback for pole placement

    NASA Technical Reports Server (NTRS)

    Sridhar, B.

    1974-01-01

    A common feature of several pole placement techniques is discussed and the use of a dyadic feedback matrix is presented. The limitation of this design is examined and a design involving output feedback matrices of Rank greater than one is developed as a logical extension of the dyadic feedback design. An example is presented to illustrate the design procedure.

  9. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  10. Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis

    NASA Astrophysics Data System (ADS)

    Jiao, Yujian; Wang, Li-Lian; Huang, Can

    2016-01-01

    The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.

  11. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    PubMed

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  12. Optical feedback structures and methods of making

    DOEpatents

    None

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  13. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    2016-10-01

    This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

  14. Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms

    DTIC Science & Technology

    2012-03-01

    0-486-41183-4. 15. Brown , Robert G. and Patrick Y. C. Hwang . Introduction to Random Signals and Applied Kalman Filtering. Wiley, New York, 1996. ISBN...stability and perfor- mance criteria. In the 1960’s, Kalman introduced the Linear Quadratic Regulator (LQR) method using an integral performance index...feedback of the state variables and was able to apply this method to time-varying and Multi-Input Multi-Output (MIMO) systems. Kalman further showed

  15. iDriving (Intelligent Driving)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  16. Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics

    NASA Astrophysics Data System (ADS)

    Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane

    2014-10-01

    This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...

  17. Optical computation using residue arithmetic.

    PubMed

    Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S

    1979-01-15

    Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.

  18. The accurate solution of Poisson's equation by expansion in Chebyshev polynomials

    NASA Technical Reports Server (NTRS)

    Haidvogel, D. B.; Zang, T.

    1979-01-01

    A Chebyshev expansion technique is applied to Poisson's equation on a square with homogeneous Dirichlet boundary conditions. The spectral equations are solved in two ways - by alternating direction and by matrix diagonalization methods. Solutions are sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the Chebyshev approach compare favorably with those of standard second- and fourth-order finite-difference methods.

  19. Determining entire mean first-passage time for Cayley networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqian; Dai, Meifeng; Chen, Yufei; Zong, Yue; Sun, Yu; Su, Weiyi

    In this paper, we consider the entire mean first-passage time (EMFPT) with random walks for Cayley networks. We use Laplacian spectra to calculate the EMFPT. Firstly, we calculate the constant term and monomial coefficient of characteristic polynomial. By using the Vieta theorem, we then obtain the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix. Finally, we obtain the scaling of the EMFPT for Cayley networks by using the relationship between the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix and the EMFPT. We expect that our method can be adapted to other types of self-similar networks, such as vicsek networks, polymer networks.

  20. Quasi-periodic solutions to the hierarchy of four-component Toda lattices

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Geng, Xianguo; Zeng, Xin

    2016-08-01

    Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.

  1. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  2. Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media

    NASA Astrophysics Data System (ADS)

    Hamed, Haikel Ben; Bennacer, Rachid

    2008-08-01

    This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh-Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen. To cite this article: H.B. Hamed, R. Bennacer, C. R. Mecanique 336 (2008).

  3. Applications of multiple-constraint matrix updates to the optimal control of large structures

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Walcott, B. L.

    1992-01-01

    Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.

  4. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  5. Simple and practical approach for computing the ray Hessian matrix in geometrical optics.

    PubMed

    Lin, Psang Dain

    2018-02-01

    A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.

  6. Methods in Symbolic Computation and p-Adic Valuations of Polynomials

    NASA Astrophysics Data System (ADS)

    Guan, Xiao

    Symbolic computation has widely appear in many mathematical fields such as combinatorics, number theory and stochastic processes. The techniques created in the area of experimental mathematics provide us efficient ways of symbolic computing and verification of complicated relations. Part I consists of three problems. The first one focuses on a unimodal sequence derived from a quartic integral. Many of its properties are explored with the help of hypergeometric representations and automatic proofs. The second problem tackles the generating function of the reciprocal of Catalan number. It springs from the closed form given by Mathematica. Furthermore, three methods in special functions are used to justify this result. The third issue addresses the closed form solutions for the moments of products of generalized elliptic integrals , which combines the experimental mathematics and classical analysis. Part II concentrates on the p-adic valuations of polynomials from the perspective of trees. For a given polynomial f( n) indexed in positive integers, the package developed in Mathematica will create certain tree structure following a couple of rules. The evolution of such trees are studied both rigorously and experimentally from the view of field extension, nonparametric statistics and random matrix.

  7. On Making a Distinguished Vertex Minimum Degree by Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes

    For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.

  8. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.

    PubMed

    Temel, Burcin; Mills, Greg; Metiu, Horia

    2008-03-27

    We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.

  9. Groebner Basis Solutions to Satellite Trajectory Control by Pole Placement

    NASA Astrophysics Data System (ADS)

    Kukelova, Z.; Krsek, P.; Smutny, V.; Pajdla, T.

    2013-09-01

    Satellites play an important role, e.g., in telecommunication, navigation and weather monitoring. Controlling their trajectories is an important problem. In [1], an approach to the pole placement for the synthesis of a linear controller has been presented. It leads to solving five polynomial equations in nine unknown elements of the state space matrices of a compensator. This is an underconstrained system and therefore four of the unknown elements need to be considered as free parameters and set to some prior values to obtain a system of five equations in five unknowns. In [1], this system was solved for one chosen set of free parameters with the help of Dixon resultants. In this work, we study and present Groebner basis solutions to this problem of computation of a dynamic compensator for the satellite for different combinations of input free parameters. We show that the Groebner basis method for solving systems of polynomial equations leads to very simple solutions for all combinations of free parameters. These solutions require to perform only the Gauss-Jordan elimination of a small matrix and computation of roots of a single variable polynomial. The maximum degree of this polynomial is not greater than six in general but for most combinations of the input free parameters its degree is even lower. [1] B. Palancz. Application of Dixon resultant to satellite trajectory control by pole placement. Journal of Symbolic Computation, Volume 50, March 2013, Pages 79-99, Elsevier.

  10. Unitary-matrix models as exactly solvable string theories

    NASA Technical Reports Server (NTRS)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  11. Gauss Elimination: Workhorse of Linear Algebra.

    DTIC Science & Technology

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  12. Finitized conformal spectrum of the Ising model on the cylinder and torus

    NASA Astrophysics Data System (ADS)

    O'Brien, David L.; Pearce, Paul A.; Ole Warnaar, S.

    1996-02-01

    The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers-Ramanujan identities for the c = {1}/{2} Virasoro characters.

  13. Optical alignment procedure utilizing neural networks combined with Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Adil, Fatime Zehra; Konukseven, Erhan İlhan; Balkan, Tuna; Adil, Ömer Faruk

    2017-05-01

    In the design of pilot helmets with night vision capability, to not limit or block the sight of the pilot, a transparent visor is used. The reflected image from the coated part of the visor must coincide with the physical human sight image seen through the nonreflecting regions of the visor. This makes the alignment of the visor halves critical. In essence, this is an alignment problem of two optical parts that are assembled together during the manufacturing process. Shack-Hartmann wavefront sensor is commonly used for the determination of the misalignments through wavefront measurements, which are quantified in terms of the Zernike polynomials. Although the Zernike polynomials provide very useful feedback about the misalignments, the corrective actions are basically ad hoc. This stems from the fact that there exists no easy inverse relation between the misalignment measurements and the physical causes of the misalignments. This study aims to construct this inverse relation by making use of the expressive power of the neural networks in such complex relations. For this purpose, a neural network is designed and trained in MATLAB® regarding which types of misalignments result in which wavefront measurements, quantitatively given by Zernike polynomials. This way, manual and iterative alignment processes relying on trial and error will be replaced by the trained guesses of a neural network, so the alignment process is reduced to applying the counter actions based on the misalignment causes. Such a training requires data containing misalignment and measurement sets in fine detail, which is hard to obtain manually on a physical setup. For that reason, the optical setup is completely modeled in Zemax® software, and Zernike polynomials are generated for misalignments applied in small steps. The performance of the neural network is experimented and found promising in the actual physical setup.

  14. Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.

    PubMed

    Alzahrani, Mohammed A; Gauthier, Robert C

    2015-10-05

    Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Zhaojun; Yang, Chao

    What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcasemore » some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.« less

  16. Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices

    NASA Astrophysics Data System (ADS)

    Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.

    2017-08-01

    We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.

  17. Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Zeng, Xin

    Utilizing the characteristic polynomial of Lax matrix for the Belov-Chaltikian (BC) lattice hierarchy associated with a 3 × 3 discrete matrix spectral problem, we introduce a trigonal curve with three infinite points, from which we establish the associated Dubrovin-type equations. The essential properties of the Baker-Akhiezer function and the meromorphic function are discussed, that include their asymptotic behavior near three infinite points on the trigonal curve and the divisor of the meromorphic function. The Abel map is introduced to straighten out the continuous flow and the discrete flow in the Jacobian variety, from which the quasi-periodic solutions of the entire BC lattice hierarchy are obtained in terms of the Riemann theta function.

  18. The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues

    NASA Astrophysics Data System (ADS)

    Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa

    2009-01-01

    The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.

  19. New approach to wireless data communication in a propagation environment

    NASA Astrophysics Data System (ADS)

    Hunek, Wojciech P.; Majewski, Paweł

    2017-10-01

    This paper presents a new idea of perfect signal reconstruction in multivariable wireless communications systems including a different number of transmitting and receiving antennas. The proposed approach is based on the polynomial matrix S-inverse associated with Smith factorization. Crucially, the above mentioned inverse implements the so-called degrees of freedom. It has been confirmed by simulation study that the degrees of freedom allow to minimalize the negative impact of the propagation environment in terms of increasing the robustness of whole signal reconstruction process. Now, the parasitic drawbacks in form of dynamic ISI and ICI effects can be eliminated in framework described by polynomial calculus. Therefore, the new method guarantees not only reducing the financial impact but, more importantly, provides potentially the lower consumption energy systems than other classical ones. In order to show the potential of new approach, the simulation studies were performed by author's simulator based on well-known OFDM technique.

  20. A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.

    PubMed

    Bhrawy, A H; Alghamdi, M A

    2014-01-01

    We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.

  1. A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions

    PubMed Central

    Bhrawy, A. H.; Alghamdi, M. A.

    2014-01-01

    We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507

  2. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  3. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression

    PubMed Central

    Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.

    2010-01-01

    Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059

  4. A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts

    NASA Technical Reports Server (NTRS)

    Watson, W.; Lansing, D. L.

    1976-01-01

    Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.

  5. Closed form solution for a double quantum well using Gröbner basis

    NASA Astrophysics Data System (ADS)

    Acus, A.; Dargys, A.

    2011-07-01

    Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  6. Cheating following success and failure in heavy and moderate social drinkers.

    PubMed

    Corcoran, K J; Hankey, J

    1989-07-01

    Two groups of American undergraduates (moderate and heavy social drinkers) completed a matrix task and received either positive or negative feedback on their performance. Following this they were given a maze task, which was designed so that cheating could be detected. Heavy drinkers cheated more than moderate drinkers under success conditions (positive feedback). Heavy drinkers who received positive feedback also cheated more than heavy drinkers who received negative feedback. The results are interpreted in terms of self-handicapping theory.

  7. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  8. Partial transpose of random quantum states: Exact formulas and meanders

    NASA Astrophysics Data System (ADS)

    Fukuda, Motohisa; Śniady, Piotr

    2013-04-01

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  9. Three-dimensional trend mapping from wire-line logs

    USGS Publications Warehouse

    Doveton, J.H.; Ke-an, Z.

