Science.gov

Sample records for feedstock supplement diluent

  1. Watermelon juice: A promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processing of watermelons to produce the neutraceuticals lycopene and citrulline yields a waste stream of watermelon juice at the rate of over 500 L/Mt of watermelons. Since watermelon juice contains 7-10% readily fermentable sugars, its potential as feedstock, diluent, and nitrogen supplement was ...

  2. Function of ram spermatozoa frozen in diluents supplemented with casein and vegetable oils.

    PubMed

    Del Valle, I; Souter, A; Maxwell, W M C; Muiño-Blanco, T; Cebrián-Pérez, J A

    2013-05-01

    The aim of this study was to assess biologically safer components as alternatives to egg yolk for the frozen storage of ram semen using casein, coconut or palm oil in either Salamon's diluent (S) or a swim-up medium (SU). Ejaculates were frozen as pellets and sperm motility (subjectively) and acrosome integrity (FITC-PNA/PI) by flow cytometry were assessed at 0, 3 and 6h after thawing and incubation at 37°C. Three experiments were done: different concentrations of palm oil (5%, 10% and 20%); casein added as emulsifier and protective agent; and differences between egg yolk, coconut and palm oil in S and SU. 20% of oil added to SU accounted for a lesser percentage (P<0.05) of motile cells compared to rest while no differences were found between different oil levels on viable cells. When casein was added to diluents containing 5% of palm oil, no differences were found between palm or casein (P>0.05). No differences were found when S and SU were compared neither as groups nor between S alone and containing coconut or palm oil; however, SU alone yielded less motility than SU 5% coconut. However, in both groups, S and SU, egg yolk accounted for the greatest values in both bases. These results indicate that none of biologically safer media components (casein, palm or coconut oil) used in this study maintained the function of ram spermatozoa after freeze-thawing better than S-containing egg yolk. The application of vegetable oils as substitutes for egg yolk in diluents for the cryopreservation of ram spermatozoa requires further research.

  3. Phenylethynyl reactive diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having a specified general structure is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having a specified general structure is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react with to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  4. Biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many forms of feedstocks for biofuel production. Animal manures and municipal solid wastes have been used to generate methane for on-farm and municipality energy uses. Fuel ethanol has been produced commercially using plant-derived starch and sugar feedstocks. Technologies for productio...

  5. Identification of process suitable diluent

    SciTech Connect

    Dean R. Peterman

    2014-01-01

    The Sigma Team for Minor Actinide Separation (STMAS) was formed within the USDOE Fuel Cycle Research and Development (FCRD) program in order to develop more efficient methods for the separation of americium and other minor actinides (MA) from used nuclear fuel. The development of processes for MA separations is driven by the potential benefits; reduced long-term radiotoxicty of waste placed in a geologic repository, reduced timeframe of waste storage, reduced repository heat load, the possibility of increased repository capacity, and increased utilization of energy potential of used nuclear fuel. The research conducted within the STMAS framework is focused upon the realization of significant simplifications to aqueous recycle processes proposed for MA separations. This report describes the research efforts focused upon the identification of a process suitable diluent for a flowsheet concept for the separation of MA which is based upon the dithiophosphinic acid (DPAH) extractants previously developed at the Idaho National Laboratory (INL).

  6. 9 CFR 112.3 - Diluent labels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.3 Diluent... organisms or viruses, the notice, “Burn this container and all unused contents,” except that, in the case...

  7. 9 CFR 112.3 - Diluent labels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.3 Diluent... organisms or viruses, the notice, “Burn this container and all unused contents,” except that, in the case...

  8. 9 CFR 112.3 - Diluent labels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.3 Diluent... organisms or viruses, the notice, “Burn this container and all unused contents,” except that, in the case...

  9. 9 CFR 112.3 - Diluent labels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.3 Diluent... organisms or viruses, the notice, “Burn this container and all unused contents,” except that, in the case...

  10. 9 CFR 112.3 - Diluent labels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.3 Diluent... organisms or viruses, the notice, “Burn this container and all unused contents,” except that, in the case...

  11. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  12. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  13. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  14. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  15. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  16. Phenylethynyl endcapping reagents and reactive diluents

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)

    1994-01-01

    A phenylethynyl composition which can be used to endcap nucleophilic species is employed in the production of phenylethynyl terminated reactive oligomers exclusively. These phenylethynyl terminated reactive oligomers display unique thermal characteristics, as exemplified by the model compound, 4-phenoxy 4'-phenylethynylbenzophenone, which is relatively stable at 200 C, but reacts at 350 C. In addition, a reactive diluent was prepared which decreases the melt viscosity of the phenylethynyl terminated oligomers and subsequently reacts therewith to increase density of the resulting thermoset. The novelty of this invention resides in the phenylethynyl composition used to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent was also employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to increase the crosslink density of the resulting thermoset. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  17. Fluorinated Diluents - New Possibilities For Radiochemical Technology

    SciTech Connect

    Babain, V.A.

    2007-07-01

    A variety of extraction mixtures for recovery of one or several hazardous radionuclides has been proposed to treat high-level radioactive wastes (HLW) generated in PUREX-process. Extraction methods for spent fuel reprocessing and waste treatment are considered in many reviews. Such compounds as di-phosphine dioxides, carbamoyl-methylene-phosphine oxides, crown-ethers, chlorinated cobalt dicarbollide, diamides of malonic acid, diamides of di-glycolic acid, different calixarenes, zirconium salts of organophosphorus acids are offered as extractants. The majority of these extractants are polar compounds, since they are poorly dissolved in saturated hydrocarbons, in particular their complexes with metals. Despite this fact, it is mainly proposed to use them in hydrocarbon diluents. For some extractants like diamides of malonic or di-glycolic acids it has been possible to find some compounds containing rather long alkyl radicals which are readily dissolved in saturated hydrocarbons. The drawback of such approach is concerned with hazardous occurrence of high-molecular decomposition products which are not removed from organic phase. Besides, this approach does not permit to attain high solubility of such extractant classes as dicarbollides, carbamoyl-phosphine oxides, di-phosphine dioxides etc. To provide the solubility of carbamoyl-phosphine oxides or crown-ethers in saturated hydrocarbons, one can use some modifiers, i.e. polar compounds like tributyl phosphate; to afford the solubility of malonamides or diamides of di-glycolic acid, monoamides of carboxylic acids are used; in the case of crown-ethers octanol is applied. To provide the higher solubility of calix[4]arene-bis-(tertoctylbenzo- crown-6) - BOBCalixC6 in hydrocarbon diluent Isopar L, 0.750 M of fluorinated modifier Cs-7SB were added at cesium extraction from alkaline solutions (CSSX-process), as well as at combined extraction of Cs and Sr by FPEX-process (Fission Product Extraction). Adding a modifier

  18. Feedstock Supply System Logistics

    SciTech Connect

    2006-06-01

    Feedstock supply is a significant cost component in the production of biobased fuels, products, and power. The uncertainty of the biomass feedstock supply chain and associated risks are major barriers to procuring capital funding for start-up biorefineries.

  19. Lignocellulosic feedstock resource assessment

    SciTech Connect

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  20. Articulating feedstock delivery device

    SciTech Connect

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  1. Feedstock Sugar Interface

    SciTech Connect

    2006-06-01

    To access enough biomass to meet petroleum displacement goals, a variety of feedstock and delivery systems are needed. Selection of the feedstock and delivery system for a biorefinery is important because it can affect the physical and chemical properties of the biomass input.

  2. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  3. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  4. Double Shell Tank (DST) Diluent and Flush Subsystem Specification

    SciTech Connect

    GRAVES, C.E.

    2001-01-18

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Diluent and Flush Subsystem which supports the first phase of Waste Feed Delivery.

  5. Stability of sulbactam/ampicillin in diluents for parenteral administration.

    PubMed

    Mushinsky, R F; Reynolds, M L; Nicholson, C A; Crider, L L; Forcier, G A

    1986-01-01

    Compatibility studies were conducted of sulbactam/ampicillin in infusion diluents that are reported to be compatible with ampicillin sodium. A high-performance liquid chromatographic system that simultaneously detects sulbactam and ampicillin was used to determine whether the infusion diluents and the conditions of use recommended for ampicillin sodium are applicable to sulbactam/ampicillin. The results show that the sulbactam/ampicillin preparation for parenteral administration is compatible with all diluents recommended for ampicillin sodium. In all diluents sulbactam was more stable than ampicillin. At the end of the reported use periods, the average retention value for sulbactam in the combination solutions was 96% (range, 91%-101%), whereas the average retention value for ampicillin in the same solutions was 90% (range, 84%-95%). The presence of sulbactam had no adverse effect on the stability of ampicillin. The average retention value for ampicillin alone in the same diluents was 92% (range, 82%-99%). The conditions of use for sulbactam/ampicillin in diluents for parenteral administration are unrestricted by the presence of sulbactam and are, in fact, governed by those of ampicillin sodium.

  6. Carbonization of petroleum feedstocks

    SciTech Connect

    Eser, S.

    1987-01-01

    The properties of the petroleum cokes are determined by their crystalline structure, which principally depends on the nature of the mesophase formed during the liquid-phase carbonization of the precursors. This study was aimed at investigating the relationships between the chemical nature of the petroleum feedstocks and the mesophase development during carbonization. Ashland 240 pitch and a range of petroleum heavy residua were characterized by solvent fractionation, elemental analysis, Fourier Transform Infrared Spectroscopy, H and TC Nuclear Magnetic Resonance Spectroscopy. The semi-coke (pyridine insolubles) formation from the feedstocks and their asphaltene fractions was found to be first-order with respect to the concentration of pyridine solubles over a wide conversion range. An inverse relationship was observed between the rate of carbonization of the asphaltenes and the degree of mesophase development. The degree of mesophase development during the carbonization of the feedstock asphaltenes increased consistently with the increasing hydrogen aromaticity over the whole range of the feedstocks used. The principal conclusion from this study is that the mesophase development during carbonization critically depends on the chemical constitution of the petroleum feedstocks. The molecular nature of the asphaltene fractions determines the extent of mesophase development during the carbonization of the petroleum heavy residua. In this respect, the hydrogen aromaticity of the asphaltenes appears to be a good measure for the feedstock quality in terms of resulting coke structure and properties.

  7. Double Shell Tank (DST) Diluent and Flush Subsystem Specification

    SciTech Connect

    GRAVES, C.E.

    2000-04-27

    The Double-Shell Tank (DST) Diluent and Flush Subsystem is intended to support Waste Feed Delivery. The DST Diluent and Flush Subsystem specification describes the relationship of this system with the DST System, describes the functions that must be performed by the system, and establishes the performance requirements to be applied to the design of the system. It also provides references for the requisite codes and standards. The DST Diluent and Flush Subsystem will treat the waste for a more favorable waste transfer. This will be accomplished by diluting the waste, dissolving the soluble portion of the waste, and flushing waste residuals from the transfer line. The Diluent and Flush Subsystem will consist of the following: The Diluent and Flush Station(s) where chemicals will be off-loaded, temporarily stored, mixed as necessary, heated, and metered to the delivery system; and A piping delivery system to deliver the chemicals to the appropriate valve or pump pit Associated support structures. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  8. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  9. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  10. Phenylethynyl End-Capping Reagents And Reactive Diluents

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Jensen, Brian J.; Hergenrother, Paul M.

    1994-01-01

    Compounds containing phenylethynyl group serve as thermally reactive polymer end caps and reactive diluents. Useful in preparation of adhesives, composite matrices, and molding compounds. These reagents transform arylene ether oligomers and polymers into readily processable reactive materials that convert thermally to thermosets. Compounds synthesized for subsequent use in making thermoset polymers. Phenylethynyl group found to offer several unexpected advantages over ethynyl-based analog.

  11. Constant-Pressure Combustion Charts Including Effects of Diluent Addition

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Bogart, Donald

    1949-01-01

    Charts are presented for the calculation of (a) the final temperatures and the temperature changes involved in constant-pressure combustion processes of air and in products of combustion of air and hydrocarbon fuels, and (b) the quantity of hydrocarbon fuels required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also included. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples.

  12. Biodiesel from conventional feedstocks.

    PubMed

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  13. Estimate feedstock processability

    SciTech Connect

    Amorelli, A.; Amos, Y.D.; Halsig, C.P. ); Kosman, J.J. ); Jonker, R.J.; de Wind, M.; Vrieling, J. )

    1992-06-01

    Currently, one of the major environmental pressures is to further reduce sulfur levels in middle distillate products. This paper reports that the key to this is understanding reactivities of individual sulfur components in the feedstocks to be treated. The major sulfur species in middle distillates is aromatic compounds, predominantly benzothiophenes and dibenzothiophenes. However, in straight run materials, significant quantities of aliphatic sulfur compounds and further higher boiling benzothiophenes are also expected. Simultaneous simulated distillation with a gas chromatograph microwave-induced plasma atomic emission detector (SIMDIS/AED) is used for middle distillate characterization of sulfur distribution as a function of boiling point. It is able to discriminate between middle distillate feed types such as cracked and straight run gas oils, and has shown that similar feeds, with different total sulfur contents (unevenly distributed throughout a feedstock), have the same normalized sulfur distribution.

  14. 21 CFR 73.1001 - Diluents in color additive mixtures for drug use exempt from certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Diluents in color additive mixtures for drug use... § 73.1001 Diluents in color additive mixtures for drug use exempt from certification. The following diluents may be safely used in color additive mixtures that are exempt from certification and which are...

  15. 21 CFR 73.1001 - Diluents in color additive mixtures for drug use exempt from certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Diluents in color additive mixtures for drug use... § 73.1001 Diluents in color additive mixtures for drug use exempt from certification. The following diluents may be safely used in color additive mixtures that are exempt from certification and which are...

  16. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Diluents in color additive mixtures for food use... Diluents in color additive mixtures for food use exempt from certification. The following substances may be safely used as diluents in color additive mixtures for food use exempt from certification, subject to...

  17. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Diluents in color additive mixtures for food use... Diluents in color additive mixtures for food use exempt from certification. The following substances may be safely used as diluents in color additive mixtures for food use exempt from certification, subject to...

  18. 21 CFR 73.1001 - Diluents in color additive mixtures for drug use exempt from certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Diluents in color additive mixtures for drug use... § 73.1001 Diluents in color additive mixtures for drug use exempt from certification. The following diluents may be safely used in color additive mixtures that are exempt from certification and which are...

  19. 21 CFR 73.1001 - Diluents in color additive mixtures for drug use exempt from certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Diluents in color additive mixtures for drug use... § 73.1001 Diluents in color additive mixtures for drug use exempt from certification. The following diluents may be safely used in color additive mixtures that are exempt from certification and which are...

  20. 21 CFR 73.1001 - Diluents in color additive mixtures for drug use exempt from certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Diluents in color additive mixtures for drug use... § 73.1001 Diluents in color additive mixtures for drug use exempt from certification. The following diluents may be safely used in color additive mixtures that are exempt from certification and which are...

  1. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Diluents in color additive mixtures for food use... Diluents in color additive mixtures for food use exempt from certification. The following substances may be safely used as diluents in color additive mixtures for food use exempt from certification, subject to...

  2. Biohydrogen production from lignocellulosic feedstock.

    PubMed

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  3. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.

    PubMed

    McQuistan, Adam; Zaitouna, Anita J; Echeverria, Elena; Lai, Rebecca Y

    2014-05-11

    We incorporated short thiolated oligonucleotides as passivating diluents in the fabrication of electrochemical peptide-based (E-PB) sensors, with the goal of creating a negatively charged layer capable of resisting non-specific adsorption of matrix contaminants. The E-PB HIV sensors fabricated using these diluents were found to be more specific and selective, while retaining attributes similar to the sensor fabricated without these diluents. Overall, these results highlight the advantages of using oligonucleotides as anti-fouling diluents in self-assembled monolayer-based sensors.

  4. Plasma spraying with wire feedstock

    SciTech Connect

    Scholl, M.

    1994-12-31

    Plasma spraying has been limited to using powder feedstocks for a number of reasons. One limitation has been the low energy output of conventional plasma guns. The advent of high energy plasma spraying (HEPS) devices and the associated technology has effectively removed this functional limitation. With HEPS, the combination of high gas velocities and high thermal plasma temperatures coupled with a large exit gas volume enables wire and rod feedstocks to be effectively utilized. Rather than a bulk melting mechanism, a model based on ablation phenomena is considered. The paper examines an analysis of melting phenomena and presents a simple model for molten droplet formation for plasma spraying using wire feedstocks.

  5. 20-Kw nitrogen diluent chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yang, Tientsai T.; Bhowmik, Anup; Burde, David H.; Clark, Roy; Carroll, S.; Dickerson, Robert A.; Eblen, J.; Gylys, Vytas T.; Hsia, Y. C.; Humphreys, Richard H., Jr.; Moon, L. F.; Hurlock, Steve C.; Tomassian, A.

    2002-09-01

    A new Chemical Oxygen-Iodine Laser (COIL) has been developed and demonstrated at chlorine flow rates up to 1 gmol/s. The laser employs a cross flow jet oxygen generator operating with no diluent. The generator product flow enters the laser cavity at Mach 1 and is accelerated by mixing with 5 gmol/s, Mach 5 nitrogen diluent in an ejector nozzle array. The nitrogen also serves as the carrier for iodine. Vortex mixing is achieved through the use of mixing tabs at the nitrogen nozzle exit. Mixing approach design and analysis, including CFD analysis, led to the preferred nozzle configuration. The selected mixing enhancement design was tested in cold flow and the results are in good agreement with the CFD predictions. Good mixing was achieved within the desired cavity flow length of 20 cm and pressure recovery about 90 Torr was measured at the cavity exit. Finally, the design was incorporated into the laser and power extraction as high as 20 kw was measured at the best operating condition of 0.9 gmol/s. Stable resonator mode footprints showed desieable intensity profiles, which none of the sugar scoop profiles characteristic of the conventional COIL designs.

  6. Early detection of oxacillin-resistant staphylococcal strains with hypertonic broth diluent for microdilution panels.

    PubMed Central

    Dillon, L K; Howe, S E

    1984-01-01

    A total of 292 coagulase-positive and 111 coagulase-negative staphylococcal strains were tested in microdilution MIC panels containing 16 to 0.13 microgram of oxacillin per ml diluted in cation-supplemented Mueller-Hinton broth with and without an additional 2% NaCl. All strains were tested using the stationary-phase inoculum procedure with an incubation temperature of 35 degrees C. Test results were recorded after 16 to 20 h of incubation; staphylococcal strains susceptible to oxacillin (less than or equal to 2 micrograms/ml) were reincubated for 20 to 24 h, and endpoints were determined again. Oxacillin resistance was found in 27 (9%) of the 292 coagulase-positive strains and 39 (35%) of the 111 coagulase-negative strains. Of these resistant strains, 5 (19%) of the 27 coagulase-positive strains and 13 (33%) of the 39 coagulase-negative strains were detected 24 h earlier in cation-supplemented Mueller-Hinton broth with 2% NaCl than in cation-supplemented Mueller-Hinton broth without the additional NaCl. However, 9 (33%) of the 27 resistant coagulase-positive strains and 10 (26%) of the 39 resistant coagulase-negative strains were detected only after an additional 24 h of incubation. Oxacillin MICs for the 265 coagulase-positive susceptible strains and 72 coagulase-negative susceptible strains were not affected by the additional 2% NaCl. These results support the utility of adding 2% NaCl to the broth diluent for the early detection of oxacillin-resistant staphylococcal strains and the necessity of extended incubation for those strains which initially appear to be susceptible to oxacillin after only 16 to 20 h of incubation. PMID:6562124

  7. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sequestrant in color additive mixtures intended only for ingested use; the color additive mixture (solution or... additive mixture (solution or dispersion) may contain not more than 1 percent by weight of the diluent... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Diluents in color additive mixtures for food...

  8. 21 CFR 73.1 - Diluents in color additive mixtures for food use exempt from certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sequestrant in color additive mixtures intended only for ingested use; the color additive mixture (solution or... additive mixture (solution or dispersion) may contain not more than 1 percent by weight of the diluent... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Diluents in color additive mixtures for food...

  9. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...

  10. Big bluestem and switchgrass feedstock harvest timing: Nitrous oxide response to feedstock harvest timing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alter...

  11. A preliminary report on the impact of cryopreservation diluent on ram sperm physiology and cervical artificial insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A meta-analysis of our fertility trials using Chi-square demonstrated that use of the skim-milk-egg yolk (SMEY) diluent resulted in greater fertility (42%) compared with the TRIS diluent (15%; P < 0.05). Therefore, we hypothesized that cryopreservation diluent (SMEY or TRIS) utilized in these trial...

  12. Effect of diluent type on viability of yeasts enumerated from foods or pure culture.

    PubMed

    Mian, M A; Fleet, G H; Hocking, A D

    1997-04-01

    The effects of seven diluent types on the viability of yeasts enumerated from foods and in pure culture were studied. The diluents were laboratory glass distilled water; saline water (0.85% NaCl), sodium phosphate buffer (0.1 M, pH 7.0), 0.1% peptone, 0.1% yeast extract, 0.1% peptone in 0.1 M sodium phosphate buffer, pH 7.0, and 0.1% malt extract. For all foods studied, dilution in 0.1% peptone gave the highest counts, with saline and phosphate buffer diluents giving lower counts than those obtained with distilled water. When seven species of yeast were enumerated in pure culture, highest counts were obtained using 0.1% peptone as the diluent and, with three exceptions, all species gave higher counts when diluted in diluents other than distilled water. When yeast suspensions were held in diluents for up to 2 h before plating, cell death occurred. The extent of death was highest in distilled water, saline and phosphate buffer diluents. Cell death also occurred in 0.1% peptone, yeast extract and malt extract, but to a lesser degree.