    1985-01-01

    Mapping of lithofacies and porosities of stratigraphic units is complicated because these properties vary in three dimensions. The method of moments was proposed by Krumbein and Libby (1957) as a technique to aid in resolving this problem. Moments are easily computed from wireline logs and are simple statistics which summarize vertical variation in a log trace. Combinations of moment maps have proved useful in understanding vertical and lateral changes in lithology of sedimentary rock units. Although moments have meaning both as statistical descriptors and as mechanical properties, they also define polynomial curves which approximate lithologic changes as a function of depth. These polynomials can be fitted by least-squares methods, partitioning major trends in rock properties from finescale fluctuations. Analysis of variance yields the degree of fit of any polynomial and measures the proportion of vertical variability expressed by any moment or combination of moments. In addition, polynomial curves can be differentiated to determine depths at which pronounced expressions of facies occur and to determine the locations of boundaries between major lithologic subdivisions. Moments can be estimated at any location in an area by interpolating from log moments at control wells. A matrix algebra operation then converts moment estimates to coefficients of a polynomial function which describes a continuous curve of lithologic variation with depth. If this procedure is applied to a grid of geographic locations, the result is a model of variability in three dimensions. Resolution of the model is determined largely by number of moments used in its generation. The method is illustrated with an analysis of lithofacies in the Simpson Group of south-central Kansas; the three-dimensional model is shown as cross sections and slice maps. In this study, the gamma-ray log is used as a measure of shaliness of the unit. However, the method is general and can be applied, for example, to suites of neutron, density, or sonic logs to produce three-dimensional models of porosity in reservoir rocks. ?? 1985 Plenum Publishing Corporation.

  10. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  11. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  12. The Stratonovich formulation of quantum feedback network rules

    NASA Astrophysics Data System (ADS)

    Gough, John E.

    2016-12-01

    We express the rules for forming quantum feedback networks using the Stratonovich form of quantum stochastic calculus rather than the Itō or SLH (J. E. Gough and M. R. James, "Quantum feedback networks: Hamiltonian formulation," Commun. Math. Phys. 287, 1109 (2009), J. E. Gough and M. R. James, "The Series product and its application to quantum feedforward and feedback networks," IEEE Trans. Autom. Control 54, 2530 (2009)) form. Remarkably the feedback reduction rule implies that we obtain the Schur complement of the matrix of Stratonovich coupling operators where we short out the internal input/output coefficients.

  13. Multiple Scattering of Waves in Discrete Random Media.

    DTIC Science & Technology

    1987-12-31

    expanding the two body correlation functions in Legendre polynomials. This permits us to consider the angular correlations that exist for non-spherical...a scat- of the translation matrix after the angular and radial parts have terer fixed at it. been absorbed in the integration. Expressions for them...Approach New York: Pergamon Press. 1980 ’" close to the actual values for FeO, in isolation since they 171 A R. Edmonds. Angular Momentum in Quantum . h(pa

  14. Yangian of the Queer Lie Superalgebra

    NASA Astrophysics Data System (ADS)

    Nazarov, Maxim

    Consider the complex matrix Lie superalgebra with the standard generators , where . Define an involutory automorphism η of by . The twisted polynomial current Lie superalgebra has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra as a co-Poisson Hopf superalgebra. For the quantised algebra we give a description of the centre, and construct the double in the sense of Drinfeld. We also construct a wide class of irreducible representations of the quantised algebra.

  15. A Fresh Math Perspective Opens New Possibilities for Computational Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Linda; Govind, Niranjan; Yang, Chao

    2017-05-26

    By reformulating the TDDFT problem as a matrix function approximation, making use of a special transformation and taking advantage of the underlying symmetry with respect to a non-Euclidean metric, Yang and his colleagues were able to apply the Lanczos algorithm and a Kernal Polynomial Method (KPM) to approximate the absorption spectrum of several molecules. Both of these algorithms require relatively low-memory compared to non-symmetrical alternatives, which is the key to the computational savings.

  16. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R

    2008-02-14

    The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.

  17. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    NASA Technical Reports Server (NTRS)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  18. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  19. Convergence of moment expansions for expectation values with embedded random matrix ensembles and quantum chaos

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2003-07-01

    Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.

  20. Unusual square roots in the ghost-free theory of massive gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Smirnov, Fedor

    2017-06-01

    A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.

  1. Towards random matrix model of breaking the time-reversal invariance of elastic waves in chaotic cavities by feedback

    NASA Astrophysics Data System (ADS)

    Antoniuk, Oleg; Sprik, Rudolf

    2010-03-01

    We developed a random matrix model to describe the statistics of resonances in an acoustic cavity with broken time-reversal invariance. Time-reversal invariance braking is achieved by connecting an amplified feedback loop between two transducers on the surface of the cavity. The model is based on approach [1] that describes time- reversal properties of the cavity without a feedback loop. Statistics of eigenvalues (nearest neighbor resonance spacing distributions and spectral rigidity) has been calculated and compared to the statistics obtained from our experimental data. Experiments have been performed on aluminum block of chaotic shape confining ultrasound waves. [1] Carsten Draeger and Mathias Fink, One-channel time- reversal in chaotic cavities: Theoretical limits, Journal of Acoustical Society of America, vol. 105, Nr. 2, pp. 611-617 (1999)

  2. Feedback control of nonlinear quantum systems: a rule of thumb.

    PubMed

    Jacobs, Kurt; Lund, Austin P

    2007-07-13

    We show that in the regime in which feedback control is most effective - when measurements are relatively efficient, and feedback is relatively strong - then, in the absence of any sharp inhomogeneity in the noise, it is always best to measure in a basis that does not commute with the system density matrix than one that does. That is, it is optimal to make measurements that disturb the state one is attempting to stabilize.

  3. The Humble Leader: Association of Discrepancies in Leader and Follower Ratings of Implementation Leadership With Organizational Climate in Mental Health.

    PubMed

    Aarons, Gregory A; Ehrhart, Mark G; Torres, Elisa M; Finn, Natalie K; Beidas, Rinad S

    2017-02-01

    Discrepancies, or perceptual distance, between leaders' self-ratings and followers' ratings of the leader are common but usually go unrecognized. Research on discrepancies is limited, but there is evidence that discrepancies are associated with organizational context. This study examined the association of leader-follower discrepancies in Implementation Leadership Scale (ILS) ratings of mental health clinic leaders and the association of those discrepancies with organizational climate for involvement and performance feedback. Both involvement and performance feedback are important for evidence-based practice (EBP) implementation in mental health. A total of 593 individuals-supervisors (leaders, N=80) and clinical service providers (followers, N=513)-completed surveys that included ratings of implementation leadership and organizational climate. Polynomial regression and response surface analyses were conducted to examine the associations of discrepancies in leader-follower ILS ratings with organizational involvement climate and performance feedback climate, aspects of climate likely to support EBP implementation. Both involvement climate and performance feedback climate were highest where leaders rated themselves low on the ILS and their followers rated those leaders high on the ILS ("humble leaders"). Teams with "humble leaders" showed more positive organizational climate for involvement and for performance feedback, contextual factors important during EBP implementation and sustainment. Discrepancy in leader and follower ratings of implementation leadership should be a consideration in understanding and improving leadership and organizational climate for mental health services and for EBP implementation and sustainment in mental health and other allied health settings.

  4. Beyond the excised ensemble: modelling elliptic curve L-functions with random matrices

    NASA Astrophysics Data System (ADS)

    Cooper, I. A.; Morris, Patrick W.; Snaith, N. C.

    2016-02-01

    The ‘excised ensemble’, a random matrix model for the zeros of quadratic twist families of elliptic curve L-functions, was introduced by Dueñez et al (2012 J. Phys. A: Math. Theor. 45 115207) The excised model is motivated by a formula for central values of these L-functions in a paper by Kohnen and Zagier (1981 Invent. Math. 64 175-98). This formula indicates that for a finite set of L-functions from a family of quadratic twists, the central values are all either zero or are greater than some positive cutoff. The excised model imposes this same condition on the central values of characteristic polynomials of matrices from {SO}(2N). Strangely, the cutoff on the characteristic polynomials that results in a convincing model for the L-function zeros is significantly smaller than that which we would obtain by naively transferring Kohnen and Zagier’s cutoff to the {SO}(2N) ensemble. In this current paper we investigate a modification to the excised model. It lacks the simplicity of the original excised ensemble, but it serves to explain the reason for the unexpectedly low cutoff in the original excised model. Additionally, the distribution of central L-values is ‘choppier’ than the distribution of characteristic polynomials, in the sense that it is a superposition of a series of peaks: the characteristic polynomial distribution is a smooth approximation to this. The excised model did not attempt to incorporate these successive peaks, only the initial cutoff. Here we experiment with including some of the structure of the L-value distribution. The conclusion is that a critical feature of a good model is to associate the correct mass to the first peak of the L-value distribution.

  5. Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.

  6. Comparing CALL and VAL-ED: An Illustrative Application of a Decision Matrix for Selecting Among Leadership Feedback Instruments. WCER Working Paper No. 2015-5

    ERIC Educational Resources Information Center

    Goff, Peter; Salisbury, Jason; Blitz, Mark

    2015-01-01

    Initiatives to increase leadership accountability coupled with efforts to promote data-driven leadership have led to widespread adoption of instruments to assess school leaders. In this paper we present a decision matrix that practitioners and researchers can use to facilitate instrument selection. Our decision matrix focuses on the psychometric…

  7. Control design based on a linear state function observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.

  8. Algebro-geometric approach for a centrally extended Uq[sl(2|2)] R-matrix

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2017-04-01

    In this paper we investigate the algebraic geometric nature of a solution of the Yang-Baxter equation based on the quantum deformation of the centrally extended sl (2 | 2) superalgebra proposed by Beisert and Koroteev [1]. We derive an alternative representation for the R-matrix in which the matrix elements are given in terms of rational functions depending on weights sited on a degree six surface. For generic gauge the weights geometry are governed by a genus one ruled surface while for a symmetric gauge choice the weights lie instead on a genus five curve. We have written down the polynomial identities satisfied by the R-matrix entries needed to uncover the corresponding geometric properties. For arbitrary gauge the R-matrix geometry is argued to be birational to the direct product CP1 ×CP1 × A where A is an Abelian surface. For the symmetric gauge we present evidences that the geometric content is that of a surface of general type lying on the so-called Severi line with irregularity two and geometric genus nine. We discuss potential geometric degenerations when the two free couplings are restricted to certain one-dimensional subspaces.

  9. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  10. The use of Lyapunov differential inequalities for estimating the transients of mechanical systems

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Dudarenko, N. A.; Melnikov, V. G.; Melnikov, G. I.

    2018-05-01

    In this paper we consider an autonomous mechanical system in a finite neighborhood of the zero of the phase space of states. The system is given as a matrix differential equation in the Cauchy form with the right-hand side of the polynomial structure. We propose a method for constructing a sequence of linear inhomogeneous differential inequalities for Lyapunov functions. As a result, we obtain estimates of transient processes in the form of functional inequalities.

  11. Quasi-periodic Solutions to the K(-2, -2) Hierarchy

    NASA Astrophysics Data System (ADS)

    Wu, Lihua; Geng, Xianguo

    2016-07-01

    With the help of the characteristic polynomial of Lax matrix for the K(-2, -2) hierarchy, we define a hyperelliptic curve 𝒦n+1 of arithmetic genus n+1. By introducing the Baker-Akhiezer function and meromorphic function, the K(-2, -2) hierarchy is decomposed into Dubrovin-type differential equations. Based on the theory of hyperelliptic curve, the explicit Riemann theta function representation of meromorphic function is given, and from which the quasi-periodic solutions to the K(-2, -2) hierarchy are obtained.

  12. On the structure of nonlinear constitutive equations for fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Jansson, Stefan

    1992-01-01

    The structure of constitutive equations for nonlinear multiaxial behavior of transversely isotropic fiber reinforced metal matrix composites subject to proportional loading was investigated. Results from an experimental program were combined with numerical simulations of the composite behavior for complex stress to reveal the full structure of the equations. It was found that the nonlinear response can be described by a quadratic flow-potential, based on the polynomial stress invariants, together with a hardening rule that is dominated by two different hardening mechanisms.

  13. Koopman Mode Decomposition Methods in Dynamic Stall: Reduced Order Modeling and Control

    DTIC Science & Technology

    2015-11-10

    the flow phenomena by separating them into individual modes. The technique of Proper Orthogonal Decomposition (POD), see [ Holmes : 1998] is a popular...sampled values h(k), k = 0,…,2M-1, of the exponential sum 1. Solve the following linear system where 2. Compute all zeros zj  D, j = 1,…,M...of the Prony polynomial i.e., calculate all eigenvalues of the associated companion matrix and form fj = log zj for j = 1,…,M, where log is the

  14. A new basis set for molecular bending degrees of freedom.

    PubMed

    Jutier, Laurent

    2010-07-21

    We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.

  15. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  16. Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games.

    PubMed

    Duong, Manh Hong; Han, The Anh

    2016-12-01

    In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, [Formula: see text], and the expected number, E(n, d), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as [Formula: see text] as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained.

  17. Application of derivative spectrophotometry under orthogonal polynomial at unequal intervals: determination of metronidazole and nystatin in their pharmaceutical mixture.

    PubMed

    Korany, Mohamed A; Abdine, Heba H; Ragab, Marwa A A; Aboras, Sara I

    2015-05-15

    This paper discusses a general method for the use of orthogonal polynomials for unequal intervals (OPUI) to eliminate interferences in two-component spectrophotometric analysis. In this paper, a new approach was developed by using first derivative D1 curve instead of absorbance curve to be convoluted using OPUI method for the determination of metronidazole (MTR) and nystatin (NYS) in their mixture. After applying derivative treatment of the absorption data many maxima and minima points appeared giving characteristic shape for each drug allowing the selection of different number of points for the OPUI method for each drug. This allows the specific and selective determination of each drug in presence of the other and in presence of any matrix interference. The method is particularly useful when the two absorption spectra have considerable overlap. The results obtained are encouraging and suggest that the method can be widely applied to similar problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    NASA Astrophysics Data System (ADS)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  19. Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-07-01

    In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.

  20. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Qiu, Xiaojun; Guo, Yecai

    2018-06-01

    To tune the noise amplification in the feedback system caused by the waterbed effect effectively, an adaptive algorithm is proposed in this paper by replacing the scalar leaky factor of the leaky FxLMS algorithm with a real symmetric Toeplitz matrix. The elements in the matrix are calculated explicitly according to the noise amplification constraints, which are defined based on a simple but efficient method. Simulations in an ANC headphone application demonstrate that the proposed algorithm can adjust the frequency band of noise amplification more effectively than the FxLMS algorithm and the leaky FxLMS algorithm.

  1. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  2. Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback

    NASA Astrophysics Data System (ADS)

    Tang, X. H.; Zou, Xingfu

    We consider a non-autonomous Lotka-Volterra competition system with distributed delays but without instantaneous negative feedbacks (i.e., pure delay systems). We establish some 3/2-type and M-matrix-type criteria for global attractivity of the positive equilibrium of the system, which generalise and improve the existing ones.

  3. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Dai, Xiao-Lin

    2014-04-01

    This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.

  4. Application of the trigonal curve to the Blaszak-Marciniak lattice hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Zeng, Xin

    2017-01-01

    We develop a method for constructing algebro-geometric solutions of the Blaszak-Marciniak ( BM) lattice hierarchy based on the theory of trigonal curves. We first derive the BM lattice hierarchy associated with a discrete (3×3)- matrix spectral problem using Lenard recurrence relations. Using the characteristic polynomial of the Lax matrix for the BM lattice hierarchy, we introduce a trigonal curve with two infinite points, which we use to establish the associated Dubrovin-type equations. We then study the asymptotic properties of the algebraic function carrying the data of the divisor and the Baker-Akhiezer function near the two infinite points on the trigonal curve. We finally obtain algebro-geometric solutions of the entire BM lattice hierarchy in terms of the Riemann theta function.

  5. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-11-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

  6. The Effect of Teachers' Written Corrective Feedback (WCF) Types on Intermediate EFL Learners' Writing Performance

    ERIC Educational Resources Information Center

    Aghajanloo, Khadijeh; Mobini, Fariba; Khosravi, Robab

    2016-01-01

    Written Corrective Feedback (WCF) is a controversial topic among theorists and researchers in L2 studies. Ellis, Sheen, Murakami, and Takashima (2008) identify two dominant dichotomies in this regard, that is focused vs. unfocused WCF and direct vs. indirect WCF. This study considered both dichotomies in a matrix format, resulted in the…

  7. Fuzzy crane control with sensorless payload deflection feedback for vibration reduction

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2014-05-01

    Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.

  8. The Humble Leader: Association of Discrepancies in Leader and Follower Ratings of Implementation Leadership with Organizational Climate in Mental Health

    PubMed Central

    Aarons, Gregory A.; Ehrhart, Mark G.; Torres, Elisa M.; Finn, Natalie K.; Beidas, Rinad

    2017-01-01

    Objectives Discrepancies between leaders' self-ratings and follower ratings of the leader are common but usually go unrecognized. Research on discrepancies is limited but there is evidence that discrepancies are associated with organizational context. This study examined the association of leader-follower discrepancies in Implementation Leadership Scale (ILS) ratings of mental health clinic leaders, and the association of those discrepancies with organizational climate for involvement and performance feedback. Both involvement and performance feedback may be important for evidence-based practice implementation in mental health. Methods A total of 593 supervisors (i.e., leaders, n=80) and clinical service providers (i.e., followers, n=513) completed surveys including ratings of implementation leadership and organizational climate. Polynomial regression and response surface analyses were conducted to examine the associations of discrepancies in leader-follower ILS ratings with organizational involvement climate and performance feedback climate, aspects of climate likely to support EBP implementation. Results Both involvement climate and performance feedback climate were highest where leaders rated themselves low on the ILS and their followers rated those leaders high on the ILS (i.e., “humble leaders”). Conclusions Teams with “humble leaders” showed more positive organizational climate for involvement and for performance feedback, contextual factors important during EBP implementation and sustainment. Discrepancy in leader and follower ratings of implementation leadership should be a consideration in understanding and improving leadership and organizational climate for mental health services and for evidence-based practice implementation and sustainment in mental health and other allied health settings. PMID:27691380

  9. Transition probability functions for applications of inelastic electron scattering

    PubMed Central

    Löffler, Stefan; Schattschneider, Peter

    2012-01-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  10. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  11. Boundary qKZ equation and generalized Razumov Stroganov sum rules for open IRF models

    NASA Astrophysics Data System (ADS)

    Di Francesco, P.

    2005-11-01

    We find higher-rank generalizations of the Razumov-Stroganov sum rules at q = -ei π/(k+1) for Ak-1 models with open boundaries, by constructing polynomial solutions of level-1 boundary quantum Knizhnik-Zamolodchikov equations for U_q(\\frak {sl}(k)) . The result takes the form of a character of the symplectic group, that leads to a generalization of the number of vertically symmetric alternating sign matrices. We also investigate the other combinatorial point q = -1, presumably related to the geometry of nilpotent matrix varieties.

  12. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis

    PubMed Central

    Liu, Fei; Lagares, David; Choi, Kyoung Moo; Stopfer, Lauren; Marinković, Aleksandar; Vrbanac, Vladimir; Probst, Clemens K.; Hiemer, Samantha E.; Sisson, Thomas H.; Horowitz, Jeffrey C.; Rosas, Ivan O.; Fredenburgh, Laura E.; Feghali-Bostwick, Carol; Varelas, Xaralabos; Tager, Andrew M.

    2014-01-01

    Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis. PMID:25502501

  13. A computer package for the design and eigenproblem solution of damped linear multidegree of freedom systems

    NASA Technical Reports Server (NTRS)

    Ahmadian, M.; Inman, D. J.

    1982-01-01

    Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.

  14. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem

    NASA Astrophysics Data System (ADS)

    Jacq, Thomas S.; Lardizabal, Carlos F.

    2017-11-01

    In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.

  15. Efficient algorithms for computing a strong rank-revealing QR factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Eisenstat, S.C.

    1996-07-01

    Given an m x n matrix M with m {ge} n, it is shown that there exists a permutation {Pi} and an integer k such that the QR factorization given by equation (1) reveals the numerical rank of M: the k x k upper-triangular matrix A{sub k} is well conditioned, norm of (C{sub k}){sub 2} is small, and B{sub k} is linearly dependent on A{sub k} with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficientmore » as QR with column pivoting for most problems and take O(mn{sup 2}) floating-point operations in the worst case.« less

  16. Large-angle slewing maneuvers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Chun, Hon M.; Turner, James D.

    1988-01-01

    A new class of closed-form solutions for finite-time linear-quadratic optimal control problems is presented. The solutions involve Potter's solution for the differential matrix Riccati equation, which assumes the form of a steady-state plus transient term. Illustrative examples are presented which show that the new solutions are more computationally efficient than alternative solutions based on the state transition matrix. As an application of the closed-form solutions, the neighboring extremal path problem is presented for a spacecraft retargeting maneuver where a perturbed plant with off-nominal boundary conditions now follows a neighboring optimal trajectory. The perturbation feedback approach is further applied to three-dimensional slewing maneuvers of large flexible spacecraft. For this problem, the nominal solution is the optimal three-dimensional rigid body slew. The perturbation feedback then limits the deviations from this nominal solution due to the flexible body effects. The use of frequency shaping in both the nominal and perturbation feedback formulations reduces the excitation of high-frequency unmodeled modes. A modified Kalman filter is presented for estimating the plant states.

  17. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  18. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    PubMed

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  19. Beampattern control of a microphone array to minimize secondary source contamination.

    PubMed

    Jordan, Peter; Fitzpatrick, John A; Meskell, Craig

    2003-10-01

    A null-steering technique is adapted and applied to a linear delay-and-sum beamformer in order to measure the noise generated by one of the propellers of a 1/8 scale twin propeller aircraft model. The technique involves shading the linear array using a set of weights, which are calculated according to the locations onto which the nulls need to be steered (in this case onto the second propeller). The technique is based on an established microwave antenna theory, and uses a plane-wave, or far field formulation in order to represent the response of the array by an nth-order polynomial, where n is the number of array elements. The roots of this polynomial correspond to the minima of the array response, and so by an appropriate choice of roots, a polynomial can be generated, the coefficients of which are the weights needed to achieve the prespecified set of null positions. It is shown that, for the technique to work with actual data, the cross-spectral matrix must be conditioned before array shading is implemented. This ensures that the shading function is not distorted by the intrinsic element weighting which can occur as a result of the directional nature of aeroacoustic systems. A difference of 6 dB between measurements before and after null steering shows the technique to have been effective in eliminating the contribution from one of the propellers, thus providing a quantitative measure of the acoustic energy from the other.

  20. Structured output-feedback controller synthesis with design specifications

    NASA Astrophysics Data System (ADS)

    Hao, Yuqing; Duan, Zhisheng

    2017-03-01

    This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.

  1. Teaching the extracellular matrix and introducing online databases within a multidisciplinary course with i-cell-MATRIX: A student-centered approach.