  13. Indirect measurement of diluents in a multi-component natural gas

    DOEpatents

    Morrow, Thomas B.; Owen, Thomas E.

    2006-03-07

    A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.

  14. 2009 Feedstocks Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  15. Survey of alternative feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  16. The behaviour of tributyl phosphate in an organic diluent

    NASA Astrophysics Data System (ADS)

    Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.

    2014-09-01

    Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.

  17. Process for desulfurizing petroleum feedstocks

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  18. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  19. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  20. Synthesizing Diamond from Liquid Feedstock

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua

    2005-01-01

    A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or

  1. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  2. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  3. Butter as a feedstock for biodiesel production.

    PubMed

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  4. TBP and diluent mass balances in the PUREX Plant at Hanford, 1955--1991

    SciTech Connect

    Sederburg, J.P.; Reddick, J.A.

    1994-12-01

    The purpose of this report is to develop an estimate of the quantities of tributyl phosphate and diluent discharged in aqueous waste streams to the tank farms from the Hanford Purex Plant over its operating life. Purex was not the sole source of organics in the tank farms, but was a major contributor. Tributyl phosphate (TBP) and diluent, which changed from Shell E-2342{reg_sign} to Soltrol-170{reg_sign} and then to normal paraffin hydrocarbon (NPH), were organic chemicals used in the Purex solvent extraction process at Hanford to separate plutonium and uranium from spent nuclear fuels. This report is an estimate of the material balances for these chemicals in the Purex Plant at Hanford over its entire operating life. The Purex Plant had cold start up in November 1955 and shut down in 1990. It`s process used a solution of 30 vol% TBP in diluent.

  5. UV-curable polyurethane acrylate coatings with different acrylate monomers as reactive diluents

    SciTech Connect

    Nabeth, B.; Gerard, J.F.; Pascault, J.P.

    1995-12-01

    Two series of UV-curable polyurethane acrylate (PUA) based on polycaprolactone (PCL), tetraxylylene diisocyanate (TMXDI), and hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA) were studied. These ones were considered with different acrylates as reactive diluents. The effect of the chemical nature and functionality of the reactive diluents on the thermal and dynamic mechanical properties (DMS) was investigated. From a thermodynamic point of view, the PUA seem to display a one phase structure by DMS. Nevertheless, the statistic heterogeneities due to the use of three monomers or more can explain the Tg values and the mechanical relaxations of the PUA. The Tg-onset of the PUA is slightly influenced by the nature of the reactive diluents but is dependent on the Tg of the oligomer confirming the description of the structure using a clusters model. The same conclusions could be done from the dynamic mechanical spectra of the PUA sandwiched and UV-cured between two glass plates.

  6. Evolution and Development of Effective Feedstock Specifications

    SciTech Connect

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  7. Transgenic Biofuel Feedstocks and Strategies for Biocontainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several reasons to believe that transgenic plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels. Much of the commercialization potential for the use of transgenic plant cellulosic feedstocks may be impacted by regulatio...

  8. Sophorolipid production from lignocellulosic biomass feedstocks

    NASA Astrophysics Data System (ADS)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  9. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  10. Method of removing contaminant from a feedstock stream

    SciTech Connect

    Holland, E. O.; Johnson, M. M.

    1981-05-26

    Contaminants such as petroleum sulfonates, anticorrosion amines, and silicone oils are removed from a contaminated feedstock stream by contacting said feedstock stream with an adsorbent comprising bauxite. In a further aspect, a thus purified petroleum feedstock stream is hydrodesulfurized.

  11. Method of removing contaminant from a feedstock stream

    SciTech Connect

    Holland, E.O.; Johnson, M.M.

    1982-08-10

    Contaminants such as petroleum sulfonates, anticorrosion amines, and silicone oils are removed from a contaminated feedstock stream by contacting said feedstock stream with an adsorbent comprising bauxite. In a further aspect, a thus purified petroleum feedstock stream is hydrodesulfurized.

  12. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    SciTech Connect

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  13. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  14. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  15. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  16. A Forensic Science Laboratory Experiment: Molecular Weights of Drugs and Diluents by Osmometry.

    ERIC Educational Resources Information Center

    Rothchild, Robert

    1982-01-01

    An Osmette A model 5002 automatic osmometer is used to characterize different drugs, diluents, and adulterants commonly encountered in samples of forensic interest, permitting rapid determinations with good reproducibility and use by large numbers of students with little training. Includes background information, procedures, and typical students…

  17. Response surface methodology to optimize novel fast disintegrating tablets using β cyclodextrin as diluent.

    PubMed

    Late, Sameer G; Banga, Ajay K

    2010-12-01

    The objective of this work was to apply response surface approach to investigate main and interaction effects of formulation parameters in optimizing novel fast disintegrating tablet formulation using β cyclodextrin as a diluent. The variables studied were diluent (β cyclodextrin, X (1)), superdisintegrant (Croscarmellose sodium, X (2)), and direct compression aid (Spray dried lactose, X (3)). Tablets were prepared by direct compression method on B2 rotary tablet press using flat plain-face punches and characterized for weight variation, thickness, disintegration time (Y (1)), and hardness (Y (2)). Disintegration time was strongly affected by quadratic terms of β cyclodextrin, croscarmellose sodium, and spray-dried lactose. The positive value of regression coefficient for β cyclodextrin suggested that hardness increased with increased amount of β cyclodextrin. In general, disintegration of tablets has been reported to slow down with increase in hardness. However in the present study, higher concentration of β cyclodextrin was found to improve tablet hardness without increasing the disintegration time. Thus, β cyclodextrin is proposed as a suitable diluent to achieve fast disintegrating tablets with sufficient hardness. Good correlation between the predicted values and experimental data of the optimized formulation validated prognostic ability of response surface methodology in optimizing fast disintegrating tablets using β cyclodextrin as a diluent.

  18. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  19. 2011 Biomass Program Platform Peer Review: Feedstock

    SciTech Connect

    McCann, Laura

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  20. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    SciTech Connect

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  1. Sugarcane and other crops as fuel feedstocks

    SciTech Connect

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fiber in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)

  2. Trivalent actinide and lanthanide separations using tetraalkyldiglycolamides (TCnDGA) in molecular and ionic liquid diluents

    SciTech Connect

    Bruce J. Mincher; Robert V. Fox; Mary E. Mincher; Chien M. Wai

    2014-09-01

    The use of the diglycolamide, tetrabutyldiglycolamide was investigated for intergroup separations of the lanthanides, focusing especially on those lanthanides (Y, Ce, Eu, Tb, Dy, Er, and Yb) found in lighting phosphors. Tetrabutyldiglycolamide extraction efficiency for the lanthanides varied depending on whether the diluent was the conventional molecular diluent 1-octanol, the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide, or a mixture of the two. This was attributed to extraction of either neutral, cationic or anionic lanthanide metal complexes with nitrate ion. Based on the batch contact solvent extraction results measured here, a series of extractions providing product streams containing separated Y, Ce, Eu, Tb/Dy, and Er/Yb are proposed.

  3. Raidiation-Induced Fragmentation of Diamide Extraction Agents in Ionic Liquid Diluents

    SciTech Connect

    Bell, Jason R; Dai, Sheng; Shkrob, Ilya A.; Marin, Timothy W.; Luo, Huimin; Hatcher, Jasmine; Rimmer, R. Dale; Wishart, James F.

    2012-01-01

    N,N,N',N'-Tetraalkyldiglycolamides are extracting agents that are used for liquid-liquid extraction of trivalent metal ions in wet processing of spent nuclear fuel. This application places such agents in contact with the decaying radionuclides, causing radiolysis of the agent in the organic diluent. Recent research seeks to replace common molecular diluents (such as n-dodecane) with hydrophobic room-temperature ionic liquids (ILs), which have superior solvation properties. In alkane diluents, rapid radiolytic deterioration of diglycolamide agents can be inhibited by addition of an aromatic cosolvent that scavenges highly reactive alkane radical cations before these oxidize the extracting agent. Do aromatic ILs exhibit a similar radioprotective effect? To answer this question, we used electron paramagnetic resonance spectroscopy to study the fragmentation pathways in radiolysis of neat diglycolamides, their model compounds, and their solutions in the ILs. Our study indicates that aromatic ILs do not protect these types of solutes from extensive radiolytic damage. Previous research indicated a similar lack of protection for crown ethers, whereas the ILs readily protected di- and trialkyl phosphates (another large class of metal-extracting agents). Our analysis of these unanticipated failures suggests that new types of organic anions are required in order to formulate ILs capable of radioprotection for these classes of solutes. This study is a cautionary tale of the fallacy of analogical thinking when applied to an entirely new and insufficiently understood class of chemical materials.

  4. Effects of diluents on cell culture viability measured by automated cell counter

    PubMed Central

    Chen, Aaron; Leith, Matthew; Tu, Roger; Tahim, Gurpreet; Sudra, Anish; Bhargava, Swapnil

    2017-01-01

    Commercially available automated cell counters based on trypan blue dye-exclusion are widely used in industrial cell culture process development and manufacturing to increase throughput and eliminate inherent variability in subjective interpretation associated with manual hemocytometers. When using these cell counters, sample dilution is often necessary to stay within the assay measurement range; however, the effect of time and diluents on cell culture is not well understood. This report presents the adverse effect of phosphate buffered saline as a diluent on cell viability when used in combination with an automated cell counter. The reduced cell viability was attributed to shear stress introduced by the automated cell counter. Furthermore, length of time samples were incubated in phosphate buffered saline also contributed to the observed drop in cell viability. Finally, as erroneous viability measurements can severely impact process decisions and product quality, this report identifies several alternative diluents that can maintain cell culture viability over time in order to ensure accurate representation of cell culture conditions. PMID:28264018

  5. Investigation of bioequivalence and tolerability of intramuscular ceftriaxone injections by using 1% lidocaine, buffered lidocaine, and sterile water diluents.

    PubMed Central

    Hayward, C J; Nafziger, A N; Kohlhepp, S J; Bertino, J S

    1996-01-01

    The pharmacokinetics and tolerability of 1-g doses of ceftriaxone diluted in sterile water, 1% lidocaine, or buffered lidocaine were investigated. No difference in bioequivalence was noted between the three treatments. No difference in peak creatine kinase values was seen. By use of a quantitative pain scale, injection of ceftriaxone with the water diluent was significantly more painful than that with either of the other two diluents. No difference in injection pain was noted for lidocaine or buffered lidocaine. PMID:8834905

  6. Bioenergy Feedstock Development Program Status Report

    SciTech Connect

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  7. Olefins can limit desulfurization of reformer feedstock

    SciTech Connect

    Ali, S.A.; Anabtawi, J.A.

    1995-07-03

    Pilot plant studies have shown that the presence of even very small amounts of olefins may limit the desulfurization of reformer feedstocks to trace levels. Engineers at the Research Institute of King Fahd University of Petroleum and Minerals observed under typical industrial conditions the recombination reaction of olefins with hydrogen sulfide to form mercaptans. The results indicate that the advantage of using highly active (third generation) CoMo hydrotreating catalysts can be masked by these reactions if the olefins are not saturated. The trend in naphtha reforming is to use high-rhenium, bimetallic catalysts that display less resistance to sulfur than do balanced Pt-Re catalysts. Due consideration, therefore, should be given to these undesirable recombination reactions while designing hydrotreaters and selecting hydrodesulfurization (HDS) and reforming catalysts. The paper discusses catalysts and feedstock tests, catalyst activity, temperature effects, space velocity, feedstock effect, catalyst performance, and recommendations.

  8. Wastepaper as a feedstock for ethanol production

    SciTech Connect

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  9. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  10. Halophytes Energy Feedstocks: Back to Our Roots

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2008-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  11. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  12. High Yields for Enhanced Sustainable Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, humankind is in the midst of one of the greatest technological, environmental, and social transitions since the industrial revolution as we strive to replace fossil energy with renewable sources. The Billion Ton Report established a target for U.S. bioenergy feedstock production and throug...

  13. Soil management implications of producing biofuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for domestic, renewable energy resources and the need for more stable and higher commodity prices for farmers and rural communities are drivers for the developing bioenergy industry. First generation feedstocks focused on corn (Zea mays L) and soybean (Glycine max. L. [Merr.]) grain in t...

  14. Balancing feedstock economics and ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this analysis is to examine the economic balance between production of cellulosic biofuel feedstocks and ecosystem services at the farm level. A literature review of the economics of ecosystem services, ecosystem service impacts of biofuel production, and economic factors influencing ...

  15. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  16. Dedicated herbaceous biomass feedstock genetics and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels and bio-based products can be produced from a wide variety of plant feedstocks. To supply enough biomass to meet the proposed need for a bio-based economy a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the United States. Re...

  17. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    NASA Astrophysics Data System (ADS)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  18. Sustainable use of biotechnology for bioenergy feedstocks.

    PubMed

    Moon, Hong S; Abercrombie, Jason M; Kausch, Albert P; Stewart, C Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant's biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  19. 40 CFR 60.4405 - How do I perform the initial performance test if I have chosen to install a NOX-diluent CEMS?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance test if I have chosen to install a NOX-diluent CEMS? 60.4405 Section 60.4405 Protection of... § 60.4405 How do I perform the initial performance test if I have chosen to install a NOX-diluent CEMS? If you elect to install and certify a NOX-diluent CEMS under § 60.4345, then the initial...

  20. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  1. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  2. Properties of UV-Curable Polyurethane Acrylates: Effect of Reactive Diluent.

    DTIC Science & Technology

    1984-06-20

    polyols (CB) (Vulkollan 2020) were received through the courtesy of Dr. H. Hespe of Bayer. Hydroxyethyl methacrylate ( HEMA ) was acquired from Aldrich...T) H3 N=C=O 0 N=C=O 2,4-toluene diisocyanate (T) CH 3 CH2 =L C-O-CH.f-CH.-OH 0 2- hydroxyethyl methacrylate ( HEMA ) REACTIVE DILUENT STRUCTURES CH 2 CH... HEMA is used instead of HEA). Two families of materials based on isocyanatoethyl methacrylate (IEM) were also investigated. IEM combines the acrylate

  3. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    SciTech Connect

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  4. High precision measurement of silicon in naphthas by ICP-OES using isooctane as diluent.

    PubMed

    Gazulla, M F; Rodrigo, M; Orduña, M; Ventura, M J; Andreu, C

    2017-03-01

    An analytical protocol for the accurate and precise determination of Si in naphthas is presented by using ICP-OES, optimizing from the sample preparation to the measurement conditions, in order to be able to analyze for the first time silicon contents below 100µgkg(-1) in a relatively short time thus being used as a control method. In the petrochemical industry, silicon can be present as a contaminant in different petroleum products such as gasoline, ethanol, or naphthas, forming different silicon compounds during the treatment of these products that are irreversibly adsorbed onto catalyst surfaces decreasing its time life. The complex nature of the organic naphtha sample together with the low detection limits needed make the analysis of silicon quite difficult. The aim of this work is to optimize the measurement of silicon in naphthas by ICP-OES introducing as an improvement the use of isooctane as diluent. The set up was carried out by optimizing the measurement conditions (power, nebulizer flow, pump rate, read time, and viewing mode) and the sample preparation (type of diluent, cleaning process, blanks, and studying various dilution ratios depending on the sample characteristics).

  5. Biomass Feedstock Composition and Property Database

    DOE Data Explorer

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.)

  6. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  7. Introduction: Integrative Approaches for Estimating Current and Future Feedstock Availability

    SciTech Connect

    West, Tristram O.

    2010-09-08

    Biomass that is used to generate energy, through conversion processes or direct combustion, is referred to as a bioenergy feedstock. Establishment of bioenergy feedstocks as an agricultural commodity has the potential to alter land management, carbon stocks, water quality, and greenhouse gas emissions over large geographic areas. Estimation of current and future feedstock availability is an essential step in assessing potential environmental and economic impacts of feedstock production. The purpose of this special issue is to communicate integrative approaches that combine data and modeling capabilities for estimation of current and future feedstock availability.

  8. Application of Response Surface Methodology to Estimate the Design Space of Pharmaceutical Diluents for Dispensing Powdered Formulations.

    PubMed

    Miyazaki, Yasunori; Takayama, Kozo; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2016-01-01

    Scientific approaches for dispensation are important for the quality and efficacy of drug treatments. Therefore, for the dispensation of powdered medicines, we have developed a powder blending method using a planetary centrifugal mixer (PCM) to replace the empirical manual method involving a mortar and pestle. The aim of this study was to optimize the formulation of pharmaceutical diluents for dispensing powdered medicines, using PCM. The diluents, composed of powdered lactose, crystalline lactose, and corn starch were assigned to a {3,2}-Simplex Lattice design. Then, the designed diluents were blended with model powders, such as carbazochrome sodium sulfonate powder, rifampicin capsule contents, and crushed sulfasarazine tablets, at ratios of 1 : 4, 1 : 1, and 4 : 1 using PCM at 800 rpm for 60 s at a 20% filling rate. The mixtures were examined for content uniformity relative standard deviation (RSD) and flowability angle of repose (AOR). Response surface methodology was applied to optimize the formulation with the smallest RSD and AOR, and then the design space of desired diluents was estimated. On the basis of the design space, crystalline lactose, the mixture of lactose powder and crystalline lactose at a ratio of 1 : 4, and the mixture of corn starch and crystalline lactose at a ratio of 1 : 4, were suitable diluents for the powdered formulation, the content of the capsules, and the crushed tablets, respectively. The selected diluents were successfully applied to other model medicines showing a sufficient RSD and AOR. This technique could contribute to the development of scientific approaches for dispensation.

  9. Method and apparatus for treating a cellulosic feedstock

    DOEpatents

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  10. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  11. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  12. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  13. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  14. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  15. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  16. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... Method 3A or 3B in appendix A of this part to determine oxygen concentration at the location of...

  17. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... Method 3A or 3B in appendix A of this part to determine oxygen concentration at the location of...

  18. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission...

  19. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  20. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  1. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... Method 3A or 3B in appendix A of this part to determine oxygen concentration at the location of...

  2. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... Method 3A or 3B in appendix A of this part to determine oxygen concentration at the location of...

  3. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  4. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your...

  5. 40 CFR 60.1255 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1255 Section 60.1255 Protection of Environment... oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the... Method 3A or 3B in appendix A of this part to determine oxygen concentration at the location of...

  6. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  7. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules.

  8. Analysis of the effect of diluent for rehydration of PoulVac MycoF on vaccination seroconversion results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct eye drop vaccination of poultry using live Mycoplasma gallisepticum vaccines provides the most efficient route of vaccination. The research reported in this study examines the effect of diluent used to rehydrate lyophilized M. gallisepticum vaccines on its ability to induce a measurable humo...

  9. Equilibria and effect of diluent in the solvent extraction of lithium salts by highly alkylated 14-crown-4-ethers

    SciTech Connect

    Moyer, B.A.; Sachleben, R.A.; Sun, Y.; Driver, J.L.; Chen, Z. Cavenaugh, K.L.; Carter, R.W.; Baes, C.F. Jr.

    1996-12-31

    As shown by survey experiments, 14-crown-4 ethers bearing certain aliphatic substituents exhibit strong selectivity for lithium. Both selectivity and overall extraction efficiency depend markedly on type of ring substituents and on diluent properties. To understand such effects in greater detail, extraction of LiCl by the crown ether 2,2,3,3,6,9,9,10,10-nonamethyl-14-crown-4 (NM14C4) was subjected to equilibrium analysis. By use of the program SXLSQI (a solvent-extraction modeling program), the extraction behavior as determined by ion chromatography has been modeled quantitatively in terms of four equilibrium in 1-octanol. The following neutral and ionic organic-phase species have been considered: LiCl, Li+, Cl{sup {minus}}, LiCECl, and LiCE+ (CE = crown ether). Parallel measurements of the same system by {sup 7}Li NMR techniques agree with the ion-chromatography results. The NMR experiment affords the advantage of distinguishing between free and bound lithium and thus provides a check on the species indicated by the modeling. Extraction of LiCl by NM 14C4 correlates with diluent properties, including the Shmidt-Marcus diluent parameter and Reichardt`s E{sub T} parameter; as diluent polarity increases, LiCl extraction increases steeply.

  10. Production of bacterial cellulose from alternate feedstocks

    SciTech Connect

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  11. Development of feedstocks for cellulosic biofuels

    PubMed Central

    Somerville, Chris

    2012-01-01

    The inclusion of cellulosic ethanol in the Energy Independence and Security Act (EISA) of 2007 and the revised Renewable Fuel Standard (RFS2) has spurred development of the first commercial scale cellulosic ethanol biorefineries. These efforts have also revived interest in the development of dedicated energy crops selected for biomass productivity and for properties that facilitate conversion of biomass to liquid fuels. While many aspects of developing these feedstocks are compatible with current agricultural activities, improving biomass productivity may provide opportunities to expand the potential for biofuel production beyond the classical research objectives associated with improving traditional food and feed crops. PMID:22615716

  12. Production of Bacterial Cellulose from Alternate Feedstocks

    SciTech Connect

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. New process hydrotreats metal-rich feedstocks

    SciTech Connect

    Langhout, W.C.V.Z.; Ouwerkerk, C.; Pronk, K.M.A.