    PubMed

    Sousa, João Carlos; Costa, Manuel João; Palha, Joana Almeida

    2010-03-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure. Internet-available resources can bridge the division between the molecular details and ECM's biological properties and associated processes. This article presents an approach to teach the ECM developed for first year medical undergraduates who, working in teams: (i) Explore a specific molecular component of the matrix, (ii) identify a disease in which the component is implicated, (iii) investigate how the component's structure/function contributes to ECM' supramolecular organization in physiological and in pathological conditions, and (iv) share their findings with colleagues. The approach-designated i-cell-MATRIX-is focused on the contribution of individual components to the overall organization and biological functions of the ECM. i-cell-MATRIX is student centered and uses 5 hours of class time. Summary of results and take home message: A "1-minute paper" has been used to gather student feedback on the impact of i-cell-MATRIX. Qualitative analysis of student feedback gathered in three consecutive years revealed that students appreciate the approach's reliance on self-directed learning, the interactivity embedded and the demand for deeper insights on the ECM. Learning how to use internet biomedical resources is another positive outcome. Ninety percent of students recommend the activity for subsequent years. i-cell-MATRIX is adaptable by other medical schools which may be looking for an approach that achieves higher student engagement with the ECM. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  2. Key-Generation Algorithms for Linear Piece In Hand Matrix Method

    NASA Astrophysics Data System (ADS)

    Tadaki, Kohtaro; Tsujii, Shigeo

    The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.

  3. Reduced order feedback control equations for linear time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.

  4. Final Report - Subcontract B623760

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, R.

    2017-11-17

    During my visit to LLNL during July 17{27, 2017, I worked on linear system solvers. The two level hierarchical solver that initiated our study was developed to solve linear systems arising from hp adaptive finite element calculations, and is implemented in the PLTMG software package, version 12. This preconditioner typically requires 3-20% of the space used by the stiffness matrix for higher order elements. It has multigrid like convergence rates for a wide variety of PDEs (self-adjoint positive de nite elliptic equations, convection dominated convection-diffusion equations, and highly indefinite Helmholtz equations, among others). The convergence rate is not independent ofmore » the polynomial degree p as p ! 1, but but remains strong for p 9, which is the highest polynomial degree allowed in PLTMG, due to limitations of the numerical quadrature rules implemented in the software package. A more complete description of the method and some numerical experiments illustrating its effectiveness appear in. Like traditional geometric multilevel methods, this scheme relies on knowledge of the underlying finite element space in order to construct the smoother and the coarse grid correction.« less

  5. Critical frontier of the triangular Ising antiferromagnet in a field

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.

    2004-03-01

    We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.

  6. Exact zeros of entanglement for arbitrary rank-two mixtures derived from a geometric view of the zero polytope

    NASA Astrophysics Data System (ADS)

    Osterloh, Andreas

    2016-12-01

    Here I present a method for how intersections of a certain density matrix of rank 2 with the zero polytope can be calculated exactly. This is a purely geometrical procedure which thereby is applicable to obtaining the zeros of SL- and SU-invariant entanglement measures of arbitrary polynomial degree. I explain this method in detail for a recently unsolved problem. In particular, I show how a three-dimensional view, namely, in terms of the Bloch-sphere analogy, solves this problem immediately. To this end, I determine the zero polytope of the three-tangle, which is an exact result up to computer accuracy, and calculate upper bounds to its convex roof which are below the linearized upper bound. The zeros of the three-tangle (in this case) induced by the zero polytope (zero simplex) are exact values. I apply this procedure to a superposition of the four-qubit Greenberger-Horne-Zeilinger and W state. It can, however, be applied to every case one has under consideration, including an arbitrary polynomial convex-roof measure of entanglement and for arbitrary local dimension.

  7. Poly-Frobenius-Euler polynomials

    NASA Astrophysics Data System (ADS)

    Kurt, Burak

    2017-07-01

    Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.

  8. Human salmonellosis: estimation of dose-illness from outbreak data.

    PubMed

    Bollaerts, Kaatje; Aerts, Marc; Faes, Christel; Grijspeerdt, Koen; Dewulf, Jeroen; Mintiens, Koen

    2008-04-01

    The quantification of the relationship between the amount of microbial organisms ingested and a specific outcome such as infection, illness, or mortality is a key aspect of quantitative risk assessment. A main problem in determining such dose-response models is the availability of appropriate data. Human feeding trials have been criticized because only young healthy volunteers are selected to participate and low doses, as often occurring in real life, are typically not considered. Epidemiological outbreak data are considered to be more valuable, but are more subject to data uncertainty. In this article, we model the dose-illness relationship based on data of 20 Salmonella outbreaks, as discussed by the World Health Organization. In particular, we model the dose-illness relationship using generalized linear mixed models and fractional polynomials of dose. The fractional polynomial models are modified to satisfy the properties of different types of dose-illness models as proposed by Teunis et al. Within these models, differences in host susceptibility (susceptible versus normal population) are modeled as fixed effects whereas differences in serovar type and food matrix are modeled as random effects. In addition, two bootstrap procedures are presented. A first procedure accounts for stochastic variability whereas a second procedure accounts for both stochastic variability and data uncertainty. The analyses indicate that the susceptible population has a higher probability of illness at low dose levels when the combination pathogen-food matrix is extremely virulent and at high dose levels when the combination is less virulent. Furthermore, the analyses suggest that immunity exists in the normal population but not in the susceptible population.

  9. A New Precession Formula

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2003-07-01

    We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.

  10. Automatic Overset Grid Generation with Heuristic Feedback Control

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.

    2001-01-01

    An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.

  11. Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

    DTIC Science & Technology

    2001-09-11

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc...scheme, which is represented as a tree structure in figure 1 (following [24]), classifies the hypergeometric orthogonal polynomials and indicates the...2F0(1) 2F0(0) Figure 1: The Askey scheme of orthogonal polynomials The orthogonal polynomials associated with the generalized polynomial chaos,

  12. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion

    PubMed Central

    Ahmadzadeh, Hossein; Webster, Marie R.; Behera, Reeti; Jimenez Valencia, Angela M.; Wirtz, Denis; Weeraratna, Ashani T.; Shenoy, Vivek B.

    2017-01-01

    Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy–based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion. PMID:28196892

  13. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  14. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    PubMed

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  15. A Novel Finite-Sum Inequality-Based Method for Robust H∞ Control of Uncertain Discrete-Time Takagi-Sugeno Fuzzy Systems With Interval-Like Time-Varying Delays.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua

    2017-09-22

    This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.

  16. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  17. Raney Distributions and Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng

    2015-03-01

    Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.

  18. {ital R}-matrix theory, formal Casimirs and the periodic Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morosi, C.; Pizzocchero, L.

    The nonunitary {ital r}-matrix theory and the associated bi- and triHamiltonian schemes are considered. The language of Poisson pencils and of their formal Casimirs is applied in this framework to characterize the biHamiltonian chains of integrals of motion, pointing out the role of the Schur polynomials in these constructions. This formalism is subsequently applied to the periodic Toda lattice. Some different algebraic settings and Lax formulations proposed in the literature for this system are analyzed in detail, and their full equivalence is exploited. In particular, the equivalence between the loop algebra approach and the method of differential-difference operators is illustrated;more » moreover, two alternative Lax formulations are considered, and appropriate reduction algorithms are found in both cases, allowing us to derive the multiHamiltonian formalism from {ital r}-matrix theory. The systems of integrals for the periodic Toda lattice known after Flaschka and H{acute e}non, and their functional relations, are recovered through systematic application of the previously outlined schemes. {copyright} {ital 1996 American Institute of Physics.}« less

  19. Comparative study of original recover and recover KL in separable non-negative matrix factorization for topic detection in Twitter

    NASA Astrophysics Data System (ADS)

    Prabandari, R. D.; Murfi, H.

    2017-07-01

    An increasing amount of information on social media such as Twitter requires an efficient way to find the topics so that the information can be well managed. One of an automated method for topic detection is separable non-negative matrix factorization (SNMF). SNMF assumes that each topic has at least one word that does not appear on other topics. This method uses the direct approach and gives polynomial-time complexity, while the previous methods are iterative approaches and have NP-hard complexity. There are three steps of SNMF algorithm, i.e. constructing word co-occurrences, finding anchor words, and recovering topics. In this paper, we examine two topic recover methods, namely original recover that is using algebraic manipulation and recover KL that using probability approach with Kullback-Leibler divergence. Our simulations show that recover KL provides better accuracies in term of topic recall than original recover.

  20. Quantitative Tomography for Continuous Variable Quantum Systems

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.

    2018-03-01

    We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.

  1. The analysis of convolutional codes via the extended Smith algorithm

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Onyszchuk, I.

    1993-01-01

    Convolutional codes have been the central part of most error-control systems in deep-space communication for many years. Almost all such applications, however, have used the restricted class of (n,1), also known as 'rate 1/n,' convolutional codes. The more general class of (n,k) convolutional codes contains many potentially useful codes, but their algebraic theory is difficult and has proved to be a stumbling block in the evolution of convolutional coding systems. In this article, the situation is improved by describing a set of practical algorithms for computing certain basic things about a convolutional code (among them the degree, the Forney indices, a minimal generator matrix, and a parity-check matrix), which are usually needed before a system using the code can be built. The approach is based on the classic Forney theory for convolutional codes, together with the extended Smith algorithm for polynomial matrices, which is introduced in this article.

  2. Global collocation methods for approximation and the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Solomonoff, A.; Turkel, E.

    1986-01-01

    Polynomial interpolation methods are applied both to the approximation of functions and to the numerical solutions of hyperbolic and elliptic partial differential equations. The derivative matrix for a general sequence of the collocation points is constructed. The approximate derivative is then found by a matrix times vector multiply. The effects of several factors on the performance of these methods including the effect of different collocation points are then explored. The resolution of the schemes for both smooth functions and functions with steep gradients or discontinuities in some derivative are also studied. The accuracy when the gradients occur both near the center of the region and in the vicinity of the boundary is investigated. The importance of the aliasing limit on the resolution of the approximation is investigated in detail. Also examined is the effect of boundary treatment on the stability and accuracy of the scheme.

  3. Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Wu, Lihua; He, Guoliang

    2013-08-01

    Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup-Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup-Kupershmidt hierarchy, we introduce a trigonal curve {K}_{m-1} and present the corresponding Baker-Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup-Kupershmidt flows. With the aid of the properties of the Baker-Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann-Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker-Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup-Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.

  4. More on the elongational viscosity of an oriented fiber assembly

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron, Jr.; Beaussart, A. J.; Okine, R. K.

    1990-01-01

    The effective elongational viscosity for an oriented fiber assembly of discontinuous fibers suspended in a viscous matrix fluid is developed for a fiber array with variable overlap length of both symmetric and asymmetric geometries. Further, the relation is developed for a power-law matrix fluid with finite yield stress. The developed relations for a Newtonian fluid reveal that the influence of overlap length upon elongational viscosity may be expressed as a polynomial of second order. The results for symmetric and asymmetric geometries are shown to be equivalent. Finally, for the power-law fluid the influence of fiber aspect ratio on elongational viscosity was shown to be of order m + 1, where m is greater than 0 and less than 1, as compared to 2 for the Newtonian fluid, while the effective yield stress was found to be proportional to the fiber aspect ratio and volume fraction.

  5. Algorithms in Discrepancy Theory and Lattices

    NASA Astrophysics Data System (ADS)

    Ramadas, Harishchandra

    This thesis deals with algorithmic problems in discrepancy theory and lattices, and is based on two projects I worked on while at the University of Washington in Seattle. A brief overview is provided in Chapter 1 (Introduction). Chapter 2 covers joint work with Avi Levy and Thomas Rothvoss in the field of discrepancy minimization. A well-known theorem of Spencer shows that any set system with n sets over n elements admits a coloring of discrepancy O(√n). While the original proof was non-constructive, recent progress brought polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss. All those algorithms are randomized, even though Bansal's algorithm admitted a complicated derandomization. We propose an elegant deterministic polynomial time algorithm that is inspired by Lovett-Meka as well as the Multiplicative Weight Update method. The algorithm iteratively updates a fractional coloring while controlling the exponential weights that are assigned to the set constraints. A conjecture by Meka suggests that Spencer's bound can be generalized to symmetric matrices. We prove that n x n matrices that are block diagonal with block size q admit a coloring of discrepancy O(√n . √log(q)). Bansal, Dadush and Garg recently gave a randomized algorithm to find a vector x with entries in {-1,1} with ∥Ax∥infinity ≤ O(√log n) in polynomial time, where A is any matrix whose columns have length at most 1. We show that our method can be used to deterministically obtain such a vector. In Chapter 3, we discuss a result in the broad area of lattices and integer optimization, in joint work with Rebecca Hoberg, Thomas Rothvoss and Xin Yang. The number balancing (NBP) problem is the following: given real numbers a1,...,an in [0,1], find two disjoint subsets I1,I2 of [ n] so that the difference |sumi∈I1a i - sumi∈I2ai| of their sums is minimized. An application of the pigeonhole principle shows that there is always a solution where the difference is at most O √n/2n). Finding the minimum, however, is NP-hard. In polynomial time, the differencing algorithm by Karmarkar and Karp from 1982 can produce a solution with difference at most n-theta(log n), but no further improvement has been made since then. We show a relationship between NBP and Minkowski's Theorem. First we show that an approximate oracle for Minkowski's Theorem gives an approximate NBP oracle. Perhaps more surprisingly, we show that an approximate NBP oracle gives an approximate Minkowski oracle. In particular, we prove that any polynomial time algorithm that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

  6. On the matrix Fourier filtering problem for a class of models of nonlinear optical systems with a feedback

    NASA Astrophysics Data System (ADS)

    Razgulin, A. V.; Sazonova, S. V.

    2017-09-01

    A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.

  7. Use of digital control theory state space formalism for feedback at SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himel, T.; Hendrickson, L.; Rouse, F.

    The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less

  8. Further Results on Sufficient LMI Conditions for H∞ Static Output Feedback Control of Discrete-Time Systems

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Yong; Xu, Li; Matsushita, Shin-Ya; Wu, Min

    Further results on sufficient LMI conditions for H∞ static output feedback (SOF) control of discrete-time systems are presented in this paper, which provide some new insights into this issue. First, by introducing a slack variable with block-triangular structure and choosing the coordinate transformation matrix properly, the conservativeness of one kind of existing sufficient LMI condition is further reduced. Then, by introducing a slack variable with linear matrix equality constraint, another kind of sufficient LMI condition is proposed. Furthermore, the relation of these two kinds of LMI conditions are revealed for the first time through analyzing the effect of different choices of coordinate transformation matrices. Finally, a numerical example is provided to demonstrate the effectiveness and merits of the proposed methods.

  9. Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.

    2017-12-01

    The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.

  10. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  11. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  12. On the application of a fast polynomial transform and the Chinese remainder theorem to compute a two-dimensional convolution

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.

    1980-01-01

    A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.

  13. A new operational approach for solving fractional variational problems depending on indefinite integrals

    NASA Astrophysics Data System (ADS)

    Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.

    2018-04-01

    In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm

  14. Aspects géométriques et intégrables des modèles de matrices aléatoires

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2010-12-01

    This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.

  15. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  16. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  17. Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams.

    PubMed

    Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul

    2009-01-01

    Due to the high variability and complex colour distribution in meats and meat products, the colour signal calibration of any computer vision system used for colour quality evaluations, represents an essential condition for objective and consistent analyses. This paper compares two methods for CIE colour characterization using a computer vision system (CVS) based on digital photography; namely the polynomial transform procedure and the transform proposed by the sRGB standard. Also, it presents a procedure for evaluating the colour appearance and presence of pores and fat-connective tissue on pre-sliced hams made from pork, turkey and chicken. Our results showed high precision, in colour matching, for device characterization when the polynomial transform was used to match the CIE tristimulus values in comparison with the sRGB standard approach as indicated by their ΔE(ab)(∗) values. The [3×20] polynomial transfer matrix yielded a modelling accuracy averaging below 2.2 ΔE(ab)(∗) units. Using the sRGB transform, high variability was appreciated among the computed ΔE(ab)(∗) (8.8±4.2). The calibrated laboratory CVS, implemented with a low-cost digital camera, exhibited reproducible colour signals in a wide range of colours capable of pinpointing regions-of-interest and allowed the extraction of quantitative information from the overall ham slice surface with high accuracy. The extracted colour and morphological features showed potential for characterizing the appearance of ham slice surfaces. CVS is a tool that can objectively specify colour and appearance properties of non-uniformly coloured commercial ham slices.

  18. New Precession Formulas

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2003-08-01

    We adapted J.G. Williams' expression of the precession and nutation by the 3-1-3-1 rotation (Williams 1994) to an arbitrary inertial frame of reference. The new expression of the precession matrix is P = R1(-ɛ ) R3(-ψ ) R1(ϕ) R3(γ ) while that of precession-nutation matrix is NP = R1(-ɛ -Δ ɛ ) R3(-ψ -Δ ψ ) R1(ϕ) R3(γ ). Here γ and ϕ are the new planetary precession angles, ψ and ɛ are the new luni-solar precession angles, and Δ ψ and Δ ɛ are the usual nutations. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the latest planetary precession formula determined from DE405 (Harada 2003) and by using a recent theory of the forced nutation of the non-rigid Earth, SF2001 (Shirai and Fukushima 2001), we analysed the celestial pole offsets observed by VLBI for 1979-2000 and compiled by USNO and determined the best-fit polynomials of the new luni-solar precession angles. Then we translated the results into the classic precessional quantities as sin π A sin Π A, sin π A \\cos Π A, π A, Π A, pA, ψ A, ω A, χA, ζ A, zA, and θ A. Also we evaluated the effect of the difference in the ecliptic definition between the inertial and rotational senses. The combination of these formulas and the periodic part of SF2001 serves as a good approximation of the precession-nutation matrix in the ICRF. As a by-product, we determined the mean celestial pole offset at J2000.0 as X0 = -(17.12 +/- 0.01) mas and Y0 = -(5.06 +/- 0.02) mas. Also we estimated the speed of general precession in longitude at J2000.0 as p = (5028.7955 +/- 0.0003)''/Julian century, the mean obliquity at J2000.0 in the rotational sense as ɛ 0 = (84381.40955 +/- 0.00001)'', and the dynamical flattening of the Earth as Hd = (0.0032737804 +/- 0.0000000003). Further, we established a fast way to compute the precession-nutation matrix and provided a best-fit polynomial of s, an angle to specify the mean CEO.

  19. Super-resolution Doppler beam sharpening method using fast iterative adaptive approach-based spectral estimation

    NASA Astrophysics Data System (ADS)

    Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu

    2018-01-01

    Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.

  20. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  1. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    NASA Astrophysics Data System (ADS)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  2. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

    DTIC Science & Technology

    2002-07-25

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth

  3. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.

    PubMed

    Duan, Bin; Yin, Ziying; Hockaday Kang, Laura; Magin, Richard L; Butcher, Jonathan T

    2016-05-01

    Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation. We implement 3D hydrogels with tunable matrix stiffness to investigate the dynamic interaction between valve interstitial cells (VIC, major cell population in heart valve) and matrix biomechanics. This work focuses on how human VIC responses to changing 3D culture environments. Our findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification, which is the hallmark of calcific aortic valve disease. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive signaling pathway, delays VIC osteogenic differentiation. Our findings provide an improved understanding of VIC-matrix interactions to aid in interpretation of VIC calcification studies in vitro and suggest that ECM disruption resulting in local tissue stiffness decreases may promote calcific aortic valve disease. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

    PubMed

    Mahajan, Virendra N

    2012-06-20

    In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as they do not represent balanced aberrations for such a system.

  5. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  6. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  7. IRAC Full-Scale Flight Testbed Capabilities

    NASA Technical Reports Server (NTRS)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  8. Event-triggered output feedback control for distributed networked systems.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  10. Toeplitz matrices for LTI systems, an illustration of their application to Wiener filters and estimators

    NASA Astrophysics Data System (ADS)

    Moir, T. J.

    2018-03-01

    The Wiener-Kolmogorov theory of filtering has been with us since the first half of the twentieth century. A later matrix-based approach which was more general was derived with the steady-state Kalman filter. This approach uses a novel method of representing causal and uncausal systems in the form of convolution matrices and leads to a Wiener solution which is much easier to calculate than either the Kalman or Wiener approaches. For coloured additive noise, it avoids the use of Diophantine equations. The key idea missing in previous work is the close link between polynomials and Toeplitz matrices which are lower triangular in form. There is already a reasonably sized literature in the mathematics field on such matrices and so the area is ripe for exploration. Although the method does not offer a different or better solution, it shows a completely new way of defining linear time-invariant (LTI) systems which is neither transfer-function nor state-space-based. This is achieved by exploiting the connection between polynomials and Toeplitz matrices. The application here is the Wiener filter but there could well be many more as this is a generic approach.

  11. Learning Technology Specification: Principles for Army Training Designers and Developers

    DTIC Science & Technology

    2013-09-01

    immediate feedback is used, it’s best to present it in a complementary modality to decrease cognitive load: if a visual simulation, give feedback aurally ...audience listed above, read through each of the questions in the matrix, and circle the answer that best describes the training goals and learners . Then...answer that best describes the training goals and learners . Then, in the Summary Table below list all of the items in the Critical Learning

  12. Equivalences of the multi-indexed orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odake, Satoru

    2014-01-15

    Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.

  13. Flight Control System for the CRCA (Control Reconfigurable Combat Aircraft) Using a Command Generator Tracker with PI (Plus Integral) Feedback and Kalman Filter. Volume 2

    DTIC Science & Technology

    1989-03-01

    IAutomatic Control, AC-22, p 883-885, 1977 /Syntax check EIGA=EIG(A); EIGB=EIG(B); [M,N)=SIZE(EIGA); [PR] SIZE(EIGB); FOR 11I:M,FOR JlI:P,.... EIGAB=EIGA...AIM = implicit model A matrix I/ QI = weighting matrix, ouputs mimic model I/ RI = weighting matrix, controls mimic model // QIHAT = implicit cost II...the dimension is less than 1. // NINPUTS (the number of controls and outputs) is the flag for the dimensio // of the connections. /- // The name of

  14. Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw

    2011-04-15

    Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less

  15. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  16. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  17. On the formulation of a minimal uncertainty model for robust control with structured uncertainty

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1991-01-01

    In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix, delta, and constructing the state-space representation of P(s). Three examples are presented to illustrate the procedure.

  18. Long-term stable active mount for reflective optics

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Brady, A.; Damm, C.; Mohaupt, M.; Kamm, A.; Lange, N.; Goy, M.

    2016-07-01

    We report on the development of an active mount with an orthogonal actuator matrix offering a stable shape optimization for gratings or mirrors. We introduce the actuator distribution and calculate the accessible Zernike polynomials from their actuator influence function. Experimental tests show the capability of the device to compensate for aberrations of grating substrates as we report measurements of a 110x105 mm2 and 220x210 mm2 device With these devices, we evaluate the position depending aberrations, long-term stability shape results, and temperature-induced shape variations. Therewith we will discuss potential applications in space telescopes and Earth-based facilities where long-term stability is mandatory.

  19. Melonic Phase Transition in Group Field Theory

    NASA Astrophysics Data System (ADS)

    Baratin, Aristide; Carrozza, Sylvain; Oriti, Daniele; Ryan, James; Smerlak, Matteo

    2014-08-01

    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher-dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of 4-dimensional models of quantum gravity.