    1980-01-01

    Shell Internationale Petroleum Maatschappij B.V. has developed a hydroprocessing procedure suitable for heavy residual feeds with metal contents of up to about 100 ppm, and Shell plans to introduce soon a process which will enable the catalytic hydrotreating of even the heaviest metal-rich feedstocks. This new process will be studied in an experimental unit expected to be on stream by the end of 1981 at a Venezuelan refinery. Also discussed are the catalytic hydroprocessing of residual material, including the roles of hydrodemetallization, h

  14. Effect of cryoprotective diluent and method of freeze-thawing on survival and acrosomal integrity of ram spermatozoa.

    PubMed

    Pontbriand, D; Howard, J G; Schiewe, M C; Stuart, L D; Wildt, D E

    1989-08-01

    A multifactorial study analyzed the effects of freezing method, cryoprotective diluent, semen to diluent ratio, and thawing velocity on post-thaw motility, progressive status, and acrosomal integrity of ram spermatozoa. Although semen to diluent ratio (1:3 vs 1:6, v/v) had no effect (P greater than 0.05), overall post-thaw spermatozoal viability was highly dependent on freezing method and cryoprotectant. Improved results were obtained by freezing semen in 0.5-ml French straws compared to dry ice pelleting. Manually freezing straws 5 cm above liquid nitrogen (LN2) was comparable to cooling straws in an automated, programmable LN2 unit. Of the two cryoprotective diluents tested, BF5F (containing the surfactant component sodium and triethanolamine lauryl sulfate) yielded approximately 50% fewer (P less than 0.05) spermatozoa with loose acrosomal caps compared to TEST. Thawing straws in a water bath at a higher velocity (60 degrees C for 8 sec) had no effect (P greater than 0.05) on spermatozoal motility, progressive status ratings, or acrosomal integrity when compared to a lower rate (37 degrees C for 20 sec). For the TEST group, thawing pellets in a dry, glass culture tube promoted (P less than 0.05) percentage sperm motility at 3 and 6 hr post-thawing, but for BF5F diluted semen this approach decreased the % of spermatozoa with normal apical ridges. The results suggest that the poor fertility rates often experienced using thawed ram semen likely result not only from reduced sperm motility, but also from compromised ultrastructural integrity. This damage is expressed by an increased loosening of the acrosomal cap, a factor which appears insensitive to freezing method but markedly influenced by the cryoprotective properties of the diluents tested.

  15. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  16. Invasive plants as feedstock for biochar and bioenergy production.

    PubMed

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  17. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    PubMed

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate.

  18. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  19. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  20. Bibliography on Biomass Feedstock Research: 1978-2002

    SciTech Connect

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  1. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    PubMed

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties.

  2. Developing alternative feedstocks for fuel alcohol

    SciTech Connect

    Verma, V.K.

    1982-06-01

    This paper briefly reviews recent research to examine the viability of energy sorghum as a feedstock for producing fuel alcohol. Energy sorghum is the name given to any sweet sorghum shown to be feasible for producing fuel alcohol. Energy sorghum can grow on a variety of soils, in 90 day cycles, with up to three crops a year. Crop rotation is rarely needed; most of the nitrogen and potassium returns to the soil. Harmon Engineering and Testing initiated an inhouse program to research sweet sorghum development. Equipment specifications and preliminary results are given. An ''energy farm'' process is explained step by step. Stalk juice, grain, and stalk fiber yields are listed. The use of bagasse and carbon dioxide is also considered.

  3. Sports Supplements

    MedlinePlus

    ... for Parents for Kids for Teens Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q& ... Sports Supplements? How Some Common Supplements Affect the Body Will Supplements ... improving your sports performance is probably on your mind. Lots of people wonder if taking sports supplements ...

  4. Assessment of coal liquids as refinery feedstocks

    SciTech Connect

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  5. Assessment of coal liquids as refinery feedstocks

    SciTech Connect

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  6. Starch as a feedstock for bioproducts and packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much progress has been achieved in developing starch-based feedstocks as a partial replacement for petroleum-based feedstocks. Although starch remains a poor direct substitute for plastics, composite starch-based materials have useful functional properties and are in commercial production as a repla...

  7. Densification of Herbaceous Bioenergy Feedstocks for Transportation and Handling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vital component of a sustainable bioconversion industry that continues to be conceptualized and addressed by many is the supply, collection, and delivery of lignocellulosic feedstocks --- the feedstock supply system --- to bioconversion facilities. Lindley and Backer (1994) identified that low bul...

  8. Biodiesel from non-food alternative feed-stock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  9. Feedstock Quality Factor Calibration and Data Model Development

    SciTech Connect

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  10. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOEpatents

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  11. A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Enrione, J.; Diaz-Calderon, P.; Taylor, A. J.; Ubbink, J.; Alam, M. A.

    2012-03-01

    The effects of low molecular weight diluents (namely water and glycerol) on the nanostructure and thermodynamic state of low water content gelatin matrices are explored systematically by combining positron annihilation lifetime spectroscopy (PALS) with calorimetric measurements. Bovine gelatin matrices with a variation in the glycerol content (0-10 wt.%) are equilibrated in a range of water activities (aw = 0.11-0.68, T = 298 K). Both water and glycerol reduce the glass transition temperature, Tg, and the temperature of dissociation of the ordered triple helical segments, Tm, while having no significant effect on the level of re-naturation of the gelatin matrices. Our PALS measurements show that over the concentration range studied, glycerol acts as a packing enhancer and in the glassy state it causes a nonlinear decrease in the average hole size, vh, of the gelatin matrices. Finally, we report complex changes in vh for the gelatin matrices as a function of the increasing level of hydration. At low water contents (Qw ˜ 0.01-0.10), water acts as a plasticizer, causing a systematic increase in vh. Conversely, for water contents higher than Qw ˜ 0.10, vh is found to decrease, as small clusters of water begin to form between the polypeptide chains.

  12. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  13. Investigation of the Melting Point Depression of 12-Hydroxystearic Acid Organogels Using the Flory Diluent Model

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Lipowski, Brian

    2013-03-01

    This talk will focus on the gelation behavior of 12-hydroxystearic acid (12-HSA) in organic solvents. Thermo-reversible gelation occurs by crystallization of 12-HSA in organic solvent to form 3-D fibrillar networks. The melting point vs. composition for 12-HSA in a range of solvents has been measured. The liquidus lines could be fit with the Flory-diluent model that takes into account the non-ideal free energy of mixing and the disparity in the size of the solvent and 12-HSA molecules. The fits indicated that the effective molar volume of 12-HSA increased as the hydrogen bonding Hansen solubility parameter δh of the solvent decreased. This is attributed to the hydrogen-bonding driven aggregation of the 12-HSA in the liquid state based on previous observations that 12-HSA forms aggregated structures in non-polar solvents (e.g. dimers and tetrameters). These results indicate that the stabilization of the solid phase in 12-HSA solutions has contributions from both variations in the entropy of mixing as well the enthalpy of mixing. The importance of both these factors for designing small molecule gelators will be discussed.

  14. Do yield and quality of big bluestem and switchgrass feedstock decline over winter?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks for thermochemical platforms. Feedstock storage, fall harvest constraints, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock...

  15. Characteristic variations in the effect of diluents on polymer crystallization and melting observed for a sample of poly(ethylene-co-octene)

    NASA Astrophysics Data System (ADS)

    Heck, B.; Strobl, G.; Grasruck, M.

    2003-06-01

    Melting points in mixtures of a crystallizable polymer with a low-molar-mass diluent depend on both, the diluent fraction and the crystal thickness. A differentiation of the two factors can be achieved by temperature-dependent SAXS experiments. A corresponding study, complemented by DSC, dilatometry, microscopy and AFM-imaging, was carried out for mixtures of a poly(ethylene-co-octene) with n-C{16}H{34}, c-C{16}H{32} and methyl-anthracene, respectively. All diluents lead for a constant crystal thickness to melting point depressions in agreement with Raoult's law. On the other hand, the effect of the diluents on the thickness of the crystals formed at a fixed crystallization temperature varies. While in the presence of the two alkanes thicker crystals form, no effect arises for the methyl-anthracene —as was previously found for the octene-co-units. We consider these observations as a further support for our view that polymer crystallization follows a multi-stage route which includes a passage through an intermediate mesomorphic phase. Under such conditions crystal thicknesses would only be affected if the diluent is still present in the mesomorphic phase and stay invariant if the diluent molecules are already rejected when this intermediate phase forms.

  16. Characteristic variations in the effect of diluents on polymer crystallization and melting observed for a sample of poly(ethylene-co-octene).

    PubMed

    Heck, B; Strobl, G; Grasruck, M

    2003-06-01

    Melting points in mixtures of a crystallizable polymer with a low-molar-mass diluent depend on both, the diluent fraction and the crystal thickness. A differentiation of the two factors can be achieved by temperature-dependent SAXS experiments. A corresponding study, complemented by DSC, dilatometry, microscopy and AFM-imaging, was carried out for mixtures of a poly(ethylene-co-octene) with n-C16H34, c-C16H32 and methyl-anthracene, respectively. All diluents lead for a constant crystal thickness to melting point depressions in agreement with Raoult's law. On the other hand, the effect of the diluents on the thickness of the crystals formed at a fixed crystallization temperature varies. While in the presence of the two alkanes thicker crystals form, no effect arises for the methyl-anthracene--as was previously found for the octene-co-units. We consider these observations as a further support for our view that polymer crystallization follows a multi-stage route which includes a passage through an intermediate mesomorphic phase. Under such conditions crystal thicknesses would only be affected if the diluent is still present in the mesomorphic phase and stay invariant if the diluent molecules are already rejected when this intermediate phase forms.

  17. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin Lambert

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  18. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.

    PubMed

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin L

    2011-06-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  19. Method for determining processability of a hydrocarbon containing feedstock

    SciTech Connect

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  20. Measurement and Control of Glass Feedstocks

    SciTech Connect

    Arel Weisberg

    2007-04-26

    ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCo’s LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting the radiated light with a spectrometer capable of resolving and measuring these wavelengths, the elemental composition of the sample is found.

  1. Post-reconstitution Stability of Telavancin with Commonly Used Diluents and Intravenous Infusion Solutions

    PubMed Central

    Gu, Zhengtian; Parra, Carlos; Wong, Anissa; Nguyen, Alice; Cheung, Ronnie; Catalano, Thomas

    2015-01-01

    Objective The post-reconstitution chemical stability and microbial challenge hold time of nonpreserved telavancin for injection was determined using common reconstitution diluents and intravenous (IV) infusion solutions stored at room temperature with light (ambient) or at 2°C to 8°C without light (refrigeration). Methods Telavancin was reconstituted with 5% dextrose, 0.9% normal saline, or sterile water (15 mg/mL). Infusion solutions at 0.6 and 8.0 mg/mL were prepared in ViaFlex (polyvinyl chloride) IV bags (Baxter International Inc, Deerfield, Illinois) using 5% dextrose, 0.9% normal saline, or lactated Ringer’s solution. Chemical stability was evaluated for up to 14 days under refrigeration and for up to 3 days under ambient conditions. Telavancin concentration and degradant levels were determined using a stability-indicating HPLC method. Solutions were subjected to microbial-challenge testing for up to 48 hours (ambient) or for up to 6 days (refrigeration). Results All reconstituted or infused telavancin solutions met the prespecified stability acceptance criteria after 2 days under ambient and minimum 7 days under refrigeration. Following inoculation with gram-positive and gram-negative microorganisms, telavancin infusion solutions stored under ambient conditions reduced or inhibited populations of all organisms up to 48 hours, except for Serratia marcescens, which exhibited growth of >0.5 log10 after 12 hours. All refrigerated samples inhibited or reduced bacterial populations up to 6 days. Conclusions These results are supportive of a total hold time for reconstituted telavancin in vials plus the time in IV infusion solutions in polyvinyl chloride bags to not exceed 12 hours under ambient conditions and 7 days under refrigeration. PMID:26843895

  2. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacobson, Jacob J.; Roni, Mohammad S.; Lamers, Patrick; Cafferty, Kara G.

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  3. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  4. Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacobson, J.; Mohammad, R.; Cafferty, K.; Kenney, K.; Searcy, E.; Hansen, J.

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  5. Biodiesel production from low cost and renewable feedstock

    NASA Astrophysics Data System (ADS)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  6. Feedstock Supply and Logistics: Biomass as a Commodity

    SciTech Connect

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  7. Properties of various plants and animals feedstocks for biodiesel production.

    PubMed

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production.

  8. Fodder beets as a feedstock for alcohol production

    SciTech Connect

    Barney, W.

    1981-09-01

    Fodder beets have been shown to be an attractive feedstock for alcohol production, yielding sufficient sugar to produce approximately 1000 gallons of alcohol per acre. Resistance to diseases found in a given region would have to be evaluated. Storage tests have demonstrated that beets can be stored long enough to make them of interest as a feedstock for alcohol production. Further testing is required to evaluate techniques for reducing sugar losses due to sprouting, respiration, and molding.

  9. Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production.

    PubMed

    Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kopsahelis, Nikolaos; Kachrimanidou, Vasiliki; Dorado, Maria Pilar; Koutinas, Apostolis A

    2014-05-01

    Rapeseed meal (RSM) hydrolysate was evaluated as substitute for commercial nutrient supplements in 1,3-propanediol (PDO) fermentation using the strain Clostridium butyricum VPI 1718. RSM was enzymatically converted into a generic fermentation feedstock, enriched in amino acids, peptides and various micro-nutrients, using crude enzyme consortia produced via solid state fermentation by a fungal strain of Aspergillus oryzae. Initial free amino nitrogen concentration influenced PDO production in batch cultures. RSM hydrolysates were compared with commercial nutrient supplements regarding PDO production in fed-batch cultures carried out in a bench-scale bioreactor. The utilization of RSM hydrolysates in repeated batch cultivation resulted in a PDO concentration of 65.5 g/L with an overall productivity of 1.15 g/L/h that was almost 2 times higher than the productivity achieved when yeast extract was used as nutrient supplement.

  10. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  11. Selecting Metrics for Sustainable Bioenergy Feedstocks

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Mulholland, Patrick J; Downing, Mark; Graham, Robin Lambert; Wright, Lynn L

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  12. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35–50% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  13. Feedstock-flexible olefins plants can be efficient

    SciTech Connect

    DeHaan, S.

    1983-09-26

    Factors such as relative price, political policies, the world economic recovery, and propylene and other byproduct markets will determine the best future olefin feedstock. The choice of feedstocks will have a significant impact on plant investment by increasing sizes and/or requiring additional processing steps. The European and Japanese olefins industries have traditionally been based on liquid feedstock, naphthas, and gas oils. The U.S. industry's base was nearly totally natural gas derived ethane and LPG until a surge of interest in liquid feedstocks in the 1970s. Today, about one-third of the U.S. ethylene plant capacity is designed to utilize liquid feedstocks. The European and Japanese industries remain predominantly liquid feed based. Summary. While a multi-feed olefins plant is a complex entity, a properly conceived olefins design can provide for a wide range of feedstock flexibility, without significantly compromising overall plant efficiency. The optimization of any such operation is an extremely detailed and difficult problem. Therefore, it warrants the use of the best available digital technology. A sophisticated simulator/optimizer can provide valuable guidance to plant operators. Well trained operators assisted by a reliable closed-loop computer control system and a plant optimizer can greatly enhance plant profitability by maintaining optimum performance and maximum on-stream time.

  14. Evaluation of highly reactive mono-(meth)acrylates as reactive diluents for BisGMA-based dental composites

    PubMed Central

    Kilambi, Harini; Cramer, Neil B.; Schneidewind, Lauren H.; Shah, Parag; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2009-01-01

    Objective This study evaluates the performance of highly reactive novel monomethacrylates characterized by various secondary moieties as reactive diluent alternatives to TEGDMA in BisGMA filled dental resins. We hypothesize that these monomers improve material properties and kinetics over TEGDMA because of their unique polymerization behavior. Methods The cure rates and final double bond conversion of the resins were measured using real-time FTIR spectroscopy. The glass transition temperature and storage modulus of the formed polymers were measured using dynamic mechanical analysis. Flexural modulus and flexural strength values were obtained using a three-point bending flexural test carried out with a MTS® 858 Mini Bionix system. Results Polymerization kinetics and polymer mechanical properties were evaluated for the novel resin composites. It was observed that upon the use of novel monomethacrylates as reactive diluents, polymerization kinetics increased by up to 3-fold accompanied by increases in the extent of cure from 5% to 13% as compared to the BisGMA/TEGDMA control. Polymer composites formed from resins of BisGMA/novel monomethacrylates exhibited comparable Tg values to the control, along with 27–37% reductions in the glass transition half widths indicating the formation of more homogeneous polymeric networks. The BisGMA/monomethacrylate formulations exhibited equivalent flexural modulus and flexural strength values relative to BisGMA/TEGDMA. Significance Formulations containing novel monovinyl methacrylates exhibit dramatically increased curing rates while also exhibiting superior or at least comparable composite polymer mechanical properties. Thus, these types of materials are attractive for use as reactive diluent alternatives to TEGDMA in dental formulations. PMID:18584862

  15. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  16. Influence of diluent and sample processing methods on the recovery of the biocontrol agent Pantoea agglomerans CPA-2 from different fruit surfaces.

    PubMed

    Torres, R; Viñas, I; Usall, J; Remón, D; Teixidó, N

    2012-08-01

    Determining the populations of biocontrol agents applied as a postharvest treatment on fruit surfaces is fundamental to the assessment of the microorganisms' ability to colonise and persist on fruit. To obtain maximum recovery, we must develop a methodology that involves both diluent and processing methods and that does not affect the viability of the microorganisms. The effect of diluent composition was evaluated using three diluents: phosphate buffer, peptone saline and buffered peptone saline. An additional study was performed to compare three processing methods (shaking plus sonication, stomaching and shaking plus centrifugation) on the recovery efficiency of Pantoea agglomerans strain CPA-2 from apples, oranges, nectarines and peaches treated with this biocontrol agent. Overall, slight differences occurred among diluents, although the phosphate buffer maintained the most ideal pH for CPA-2 growth (between 5.2 and 6.2). Stomaching, using the phosphate buffer as diluent, was the best procedure for recovering and enumerating the biocontrol agent; this fact suggested that no lethal effects from naturally occurring antimicrobial compounds present on the fruit skins and/or produced when the tissues were disrupted affected the recovery of the CPA-2 cells, regardless of fruit type. The growth pattern of CPA-2 on fruits maintained at 20°C and under cold conditions was similar to that obtained in previous studies, which confirms the excellent adaptation of this strain to conditions commonly used for fruit storage.

  17. Quantifying Dimer and Trimer Formation of Tri-n-butyl Phosphates in Different Alkane Diluents: FTIR Study.

    PubMed

    Vo, Quynh N; Unangst, Jaclynn L; Nguyen, Hung D; Nilsson, Mikael

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous metal-ion-extracting reagents, is an important ligand used in solvent extraction processes for the recovery of uranium and plutonium from spent nuclear fuel, as well as other non-nuclear applications. Ligand-ligand and organic solvent-ligand interactions play an important role in these processes. The self-association behavior of TBP in various alkane diluents of different chain lengths (8, 12, and 16 carbons) and a branched alkane (iso-octane) was investigated by Fourier transform infrared spectroscopic measurements. By careful deconvolution of the spectra into multiple peaks, our results indicate that TBP self-associates to form not only dimers, as previous studies showed, but also trimers in the practical concentration range. Using a mathematical fitting procedure, the dimerization and trimerization constants were determined. As expected, these equilibrium constants are dependent on the solvent used. As the alkane chain for linear hydrocarbon solvents becomes longer, dimerization decreases whereas trimerization increases. For the more branched hydrocarbon, we observe a significantly higher dimerization constant. These effects are most likely due to the intermolecular van der Waals interactions between the butyl tails of each TBP molecule and the diluent hydrocarbon chain as all solvents in this study are relatively nonpolar.

  18. Vermicompost derived from different feedstocks as a plant growth medium.

    PubMed

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  19. Headspace microdrop analysis--an alternative test method for gasoline diluent and benzene, toluene, ethylbenzene and xylenes in used engine oils.

    PubMed

    Kokosa, John M; Przyjazny, Andrzej

    2003-01-03

    The primary standard test method used for the determination of gasoline diluent in used engine oils is method D 3525-93 of the American Society for Testing and Materials (ASTM), which involves direct injection of used oil onto a packed GC column and flame ionization detection. Recently, we have utilized a new headspace sampling method: headspace solvent microextraction (HSM), for GC and GC-MS analysis of gasoline diluent in used engine oils. High resolution capillary columns can be used without the necessity for the use of inlet cryogenic cooling or expensive sampling interfaces. This analytical method, which we generically refer to as headspace microdrop analysis yields results comparable to those obtained using the ASTM method, with the added benefit that it allows the quantification of individual volatile diluent components, including benzene, toluene, ethylbenzene and the xylenes.

  20. Dietary Supplements

    MedlinePlus

    ... other products. They can come as pills, capsules, powders, drinks, and energy bars. Supplements do not have to go through the testing that drugs do. Some supplements can play an important role in health. For example, calcium and vitamin D are important for keeping bones ...

  1. New catalysts improves heavy feedstock hydro-cracking

    SciTech Connect

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. ); van de Meerakker, F.J. ); Sy, O. )

    1991-04-22

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  2. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  3. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  4. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    PubMed

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  5. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    SciTech Connect

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  6. Nepali Supplements.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC.

    This volume is intended as a supplement to Nepali language instruction. It contains songs, numerals, dialogues in Devanagari script, a Nepali-English, English-Nepali glossary, and an English-Nepali surveyor technical glossary. (AM)

  7. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  8. A comparison of semen diluents on the in vitro and in vivo fertility of liquid bull semen.

    PubMed

    Murphy, Edel M; Murphy, Craig; O'Meara, Ciara; Dunne, Gemma; Eivers, Bernard; Lonergan, Patrick; Fair, Sean

    2017-02-01

    The aim of this study was to assess the effect of semen diluent on calving rate (CR) following artificial insemination with liquid bull semen stored for up to 3 d postcollection. In experiment 1, the effect of storing liquid semen maintained at a constant ambient temperature in 1 of 7 different diluents [Caprogen (homemade), OptiXcell, BioXcell, BullXcell, INRA96, NutriXcell, or AndroMed (all commercially available)] on total and progressive motility was assessed on d 0, 1, 2, and 3 postcollection. In experiment 2, the field fertility of liquid semen diluted in Caprogen, BioXcell, or INRA96 and inseminated on d 1, 2, or 3 postcollection was assessed in comparison to frozen-thawed semen (total of n = 19,126 inseminations). In experiment 3, the effect of storage temperature fluctuations (4 and 18°C) on total and progressive motility following dilution in Caprogen, BioXcell, and INRA96 was assessed on d 0, 1, 2, and 3 postcollection. In experiment 1, semen stored in Caprogen, BioXcell, and INRA96 resulted in the highest total and progressive motility on d 1, 2, and 3 of storage compared with OptiXcell, BullXcell, NutriXcell, and AndroMed. In experiment 2, an effect of diluent on CR was found as semen diluted in BioXcell had a lower CR on d 1, 2, and 3 of storage (46.3, 35.4, and 34.0%, respectively) in comparison with Caprogen (55.8, 52.0, and 51.9%, respectively), INRA96 (55.0, 55.1, and 52.2%, respectively), and frozen-thawed semen (59.7%). Effects were found of parity, cow fertility sub-index, as well as the number of days in milk on CR. In experiment 3, when the storage temperature of diluted semen fluctuated between 4 and 18°C, to mimic what occurs in the field (nighttime vs. daytime), BioXcell had the lowest total and progressive motility in comparison to Caprogen and INRA96. In conclusion, diluent significantly affected sperm motility when stored for up to 3 d. Semen diluted in INRA96 resulted in a similar CR to semen diluted in Caprogen and to frozen

  9. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  10. Phenolic acid sorption to biochars from mixtures of feedstock materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to customize biochars for soil amendments, multiple feedstocks have been combined in various ratios prior to pyrolysis. The resulting variation in the chemistry and structure can affect a biochar’s adsorption capacity, which influences the bioavailability of many chemical compounds in t...

  11. Potential feedstock supply and costs for biodiesel production

    SciTech Connect

    Nelson, R.G.; Howell, S.A.; Weber, J.A.

    1994-12-31

    Without considering technology constraints, tallows and waste greases have definite potential as feedstocks for the production of biodiesel in the United States. These materials are less expensive than most oils produced from oilseed crops such as soybeans, sunflowers, canola and rapeseed. At current crude petroleum prices, biodiesel derived from any of these materials will be more expensive than diesel derived from petroleum. However, when compared to other clean burning alternate fuels, recent data suggest biodiesel blends produced from any of these feedstocks may be the lowest total cost alternative fuel in certain areas of the United States. Economic feasibility analyses were performed to investigate the cost of producing biodiesel ($/gallon) subject to variances in feedstock cost, by-product credit (glycerol and meal) and capital costs. Cost of production per gallon of esterified biodiesel from soybean, sunflower, tallow and yellow grease ranged from $0.96 to $3.39 subject to feedstock and chemical costs, by-product credit and system capital cost.

  12. Microbial renewable feedstock utilization: a substrate-oriented approach.

    PubMed

    Rumbold, Karl; van Buijsen, Hugo J J; Gray, Vincent M; van Groenestijn, Johan W; Overkamp, Karin M; Slomp, Ronald S; van der Werf, Mariët J; Punt, Peter J

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the product-generating microbes. The performance of six industrially relevant microorganisms, i.e., two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. P. stipitis and A. niger were found to be the most versatile and C. glutamicum, and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Clear differences in the utilization of the more abundant carbon sources in these feedstocks were observed between the different species. Moreover, in a species-specific way the production of various metabolites, in particular polyols, alcohols and organic acids was observed during fermentation. Based on the results obtained we conclude that a substrate-oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic engineering. Instead of introducing multiple substrate utilization and detoxification routes to efficiently utilize lignocellulosic hydrolysates only one biosynthesis route forming the product of interest has to be engineered.

  13. Optimizing Nutrient Management for Sustainable Bio-energy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn grain and stover are both being evaluated as feedstock sources for bio-energy production. To meet current and future demands for corn, both short- and long-term effects on nutrient cycling, physical properties, and biological activity in soils must be understood. Our project goal was to increas...

  14. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  15. Chemical composition of lignocellulosic feedstock from Pacific Northwest conservation buffers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioethanol has been considered as an important alternative to liquid transportation fuels because of its compatibility with current infrastructure, comparable energy values and less net green house gas emissions during its life cycle. There is continuous need to find sustainable feedstocks that can ...

  16. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    SciTech Connect

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  17. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    EPA Science Inventory

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  18. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  19. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  20. Metals Solubility in Biochar from Different Feedstock and Pyrolysis Processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a co-product of the pyrolysis process of biomass-to-energy conversion. About 15-40% of the feedstock is recovered as biochar in the process. Further use of biochar in soil is suggested as a means to increase soil productivity, and to store and sequester much of the biochar-recalcitrant ...

  1. Bioenergy grass feedstock production in the southern Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Renewable Fuels Standard within the Energy Independence and Security Act of 2007 (EISA)(Pub L.) requires that by the year 2022, 36 billion gallons of biofuels be added to gasoline and that 21 billion gallons would come from non-cornstarch products such as sugar or cellulosic feedstock. The Sout...

  2. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  3. Creatine supplementation.

    PubMed

    Hall, Matthew; Trojian, Thomas H

    2013-01-01

    Creatine monohydrate is a dietary supplement that increases muscle performance in short-duration, high-intensity resistance exercises, which rely on the phosphocreatine shuttle for adenosine triphosphate. The effective dosing for creatine supplementation includes loading with 0.3 g·kg·d for 5 to 7 days, followed by maintenance dosing at 0.03 g·kg·d most commonly for 4 to 6 wk. However loading doses are not necessary to increase the intramuscular stores of creatine. Creatine monohydrate is the most studied; other forms such as creatine ethyl ester have not shown added benefits. Creatine is a relatively safe supplement with few adverse effects reported. The most common adverse effect is transient water retention in the early stages of supplementation. When combined with other supplements or taken at higher than recommended doses for several months, there have been cases of liver and renal complications with creatine. Further studies are needed to evaluate the remote and potential future adverse effects from prolonged creatine supplementation.

  4. Use of Penicillin and Streptomycin to Reduce Spread of Bacterial Coldwater Disease II: Efficacy of Using Antibiotics in Diluents and During Water Hardening.

    PubMed

    Oplinger, Randall W; Wagner, Eric J; Cavender, Wade

    2015-03-01

    Bacterial coldwater disease, caused by Flavobacterium psychrophilum, has lead to the loss of significant numbers of hatchery-reared salmonids. The bacteria can be spread from parent to progeny within contaminated sperm and ovarian fluid and can enter the egg during fertilization. The addition of antibiotics to diluents and water-hardening solutions could prevent the spread of the disease. In separate trials, a mixture of 0.197 mg/mL penicillin plus 0.313 mg/mL streptomycin was added to both a 0.5% sodium chloride fertilization diluent and hatchery well water during hardening. Tests showed that the addition of the antibiotics to the diluent and during up to 60 min of water hardening had no effect on the eye-up, hatch and deformity rates of Rainbow Trout Oncorhynchus mykiss eggs compared with the nonantibiotic-treated controls. Also, significant reductions in the prevalence of F. psychrophilum on the surface and inside eggs were observed when compared with controls. These results indicate that the addition of penicillin and streptomycin to diluents and during water hardening can prevent the vertical transmission of bacterial coldwater disease.

  5. Influence of pH and diluent on the ion-pair solvent extraction of aromatic carboxylic acids using quaternary ammonium salts

    SciTech Connect

    Kawamura, K.; Takahashi, K.; Okuwaki, A.

    2006-07-01

    The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K{sub ex}) of 1BE using a different diluent decreased in the order benzene {gt} carbontetrachloride {gt} 1,2-dichloroethane {gt} cyclohexane {gt} hexane {gt} chloroform {gt} 1-octanol and those of 12BE decreased in the order benzene {gt} cyclohexane {gt} carbontetrachloride {gt} hexane {gt} 1,2-dichloroethane {gt} chloroform. The inspection of the correlation between the values of K{sub ex} and several parameters of the diluent implies that the magnitude of K{sub ex} can be described by using the dielectric constant and the solubility parameter of diluent.

  6. a Novel Framework for Incorporating Sustainability Into Biomass Feedstock Design

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C.

    2012-12-01

    There is a strong society need to evaluate and understand the sustainability of biofuels, especially due to the significant increases in production mandated by many countries, including the United States. Biomass feedstock production is an important contributor to environmental, social and economic impacts from biofuels. We present a systems approach where the agricultural, urban, energy and environmental sectors are considered as components of a single system and environmental liabilities are used as recoverable resources for biomass feedstock production. A geospatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration was conducted for the major corn producing states in the US. The extent and availability of these resources was assessed and geospatial techniques used to identify promising opportunities to implement this approach. Utilizing different sources of marginal land (roadway buffers, contaminated land) could result in a 7-fold increase in land availability for feedstock production and provide ecosystem services such as water quality improvement and carbon sequestration. Spatial overlap between degraded water and marginal land resources was found to be as high as 98% and could maintain sustainable feedstock production on marginal lands through the supply of water and nutrients. Multi-objective optimization was used to quantify the tradeoffs between net revenue, improvements in water quality and carbon sequestration at the farm scale using this design. Results indicated that there is an initial opportunity where land that is marginally productive for row crops and of marginal value for conservation purposes could be used to grow bioenergy crops such that that water quality and carbon sequestration benefits are obtained.

  7. Fatty acid profile as a basis for screening feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid (FA) profile was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Coriandr...

  8. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  9. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  10. Effect of Charcoal Volatile Matter Content and Feedstock on Soil Microbe-Carbon-Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    McClellan, T.; Deenik, J. L.; Hockaday, W. C.; Campbell, S.; Antal, M. J., Jr.

    2010-12-01

    Charcoal has important biogeochemical implications in soil—first as a means to sequester carbon, and second as a soil conditioner to potentially enhance soil quality and fertility. Volatile matter (VM) content is a property of charcoal which describes its degree of thermal alteration, or carbonization. Results from greenhouse experiments have shown that plant growth can be negatively affected by charcoals with high VM content (20-35%), with and without fertilizer supplements, whereas low VM charcoal (6-9%) increased plant growth when combined with fertilizer. We conducted two laboratory studies to characterize the VM content of charcoals derived from two feedstocks (corncob and kiawe) and relate observed differences to key aspects of soil fertility. Using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (NMR), total phenol content (using a Prussian blue colorimetric assay), and gas chromatography-mass spectrometry (GC-MS), we found that the VM content of charcoal primarily consisted of alkanes, oxygen-substituted alkanes, and phenolic compounds. However, the GC-MS data indicated that charcoals can differ vastly in their extractable fraction, depending upon both VM content and feedstock. In a second set of experiments, we examined the effect of VM content and feedstock on soil microbial activity, available nitrogen (N), and soluble carbon (C). High VM corncob charcoals significantly enhanced microbial activity, coupled with net reduction in available N and soluble C. For a given feedstock, the extent of this effect was dependent upon VM content. However, the overall effect of VM content on microbial dynamics was apparently related to the composition of the acetone-extractable fraction, which was particularly important when comparing two charcoals derived from different feedstocks but with the equivalent VM contents. Removing the acetone-extractable fraction from the 23% VM corncob charcoal significantly reduced the enhancement of

  11. Planting dates for multiple cropping of biofuel feedstock and specialty crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is necessary to determine planting and harvesting windows in order to develop production systems for biofuel feedstock and specialty crops in rotation. The biodiesel feedstock crops Canola and Sunflower; and the bioethanol feedstock crops Sorghum and Sweet corn were established at various dates ...

  12. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  13. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  14. Rye Cover Crop As A Source Of Biomass Feedstock: An Economic Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As more emphasis is placed on biopower and biofuels, the availability of biomass feedstock is taking center stage. The growth of the biomass feedstock market is further strengthened by the implementation of new regulations and federal programs. One option for biomass feedstock is the removal of co...

  15. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  16. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    NASA Astrophysics Data System (ADS)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  17. Evaluating possible cap and trade legislation on cellulosic feedstock availability

    SciTech Connect

    Hellwinckel, Chad; de la Torre Ugarte, Daniel; Perlack, Robert D; West, T. O.

    2010-11-01

    An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates. We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level. When comparing this scenario to the Baseline scenario, the agricultural sector realizes an economic benefit of US$156 billion by 2030 and emissions are reduced by 135 Tg C-equivalent (Eq) yr 1. Results also indicate that geographic location of cellulosic feedstocks could shift significantly depending on the final policies implemented in cap and trade legislation. Placement of cellulosic ethanol facilities should consider these possible shifts when determining site location.

  18. Processes for liquefying carbonaceous feedstocks and related compositions

    DOEpatents

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  19. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DTIC Science & Technology

    2003-11-01

    Because crop residue is a byproduct of grain production, it is currently abun- dant, underutilized, and low cost. Corn stover and cereal straw are the...States and the world. This roadmap focuses on the feedstock supply of lignocellulosic biomass, such as corn stover, straw , or wood, that can be...attendees focused primarily on corn and cereal straw crop residues, while recognizing that the resultant biomass supply technologies and infrastructure must

  20. Variability in the composition of short rotation woody feedstocks

    SciTech Connect

    Davis, M.F.; Johnson, D.K.; Deutch, S.

    1995-11-01

    This paper discusses the variability in chemical composition caused by clonal, geographical, and environmental effects on short rotation woody feedstocks, mainly hybrid clones of poplar. The concentrations of major and minor components have been determined by chemical analysis and pyrolysis molecular beam mass spectrometry (PY-MBMS). The chemical composition was determined for a sample set consisting of debarked wood chips from three clones of deltoides x nigra (DN) and one clone of tristis x balsamifera that were grown on four replicate plots at two locations in Wisconsin. The composition of the wood chips determined by chemical analysis and Py-MBMS showed that the tristic clone was significantly different from that of all the DN clones. The composition of the DN clones studied in this sample set were relatively similar to other hybrid poplar samples that have been analyzed over the past three years. The level of compositional variation due to clonal, geographical and environmental factors observed in short rotation woody species to date indicates that they are a consistent and stable feedstock for biofuels production. The effects of storage on different short rotation woody crops has been studied. Results of the analysis of fresh and stored hybrid poplar using traditional wet chemical analysis showed differences in the chemical composition of the feedstocks because of storage. Also presented are results from a rapid analytical technique using pyrolysis-mass spectroscopy combined with multivariate statistical analysis to assess the influence of storage on the composition of different short rotation feedstocks. Because of the rapid nature of this technique, a large number of samples could be screened to determine the extent of degradation throughout the piles. The application of this technique to the samples in this study indicated changes in chemical composition occurred during the storage period.

  1. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    PubMed

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  2. Compositional Analysis of Lignocellulosic Feedstocks. 2. Method Uncertainties

    PubMed Central

    2010-01-01

    The most common procedures for characterizing the chemical components of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis to fractionate biomass for gravimetric and instrumental analyses. The uncertainty (i.e., dispersion of values from repeated measurement) in the primary data is of general interest to those with technical or financial interests in biomass conversion technology. The composition of a homogenized corn stover feedstock (154 replicate samples in 13 batches, by 7 analysts in 2 laboratories) was measured along with a National Institute of Standards and Technology (NIST) reference sugar cane bagasse, as a control, using this laboratory's suite of laboratory analytical procedures (LAPs). The uncertainty was evaluated by the statistical analysis of these data and is reported as the standard deviation of each component measurement. Censored and uncensored versions of these data sets are reported, as evidence was found for intermittent instrumental and equipment problems. The censored data are believed to represent the “best case” results of these analyses, whereas the uncensored data show how small method changes can strongly affect the uncertainties of these empirical methods. Relative standard deviations (RSD) of 1−3% are reported for glucan, xylan, lignin, extractives, and total component closure with the other minor components showing 4−10% RSD. The standard deviations seen with the corn stover and NIST bagasse materials were similar, which suggests that the uncertainties reported here are due more to the analytical method used than to the specific feedstock type being analyzed. PMID:20669952

  3. Improved sustainability of feedstock production with sludge and interacting mycorrhiza.

    PubMed

    Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2013-05-01

    Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers.

  4. Expected international demand for woody and herbaceous feedstock

    SciTech Connect

    Lamers, Patrick; Jacobson, Jacob; Mohammad, Roni; Wright, Christopher

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  5. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  6. Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks.

    PubMed

    Yang, Linxi; He, Quan Sophia; Havard, Peter; Corscadden, Kenneth; Xu, Chunbao Charles; Wang, Xuan

    2017-02-21

    Co-liquefaction of spent coffee grounds (SCG) with paper filter (PF), corn stalk (CS) and white pine bark (WPB) respectively, was examined in subcritical water for bio-crude oil production. The optimum reaction temperature was 250°C, and the mixing biomass ratio was 1:1. SCG and CS was identified to be the best feedstock combination with a significant positive synergetic effect in the co-liquefaction process with 5% NaOH as a catalyst. The yield of bio-crude oil was increased by 20.9% compared to the mass averaged yield from two feedstocks, and the oil quality was also improved in terms of viscosity and relative molecular mass. A negative effect presented in the co-liquefaction of SCG/WPB. The resulting bio-crude oils were characterized by elemental analyzer, GC-MS, GPC and viscometer, indicating that mixing feedstock in the co-liquefaction process also influenced the higher heating value (HHV), viscosity, molecular mass and chemical composition of bio-crude oil.

  7. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    PubMed Central

    Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.

    2012-01-01

    Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471

  8. On-farm production of inoculum of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculum production.

    PubMed

    Douds, David D; Nagahashi, Gerald; Hepperly, Paul Reed

    2010-04-01

    On-farm production of arbuscular mycorrhizal [AM] fungus inoculum can be employed to make the benefits of the symbiosis more available to vegetable farmers. Experiments were conducted to modify an existing method for the production of inoculum in temperate climates to make it more readily adoptable by farmers. Perlite, vermiculite, and peat based potting media were tested as diluents of yard clippings compost for the media in which the inoculum was produced using bahiagrass (Paspalum notatum Flugge) as host plant. All produced satisfactory concentrations of AM fungus propagules, though vermiculite proved to be better than potting media (89 vs. 25 propagules cm(-3), respectively). Two methods were tested for the growth of AM fungi indigenous to the farm: (1) adding field soil into the vermiculite and compost mixture and (2) pre-colonizing the bahiagrass seedlings in media inoculated with field soil prior to transplant into that mixture. Adding 100 cm(3) of field soil to the compost and vermiculite produced 465 compared to 137 propagules cm(-3) for the pre-colonization method. The greater flexibility these modifications give will make it easier for farmers to produce inoculum of AM fungi on-the-farm.

  9. Cost implications of feedstock combinations for community sized biodiesel production

    SciTech Connect

    Weber, J.A.; Van Dyne, D.L.

    1993-12-31

    Biodiesel can be processed from oilseeds or animal fats and used in unmodified diesel engines. This fuel has been produced commercially in Europe for three years. Research indicates that biodiesel can replace diesel fuel without causing harmful effects to an unmodified engine and can reduce harmful emissions . Some European biodiesel plants operate at the community level effectively supplying both fuel and animal feeds. This study examines multiple feedstocks that could be utilized by a community sized biodiesel plant. The model plant used is a 500,000 gallon processing facility. The model plant is assumed to be installed in an existing grain handling facility or feed mill. Animal fats would be purchased from outside sources and oilseeds would be provided by area producers. Producers would retain ownership of the oilseeds and pay a processing fee to the cooperative. Oilseeds would be extruded before being separated into meal and crude oil. The crude oil would be esterified into biodiesel using continuous flow esterification technology. This study concludes under specific conditions, biodiesel can be processed economically at the community level. The results indicate that without farm program benefits to minor oilseeds, soybeans are the most economic feedstock to use in a community based operation. Realistic price information suggests that biodiesel (from soybeans) could be produced for $1.26 per gallon. If producers participate in government programs and are capable of growing minor oilseeds, canola may represent a better feedstock than soybeans. Achieving the lowest costs of production depends on the value assigned to co-product credits such as oilseed meal. The more producers pay for high protein meal for their livestock and poultry, the lower the residual price of biodiesel.