  20. Application of Eshelby's Solution to Elastography for Diagnosis of Breast Cancer.

    PubMed

    Shin, Bonghun; Gopaul, Darindra; Fienberg, Samantha; Kwon, Hyock Ju

    2016-03-01

    Eshelby's solution is the analytical method that can derive the elastic field within and around an ellipsoidal inclusion embedded in a matrix. Since breast tumor can be regarded as an elastic inclusion with different elastic properties from those of surrounding matrix when the deformation is small, we applied Eshelby's solution to predict the stress and strain fields in the breast containing a suspicious lesion. The results were used to investigate the effectiveness of strain ratio (SR) from elastography in representing modulus ratio (MR) that may be the meaningful indicator of the malignancy of the lesion. This study showed that SR significantly underestimates MR and is varied with the shape and the modulus of the lesion. Based on the results from Eshelby's solution and finite element analysis (FEA), we proposed a surface regression model as a polynomial function that can predict the MR of the lesion to the matrix. The model has been applied to gelatin-based phantoms and clinical ultrasound images of human breasts containing different types of lesions. The results suggest the potential of the proposed method to improve the diagnostic performance of breast cancer using elastography. © The Author(s) 2015.

  1. Simple Proof of Jury Test for Complex Polynomials

    NASA Astrophysics Data System (ADS)

    Choo, Younseok; Kim, Dongmin

    Recently some attempts have been made in the literature to give simple proofs of Jury test for real polynomials. This letter presents a similar result for complex polynomials. A simple proof of Jury test for complex polynomials is provided based on the Rouché's Theorem and a single-parameter characterization of Schur stability property for complex polynomials.

  2. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  3. Optimal matrix rigidity for stress fiber polarization in stem cells

    PubMed Central

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  4. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    NASA Astrophysics Data System (ADS)

    Chen, Zhixiang; Fu, Bin

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.

  5. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity

    NASA Astrophysics Data System (ADS)

    Xie, Xiang; Zheng, Hui; Qu, Yegao

    2016-07-01

    A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.

  6. Single transverse mode protein laser

    NASA Astrophysics Data System (ADS)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  7. Nodal Statistics for the Van Vleck Polynomials

    NASA Astrophysics Data System (ADS)

    Bourget, Alain

    The Van Vleck polynomials naturally arise from the generalized Lamé equation as the polynomials of degree for which Eq. (1) has a polynomial solution of some degree k. In this paper, we compute the limiting distribution, as well as the limiting mean level spacings distribution of the zeros of any Van Vleck polynomial as N --> ∞.

  8. Theoretic aspects of the identification of the parameters in the optimal control model

    NASA Technical Reports Server (NTRS)

    Vanwijk, R. A.; Kok, J. J.

    1977-01-01

    The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.

  9. Fast computation of close-coupling exchange integrals using polynomials in a tree representation

    NASA Astrophysics Data System (ADS)

    Wallerberger, Markus; Igenbergs, Katharina; Schweinzer, Josef; Aumayr, Friedrich

    2011-03-01

    The semi-classical atomic-orbital close-coupling method is a well-known approach for the calculation of cross sections in ion-atom collisions. It strongly relies on the fast and stable computation of exchange integrals. We present an upgrade to earlier implementations of the Fourier-transform method. For this purpose, we implement an extensive library for symbolic storage of polynomials, relying on sophisticated tree structures to allow fast manipulation and numerically stable evaluation. Using this library, we considerably speed up creation and computation of exchange integrals. This enables us to compute cross sections for more complex collision systems. Program summaryProgram title: TXINT Catalogue identifier: AEHS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 332 No. of bytes in distributed program, including test data, etc.: 157 086 Distribution format: tar.gz Programming language: Fortran 95 Computer: All with a Fortran 95 compiler Operating system: All with a Fortran 95 compiler RAM: Depends heavily on input, usually less than 100 MiB Classification: 16.10 Nature of problem: Analytical calculation of one- and two-center exchange matrix elements for the close-coupling method in the impact parameter model. Solution method: Similar to the code of Hansen and Dubois [1], we use the Fourier-transform method suggested by Shakeshaft [2] to compute the integrals. However, we heavily speed up the calculation using a library for symbolic manipulation of polynomials. Restrictions: We restrict ourselves to a defined collision system in the impact parameter model. Unusual features: A library for symbolic manipulation of polynomials, where polynomials are stored in a space-saving left-child right-sibling binary tree. This provides stable numerical evaluation and fast mutation while maintaining full compatibility with the original code. Additional comments: This program makes heavy use of the new features provided by the Fortran 90 standard, most prominently pointers, derived types and allocatable structures and a small portion of Fortran 95. Only newer compilers support these features. Following compilers support all features needed by the program. GNU Fortran Compiler "gfortran" from version 4.3.0 GNU Fortran 95 Compiler "g95" from version 4.2.0 Intel Fortran Compiler "ifort" from version 11.0

  10. Legendre modified moments for Euler's constant

    NASA Astrophysics Data System (ADS)

    Prévost, Marc

    2008-10-01

    Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4

  11. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  12. Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.

    2005-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.

  13. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    NASA Astrophysics Data System (ADS)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  14. Quantum algorithm for linear systems of equations.

    PubMed

    Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth

    2009-10-09

    Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.

  15. Quantum Linear System Algorithm for Dense Matrices.

    PubMed

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-02

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.

  16. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Optical systolic array processor using residue arithmetic

    NASA Technical Reports Server (NTRS)

    Jackson, J.; Casasent, D.

    1983-01-01

    The use of residue arithmetic to increase the accuracy and reduce the dynamic range requirements of optical matrix-vector processors is evaluated. It is determined that matrix-vector operations and iterative algorithms can be performed totally in residue notation. A new parallel residue quantizer circuit is developed which significantly improves the performance of the systolic array feedback processor. Results are presented of a computer simulation of this system used to solve a set of three simultaneous equations.

  18. On multiple orthogonal polynomials for discrete Meixner measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, Vladimir N

    2010-12-07

    The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.

  19. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  20. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  1. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    2013-01-01

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  2. Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H

    2016-12-01

    Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.

  3. Independence polynomial and matching polynomial of the Koch network

    NASA Astrophysics Data System (ADS)

    Liao, Yunhua; Xie, Xiaoliang

    2015-11-01

    The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.

  4. Robust Assignment Of Eigensystems For Flexible Structures

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.

    1992-01-01

    Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.

  5. Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2008-10-01

    We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.

  6. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less

  7. Hadamard Factorization of Stable Polynomials

    NASA Astrophysics Data System (ADS)

    Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar

    2011-11-01

    The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.

  8. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  9. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2016-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  10. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  11. On the development of HSCT tail sizing criteria using linear matrix inequalities

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac

    1995-01-01

    This report presents the results of a study to extend existing high speed civil transport (HSCT) tail sizing criteria using linear matrix inequalities (LMI). In particular, the effects of feedback specifications, such as MIL STD 1797 Level 1 and 2 flying qualities requirements, and actuator amplitude and rate constraints on the maximum allowable cg travel for a given set of tail sizes are considered. Results comparing previously developed industry criteria and the LMI methodology on an HSCT concept airplane are presented.

  12. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  13. On Certain Wronskians of Multiple Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Lun; Filipuk, Galina

    2014-11-01

    We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.

  14. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  15. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  17. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    NASA Astrophysics Data System (ADS)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  18. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    NASA Astrophysics Data System (ADS)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  19. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    ERIC Educational Resources Information Center

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  20. Determinants with orthogonal polynomial entries

    NASA Astrophysics Data System (ADS)

    Ismail, Mourad E. H.

    2005-06-01

    We use moment representations of orthogonal polynomials to evaluate the corresponding Hankel determinants formed by the orthogonal polynomials. We also study the Hankel determinants which start with pn on the top left-hand corner. As examples we evaluate the Hankel determinants whose entries are q-ultraspherical or Al-Salam-Chihara polynomials.

  1. A Polynomial Time, Numerically Stable Integer Relation Algorithm

    NASA Technical Reports Server (NTRS)

    Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.

  2. From sequences to polynomials and back, via operator orderings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu

    2013-12-15

    Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.

  3. Exact formulas for multipole moments using Slater-type molecular orbitals

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1986-01-01

    A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.

  4. A Novel Approach to Solve Linearized Stellar Pulsation Equations

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Teitler, S.

    2011-01-01

    We present a new approach to modeling linearized, non-radial pulsations in differentially rotating, massive stars. As a first step in this direction, we consider adiabatic pulsations and adopt the Cowling approximation that perturbations of the gravitational potential and its radial derivative are negligible. The angular dependence of the pulsation modes is expressed as a series expansion of associated Legendre polynomials; the resulting coupled system of differential equations is then solved by finding the eigenfrequencies at which the determinant of a characteristic matrix vanishes. Our method improves on previous treatments by removing the requirement that an arbitrary normalization be applied to the eigenfunctions; this brings the benefit of improved numerical robustness.

  5. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  6. An update on the BQCD Hybrid Monte Carlo program

    NASA Astrophysics Data System (ADS)

    Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk

    2018-03-01

    We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.

  7. Integrated optical circuits for numerical computation

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  8. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  9. Instability of the cored barotropic disc: the linear eigenvalue formulation

    NASA Astrophysics Data System (ADS)

    Polyachenko, E. V.

    2018-05-01

    Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.

  10. Extending Romanovski polynomials in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesne, C.

    2013-12-15

    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less

  11. Polynomial solutions of the Monge-Ampère equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aminov, Yu A

    2014-11-30

    The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction ofmore » such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.« less

  12. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  13. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    NASA Astrophysics Data System (ADS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  14. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  15. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  16. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  17. A note on the zeros of Freud-Sobolev orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  18. A FAST POLYNOMIAL TRANSFORM PROGRAM WITH A MODULARIZED STRUCTURE

    NASA Technical Reports Server (NTRS)

    Truong, T. K.

    1994-01-01

    This program utilizes a fast polynomial transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional convolution has many applications, particularly in image processing. Two-dimensional cyclic convolutions can be converted to a one-dimensional convolution in a polynomial ring. Traditional FPT methods decompose the one-dimensional cyclic polynomial into polynomial convolutions of different lengths. This program will decompose a cyclic polynomial into polynomial convolutions of the same length. Thus, only FPTs and Fast Fourier Transforms of the same length are required. This modular approach can save computational resources. To further enhance its appeal, the program is written in the transportable 'C' language. The steps in the algorithm are: 1) formulate the modulus reduction equations, 2) calculate the polynomial transforms, 3) multiply the transforms using a generalized fast Fourier transformation, 4) compute the inverse polynomial transforms, and 5) reconstruct the final matrices using the Chinese remainder theorem. Input to this program is comprised of the row and column dimensions and the initial two matrices. The matrices are printed out at all steps, ending with the final reconstruction. This program is written in 'C' for batch execution and has been implemented on the IBM PC series of computers under DOS with a central memory requirement of approximately 18K of 8 bit bytes. This program was developed in 1986.

  19. AKLSQF - LEAST SQUARES CURVE FITTING

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.

  20. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    PubMed

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  1. An ADAM12 and FAK positive feedback loop amplifies the interaction signal of tumor cells with extracellular matrix to promote esophageal cancer metastasis.

    PubMed

    Luo, Man-Li; Zhou, Zhuan; Sun, Lichao; Yu, Long; Sun, Lixin; Liu, Jun; Yang, Zhihua; Ran, Yuliang; Yao, Yandan; Hu, Hai

    2018-05-28

    Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  3. Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.

    PubMed

    Ragot, Sébastien; Ruiz, María Belén

    2008-09-28

    The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.

  4. Combination of Sharing Matrix and Image Encryption for Lossless $(k,n)$ -Secret Image Sharing.

    PubMed

    Bao, Long; Yi, Shuang; Zhou, Yicong

    2017-12-01

    This paper first introduces a (k,n) -sharing matrix S (k, n) and its generation algorithm. Mathematical analysis is provided to show its potential for secret image sharing. Combining sharing matrix with image encryption, we further propose a lossless (k,n) -secret image sharing scheme (SMIE-SIS). Only with no less than k shares, all the ciphertext information and security key can be reconstructed, which results in a lossless recovery of original information. This can be proved by the correctness and security analysis. Performance evaluation and security analysis demonstrate that the proposed SMIE-SIS with arbitrary settings of k and n has at least five advantages: 1) it is able to fully recover the original image without any distortion; 2) it has much lower pixel expansion than many existing methods; 3) its computation cost is much lower than the polynomial-based secret image sharing methods; 4) it is able to verify and detect a fake share; and 5) even using the same original image with the same initial settings of parameters, every execution of SMIE-SIS is able to generate completely different secret shares that are unpredictable and non-repetitive. This property offers SMIE-SIS a high level of security to withstand many different attacks.