  10. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.

    PubMed

    Tang, Haiying; Chen, Meng; Garcia, M E D; Abunasser, Nadia; Ng, K Y Simon; Salley, Steven O

    2011-10-01

    Microalgae are among the most promising of non-food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light-emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two-phase strategy with an initial nutrient-sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production.

  11. Biofuels Feedstock Development Program annual progress report for 1991

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  12. Biofuels Feedstock Development Program annual progress report for 1991

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  13. Energy supply chain optimization of hybrid feedstock processes: a review.

    PubMed

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  14. Biofuel production from microalgae as feedstock: current status and potential.

    PubMed

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  15. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    SciTech Connect

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  16. The studies of the spin Hamiltonian parameters and local structures for various 3d3 hexacyanometallates of paramagnetic salts with diluents

    NASA Astrophysics Data System (ADS)

    Dong, Hui-Ning; Liu, Xu-Sheng; Zhou, Hong-Fei

    2016-09-01

    The spin Hamiltonian parameters (SHPs) (g factors, hyperfine structure constants and zero-field splittings (ZFSs)) and local structures for various 3d3 hexacyanometallates of paramagnetic salts K3Cr(CN)6 and K4V(CN)6ṡ3H2O with the diluents K3Co(CN)6, K3Mn(CN)6 and K4Fe(CN)6ṡ3H2O are theoretically investigated from the perturbation calculations of these parameters for a rhombically distorted octahedral 3d3 cluster. The paramagnetic systems are found to undergo the local axial distortions ΔZ (≈-0.19, -0.18 and 0.09 Å) and the planar bond angle variations Δφ (≈ 3.5∘, 5.3∘ and 1.4∘) for K3Cr(CN)6 with K3Co(CN)6, K3Cr(CN)6 with K3Mn(CN)6 and K4V(CN)6ṡ3H2O with K4Fe(CN)6ṡ 3H2O, respectively. The signs for ZFSs D and E are analyzed in the light of those for ΔZ and the rhombic distortion angle δφ (= φ‧- π/4) related to an ideal octahedron. Microscopically, the magnitudes of ΔZ and Δφ can be conveniently illustrated by the axial (ADD) and perpendicular distortion degrees (PDD), respectively, for the paramagnetic systems with the corresponding diluents. The local structural properties are analyzed from the relative ionic radius deviation Δr of the equivalent diluent cation from the host paramagnetic cation, the axial and perpendicular ZFS variations ΔF and ΔG for ZFSs with the diluent related to the host, the relative deviation ΔDq of the cubic crystal-field parameter for the diluent related to the host. The above studies would be helpful to the investigations on synthesis, structures and properties of 3d3 hexacyanometallates in paramagnetic salts.

  17. Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology

    NASA Astrophysics Data System (ADS)

    Kostin, D. V.; Parkhomenko, A. V.; Amosov, A. P.; Samboruk, A. R.; Chemashkin, A. V.

    2016-11-01

    The article presents the results of the research and development of technology and formulation of the feedstock from domestic metal powders and polymers to fabricate complexshaped components from heavy alloy of VNZh 7-3 brand (90 wt. % tungsten - 7% nickel - 3% iron) by Metal Injection Molding (MIM technology). The metal part of the feedstock is composed of powders of tungsten, nickel and iron, and the polymer part is composed of polyformaldehyde with the addition of low-density polyethylene and beeswax. The modes of mixing the components and the influence of the composition of the feedstock on the melt flow rate and the homogeneity of the feedstock were investigated. The optimal formulation of the feedstock was determined. Microstructure, density and hardness of control samples fabricated by MIM technology from the developed feedstock, correspond to, and in some respects are superior to the samples of VNZh 7-3 alloy fabricated by technology of traditional powder metallurgy.

  18. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  19. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  20. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    SciTech Connect

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  1. Effect of potential waste constituents on the reactivity of Hanford ferrocyanide wastes: Diluent, catalyst, and initiator studies

    SciTech Connect

    Scheele, R.D.; Johnston, J.W.; Tingey, J.M.; Burger, L.L.; Sell, R.L.

    1993-04-01

    During the 1980s, scientists at the Hanford Site began considering disposal options for wastes in underground storage tanks. As a result of safety concerns, it was determined that special consideration should be given to ferrocyanide-bearing wastes to ensure their continued safe storage. In addition, Westinghouse Hanford Company (WHC) chartered Pacific Northwest Laboratory (PNL) to determine the conditions necessary for vigorous reactions to occur in the Hanford Site ferrocyanide wastes. As part of those studies, PNL has evaluated the effects of selected potential waste constituents to determine how they might affect the reactivity of the wastes. The authors` investigations of the diluent, catalytic, or initiating effects of potential waste constituents included studies (1) to determine the effect of the oxidant-to-ferrocyanide ratio, (2) to establish the effect of sodium aluminate concentration, (3) to identify materials that could affect the explosivity of a mixture of sodium nickel ferricyanide (a potential aging product of ferrocyanide) and sodium nitrate and nitrite, (4) and to determine the effect of nickel sulfide concentration. They also conducted a thermal sensitivity study and analyzed the results to determine the relative behaviors of sodium nickel ferrocyanide and ferricyanide. A statistical evaluation of the time-to-explosion (TTX) test results from the catalyst and initiator screening study found that the ferricyanide reacted at a faster rate than did the ferrocyanide analog. The thermal analyses indicated that the ferricyanide form is more thermally sensitive, exhibiting exothermic behavior at a lower temperature than the ferrocyanide form. The increased thermal sensitivity of the ferricyanide, which is a potential oxidation product of ferrocyanide, relative to the ferrocyanide analog, does not support the hypothesis that aging independent of the reaction pathway will necessarily reduce the reaction hazard of ferrocyanide wastes.

  2. Thermochemical gasification of high-moisture biomass feedstocks

    SciTech Connect

    Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.

    1985-02-14

    A significant energy resource base exists in the Midwest in the form of crop residues and wastes. Estimates have been made that this resource is on the magnitude of 1.5 Quads (1 Quad = 10/sup 15/ Btu's). One obstacle to the full utilization of this resource is the high moisture content of many crop residues. A DOE-funded research program being conducted by Pacific Northwest Laboratory is investigating a low-temperature, mixed catalyst thermochemical system which efficiently converts high-moisture biomass to a medium Btu gas consisting of methane and hydrogen. Experimental data indicates that carbon conversions in excess of 90% may be obtained. Feedstock slurries containing up to 95% moisture have been used successfully in the batch reactor. Feedstocks used in the system include sorghum, sunflowers, napier grass, aquatic plants and food processing wastes. The ability to convert high-moisture biomass to fuels via this thermochemical process may allow greater utilization of the significant biomass resource base which exists in the Mdwest. 6 references, 6 figures, 2 tables.

  3. Biofuels feedstock development program. Annual progress report for 1992

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  4. Introduction to Session 1A: Feedstock Genomics and Development

    NASA Astrophysics Data System (ADS)

    Vermerris, Wilfred

    Genomics research aimed at improving bioconversion properties of feedstocks received a major impetus as a result of the Feedstock Genomics program jointly operated by the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). In addition, oil company BP established the Energy Biosciences Institute in collaboration with the University of California-Berkeley, Lawrence Berkeley National Laboratory, and the University of Illinois in Urbana-Champaign. This was followed later on in the year by the establishment of three DOE-funded bioenergy centers. The need to switch from petroleum-based duels to biofuels was underscored by the report of Working Group II of the United Nations-sponsored International Panel on Climate Change (IPCC), in which the wide-spread effects of greenhouse gas emissions on the global climate were presented. IPCC and former U.S. vice-president Al Gore received the 2007 Nobel Peace Prize for their efforts to quantify and disseminate the effects of global warming.

  5. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  6. The production of herbaceous feedstocks for renewable energy

    SciTech Connect

    Not Available

    1986-09-01

    This document describes the use of a selected group of herbaceous plants as energy feedstocks. Twelve herbaceous crops were selected for study based on their above average yields; their composition, which can increase their value for fuel and other applications; and their ability to produce in a variety of soils and climates. Six of the twelve are carbohydrate crops (sugarcane, sweet sorghum, sweet-stemmed grain sorghum, Jerusalem artichoke, sugar beet, and fodder beet), and six are lignocellulosic crops (kenaf, napiergrass, alfalfa, reed canarygrass, common reed, and water hyacinth). The contribution that herbaceous crops can make to the total US energy supply is discussed. Each candidate crop is characterized in terms of chemical composition, storage, processing, products, and uses. Growth characteristics and production practices in terms of geographic range, yield potential, and cultural requirements are described. Barriers to private sector development of herbaceous energy crops are listed and how R and D programs could be directed to overcome these roadblocks. The areas considered are feedstock selection and production, harvesting and transport, and processing and conversion.

  7. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    PubMed

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  8. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  9. Impact of feedstock quality and variation on biochemical and thermochemical conversion

    SciTech Connect

    Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.; Thompson, Vicki S.; Thompson, David N.

    2016-07-21

    The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focused on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.

  10. Impact of feedstock quality and variation on biochemical and thermochemical conversion

    DOE PAGES

    Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.; ...

    2016-07-21

    The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focusedmore » on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.« less

  11. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  12. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE PAGES

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; ...

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  13. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    SciTech Connect

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and other conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  14. Ensiling corn stover: effect of feedstock preservation on particleboard performance.

    PubMed

    Ren, Haiyu; Richard, Tom L; Chen, Zhilin; Kuo, Monlin; Bian, Yilin; Moore, Kenneth J; Patrick, Patricia

    2006-01-01

    Ensilage is a truncated solid-state fermentation in which anaerobically produced organic acids accumulate to reduce pH and limit microbial activity. Ensilage can be used to both preserve and pretreat biomass feedstock for further downstream conversion into chemicals, fuels, and/or fiber products. This study examined the ensilage of enzyme-treated corn stover as a feedstock for particleboard manufacturing. Corn stover at three different particle size ranges (<100, <10, and <5 mm) was ensiled with and without a commercial enzyme mixture having a cellulase:hemicellulase ratio of 2.54:1, applied at a hemicellulase rate of 1670 IU/kg dry mass. Triplicate 20 L mini-silos were destructively sampled and analyzed on days 0, 1, 7, 21, 63, and 189. Analysis included produced organic acids and water-soluble carbohydrates, fiber fractions, pH, and microorganisms, including Lactobacillus spp. and clostridia were monitored. On days 0, 21, and 189, the triplicate samples were mixed evenly and assembled into particleboard using 10% ISU 2 resin, a soy-based adhesive. Particleboard panels were subjected to industry standard tests for modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness swell (TS), and water absorption at 2 h boiling and 24 h soaking. Enzyme addition did improve the ensilage process, as indicated by sustained lower pH (P < 0.0001), higher water-soluble carbohydrates (P < 0.05), and increased lactic acid production (P < 0.0001). The middle particle size range (<10 mm) demonstrated the most promising results during the ensilage process. Compared with fresh stover, the ensilage process did increase IB of stover particleboard by 33% (P < 0.05) and decrease water adsorption at 2 h boiling and 24 h soaking significantly (P < 0.05). Particleboard panels produced from substrate ensiled with enzymes showed a significant reduction in water adsorption of 12% at 2 h boiling testing. On the basis of these results, ensilage can be used as

  15. Herbal Products and Supplements

    MedlinePlus

    ... of dietary supplement that contains one or more herbs.Herbal health products and supplements are available in ... wort.Are herbal health products and supplements safe?Herbs aren't necessarily safer than the ingredients in ...

  16. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-02

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions.

  17. Design, modeling, and analysis of a feedstock logistics system.

    PubMed

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km.

  18. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  19. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  20. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  1. Commercialization of willow bioenergy - a dedicated feedstock supply system

    SciTech Connect

    White, E.H.; Abrahamson, L.P.; Robison, D.J.

    1995-11-01

    Willow hybrids grown as a Dedicated Feedstock Supply System (DFSS) have been analyzed and found to be a feasibile means of augmenting current coal and natural gas resources for power generation. This study focused on the technology and infrastructure required to grow willow DFSS and integrate it with four existing pulverized coal electric generation facilities in central and western New York. The study found that both utilities and growers can forge a long-term business relationship that offers fuel diversity, fuel cost competitiveness and environmental benefits for the utility partners while reinvigorating central and western New York business in the agricultural sector. Growers can bring idle land and land being farmed at a loss back into profitable production while reducing environmental impacts associated with more traditional row crops. The Consortium is gearing up to put in place the growers contracts and the acreage necessary to take the first steps to prove and develop a major new business opportunity for rural New York.

  2. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.

    2013-01-01

    Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689

  3. Biofuels Feedstock Development Program: 1995 activities and future directions

    SciTech Connect

    Ferrell, J.E.; Wright, L.L.; Tuskan, G.A.

    1995-12-31

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) has led the nation in developing short-rotation woody crops (SRWC) and herbaceous energy crops (HEC) as feedstocks for renewable energy. Since 1978, approximately $60 million has been invested in research projects involving more than 100 federal, university, and private research institutions. The research has been highly leveraged with cost-sharing from USDA Forest Service, private industry, and state agencies. The performance of 154 woody species and 35 herbaceous species has been examined in field trials across the U.S. Results of this effort include the prescription of silvi-cultural systems for hybrid poplars and hybrid willows and agricultural systems for switchgrass. Selected clones of woody species are producing dry weight yields in research plots on agricultural land that are 3 to 7 times greater than those obtained from mixed species stands on forest land, and at least 2 times the yields of southern plantation pines. Selected switchgrass varieties are producing dry weight yields 2 to 7 times greater than average forage grass yields on pasture and crop land. Crop development research is continuing efforts to translate this potential to commercial enterprises over a more geographically diverse acreage. Environmental research on biomass crops is aimed at developing sustainable systems that will contribute to the biodiversity of agricultural landscapes. Systems integration and analysis aim to understand all factors affecting price and potential supplies of biomass crops at regional and national scales. Scale-up studies, feasibility analysis and demonstrations are establishing actual costs and facilitating the commercialization of integrated biomass systems. Information management and dissemination activities are facilitating the communication of results among a community of researchers, policy-makers, and potential users and producers of energy crops. 15 refs.

  4. A Century Long Pursuit of Alternative Fuels and Feedstocks: A Content Analysis

    DTIC Science & Technology

    2011-03-01

    2009). High yields enable palm oil to achieve signficantly lower production costs when compared with competitors soy, sunflower, coconut , and...50 Palm Oil as a Feedstock...may be hesitant to invest heavily in cultivation of Jatropha oil. Palm Oil as a Feedstock History Humans have been using palm oil for thousands

  5. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  6. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  7. 26 CFR 48.4082-7 - Kerosene; exemption for feedstock purposes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... feedstock purpose; or (ii) The kerosene is sold for use by the buyer for a feedstock purpose and, at the... paragraph (e) of this section) from the buyer and has no reason to believe any information in the... to kerosene that is sold as described in paragraph (c)(3)(ii) of this section if the buyer in...

  8. Mitigation opportunities for life cycle greenhouse gas emissions during feedstock production across heterogeneous landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstock production can contribute greater than or equal to 50% of the lifecycle global warming intensity (GWI) of a biofuel. Variability exists within and among high-leverage components of the biomass production phase. GWI variability within feedstocks has gone unrecognized by regulatory agencies....

  9. The effect of prefreezing the diluent portion of the straw in a step-wise vitrification process using ethylene glycol and polyvinylpyrrolidone to preserve bovine blastocysts.

    PubMed

    Mtango, N R; Varisanga, M D; Dong, Y J; Otoi, T; Suzuki, T

    2001-03-01

    A total of 678 bovine blastocysts, which had been produced by in vitro maturation, fertilization, and culture, were placed into plastic straws and were vitrified in various solutions of ethylene glycol (EG) + polyvinylpyrrolidone (PVP). Part of the straw was loaded with TCM199 medium + 0.3 M trehalose as a diluent; the diluent portions of the straw were prefrozen to either -30 or -196 degrees C. Then, the embryos suspended in the vitrification solution were pipetted into the balance of the straw and vitrified by direct immersion into liquid nitrogen. For thawing, the straws were warmed for 3 s in air and 20 s in a water bath at 39 degrees C and then agitated to mix the diluent and cryoprotectant solution for 5 min followed by culture in TCM199 + 10% FCS + 5 + microg/ml insulin + 50 microg/ml gentamycin sulfate for 72 h. Variables that were examined were the time of exposure to EG prior to vitrification, the PVP concentration, and the temperature of exposure to EG + PVP prior to vitrification. Survival and hatching rates of the blastocysts exposed to 40% EG in four steps at 4 degrees C were higher than those of embryos exposed in two steps (81.3 +/- 4.3% and 80.2 +/- 3.4% vs 67.6 +/- 4.5% and 71.5 +/- 4.7%, respectively; P < 0.05). The same indices were superior following vitrification-thawing of the blastocysts in 40% EG + 20% PVP than it was in 40% EG + 10% PVP (76.1 +/- 5.5% vs 63.7 +/- 1.8%; P < 0.05; and 61.6 +/- 6.0% vs 70.5 +/- 4.7%; P < 0.01, respectively). Exposure to the vitrification solution (40% EG + 20% PVP) at higher temperatures (37.5 degrees C vs 4 degrees C) reduced both survival and hatching rates (45.8 +/- 6.9% vs 83.9 +/- 4.4% and 41.5 +/- 1.8% vs 64.0 +/- 4.7%, respectively; P < 0.001). These results indicate that blastocysts vitrified after prefreezing the diluent portions of the straws do favor developmental competence of in vitro produced embryos.

  10. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    SciTech Connect

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  11. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    PubMed

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  12. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    DOEpatents

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  13. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect

    Albin, D.

    2011-05-01

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  14. Diluent and extractant effects on the enthalpy of extraction of uranium(VI) and americium(III) nitrates by trialkyl phosphates

    SciTech Connect

    Srinivasan, T.G.; Vasudeva Rao, P.R.; Sood, D.D.

    1998-11-01

    The effect of various diluents such as n-hexane, n-heptane n-octane, isooctane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, benzene, toluene, p-xylene, mesitylene and o-dichlorobenzene on the enthalpy of extraction of uranyl nitrate by tri-n-amyl phosphate (TAP) over the temperature range 283 K--333 K has been studied. The results indicate that the enthalpy of extraction does not vary significantly with the diluents studied. Also enthalpies of extraction of uranyl nitrate and americium(III) nitrate by neutral organo phosphorous extractants such as tri-n-butyl phosphate (TBP), tri-n-amyl phosphate (TAP), tri-sec-butyl phosphate (TsBP), tri-isoamyl phosphate (TiAP) and tri-n-hexyl phosphate (THP) have been studied. An attempt has been made to explain the trends, on the basis of the nature of the solvate formed and the different terms which contribute to the overall enthalpy change.

  15. Differential scanning fluorimetry illuminates silk feedstock stability and processability.

    PubMed

    Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F

    2016-01-07

    The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.

  16. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    SciTech Connect

    Owens, Vance N.; Karlen, Douglas L.; Lacey, Jeffrey A.

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  17. Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks

    PubMed Central

    Mukome, Fungai N. D.; Zhang, Xiaoming; Silva, Lucas C. R.; Six, Johan; Parikh, Sanjai J.

    2014-01-01

    Studies have shown that pyrolysis method and temperature are the key factors influencing biochar chemical and physical properties; however, information on the nature of biochar feedstocks is more accessible to consumers, making feedstock a better measure for selecting biochars. This study characterizes physical and chemical properties of commercially available biochars and investigates trends in biochar properties related to feedstock material to develop guidelines for biochar use. Twelve biochars were analyzed for physical and chemical properties. Compiled data from this study and from the literature (n = 85) were used to investigate trends in biochar characteristics related to feedstock. Analysis of compiled data reveals that despite clear differences in biochar properties from feedstocks of algae, grass, manure, nutshells, pomace, and wood (hard- and softwoods), characteristic generalizations can be made. Feedstock was a better predictor of biochar ash content and C/N ratio, but surface area was also temperature dependent for wood-derived biochar. Significant differences in ash content (grass and manure > wood) and C/N ratio (softwoods > grass and manure) enabled the first presentation of guidelines for biochar use based on feedstock material. PMID:23343098

  18. TVA/DOE Integrated Onfarm Alcohol Production System Alternate Feedstock Evaluations

    SciTech Connect

    Cox, R.J.

    1985-09-01

    The purpose of this Interagency research project is to study the feasibility of small-scale fuel alcohol production from agricultural crops. The project was conducted in three phases. Phase I included an assessment of the potential for fuel alcohol production from agricultural crops and design, construction, and startup operation of a 10-gallon-per-hour evaluation facility. Phase II included validation and optimization of the facility with a corn feedstock, modifications to the base unit to accommodate nongrain feedstocks, initial production and conversion evaluations of nongrain feedstocks, and preparation of a construction and operation manual. Phase III included further evaluations and refinement of processes and equipment for handling nongrain feedstocks, evaluation of stillage by-products as feeds, and development of agricultural systems for integrating alcohol production with other farm enterprises. This report provides: (1) a brief background of Phase I-III activities; (2) results of alternate feedstock choices, cultural trials, and testing results; (3) a description of the process for ethanol production from starch and sugar feedstocks; and (4) conversion procedures, sterilization requirements, and distillation methods for several feedstocks. 23 refs., 8 figs., 25 tabs.

  19. A Comprehensive Study on Chlorella pyrenoidosa for Phenol Degradation and its Potential Applicability as Biodiesel Feedstock and Animal Feed.

    PubMed

    Das, Bhaskar; Mandal, Tapas K; Patra, Sanjukta

    2015-07-01

    The present work evaluates the phenol degradative performance of microalgae Chlorella pyrenoidosa. High-performance liquid chromatography (HPLC) analysis showed that C. pyrenoidosa degrades phenol completely up to 200 mg/l. It could also metabolize phenol in refinery wastewater. Biokinetic parameters obtained are the following: growth kinetics, μ max (media) > μ max (refinery wastewater), K s(media) < K s(refinery wastewater), K I(media) > K I(refinery wastewater); degradation kinetics, q max (media) > q max (refinery wastewater), K s(media) < K s(refinery wastewater), K I(media) > K I(refinery wastewater). The microalgae could cometabolize the alkane components present in refinery wastewater. Fourier transform infrared (FTIR) fingerprinting of biomass indicates intercellular phenol uptake and breakdown into its intermediates. Phenol was metabolized as an organic carbon source leading to higher specific growth rate of biomass. Phenol degradation pathway was elucidated using HPLC, liquid chromatography-mass spectrometry (LC-MS) and ultraviolet-visible (UV-visible) spectrophotometry. It involved both ortho- and meta-pathway with prominence of ortho-pathway. SEM analysis shows that cell membrane gets wrinkled on phenol exposure. Phenol degradation was growth and photodependent. Infrared analysis shows increased intracellular accumulation of neutral lipids opening possibility for utilization of spent biomass as biodiesel feedstock. The biomass after lipid extraction could be used as protein supplement in animal feed owing to enhanced protein content. The phenol remediation ability coupled with potential applicability of the spent biomass as biofuel feedstock and animal feed makes it a potential candidate for an environmentally sustainable process.

  20. Do Yield and Quality of Big Bluestem and Switchgrass Feedstock Decline over Winter?

    SciTech Connect

    Johnson, Jane M. F.; Gresham, Garold L.

    2013-06-28

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha-1 (fall) and 5.4 Mg ha-1 (spring) with similar high heating value (17.7 MJ kg-1). The K/(Ca + Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13% by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.

  1. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  2. Feedstock selection for small- and intermediate-scale fuel ethanol distilleries

    SciTech Connect

    Meo, M.

    1985-07-01

    A variety of commercial and experimental starch- and sugar-rich crops were evaluated for their suitability as feedstocks for both small-scale, on-farm and intermediate-scale, off-farm fuel ethanol production in California's Sacramento Valley. Solutions of linear programming models indicated that sweet sorghum is the least-cost feedstock for on-farm production of 50,000 gallons of fuel ethanol per year. Fodder beet proved to be the least-cost feedstock for off-farm production of 1 million gallons of fuel ethanol per year.

  3. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    DOEpatents

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  4. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  5. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    SciTech Connect

    Gresham, Garold Linn; Kenney, Kevin Louis

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  6. Gamagrass varieties as potential feedstock for fermentable sugar production.

    PubMed

    Xu, Jiele; Zhang, Ximing; Sharma-Shivappa, Ratna R; Eubanks, Mary W

    2012-07-01

    To evaluate the potential of gamagrass as a feedstock for biofuels, seven gamagrass varieties were analyzed for their chemical composition and subjected to pretreatment at 121 °C using 1% NaOH/H(2)SO(4) (w/w) for 60 min and enzymatic hydrolysis for fermentable sugar production. Based on total sugar yield, the varieties Eagle Point Devil Corn and Sun Devil were selected for NaOH and H(2)SO(4) pretreatment, respectively. The investigation on pretreatment conditions showed that, the conditions applied in gamagrass variety screening (121 °C, 1% NaOH/H(2)SO(4), 60 min) were sufficient to maximize sugar production, such that the total sugar yield of Eagle Point Devil Corn reached 479.6 mg g(-1) after NaOH pretreatment and that of Sun Devil reached 456.5 mg g(-1) raw biomass after H(2)SO(4) pretreatment. Compared with other potential energy crops including switchgrass and Bermuda grass, gamagrass gave a higher sugar yield after NaOH pretreatment and a comparable sugar yield after H(2)SO(4) pretreatment.

  7. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks.

    PubMed

    Wu, Hanjing; Hanna, Milford A; Jones, David D

    2012-10-01

    Thermogravimetric analysis was used to examine the thermal behavior of dairy manure as a pyrolysis and combustion feedstock. Nitrogen and air were used as purging gases to analyze the pyrolysis and combustion reactions, respectively, and heating rates of 20°C min(-1), 40°C min(-1) and 60°C min(-1) were applied. An Arrhenius model was used to estimate the kinetic parameters (activation energy, reaction order and pre-exponential factor). Results showed four steps for both the pyrolysis and the combustion reactions, with the second step being the most critical one and during which most thermal decomposition of cellulose, hemicelluloses, starch and protein occurred. Thermochemical reactions were determined mainly by temperature. Heating rate influenced the start and the end of the thermal conversions. The activation energies for the two major reaction zones were 93.63 kJ mol(-1) and 84.53 kJ mol(-1) for pyrolysis, and 83.03 kJ mol(-1) and 55.65 kJ mol(-1) for combustion. Knowledge of the thermal behavior of dairy manure provides guidelines for future energy utilization.

  8. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  9. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  10. Demonstration plant for pressurized gasification of biomass feedstocks

    SciTech Connect

    Trenka, A.R. ); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. ); Caldwell, C. Co., Pasadena, CA ); Kwok, R. ); Onischak, M.; Babu, S.P. (Institute of Gas Technology

    1991-01-01

    A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

  11. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.

    PubMed

    Hu, Qiang; Sommerfeld, Milton; Jarvis, Eric; Ghirardi, Maria; Posewitz, Matthew; Seibert, Michael; Darzins, Al

    2008-05-01

    Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

  12. Plant triacylglycerols as feedstocks for the production of biofuels.

    PubMed

    Durrett, Timothy P; Benning, Christoph; Ohlrogge, John

    2008-05-01

    Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.

  13. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  14. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  15. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  16. Inoculant Production with Diluted Liquid Cultures of Rhizobium spp. and Autoclaved Peat: Evaluation of Diluents, Rhizobium spp., Peats, Sterility Requirements, Storage, and Plant Effectiveness

    PubMed Central

    Somasegaran, P.

    1985-01-01

    Fully grown broth cultures of various fast- and slow-growing rhizobia were deliberately diluted with various diluents before their aseptic incorporation into autoclaved peat in polypropylene bags (aseptic method) or mixed with the peat autoclaved in trays (tray method). In a factorial experiment with the aseptic method, autoclaved and irradiated peat samples from five countries were used to prepare inoculants with water-diluted cultures of three Rhizobium spp. When distilled water was used as the diluent, the multiplication and survival of rhizobia in the peat was similar to that with diluents having a high nutrient status when the aseptic method was used. In the factorial experiment, the mean viable counts per gram of inoculant were log 9.23 (strain TAL 102) > log 8.92 (strain TAL 82) > log 7.89 (strain TAL 182) after 24 weeks of storage at 28°C. The peat from Argentina was the most superior for the three Rhizobium spp., with a mean viable count of log 9.0 per g at the end of the storage period. The quality of inoculants produced with diluted cultures was significantly (P = 0.05) better with irradiated than with autoclaved peat, as shown from the factorial experiment. With the tray method, rhizobia in cultures diluted 1,000-fold or less multiplied and stored satisfactorily in the presence of postinoculation contaminants, as determined by plate counts, membrane filter immunofluorescence, and plant infection procedures. All strains of rhizobia used in both the methods showed various degrees of population decline in the inoculants when stored at 28°C. Fast- and slow-growing rhizobia in matured inoculants produced by the two methods showed significant (P < 0.01) decline in viability when stored at 4°C, whereas the viability of some strains increased significantly (P < 0.01) at the same temperature. The plant effectiveness of inoculants produced with diluted cultures and autoclaved peat did not differ significantly from that of inoculants produced with undiluted

  17. Biomass, extracted liquid yields, sugar content or seed yields of biofuel feedstocks as affected by fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been grown historically. Sunflower (Helianthus annuus...

  18. Endpoint fragmentation index: a method for monitoring the evolution of microbial degradation of polysaccharide feedstocks.

    PubMed

    Green, Terrence R; Popa, Radu

    2011-02-01

    We describe a simple method for tracking the course of microbial degradation of polysaccharide-rich feedstocks. The method involves determining total polysaccharides present in the feedstock, measured in glucose equivalents, relative to the fractional component of polysaccharides exhibiting 2,3-dinitrosalycylic acid aldehyde activity. The ratio of total polysaccharide to aldehyde activity, defined as the end-point fragmentation (EPF) index, is then calculated and tracked as it shifts as microbial degradation of polysaccharide-rich feedstock progresses. While degradation occurs, the EPF index falls. It bottoms out at an asymptotic limit marking the point in time where further degradation of the polysaccharide-rich feedstock has ceased. The EPF index can be used to follow the progressive breakdown of composting polysaccharide-rich waste. It may also have applicability as a means of tracking the turnover of polysaccharides in other complex environments including soil, sediments, wetlands, and peat bogs.

  19. Investigation of sample preparation on the moldability of ceramic injection molding feedstocks

    NASA Astrophysics Data System (ADS)

    Ide, Jared

    Ceramic injection molding is a desirable option for those who are looking to make ceramic parts with complex geometries. Formulating the feedstock needed to produce ideal parts is a difficult process. In this research a series of feedstock blends will be evaluated for moldability. This was done by investigating their viscosity, and how certain components affect the overall ability to flow. These feedstocks varied waxes, surfactants, and solids loading. A capillary rheometer was used to characterize some of the materials, which led to one batch being selected for molding trials. The parts were sintered and further refinements were made to the feedstock. Solids loading was increased from 77.5% to 82%, which required different ratios of organics to flow. Finally, the ceramic powders were treated to lower their specific surface area before being compounded, which resulted in materials that would process easily through an extruder and exhibit properties suitable for CIM.

  20. Biodiesel production from various feedstocks and their effects on the fuel properties.

    PubMed

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  1. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    SciTech Connect

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  2. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOEpatents

    Ooteghem, Suellen Van

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  3. Pectin-rich biomass as feedstock for fuel ethanol production.

    PubMed

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  4. Development of non-petroleum feedstocks: The role of catalysis

    SciTech Connect

    Mahajan, D.

    1993-09-01

    The utilization of natural gas and coal feedstocks was initiated in the 1970s` in response to volatility in availability and price of petroleum. This concerted effort led to the development of processes based on C{sub 1}, chemistry (2) through which synthesis gas (a mixture of CO and H{sub 2}) could be catalytically converted to hydrocarbons and oxygenates. The catalytic conversion to hydrocarbons via the Fischer-Tropsch (F-T) reaction continues to be of commercial interest (1) but further improvements in reaction rates and product selectivity are sought. To this effect, recently a liquid phase Fe (slurry) F-T catalyst has replaced the traditional solid Fe. For oxygenates synthesis the utilization of organometallic complexes is established. Examples include homogeneously catalyzed commercial synthesis of acetic acid (Monsanto process) and acetic anhydride (Eastman Kodak process) catalyzed presumably by Rh(CO){sub 2}I{sub 2}{sup {minus}} species at {approximately}180{degrees}C and {degrees}50 atm. These examples indicate that organometallic complexes will find increasing applications as catalysts in new and improved processes. Since economical processes for direct conversions of coal (direct liquefaction) and natural gas (direct methane conversion) are yet to be targeted for commercial applications, synthesis of oxygenates via the ``Indirect Route,`` i.e. through synthesis gas, is carried out. The stoichiometry of synthesis gas produced from these two sources is of interest. Thus, the H{sub 2}/CO ratio varies from < 1 for coal-derived syngas to 3 for syngas from steam-reforming of natural gas. In order to maximize C utilization, the Catalyst-By-Design (CBD) approach for synthesis of methanol and higher oxygenates is ongoing under the ``BNL Catalyst Development`` program.

  5. Emerging Supplements in Sports

    PubMed Central

    Mason, Bryan C.; Lavallee, Mark E.

    2012-01-01

    Context: Nutritional supplements advertised as ergogenic are commonly used by athletes at all levels. Health care professionals have an opportunity and responsibility to counsel athletes concerning the safety and efficacy of supplements on the market. Evidence Acquisition: An Internet search of common fitness and bodybuilding sites was performed to identify supplement promotions. A search of MEDLINE (2000–August, 2011) was performed using the most commonly identified supplements, including glutamine, choline, methoxyisoflavone, quercetin, zinc/magnesium aspartate, and nitric oxide. The search terms supplement, ergogenic aid, and performance were also used. Results: Six common and newer supplements were identified, including glutamine, choline, methoxyisoflavone, quercetin, zinc/magnesium aspartate, and nitric oxide. Conclusions: Controlled studies have not determined the effects of these supplements on performance in athletes. Scientific evidence is not available to support the use of these supplements for performance enhancement. PMID:23016081

  6. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  7. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  8. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  9. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  10. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.

  11. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  12. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  13. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Ho

    environmental change. In Chapter 2, I performed a review and an analysis of data from the published literature on the large-cultivation of freshwater macroalgae. This study revealed that the large-scale cultivation of freshwater macroalgae is feasible at relatively low cost using currently available technologies such as the Algal Turf Scrubber system (ATS). In addition, graphical analyses of published data obtained from ATS systems of varying sizes in operation worldwide revealed that both macroalgal biomass productivity and nutrient removal rates are hyperbolically related to the areal loading rates of both total nitrogen and total phosphorus. An assessment of the limited existing literature on carbon dioxide amendments suggested that the effectiveness and need for CO2 supplementation of macroalgal production systems like the ATS has not yet been conclusively demonstrated. Overall, this thesis demonstrates that filamentous freshwater macroalgae have great potential as a feedstock for both liquid and solid fuels, especially if nutrient-rich wastewater can be used as the supply of water and mineral nutrients. In addition, this thesis highlights the importance of studying the algal cultivation conditions that influence trade-offs between nutrient loading, biomass productivity, and biomass energy content. In particular, the hyperbolic relationship between algal biomass productivity and the areal loading rates of both total nitrogen and total phosphorus should provide critical insight when considering the production costs of macroalgal biomass at the commercial-scale.

  14. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  15. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    PubMed

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  16. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept

    PubMed Central

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL−1 and 4.96 [±0.15] g dry weight L−1) compared closely to those of Turbo (37.43 [±1.99] mg mL−1 and 4.78 [±0.10] g L−1, respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4. PMID:25401067

  17. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.

    PubMed

    Tinoi, Jidapha; Rakariyatham, Nuansri

    2016-08-01

    The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.

  18. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.

    PubMed

    Hu, Bing; Min, Min; Zhou, Wenguang; Du, Zhenyi; Mohr, Michael; Chen, Paul; Zhu, Jun; Cheng, Yanling; Liu, Yuhuan; Ruan, Roger

    2012-12-01

    The objectives were to assess the feasibility of using fermented liquid swine manure (LSM) as nutrient supplement for cultivation of Chlorella sp. UMN271, a locally isolated facultative heterotrophic strain, and to evaluate the nutrient removal efficiencies by alga compared with those from the conventionally decomposed LSM-algae system. The results showed that addition of 0.1% (v/v) acetic, propionic and butyric acids, respectively, could promote algal growth, enhance nutrient removal efficiencies and improve total lipids productivities during a 7-day batch cultivation. Similar results were observed when the acidogenic fermentation was applied to the sterilized and raw digested LSM rich in volatile fatty acids (VFAs). High algal growth rate (0.90 d(-1)) and fatty acid content (10.93% of the dry weight) were observed for the raw VFA-enriched manure sample. Finally, the fatty acid profile analyses showed that Chlorella sp. grown on acidogenically digested manure could be used as a feedstock for high-quality biodiesel production.

  19. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    DOE PAGES

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; ...

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-stepmore » in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.« less

  20. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    SciTech Connect

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  1. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels.

    PubMed

    Mewalal, Ritesh; Rai, Durgesh K; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F; Tuskan, Gerald A

    2017-03-01

    Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels.

  2. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    PubMed

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  3. Rheological study of copper and copper grapheme feedstock for powder injection molding

    NASA Astrophysics Data System (ADS)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  4. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    SciTech Connect

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; Carpenter, Daniel L.

    2016-06-17

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease in lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

  5. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    DOE PAGES

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; ...

    2016-06-17

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less

  6. Gridley Ethanol Demonstration Project Utilizing Gasification Technology: Feedstock Supply Plan; March 15, 2004

    SciTech Connect

    Not Available

    2004-07-01

    The report describes a Feedstock Supply Plan for the proposed Gridley Ethanol Demonstration Project to be located in the City of Gridley Industrial Park in Gridley, California. This report also includes information on the establishment of the required infrastructure required for collecting approximately 113,000 Bone Dry Tons (BDT) annually for the proposed facility. Using the Pearson Technology from Aberdeen, Mississippi, and the related engineering assumptions for required feedstock, it is estimated that the proposed Gridley Ethanol Project will use approximately 113,000 BDT of rice straw to produce approximately up to 20 million gallons of ethanol annually, and/or process steam and or electricity. Based on TSS's survey of planted rice acreage in the Sacramento Valley, a total of 379,765 acres of rice are grown within a 30-mile radius of the Gridley site and that 759,530 BDT of recoverable rice straw are generated annually. This volume of rice straw is 6.7 times the 113,000 BDT of tot al feedstock needed by the proposed Gridley facility. Sufficient infrastructure exists with additional market potential for further private market infrastructure expansion in California and the Northwest (Oregon, Washington and Idaho) to collect the annual feedstock requirement of 113,000 BDT for the proposed Gridley Ethanol Demonstration Project. The projected feedstock cost for 113,000 BDT of rice straw delivered annually to the Gridley facility is approximately $35.00/BDT.

  7. NIST-Traceable NMR Method to Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples

    DTIC Science & Technology

    2014-06-01

    ECBC-TR-1251 NIST-TRACEABLE NMR METHOD TO DETERMINE QUANTITATIVE WEIGHT PERCENTAGE PURITY OF NITROGEN MUSTARD HN-1 FEEDSTOCK SAMPLES David J...Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples 5a. CONTRACT NUMBER W911SR-10-D-0004 5b. GRANT NUMBER 5c...using NMR with proton detection is described to determine the weight percent purity of feedstock samples of nitrogen mustard , HN-1. 15. SUBJECT

  8. Supplements and athletes.

    PubMed

    Lombardo, John A

    2004-09-01

    Supplements have become a staple with athletes. Athletes take supplements to enhance their performance through replenishment of real and perceived deficiencies, anabolic action of stimulants, increased energy and alertness, and for weight control. Physicians who deal with athletes should be aware of the supplements being utilized by athletes, the athletes' desired effects and the efficacy of the supplement, the adverse effects, and whether the supplement is banned by leagues or organizations in which the athletes are competing. For those athletes who are regularly drug tested for performance enhancers, it is important to remember that one cannot be 100% sure that any supplement will not result in a positive drug test, because there is no independent agency certifying purity.

  9. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.

    PubMed

    Zhang, Jian; Shao, Shuai; Bao, Jie

    2016-02-01

    This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.

  10. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    PubMed

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research.

  11. Preprocessed barley, rye, and triticale as a feedstock for an integrated fuel ethanol-feedlot plant

    SciTech Connect

    Sosulski, K.; Wang, Sunmin; Ingledew, W.M.

    1997-12-31

    Rye, triticale, and barley were evaluated as starch feedstock to replace wheat for ethanol production. Preprocessing of grain by abrasion on a Satake mill reduced fiber and increased starch concentrations in feed-stock for fermentations. Higher concentrations of starch in flours from preprocessed cereal grains would increase plant throughput by 8-23% since more starch is processed in the same weight of feedstock. Increased concentrations of starch for fermentation resulted in higher concentrations of ethanol in beer. Energy requirements to produce one L of ethanol from preprocessed grains were reduced, the natural gas by 3.5-11.4%, whereas power consumption was reduced by 5.2-15.6%. 7 refs., 7 figs., 4 tabs.

  12. Alternative methods of processing bio-feedstocks in formulated consumer product design

    PubMed Central

    Peremezhney, Nicolai; Jacob, Philipp-Maximilian; Lapkin, Alexei

    2014-01-01

    In this work new methods of processing bio-feedstocks in the formulated consumer products industry are discussed. Our current approach to formulated products design is based on heuristic knowledge of formulators that allows selecting individual compounds from a library of available materials with known properties. We speculate that most of the compounds (or functions) that make up the product to be designed can potentially be obtained from a few bio-sources. In this case, it may be possible to design a sequence of transformations required to convert feedstocks into products with desired properties, analogous to a metabolic pathway of a complex organism. We conceptualize some novel approaches to processing bio-feedstocks with the aim of bypassing the step of a fixed library of ingredients. Two approaches are brought forward: one making use of knowledge-based expert systems and the other making use of applications of metabolic engineering and dynamic combinatorial chemistry. PMID:24860803

  13. System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock.

    PubMed

    Balu, Elango; Chung, J N

    2012-03-01

    The main objective of this study is to investigate the thermal profiles of a trailer-scale gasifier in different zones during the course of gasification and also to elaborate on the design, characteristics and performance of the gasification system using different biomass feedstock. The purpose is to emphasize on the effectiveness of distributed power generation systems and demonstrate the feasibility of such gasification systems in real world scenarios, where the lingo-cellulosic biomass resources are widely available and distributed across the board. Experimental data on the thermal profiles with respect to five different zones in the gasifier and a comprehensive thermal-chemical equilibrium model to predict the syngas composition are presented in detail. Four different feedstock-pine wood, horse manure, red oak, and cardboard were evaluated. The effects of C, H, O content variations in the feedstock on the thermal profiles, and the efficiency and viability of the trailer-scale gasifier are also discussed.