  5. Exact solution of corner-modified banded block-Toeplitz eigensystems

    NASA Astrophysics Data System (ADS)

    Cobanera, Emilio; Alase, Abhijeet; Ortiz, Gerardo; Viola, Lorenza

    2017-05-01

    Motivated by the challenge of seeking a rigorous foundation for the bulk-boundary correspondence for free fermions, we introduce an algorithm for determining exactly the spectrum and a generalized-eigenvector basis of a class of banded block quasi-Toeplitz matrices that we call corner-modified. Corner modifications of otherwise arbitrary banded block-Toeplitz matrices capture the effect of boundary conditions and the associated breakdown of translational invariance. Our algorithm leverages the interplay between a non-standard, projector-based method of kernel determination (physically, a bulk-boundary separation) and families of linear representations of the algebra of matrix Laurent polynomials. Thanks to the fact that these representations act on infinite-dimensional carrier spaces in which translation symmetry is restored, it becomes possible to determine the eigensystem of an auxiliary projected block-Laurent matrix. This results in an analytic eigenvector Ansatz, independent of the system size, which we prove is guaranteed to contain the full solution of the original finite-dimensional problem. The actual solution is then obtained by imposing compatibility with a boundary matrix, whose shape is also independent of system size. As an application, we show analytically that eigenvectors of short-ranged fermionic tight-binding models may display power-law corrections to exponential behavior, and demonstrate the phenomenon for the paradigmatic Majorana chain of Kitaev.

  6. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  7. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  8. Degenerate r-Stirling Numbers and r-Bell Polynomials

    NASA Astrophysics Data System (ADS)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  9. From Chebyshev to Bernstein: A Tour of Polynomials Small and Large

    ERIC Educational Resources Information Center

    Boelkins, Matthew; Miller, Jennifer; Vugteveen, Benjamin

    2006-01-01

    Consider the family of monic polynomials of degree n having zeros at -1 and +1 and all their other real zeros in between these two values. This article explores the size of these polynomials using the supremum of the absolute value on [-1, 1], showing that scaled Chebyshev and Bernstein polynomials give the extremes.

  10. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    PubMed

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.

  11. Failure detection and correction for turbofan engines

    NASA Technical Reports Server (NTRS)

    Corley, R. C.; Spang, H. A., III

    1977-01-01

    In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.

  12. Practical robustness measures in multivariable control system analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.

    1981-01-01

    The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.

  13. Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei

    1991-01-01

    The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.

  14. Umbral orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Sendino, J. E.; del Olmo, M. A.

    2010-12-23

    We present an umbral operator version of the classical orthogonal polynomials. We obtain three families which are the umbral counterpart of the Jacobi, Laguerre and Hermite polynomials in the classical case.

  15. Rigid Body Rate Inference from Attitude Variation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  16. On the Extraction of Angular Velocity from Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.

    2006-01-01

    In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.

  17. Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in Airway Fibrosis

    PubMed Central

    Lin, Yu-chun; Sung, Yon K.; Jiang, Xinguo; Peters-Golden, Marc; Nicolls, Mark R.

    2016-01-01

    Fibrosis after solid organ transplantation is considered an irreversible process and remains the major cause of graft dysfunction and death with limited therapies. This remodeling is characterized by aberrant accumulation of contractile myofibroblasts that deposit excessive extracellular matrix (ECM) and increase tissue stiffness. However, studies demonstrate that a stiff ECM, itself, promotes fibroblast-to-myofibroblast differentiation, stimulating further ECM production. This creates a positive feedback loop that perpetuates fibrosis. We hypothesized that simultaneously targeting myofibroblast contractility with relaxin and ECM stiffness with lysyl oxidase inhibitors could break the feedback loop, thereby, reversing established fibrosis. To test this, we used the orthotopic tracheal transplanted (OTT) mouse model, which develops robust fibrotic airway remodeling. Mice with established fibrosis were treated with saline, mono-, or combination therapies. While monotherapies had no effect, combining these agents decreased collagen deposition and promoted re-epithelialization of remodeled airways. Relaxin inhibited myofibroblast differentiation and contraction, in a matrix-stiffness-dependent manner through prostaglandin E2 (PGE2). Furthermore, the effect of combination therapy was lost in PGE2 receptor knockout and PGE2 inhibited OTT mice. This study reveals the important synergistic roles of cellular contractility and tissue stiffness in the maintenance of fibrotic tissue and suggests a new therapeutic principle for fibrosis. PMID:27804215

  18. Comparison of co-expression measures: mutual information, correlation, and model based indices.

    PubMed

    Song, Lin; Langfelder, Peter; Horvath, Steve

    2012-12-09

    Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.

  19. Multi Objective Controller Design for Linear System via Optimal Interpolation

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay

    1996-01-01

    We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.

  20. The Effects of Q-Matrix Design on Classification Accuracy in the Log-Linear Cognitive Diagnosis Model.

    PubMed

    Madison, Matthew J; Bradshaw, Laine P

    2015-06-01

    Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other multidimensional measurement models. A priori specifications of which latent characteristics or attributes are measured by each item are a core element of the diagnostic assessment design. This item-attribute alignment, expressed in a Q-matrix, precedes and supports any inference resulting from the application of the diagnostic classification model. This study investigates the effects of Q-matrix design on classification accuracy for the log-linear cognitive diagnosis model. Results indicate that classification accuracy, reliability, and convergence rates improve when the Q-matrix contains isolated information from each measured attribute.

  1. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    ERIC Educational Resources Information Center

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  2. Extending a Property of Cubic Polynomials to Higher-Degree Polynomials

    ERIC Educational Resources Information Center

    Miller, David A.; Moseley, James

    2012-01-01

    In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…

  3. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  4. Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems

    NASA Astrophysics Data System (ADS)

    Ataei, Mohammad; Enshaee, Ali

    2011-12-01

    In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.

  5. State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities

    NASA Technical Reports Server (NTRS)

    Beeler, Scott C.; Cox, David E. (Technical Monitor)

    2004-01-01

    The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.

  6. Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields

    NASA Astrophysics Data System (ADS)

    Milstead, Jonathan

    The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  8. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars.

    PubMed

    Howard, Jeremy T; Jiao, Shihui; Tiezzi, Francesco; Huang, Yijian; Gray, Kent A; Maltecca, Christian

    2015-05-30

    Feed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth. Corrected daily feed intake (DFI Adj) and average daily weight measurements (DBW Avg) on 8981 (n=525,240 observations) and 5643 (n=283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order=2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n=855; DBWAvg: n=590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n=1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P<0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01% for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95% for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior. We have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.

  9. Codimension-Two Bifurcation, Chaos and Control in a Discrete-Time Information Diffusion Model

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Yu, Liping

    2016-12-01

    In this paper, we present a discrete model to illustrate how two pieces of information interact with online social networks and investigate the dynamics of discrete-time information diffusion model in three types: reverse type, intervention type and mutualistic type. It is found that the model has orbits with period 2, 4, 6, 8, 12, 16, 20, 30, quasiperiodic orbit, and undergoes heteroclinic bifurcation near 1:2 point, a homoclinic structure near 1:3 resonance point and an invariant cycle bifurcated by period 4 orbit near 1:4 resonance point. Moreover, in order to regulate information diffusion process and information security, we give two control strategies, the hybrid control method and the feedback controller of polynomial functions, to control chaos, flip bifurcation, 1:2, 1:3 and 1:4 resonances, respectively, in the two-dimensional discrete system.

  10. Periodic motion planning and control for underactuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Zeguo; Freidovich, Leonid B.; Zhang, Honghua

    2018-06-01

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

  11. Interbasis expansions in the Zernike system

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Pogosyan, George S.; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation with free boundary conditions on the unit disk that was proposed by Frits Zernike in 1934 to find Jacobi polynomial solutions (indicated as I) serves to define a classical system and a quantum system which have been found to be superintegrable. We have determined two new orthogonal polynomial solutions (indicated as II and III) that are separable and involve Legendre and Gegenbauer polynomials. Here we report on their three interbasis expansion coefficients: between the I-II and I-III bases, they are given by F32(⋯|1 ) polynomials that are also special su(2) Clebsch-Gordan coefficients and Hahn polynomials. Between the II-III bases, we find an expansion expressed by F43(⋯|1 ) 's and Racah polynomials that are related to the Wigner 6j coefficients.

  12. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  13. Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

    PubMed

    Haglund, J; Haiman, M; Loehr, N

    2005-02-22

    Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.

  14. Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jeon, G. J.

    1983-01-01

    Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.

  15. Robust stabilization of the Space Station in the presence of inertia matrix uncertainty

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang; Sunkel, John

    1993-01-01

    This paper presents a robust H-infinity full-state feedback control synthesis method for uncertain systems with D11 not equal to 0. The method is applied to the robust stabilization problem of the Space Station in the face of inertia matrix uncertainty. The control design objective is to find a robust controller that yields the largest stable hypercube in uncertain parameter space, while satisfying the nominal performance requirements. The significance of employing an uncertain plant model with D11 not equal 0 is demonstrated.

  16. Conformal Galilei algebras, symmetric polynomials and singular vectors

    NASA Astrophysics Data System (ADS)

    Křižka, Libor; Somberg, Petr

    2018-01-01

    We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.

  17. Identities associated with Milne-Thomson type polynomials and special numbers.

    PubMed

    Simsek, Yilmaz; Cakic, Nenad

    2018-01-01

    The purpose of this paper is to give identities and relations including the Milne-Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p -adic integrals, we derive some new relations and formulas related to these numbers and polynomials, and also the combinatorial sums.

  18. Orthogonal Polynomials on the Unit Circle with Fibonacci Verblunsky Coefficients, II. Applications

    NASA Astrophysics Data System (ADS)

    Damanik, David; Munger, Paul; Yessen, William N.

    2013-10-01

    We consider CMV matrices with Verblunsky coefficients determined in an appropriate way by the Fibonacci sequence and present two applications of the spectral theory of such matrices to problems in mathematical physics. In our first application we estimate the spreading rates of quantum walks on the line with time-independent coins following the Fibonacci sequence. The estimates we obtain are explicit in terms of the parameters of the system. In our second application, we establish a connection between the classical nearest neighbor Ising model on the one-dimensional lattice in the complex magnetic field regime, and CMV operators. In particular, given a sequence of nearest-neighbor interaction couplings, we construct a sequence of Verblunsky coefficients, such that the support of the Lee-Yang zeros of the partition function for the Ising model in the thermodynamic limit coincides with the essential spectrum of the CMV matrix with the constructed Verblunsky coefficients. Under certain technical conditions, we also show that the zeros distribution measure coincides with the density of states measure for the CMV matrix.

  19. Sensor management in RADAR/IRST track fusion

    NASA Astrophysics Data System (ADS)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  20. Matrix-algebra-based calculations of the time evolution of the binary spin-bath model for magnetization transfer.

    PubMed

    Müller, Dirk K; Pampel, André; Möller, Harald E

    2013-05-01

    Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Quantum Linear System Algorithm for Dense Matrices

    NASA Astrophysics Data System (ADS)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  2. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  3. On prototypical wave transmission across a junction of waveguides with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2018-02-01

    An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the `bondlength' in `broken' versus intact bonds can be constructed via a standard application of the Wiener-Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.