  14. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    DOE PAGES

    Emerson, Rachel; Hoover, Amber; Ray, Allison; ...

    2014-07-04

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less

  15. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  16. Alternative methods of processing bio-feedstocks in formulated consumer product design.

    PubMed

    Peremezhney, Nicolai; Jacob, Philipp-Maximilian; Lapkin, Alexei

    2014-01-01

    In this work new methods of processing bio-feedstocks in the formulated consumer products industry are discussed. Our current approach to formulated products design is based on heuristic knowledge of formulators that allows selecting individual compounds from a library of available materials with known properties. We speculate that most of the compounds (or functions) that make up the product to be designed can potentially be obtained from a few bio-sources. In this case, it may be possible to design a sequence of transformations required to convert feedstocks into products with desired properties, analogous to a metabolic pathway of a complex organism. We conceptualize some novel approaches to processing bio-feedstocks with the aim of bypassing the step of a fixed library of ingredients. Two approaches are brought forward: one making use of knowledge-based expert systems and the other making use of applications of metabolic engineering and dynamic combinatorial chemistry.

  17. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  18. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  19. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    SciTech Connect

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  20. Process for improving the energy density of feedstocks using formate salts

    DOEpatents

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  1. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    PubMed Central

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  3. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  4. Family Living Supplement.

    ERIC Educational Resources Information Center

    Truitt, Debbie

    This family living supplement contains 125 supplemental ideas and strategies designed to help vocational home economics teachers increase student motivation and enrich the teaching process. Ideas and strategies are organized into seven sections. These are career planning, securing a job, and career success; managing financial resources, buying…

  5. Estimation of lower flammability limits of C-H compounds in air at atmospheric pressure, evaluation of temperature dependence and diluent effect.

    PubMed

    Mendiburu, Andrés Z; de Carvalho, João A; Coronado, Christian R

    2015-03-21

    Estimation of the lower flammability limits of C-H compounds at 25 °C and 1 atm; at moderate temperatures and in presence of diluent was the objective of this study. A set of 120 C-H compounds was divided into a correlation set and a prediction set of 60 compounds each. The absolute average relative error for the total set was 7.89%; for the correlation set, it was 6.09%; and for the prediction set it was 9.68%. However, it was shown that by considering different sources of experimental data the values were reduced to 6.5% for the prediction set and to 6.29% for the total set. The method showed consistency with Le Chatelier's law for binary mixtures of C-H compounds. When tested for a temperature range from 5 °C to 100 °C, the absolute average relative errors were 2.41% for methane; 4.78% for propane; 0.29% for iso-butane and 3.86% for propylene. When nitrogen was added, the absolute average relative errors were 2.48% for methane; 5.13% for propane; 0.11% for iso-butane and 0.15% for propylene. When carbon dioxide was added, the absolute relative errors were 1.80% for methane; 5.38% for propane; 0.86% for iso-butane and 1.06% for propylene.

  6. Reactive extraction of citric acid using tri-n-octylamine in nontoxic natural diluents: part 1--equilibrium studies from aqueous solutions.

    PubMed

    Keshav, Amit; Norge, Prakriti; Wasewar, Kailas L

    2012-05-01

    Use of cheap, nontoxic, and selective solvents could economically provide a solution to the recovery of carboxylic acids produced by the bioroute. In this regard in the present paper, reactive extraction of citric acid was studied. Problems encompassing the recovery of the acid ([H(3)A](aq)(o) = 0.1-0.8) was solved by using tertiary amine (tri-n-octylamine, TOA) in natural diluents (rice bran oil, sunflower oil, soybean oil, and sesame oil). TOA was very effective in removal of acid providing distribution coefficient (D) as high as 18.51 (E% = 95%), 12.82 (E% = 93%), 15.09 (E% = 94%), and 16.28 (E% = 94%) when used with rice bran oil, sunflower oil, soybean oil, and sesame oil, respectively. Overall extraction constants and association numbers for TOA + rice bran oil, TOA + sunflower oil, TOA + soybean oil, and TOA + sesame oil were evaluated to be 35.48 (mol/l)(-1.46), 29.79 (mol/l)(-1.30), 33.79 (mol/l)(-1.51), and 37.64 (mol/l)(-1.65) and 1.46, 1.30, 1.51, and 1.65, respectively. Specific equilibrium complexation constants (K (E(n/m))) were also predicted using mathematical modeling.

  7. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  8. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  9. Beware of Fraudulent 'Dietary Supplements'

    MedlinePlus

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers ... Supplements Dietary Supplements More in Consumer Updates Animal & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food Medical ...

  10. Herbs, Supplements and Alternative Medicines

    MedlinePlus

    ... Living With Diabetes > Treatment and Care > Medication > Other Treatments > Herbs, Supplements, and Alternative Medicines Share: Print Page Text ... magazine: meds-other, In this section Medication Other Treatments Herbs, Supplements, and Alternative Medicines Types of Dietary Supplements ...

  11. Non-flowering Sorghum spp. hybrids: Perennial, sterile, high-biomass feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial Sorghum spp. hybrids such as Columbusgrass (Sorghum almum Parodi; S. bicolor [L.] Moench x S. halepense [L.] Pers.) and the reciprocal hybridization (S. halepense x S. bicolor; e.g. Cv 'Krish') are high-biomass forage feedstocks. Utilization of such hybrids is limited, however, by both th...

  12. Nutrient and water requirements for elephantgrass production as a bio-fuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elephantgrass (Pennisetum purpureum Schumacher) is a tall tropical bunch grass that produces high enough yields to being considered an excellent bio-energy feedstock for the lower South. However, previous studies have shown that production is not sustainable without fertilizer application and adequ...

  13. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  14. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    NASA Astrophysics Data System (ADS)

    Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.

    2013-12-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.

  15. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  16. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  17. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    SciTech Connect

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  18. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  19. Multi-utilization of swine manure as a bioenergy feedstock: Carbonization and combustion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of animal manure and other organic-based waste products as bioenergy feedstocks is gaining interest for waste-to-bioenergy conversion processes. While thermochemical conversion of animal manure via combustion, pyrolysis, and gasification is becoming a new frontier of manure treatment; there ...

  20. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...

  1. Evaluation of sweet sorghum as a feedstock by multiple harvests for sustainable bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 ...

  2. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema

    Khanna, Madhu

    2016-07-12

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  3. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    EPA Science Inventory

    The results of a laboratory scale investigation on ozone pretreatment of primary treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0 % (w/w) oz...

  4. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    PubMed Central

    2011-01-01

    Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction. PMID:22018114

  5. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  6. Raffinates from catalytic gasoil as feedstocks for the production of technical carbon

    SciTech Connect

    Alekhina, N.I.; Levinson, S.Z.; Mikhailov, I.A.; Tsekhanovich, M.S.

    1982-11-01

    Investigates desorbed raffinates, obtained in the adsorption treatment of CGO, as feedstocks for technical carbon production. Explains that the CGO was produced in a type 1A/1M commercial unit operating on zeolitic catalyst with a heavy distillate feedstock from mixed medium-sulfur crudes of the Ural district. Finds that the yield of technical carbon from the desorbed raffinate is 3-4% higher than from the traditional feedstock (e.g. the solvent extract). Notes that the technical carbon obtained from the experimental feed is characterized by a considerably higher oil number in comparison with the carbon produced from the standard feed, and the specific surface areas are quite similar. Points out that the technical carbon from the desorbed raffinate completely meets the requirements for high-dispersity, highly structurized technical carbon in grades PM-75V and PM-100V. Recommends the desorbed raffinate from adsorptive treating of heavy CGO as a feedstock for the production of high-dispersity technical carbon, with either normal structure or a higher level of structure.

  7. Fluid fertilizer's role in sustaining soils used for bio-energy feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of corn (Zea mays L.) as a bio-energy feedstock has attracted the attention of many producers. Recently, the focus has shifted from grain-based to cellulose-based ethanol production. In addition to biological conversion of corn stover to ethanol, thermal conversion (pyrolysis) of stover is b...

  8. Improvement of perennial forage species as feedstock for bio-energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both native and non-native forage grasses other than switchgrass are less commonly considered as potential lignocellulosic biomass feedstocks for bioenergy in the United States. The forage grasses consist of temperate cool-season (most commonly C3) grasses as well as the tropical or sub-tropical an...

  9. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    EPA Science Inventory

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  10. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    EPA Science Inventory

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  11. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    PubMed

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  12. Biodiesel Derived from a Feedstock Enriched in Palmitoleic Acid, Macadamia Nut Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous vegetable oils, animal fats or other feedstocks have been investigated for obtaining biodiesel, defined as the mono alkyl esters of vegetable oils and animal fats. While biodiesel is competitive with petrodiesel, technical problems facing biodiesel include cold flow and oxidative stability...

  13. Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya pentacarpos) is a non-invasive perennial nonclonal halophytic oilseed-producing dicot that was investigated as a feedstock for production of biodiesel from seeds and ethanol from residual stem biomass. Seashore mallow seeds contained 19.3 mass % oil, which after extract...

  14. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  15. Sustainable bioenergy feedstock production systems: Integrating carbon dynamics, erosion, water quality, and greenhouse gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing greenhouse gas (GHG) emission is one of several rationales for developing renewable biomass energy. Unfortunately, there are few studies reporting direct impacts of harvesting biomass feedstocks on GHG, especially effects on nitrous oxide (N2O) flux. Overzealous biomass harvest may accelera...

  16. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  17. Site-specific trade-offs of harvesting cereal residues as biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal residues are considered an important feedstock for future biofuel production. Harvesting cereal residues, however, could lead to substantial soil degradation. Our objective was to evaluate trade-offs associated with harvesting straw including impacts on soil erosion and quality, soil organic ...

  18. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  19. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  20. Ericameria Nauseosa (rubber rabbitbrush): a complementary rubber feedstock to augment the guayule rubber production stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ericameria nauseosa (rubber rabbitbrush) is a highly prolific desert shrub that produces high quality natural rubber. Over the past several years we have investigated rabbitbrush’s potential as a commercial rubber feedstock. Like guayule, rabbitbrush produces natural rubber within its bark tissues a...

  1. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  2. Switchgrass response to nitrogen fertilizer across diverse environments in the USA: a regional feedstock partnership report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in di...

  3. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    PubMed

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.

  4. Balancing limiting factors and economic drivers for sustainable midwestern U.S. agricultural residue feedstock supplies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading the soil and other natural resources. This review examine...

  5. Conservation Considerations for Sustainable Bioenergy Feedstock Production: If, What, Where, and How Much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased awareness of the need to achieve energy independence and security has resulted in many questions regarding the use of agricultural products as feedstock for bioenergy production. Initial efforts with grain crops, though successful, raised many more questions regarding sustainability and po...

  6. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOEpatents

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  7. Weed Control Systems for Peanut (Arachis hypogaea L.) Grown as a Biofuel Feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) has not been utilized as a true oilseed crop, especially for the production of fuel. However, peanut makes a superior feedstock for biodiesel, especially in on-farm or small cooperative business plans, where producers can dictate the cost of making their own fuel. Fiel...

  8. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  9. Quantifying and mitigating the environmental impacts of using corn stover as a biofuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods Corn stover has been suggested as a viable biomass feedstock for bioenergy production. However, unharvested corn stover provides two important ecosystem services: it reduces soil erosion and replenishes soil carbon, both of which help maintain soil productivity. There are...

  10. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  11. The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective (2010 JGI User Meeting)

    ScienceCinema

    DeLucia, Evan

    2016-07-12

    Evan DeLucia of the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute talks about "The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  12. Seeded-yet-sterile biomass feedstocks: Kinggrass and pearl millet-napiergrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kinggrass (Pennisetum purpureum Schumach. x P. glaucum [L.] R. Br.) and Pearl Millet-Napiergrass (PMN; P. glaucum x P. purpureum) are unique among energy grasses as 'Seeded-yet-Sterile' feedstocks, derived from fertile parents capable of producing significant quantities of hybrid seed while being st...

  13. Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.

    PubMed

    Carlsson, Anders S

    2009-06-01

    Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops.

  14. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  15. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  16. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  17. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%–75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne‑1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  18. Supplements for exotic pets.

    PubMed

    Mejia-Fava, Johanna; Colitz, Carmen M H

    2014-09-01

    The use of supplements has become commonplace in an effort to complement traditional therapy and as part of long-term preventive health plans. This article discusses historical and present uses of antioxidants, vitamins, and herbs. By complementing traditional medicine with holistic and alternative nutrition and supplements, the overall health and wellness of exotic pets can be enhanced and balanced. Further research is needed for understanding the strengths and uses of supplements in exotic species. Going back to the animals' origin and roots bring clinicians closer to nature and its healing powers.

  19. The role of microalgae as biodiesel feedstock in a tropical setting: Economics, agro-energy competitiveness, and potential impacts on regional agricultural feedstock production

    NASA Astrophysics Data System (ADS)

    Boll, Matias G.

    The objective of this study is to obtain a realistic evaluation of the potential role of microalgae as a biodiesel feedstock in a tropical setting. First, microalgae economics are estimated, including the detailed design of a 400 ha microalgae open pond production farm together with the microalgae biomass and crude oil production costs calculations. Sensitivity analysis and a stochastic evaluation of the microalgae venture chances for profit are also included. Next, microalgae potential for biodiesel production is compared to traditional oil crops such as soybeans and African palm. This comparison is performed using the Northeast Region (NER) of Brazil as background. Six potential biodiesel feedstock sources produced in the NER and microalgae are compared considering selected environmental, economic and social sustainability indicators. Finally, in the third chapter, the study proposes a cropland allocation model for the NER. The model aims to offer insights to the decision maker concerning biofuel development strategies and their impact on regional agricultural feedstock production. In the model, cropland allocation among three agriculture feedstock sectors, namely staple food, commodity export and biofuel is optimized through the use of the multiple objective technique referred to as compromise programming (CP). Our results indicate a projected microalgae total production cost of R 78,359 ha-1 (US43,533), which has a breakdown as follows: R 34,133 ha-1 (US18,963) for operating costs and R 44,226 ha-1 (US24,570) for overhead (ownership) costs. Our stochastic analysis indicates that microalgae production under the conditions assumed in the baseline scenario of this study has a 0% chance to present a positive NPV for a microalgae crude oil price of R 1.86. This price corresponds to an international oil price around US 77 bbl-1. To obtain a reasonable investment return (IRR = 12%) from the microalgae farm, an international oil price as high as US 461 bbl-1 is

  20. FDA 101: Dietary Supplements

    MedlinePlus

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers ... Knowledge About Vitamins More in Consumer Updates Animal & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food Medical ...

  1. Breastfeeding: Vitamin D Supplementation

    MedlinePlus

    ... able to synthesize additional vitamin D through routine sunlight exposure. However, published reports of cases of vitamin ... a vitamin supplement or from adequate exposure to sunlight. A number of factors decrease the amount of ...

  2. Supplements to Textbook Materials.

    ERIC Educational Resources Information Center

    Holmes, Ken

    1994-01-01

    Describes the many kinds of materials that English teachers can draw upon to enrich and expand students' experiences with literature. Outlines ancillary materials used to supplement the study of William Shakespeare's "Julius Caesar." (HB)

  3. Parenteral iron supplementation.

    PubMed

    Kumpf, V J

    1996-08-01

    Indications for the use of parenteral iron are limited to conditions in which the oral supplementation of iron is not possible or fails. An overview of iron balance and iron requirements is presented to describe situations in which iron supplementation may be required. When parenteral iron supplementation is required, careful attention to proper dosing and administration is necessary to optimize efficacy and safety. The purpose of this article is to review the literature regarding the clinical use of parenteral iron therapy and provide guidelines on dosing and administration. Methods of iron dextran administration, including the IV and intramuscular injection of undiluted drug and total dose infusion, are compared. Complications associated with the use of parenteral iron are also be reviewed. Finally, the use of iron supplementation in patients receiving parenteral nutrition care explored.

  4. Dietary Supplements for Toddlers

    MedlinePlus

    ... about which supplements are needed and the amounts. Iron Deficiency Iron deficiency does occur among some young children and ... need to receive at least 15 milligrams of iron a day in their food, but many fail ...

  5. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  6. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    DOE PAGES

    Coleman, Andre M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; ...

    2016-03-03

    To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr–1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. Under this scenario, open-pond microalgae production is projected to use 1.2 × 106 ha of private pastureland, while terrestrial biomass feedstocks would use 14.0 × 106 ha of private pastureland. A spatial meta-analysismore » indicates that potential competition for land under this scenario would be concentrated in 110 counties, containing 1.0 and 1.7 × 106 ha of algal and terrestrial dedicated feedstock production, respectively. Furthermore, a land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county's pastureland, representing 2%–5% of total pastureland in the U.S.; therefore suggesting little overall competition between algae production, terrestrial energy feedstocks and alternative uses for existing agricultural production such as livestock grazing.« less

  7. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    SciTech Connect

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  8. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    SciTech Connect

    Coleman, Andre M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.; Langholtz, Matthew H.; Eaton, Laurence M.

    2016-03-03

    To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr–1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. Under this scenario, open-pond microalgae production is projected to use 1.2 × 106 ha of private pastureland, while terrestrial biomass feedstocks would use 14.0 × 106 ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under this scenario would be concentrated in 110 counties, containing 1.0 and 1.7 × 106 ha of algal and terrestrial dedicated feedstock production, respectively. Furthermore, a land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county's pastureland, representing 2%–5% of total pastureland in the U.S.; therefore suggesting little overall competition between algae production, terrestrial energy feedstocks and alternative uses for existing agricultural production such as livestock grazing.

  9. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  10. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    SciTech Connect

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara; Ha, Richard; Jakeway, Lee; Khanal, Samir; Nakahata, Mae; Ogoshi, Richard; Shimizu, Erik; Stern, Ivette; Turano, Brian; Turn, Scott; Yanagida, John

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  11. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  12. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.

    PubMed

    Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A

    2017-07-25

    Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL(-1)d(-1)), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL(-1)d(-1)) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL(-1) (with 3.8g-CODL(-1) resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new

  13. Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals

    SciTech Connect

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1995-12-31

    A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. The process, known as steam classification, transforms the pulp and paper materials, food wastes, and soft yard wastes into a fairly uniform product that appears to be highly suitable as a feedstock for conversion to fuel, fertilizer, and/or fermentable sugars. The physical and chemical properties of this cellulosic feedstock have been determined. The material has also been tested as a feedstock for composting and for cellulytic enzyme hydrolysis to yield glucose.

  14. Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification.

    PubMed

    Prathyusha, N; Kamesh, Reddi; Rani, K Yamuna; Sumana, C; Sridhar, S; Prakasham, R S; Yashwanth, V V N; Sheelu, G; Kumar, M Pradeep

    2016-12-01

    Experiments have been performed for pretreatment of sorghum, wheat straw and bamboo through high temperature alkali pretreatment with different alkaline loading and temperatures, and the data on extent of delignification in terms of the final compositions of cellulose, hemicellulose and lignin have been generated. Further, enzymatic saccharification has been carried out in all the cases to find the extent of conversion possible after 72h. The effect of different operating parameters on the extent of delignification and cellulose conversion are evaluated. This data is employed to develop a generalized multi-feedstock and individual feedstock based models which can be used to determine the extent of delignification and cellulose conversion for any and specific biomass respectively with alkaline pretreatment and similar enzyme conditions as considered in the present study. Also, a kinetic model is developed and validated for sorghum for cellulosic conversion.

  15. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    PubMed

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  16. Feedstock to Tailpipe Initiative: Kansas Biofuels Production, Testing and Certification Laboratory

    SciTech Connect

    Stagg-Williams, Susan M.; Depcik, Chris; Sturm, Belinda

    2013-12-31

    The primary task of this grant was to establish an ASTM testing facility for biodiesel and ethanol and to use this facility to develop methods to predict fuel characteristics based on feedstock composition and feedstock cultivation. In addition to characterizing fuel properties, this grant allowed for the purchase and installation of a Fourier Transform Infrared Spectroscopy (FTIR) emissions analyzer that will provide an analysis of the emissions leaving the engine in order to meet EPA regulations. This FTIR system is combined with an Alternating Current (AC) dynamometer that allows the engine to follow Environmental Protection Agency (EPA) Federal Test Procedure (FTP) cycles. A secondary task was to investigate cultivating algae utilizing wastewater and top-down ecological control and subsequent harvesting using coagulation and dissolved air flotation. Lipid extraction utilizing environmentally-friendly and cost-effective solvents, with and without cell-disruption pretreatment was also explored. Significant work on the hydrothermal liquefaction of wastewater cultivated algae was conducted.