  4. Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model

    NASA Astrophysics Data System (ADS)

    Pont, Federico M.; Osenda, Omar; Serra, Pablo

    2018-05-01

    The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.

  5. Passivity-based control of linear time-invariant systems modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Galindo, R.; Ngwompo, R. F.

    2018-02-01

    Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.

  6. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  7. Parameter reduction in nonlinear state-space identification of hysteresis

    NASA Astrophysics Data System (ADS)

    Fakhrizadeh Esfahani, Alireza; Dreesen, Philippe; Tiels, Koen; Noël, Jean-Philippe; Schoukens, Johan

    2018-05-01

    Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level.

  8. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  9. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  10. Second derivative time integration methods for discontinuous Galerkin solutions of unsteady compressible flows

    NASA Astrophysics Data System (ADS)

    Nigro, A.; De Bartolo, C.; Crivellini, A.; Bassi, F.

    2017-12-01

    In this paper we investigate the possibility of using the high-order accurate A (α) -stable Second Derivative (SD) schemes proposed by Enright for the implicit time integration of the Discontinuous Galerkin (DG) space-discretized Navier-Stokes equations. These multistep schemes are A-stable up to fourth-order, but their use results in a system matrix difficult to compute. Furthermore, the evaluation of the nonlinear function is computationally very demanding. We propose here a Matrix-Free (MF) implementation of Enright schemes that allows to obtain a method without the costs of forming, storing and factorizing the system matrix, which is much less computationally expensive than its matrix-explicit counterpart, and which performs competitively with other implicit schemes, such as the Modified Extended Backward Differentiation Formulae (MEBDF). The algorithm makes use of the preconditioned GMRES algorithm for solving the linear system of equations. The preconditioner is based on the ILU(0) factorization of an approximated but computationally cheaper form of the system matrix, and it has been reused for several time steps to improve the efficiency of the MF Newton-Krylov solver. We additionally employ a polynomial extrapolation technique to compute an accurate initial guess to the implicit nonlinear system. The stability properties of SD schemes have been analyzed by solving a linear model problem. For the analysis on the Navier-Stokes equations, two-dimensional inviscid and viscous test cases, both with a known analytical solution, are solved to assess the accuracy properties of the proposed time integration method for nonlinear autonomous and non-autonomous systems, respectively. The performance of the SD algorithm is compared with the ones obtained by using an MF-MEBDF solver, in order to evaluate its effectiveness, identifying its limitations and suggesting possible further improvements.

  11. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Learning polynomial feedforward neural networks by genetic programming and backpropagation.

    PubMed

    Nikolaev, N Y; Iba, H

    2003-01-01

    This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.

  13. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  14. On universal knot polynomials

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Mkrtchyan, R.; Morozov, A.

    2016-02-01

    We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, respectively and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representations. Properties of universal polynomials and applications of these results are discussed.

  15. Zernike Basis to Cartesian Transformations

    NASA Astrophysics Data System (ADS)

    Mathar, R. J.

    2009-12-01

    The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.

  16. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  17. Blending Velocities In Task Space In Computing Robot Motions

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.

    1995-01-01

    Blending of linear and angular velocities between sequential specified points in task space constitutes theoretical basis of improved method of computing trajectories followed by robotic manipulators. In method, generalized velocity-vector-blending technique provides relatively simple, common conceptual framework for blending linear, angular, and other parametric velocities. Velocity vectors originate from straight-line segments connecting specified task-space points, called "via frames" and represent specified robot poses. Linear-velocity-blending functions chosen from among first-order, third-order-polynomial, and cycloidal options. Angular velocities blended by use of first-order approximation of previous orientation-matrix-blending formulation. Angular-velocity approximation yields small residual error, quantified and corrected. Method offers both relative simplicity and speed needed for generation of robot-manipulator trajectories in real time.

  18. Simultaneous stochastic inversion for geomagnetic main field and secular variation. I - A large-scale inverse problem

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1987-01-01

    The method of stochastic inversion is extended to the simultaneous inversion of both main field and secular variation. In the present method, the time dependency is represented by an expansion in Legendre polynomials, resulting in a simple diagonal form for the a priori covariance matrix. The efficient preconditioned Broyden-Fletcher-Goldfarb-Shanno algorithm is used to solve the large system of equations resulting from expansion of the field spatially to spherical harmonic degree 14 and temporally to degree 8. Application of the method to observatory data spanning the 1900-1980 period results in a data fit of better than 30 nT, while providing temporally and spatially smoothly varying models of the magnetic field at the core-mantle boundary.

  19. Gravity with a cosmological constant from rational curves

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2015-11-01

    We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point overline{MHV} and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.

  20. Large-scale semidefinite programming for many-electron quantum mechanics.

    PubMed

    Mazziotti, David A

    2011-02-25

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. © 2011 American Physical Society

  1. Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2011-02-01

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213001]. We illustrate with (i) the dissociation of N2 and (ii) the metal-to-insulator transition of H50. For H50 the SDP problem has 9.4×106 variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics.

  2. Recurrence relations in one-dimensional Ising models.

    PubMed

    da Conceição, C M Silva; Maia, R N P

    2017-09-01

    The exact finite-size partition function for the nonhomogeneous one-dimensional (1D) Ising model is found through an approach using algebra operators. Specifically, in this paper we show that the partition function can be computed through a trace from a linear second-order recurrence relation with nonconstant coefficients in matrix form. A relation between the finite-size partition function and the generalized Lucas polynomials is found for the simple homogeneous model, thus establishing a recursive formula for the partition function. This is an important property and it might indicate the possible existence of recurrence relations in higher-dimensional Ising models. Moreover, assuming quenched disorder for the interactions within the model, the quenched averaged magnetic susceptibility displays a nontrivial behavior due to changes in the ferromagnetic concentration probability.

  3. Simple, Effective Computation of Principal Eigen-Vectors and Their Eigenvalues and Application to High-Resolution Estimation of Frequencies

    DTIC Science & Technology

    1985-10-01

    written 3 as follows: m 4 cg ° + C + + - c =0n-1u-1 n C + c 2 g 1 +. . c 0 clg o Cngn-1 cn+ 1 (10a) cng° + Cn+11 + + C 2n-lgn_1 + C 2 n 0 or in...matrix form, C " I = 0 (10b) A non-zero solution is possible if the determinant of C is zero. From the theory of Prony’s method [133 g (k1 = % n + kn... g , ki + go = 0 II) hence the polynomial coefficient vector g is also orthogonal to the vector (1 X i ki 2 .Xik)T where %i’s are the

  4. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  5. Applications of polynomial optimization in financial risk investment

    NASA Astrophysics Data System (ADS)

    Zeng, Meilan; Fu, Hongwei

    2017-09-01

    Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.

  6. A Stochastic Mixed Finite Element Heterogeneous Multiscale Method for Flow in Porous Media

    DTIC Science & Technology

    2010-08-01

    applicable for flow in porous media has drawn significant interest in the last few years. Several techniques like generalized polynomial chaos expansions (gPC...represents the stochastic solution as a polynomial approxima- tion. This interpolant is constructed via independent function calls to the de- terministic...of orthogonal polynomials [34,38] or sparse grid approximations [39–41]. It is well known that the global polynomial interpolation cannot resolve lo

  7. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols.

    DTIC Science & Technology

    1978-03-01

    Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. [11] D. Stanton, Some basic hypergeometric polynomials arising from... Some bas ic hypergeometr ic an a logues of the classical orthogonal polynomials and applications , to appear. [3] C. de Boor and G. H. Golub , The...Report #1833 A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAR COEFFICIENTS OR 6 — j SYMBOLS Richard Askey and James Wilson •

  8. DIFFERENTIAL CROSS SECTION ANALYSIS IN KAON PHOTOPRODUCTION USING ASSOCIATED LEGENDRE POLYNOMIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. T. P. HUTAURUK, D. G. IRELAND, G. ROSNER

    2009-04-01

    Angular distributions of differential cross sections from the latest CLAS data sets,6 for the reaction γ + p→K+ + Λ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. 1 where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We thenmore » compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.« less

  9. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  10. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  11. Robust output feedback H∞ control for networked control systems based on the occurrence probabilities of time delays

    NASA Astrophysics Data System (ADS)

    Guo, Chenyu; Zhang, Weidong; Bao, Jie

    2012-02-01

    This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.

  12. Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo

    2017-09-01

    This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.

  13. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    PubMed

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A new approach to the method of source-sink potentials for molecular conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha

    2015-11-21

    We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less

  15. Quadratically Convergent Method for Simultaneously Approaching the Roots of Polynomial Solutions of a Class of Differential Equations

    NASA Astrophysics Data System (ADS)

    Recchioni, Maria Cristina

    2001-12-01

    This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.

  16. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, A; Ahmad, M; Chen, Z

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.« less

  17. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue Xing; Sun Kun; Wang Pan

    In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less

  19. Discrete Tchebycheff orthonormal polynomials and applications

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.

  20. Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Saxena, Nitin

    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less

  1. Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1998-01-01

    This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.

  2. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  3. Stability analysis of fuzzy parametric uncertain systems.

    PubMed

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  5. Aztec user`s guide. Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1995-10-01

    Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less

  6. State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.

    2015-06-01

    The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.

  7. Random Matrix Approach to Quantum Adiabatic Evolution Algorithms

    NASA Technical Reports Server (NTRS)

    Boulatov, Alexei; Smelyanskiy, Vadier N.

    2004-01-01

    We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in thatmore » one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.« less

  9. Observer-Based Discrete-Time Nonnegative Edge Synchronization of Networked Systems.

    PubMed

    Su, Housheng; Wu, Han; Chen, Xia

    2017-10-01

    This paper studies the multi-input and multi-output discrete-time nonnegative edge synchronization of networked systems based on neighbors' output information. The communication relationship among the edges of networked systems is modeled by well-known line graph. Two observer-based edge synchronization algorithms are designed, for which some necessary and sufficient synchronization conditions are derived. Moreover, some computable sufficient synchronization conditions are obtained, in which the feedback matrix and the observer matrix are computed by solving the linear programming problems. We finally design several simulation examples to demonstrate the validity of the given nonnegative edge synchronization algorithms.

  10. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    NASA Astrophysics Data System (ADS)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  11. Frictionless Contact of Multilayered Composite Half Planes Containing Layers With Complex Eigenvalues

    NASA Technical Reports Server (NTRS)

    Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy

    1997-01-01

    A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.

  12. On the coefficients of differentiated expansions of ultraspherical polynomials

    NASA Technical Reports Server (NTRS)

    Karageorghis, Andreas; Phillips, Timothy N.

    1989-01-01

    A formula expressing the coefficients of an expression of ultraspherical polynomials which has been differentiated an arbitrary number of times in terms of the coefficients of the original expansion is proved. The particular examples of Chebyshev and Legendre polynomials are considered.

  13. On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients

    ERIC Educational Resources Information Center

    Si, Do Tan

    1977-01-01

    Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)

  14. On the Analytical and Numerical Properties of the Truncated Laplace Transform I

    DTIC Science & Technology

    2014-09-05

    contains generalizations and conclusions. 2 2 Preliminaries 2.1 The Legendre Polynomials In this subsection we summarize some of the properties of the the...standard Legendre Polynomi - als, and restate these properties for shifted and normalized forms of the Legendre Polynomials . We define the Shifted... Legendre Polynomial of degree k = 0, 1, ..., which we will be denoting by P ∗k , by the formula P ∗k (x) = Pk(2x− 1), (5) where Pk is the Legendre

  15. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  16. Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus

    DTIC Science & Technology

    2011-03-01

    body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function

  17. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  18. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  19. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  20. The Effects of Q-Matrix Design on Classification Accuracy in the Log-Linear Cognitive Diagnosis Model

    ERIC Educational Resources Information Center

    Madison, Matthew J.; Bradshaw, Laine P.

    2015-01-01

    Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other…

Top