  17. Enzymatic biodiesel production: an overview of potential feedstocks and process development.

    PubMed

    Hama, Shinji; Kondo, Akihiko

    2013-05-01

    The increased global demand for biofuels has prompted the search for alternatives to edible oils for biodiesel production. Given the abundance and cost, waste and nonedible oils have been investigated as potential feedstocks. A recent research interest is the conversion of such feedstocks into biodiesel via enzymatic processes, which have considerable advantages over conventional alkali-catalyzed processes. To expand the viability of enzymatic biodiesel production, considerable effort has been directed toward process development in terms of biodiesel productivity, application to wide ranges of contents of water and fatty acids, adding value to glycerol byproducts, and bioreactor design. A cost evaluation suggested that, with the current enzyme prices, the cost of catalysts alone is not competitive against that of alkalis. However, it can also be expected that further process optimization will lead to a reduced cost in enzyme preparation as well as in downstream processes.

  18. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect

    Andrew Lucero

    2009-03-25

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  19. Optimization and cost estimation of novel wheat biorefining for continuous production of fermentation feedstock.

    PubMed

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A wheat-based continuous process for the production of a nutrient-complete feedstock for bioethanol production by yeast fermentation has been cost-optimized. This process could substitute for the current wheat dry milling process employed in industry for bioethanol production. Each major wheat component (bran, gluten, starch) is extracted and processed for different end-uses. The separate stages, liquefaction and saccharification, used currently in industry for starch hydrolysis have been integrated into a simplified continuous process by exploiting the complex enzymatic consortium produced by on-site fungal bioconversions. A process producing 120 m3 h-1 nutrient-complete feedstock for bioethanol production containing 250 g L-1 glucose and 0.85 g L-1 free amino nitrogen would result in a production cost of $0.126/kg glucose.

  20. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    PubMed

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  1. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    PubMed Central

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  2. Intensive use of biomass feedstock in ethanol conversion: The alcohol-water, vapor-phase separation

    SciTech Connect

    Robertson, G.H.; Doyle, L.R.; Pavlath, A.E.

    1983-12-01

    Fermentation of ethanol in a system whereby the biomass is used intensively (both to separate alcohol from water by vapor phase adsorption and to serve as the feedstock) is shown to be possible on theoretical grounds when the biomass is grain. The rationale for a vapor-phase adsorption process as an alternative to distillation is shown to be energetically valid above 84 wt % ethanol. The capacity of grain in new vapor-phase ambient adsorption processes was estimated experimentally with the finding that sufficient capacity exists for the intensive use but that the adsorption is dynamically controlled so that the grain form and particle size are important. Pretreatments such as explosive dehydration improve the transfer of water to the grain in adsorption with potential improvement in the efficiency of liquefaction and saccharification. At room temperature, these sorbents are not perfectly selective for water but adsorb ethanol which will be carried to the liquefaction, saccharification, and fermentation with the feedstock.

  3. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  4. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, M.; Grohse, E.W.

    1995-06-27

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  5. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOEpatents

    Steinberg, Meyer; Grohse, Edward W.

    1995-01-01

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  6. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2016-12-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  7. Miscanthus as a feedstock for fast-pyrolysis: does agronomic treatment affect quality?

    PubMed

    Hodgson, E M; Fahmi, R; Yates, N; Barraclough, T; Shield, I; Allison, G; Bridgwater, A V; Donnison, I S

    2010-08-01

    The objectives of the experiment were to assess the impact of nitrogen (N) and potassium (K) fertiliser application on the cell wall composition and fast-pyrolysis conversion quality of the commercially cultivated hybrid Miscanthus x giganteus. Five different fertiliser treatments were applied to mature Miscanthus plants which were sampled at five intervals over a growing season. The different fertiliser treatments produced significant variation in concentrations of cell wall components and ash within the biomass and affected the composition and quality of the resulting fast-pyrolysis liquids. The results indicated that application of high rates of N fertiliser had a negative effect on feedstock quality for this conversion pathway: reducing the proportion of cell wall components and increasing accumulation of ash in the harvested biomass. No exclusive effect of potassium fertiliser was observed. The low-N fertiliser treatment produced high quality, low ash-high lignin biomass most suitable as a feedstock for thermo-chemical conversion.

  8. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    SciTech Connect

    Trettin, Carl C.; Amatya, Devendra; Coleman, Mark

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  9. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  10. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE PAGES

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  11. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  12. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    DOE PAGES

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; ...

    2016-04-22

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantitymore » specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.« less

  13. Development and use of bioenergy feedstocks for semi-arid and arid lands

    SciTech Connect

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan; Borland, Anne M.

    2015-04-01

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.

  14. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    SciTech Connect

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  15. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    PubMed

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.

  16. Application of air classification and formulation to manage feedstock cost, quality and availability for bioenergy

    SciTech Connect

    Thompson, Vicki S.; Lacey, Jeffrey A.; Hartley, Damon; Jindra, Michael A.; Aston, John E.; Thompson, David N.

    2016-04-22

    Biomass such as agricultural residues, energy crops and yard waste has significant potential to be used as renewable feedstocks for production of fuels, chemicals and energy. However, in a given location, biomass availability, cost and quality can vary markedly. Strategies to manage these traits must be identified and implemented so that consistent low-cost and high-quality feedstocks can be delivered to biorefineries year round. In this study, we examine air classification as a method to mitigate high ash concentrations in corn stover, switchgrass, and grass clippings. Formulation techniques were then used to produce blends that met ash quality and biomass quantity specifications at the lowest possible cost for biopower and biochemical conversion applications. It was found that air classification can separate the biomass into light fractions which contain concentrated amounts of elemental ash components introduced through soil contamination such as sodium, alumina, silica, iron and titania; and heavy fractions that are depleted in these components and have relatively lower total ash content. Light fractions of corn stover and grass clippings were found to be suitable for combustion applications since they had less propensity to slag than the whole biomass material. The remaining heavy fractions of corn stover or grass clippings could then be blended with switchgrass to produce blends that met the 5% total ash specifications suggested for biochemical conversions. However, ternary blends of the three feedstocks were not possible due to the high ash content of grass clippings. Lastly, it was determined that air classification by itself was not suitable to prepare these feedstocks for pyrolysis due to high ash content.

  17. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  18. Development and use of bioenergy feedstocks for semi-arid and arid lands

    DOE PAGES

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan; ...

    2015-04-01

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave andmore » Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.« less

  19. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    SciTech Connect

    Johansson, Ann-Christine; Iisa, Kristiina; Sandström, Linda; Ben, Haoxi; Pilath, Heidi; Deutch, Steve; Wiinikka, Henrik; Öhrman, Olov G. W.

    2017-01-01

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. The objective was to characterize the oil fractions produced from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. However, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. This promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle fractions, and

  20. Improvement of hydrogen solubility and entrainment in hydrocracker feedstocks. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1997-02-01

    The project consisted of two tasks: (1) development of a thermodynamic model for hydrogen solubility in hydrocarbons and extension of this model to predict solubility of hydrogen in hydrocracker feedstocks at conditions similar to those of hydrocracking operations, and (2) design and construction of a gas solubility apparatus to measure solubility of hydrogen in hydrocarbons and in hydrocracker feedstocks. The theoretical work proposed was fully accomplished by developing a sophisticated model for hydrogen solubility in hydrocarbons and in hydrocracker feedstocks at advanced temperatures and pressures. The proposed experimental work ran into a number of obstacles, especially to get the original and newly designed on-line sampling technique to function properly. A number of calibrations and tests for reproducibility were necessary to assure the accuracy of measured data. Although a very well designed gas solubility apparatus was built, not much time was left to generate significant hydrogen solubility data. The plans are to use the apparatus in future to measure hydrogen solubility data in liquid fuels to facilitate more efficient design of fuel conversion systems.

  1. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    SciTech Connect

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  2. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks

    PubMed Central

    Laity, Peter R.; Holland, Chris

    2016-01-01

    The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled. PMID:27801879

  3. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    SciTech Connect

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  4. Optimal Distribution of Biofuel Feedstocks within Marginal Land in the USA

    NASA Astrophysics Data System (ADS)

    Jaiswal, D.

    2015-12-01

    The United States can have 43 to 123 Mha of marginal land to grow second generation biofuel feedstocks. A physiological and biophysical model (BioCro) was run using 30 yr climate data (NARR) and SSURGO soil data for the conterminous United Stated to simulate growth of miscanthus, switchgrass, sugarcane, and short rotation coppice. Overlay analyses of the regional maps of predicted yields and marginal land suggest maximum availability of 0.33, 1.15, 1.13, and 1.89 PG year-1 of biomass from sugarcane, willow, switchgrass, and miscanthus, respectively. Optimal distribution of these four biofuel feedstocks within the marginal land in the USA can provide up to 2 PG year-1 of biomass for the production of second generation of biofuel without competing for crop land used for food production. This approach can potentially meet a significant fraction of liquid fuel demand in the USA and reduce greenhouse gas emission while ensuring that current crop land under food production is not used for growing biofuel feedstocks.

  5. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel

    PubMed Central

    Massimi, Rebecca

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d−1) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock. PMID:27635353

  6. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    PubMed Central

    Ramamurthy, Dhandapani

    2014-01-01

    Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb) concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM) (specific algal medium) produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC) with oleic acid pure (98%) control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae. PMID:25247176

  7. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks.

    PubMed

    Laity, Peter R; Holland, Chris

    2016-10-29

    The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  8. Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

    NASA Astrophysics Data System (ADS)

    Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran

    Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

  9. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.

    PubMed

    Abe, Kenji; Kuroda, Akio; Takeshita, Ryo

    2017-03-01

    Industrial glucose feedstock prepared by enzymatic digestion of starch typically contains significant amounts of disaccharides such as maltose and isomaltose and trisaccharides such as maltotriose and panose. Maltose and maltosaccharides can be utilized in Escherichia coli fermentation using industrial glucose feedstock because there is an intrinsic assimilation pathway for these sugars. However, saccharides that contain α-1,6 bonds, such as isomaltose and panose, are still present after fermentation because there is no metabolic pathway for these sugars. To facilitate more efficient utilization of glucose feedstock, we introduced glvA, which encodes phospho-α-glucosidase, and glvC, which encodes a subunit of the phosphoenolpyruvate-dependent maltose phosphotransferase system (PTS) of Bacillus subtilis, into E. coli. The heterologous expression of glvA and glvC conferred upon the recombinant the ability to assimilate isomaltose and panose. The recombinant E. coli assimilated not only other disaccharides but also trisaccharides, including alcohol forms of these saccharides, such as isomaltitol. To the best of our knowledge, this is the first report to show the involvement of the microbial PTS in the assimilation of trisaccharides. Furthermore, we demonstrated that an L-lysine-producing E. coli harboring glvA and glvC converted isomaltose and panose to L-lysine efficiently. These findings are expected to be beneficial for industrial fermentation.

  10. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits.

    PubMed

    Feltus, Frank Alex; Vandenbrink, Joshua P

    2012-11-02

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.

  11. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  12. 78 FR 49749 - Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... petition requesting a declaratory order finding that a proposed Bayou Ethane Pipeline project is not subject to Commission's jurisdiction because the transported ethane will only be used as feedstock...

  13. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lau, Jane

    2013-03-01

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  14. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    SciTech Connect

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  15. Synthesis and Characterization of Oxide Feedstock Powders for the Fuel Cycle R&D Program

    SciTech Connect

    Voit, Stewart L; Vedder, Raymond James; Johnson, Jared A

    2010-09-01

    Nuclear fuel feedstock properties, such as physical, chemical, and isotopic characteristics, have a significant impact on the fuel fabrication process and, by extension, the in-reactor fuel performance. This has been demonstrated through studies with UO{sub 2} spanning greater than 50 years. The Fuel Cycle R&D Program with The Department of Energy Office of Nuclear Energy has initiated an effort to develop a better understanding of the relationships between oxide feedstock, fresh fuel properties, and in-reactor fuel performance for advanced mixed oxide compositions. Powder conditioning studies to enable the use of less than ideal powders for ceramic fuel pellet processing are ongoing at Los Alamos National Laboratory (LANL) and an understanding of methods to increase the green density and homogeneity of pressed pellets has been gained for certain powders. Furthermore, Oak Ridge National Laboratory (ORNL) is developing methods for the co-conversion of mixed oxides along with techniques to analyze the degree of mixing. Experience with the fabrication of fuel pellets using co-synthesized multi-constituent materials is limited. In instances where atomically mixed solid solutions of two or more species are needed, traditional ceramic processing methods have been employed. Solution-based processes may be considered viable synthesis options, including co-precipitation (AUPuC), direct precipitation, direct-conversion (Modified Direct Denitration or MDD) and internal/external gelation (sol-gel). Each of these techniques has various advantages and disadvantages. The Fiscal Year 2010 feedstock development work at ORNL focused on the synthesis and characterization of one batch of UO{sub x} and one batch of U{sub 80}Ce{sub 20}O{sub x}. Oxide material synthesized at ORNL is being shipped to LANL for fuel fabrication process development studies. The feedstock preparation was performed using the MDD process which utilizes a rotary kiln to continuously thermally denitrate double

  16. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect

    Not listed

    2007-07-01

    Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30

  17. Leaching Pretreatments for Improving Biomass Quality: Feedstocks, Solvents, and Extraction Modeling

    NASA Astrophysics Data System (ADS)

    Yu, Chao Wei

    In this research, a systematic study was conducted to quantify the inorganic and organic compounds leached from rice straw, wheat straw, corn stover, switchgrass, Jose Tall Wheatgrass, Douglas fir, and Miscanthus with water, and to evaluate the feedstock quality and characteristics of leached solids for thermal process applications. Leaching feedstocks with water at ambient temperature with a 20 L/kg (dry matter) ratio for 2 hours greatly increased the ash fusion temperature of rice straw (from 1050°C to above 1550°C) and wheat straw (from 900°C to 1250°C), but the treatment only increased the ash fusion temperature of corn stover from 900°C to 950°C. Miscanthus had relatively good initial feedstock quality and leaching may not prove necessary for this feedstock in thermal systems. Leaching also changed the combustion kinetics of biomass by increasing the initial degradation temperature of most feedstocks from originally between 165°C and 186°C to between 180°C and 250°C depending on feedstock. Moreover, leaching increased the maximum rate of weight loss of feedstock by 11% to 54% and increased the corresponding temperatures for peak loss up to 34°C. Leaching removed a sizeable fraction of organic compounds (between 2% and 12% of dry matter). These organic extracts were identified as mostly sugars and acids which might be valuable co-products. Moisture contents of feedstocks after leaching were typically high, ranging between 68 and 81% wet basis. A dewatering step is generally required prior to using the leached biomass for thermochemical conversion. Solvents with ability to dissolve ion-exchangeable, organically associated, and acid soluble metals can further remove non-water soluble metals from biomass and may also improve feedstock quality. In a solvent evaluation, corn stover and wheat straw were leached with water, 1M ammonium acetate, 1M HCl, 100% methanol, 50% methanol, 100% ethanol, and 50% ethanol, and leached solids and leachate were

  18. Psychology: Teacher Supplement.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    This supplement provides teachers with tests, quizzes, answers to questions in the text, and general teaching information for using the student text, "Psychology," by Rebecca Stark. Quizzes included are on the topics of human development; the nervous system; the brain; cognitive development; sensation and perception; conditioning; learning;…

  19. Weight Loss Nutritional Supplements

    NASA Astrophysics Data System (ADS)

    Eckerson, Joan M.

    Obesity has reached what may be considered epidemic proportions in the United States, not only for adults but for children. Because of the medical implications and health care costs associated with obesity, as well as the negative social and psychological impacts, many individuals turn to nonprescription nutritional weight loss supplements hoping for a quick fix, and the weight loss industry has responded by offering a variety of products that generates billions of dollars each year in sales. Most nutritional weight loss supplements are purported to work by increasing energy expenditure, modulating carbohydrate or fat metabolism, increasing satiety, inducing diuresis, or blocking fat absorption. To review the literally hundreds of nutritional weight loss supplements available on the market today is well beyond the scope of this chapter. Therefore, several of the most commonly used supplements were selected for critical review, and practical recommendations are provided based on the findings of well controlled, randomized clinical trials that examined their efficacy. In most cases, the nutritional supplements reviewed either elicited no meaningful effect or resulted in changes in body weight and composition that are similar to what occurs through a restricted diet and exercise program. Although there is some evidence to suggest that herbal forms of ephedrine, such as ma huang, combined with caffeine or caffeine and aspirin (i.e., ECA stack) is effective for inducing moderate weight loss in overweight adults, because of the recent ban on ephedra manufacturers must now use ephedra-free ingredients, such as bitter orange, which do not appear to be as effective. The dietary fiber, glucomannan, also appears to hold some promise as a possible treatment for weight loss, but other related forms of dietary fiber, including guar gum and psyllium, are ineffective.

  20. Examples of Dietary Supplement Interactions

    MedlinePlus

    ... is absorbed by the body.Supplement: Saw PalmettoPossible drug-supplement interaction with:Birth control pills. Can decrease effects of estrogen in the body, which can reduce the effectiveness of birth control ...

  1. Dietary Supplements: What Is Safe?

    MedlinePlus

    ... and side effects of dietary supplements Dietary supplement advertising and promotion Talking with your doctor about dietary ... Statistics Center Volunteer Learning Center Follow Us Twitter Facebook Instagram Cancer Information, Answers, and Hope. Available Every ...

  2. Vitamin Supplements: Healthy or Hoax?

    MedlinePlus

    ... Recognition & Awards Healthy Workplace Food and Beverage Toolkit Vitamin Supplements: Healthy or Hoax? Updated:Jun 12,2015 Can vitamin and mineral supplements really make you healthier? Overwhelmed ...

  3. Feedstock and process influence on biodiesel produced from waste sewage sludge.

    PubMed

    Capodaglio, Andrea G; Callegari, Arianna

    2017-04-04

    Disposal of sewage sludge is one of the most important issues in wastewater treatment throughout Europe, as EU sludge production, estimated at 9.5 million tons dry weight in 2005, is expected to approach 13 million tons in 2020. While sludge disposal costs may constitute 30-50% of the total operation costs of wastewater treatment processes, waste sewage sludge still contains resources that may be put to use, like nutrients and energy, that can be recovered through a variety of approaches. Research has shown that waste sewage sludge can be a valuable and very productive feedstock for biodiesel generation, containing lipids (the fats from which biofuels are extracted) in amounts that would require large areas cultivated with typical biodiesel feedstock, to produce, and at a much lower final cost. Several methods have been tested for the production of biodiesel from sewage sludge. To date, among the most efficient such process is pyrolysis, and in particular Microwave-Assisted Pyrolysis (MAP), under which process conditions are more favorable in energetic and economic terms. Sludge characteristics are very variable, depending on the characteristics of the wastewater-generating service area and on the wastewater treatment process itself. Each sludge can be considered a unique case, and as such experimental determination of the optimal biodiesel yields must be conducted on a case-by-case basis. In addition to biodiesel, other pyrolysis products can add to the energetic yield of the process (and not only). This paper discusses how feedstock properties and process characteristics may influence biodiesel (and other products) yield from pyrolytic (and in particular, MAP) processes, and discusses future possible technological developments.

  4. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2001-07-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

  5. Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Elbagir, S; Stevanovic, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-12-15

    This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.

  6. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.

    PubMed

    Heimersson, Sara; Morgan-Sagastume, Fernando; Peters, Gregory M; Werker, Alan; Svanström, Magdalena

    2014-06-25

    Assessing the environmental performance of emerging technologies using life cycle assessment (LCA) can be challenging due to a lack of data in relation to technologies, application areas or other life cycle considerations, or a lack of LCA methodology that address the specific concerns. Nevertheless, LCA can be a valuable tool in the environmental optimisation in the technology development phase. One emerging technology is the mixed-culture production of polyhydroxyalkanoates (PHAs). PHA production by pure microbial cultures has been developed and assessed in several LCAs during the previous decade. Recent developments within mixed-culture PHA production call for environmental assessment to guide in technology development. Mixed-culture PHA production can use the organic content in wastewater as a feedstock; the production may then be integrated with wastewater treatment (WWT) processes. This means that mixed-culture PHA is produced as a by-product from services in the WWT. This article explores different methodological challenges for LCA of mixed-culture PHA production using organic material in wastewater as feedstock. LCAs of both pure- and mixed-culture PHA production were reviewed. Challenges, similarities and differences when assessing PHA production by mixed- or pure-cultures were identified and the resulting implications for methodological choices in LCA were evaluated and illustrated, using a case study with mixed- and pure-culture PHA model production systems, based on literature data. Environmental impacts of processes producing multiple products or services need to be allocated between the different products or services. Such situations occur both in feedstock production and when the studied system is providing multiple functions. The selection of allocation method is shown to determine the LCA results. The type of data used, for electricity in the energy system, is shown to be important for the results, which indicates, a strong regional dependency of

  7. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.

  8. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    SciTech Connect

    Eibling, R.E.; Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L.

    1994-10-01

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions.

  9. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    PubMed

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested.

  10. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    SciTech Connect

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; Payne, Courtney; Crocker, David P.; Tao, Ling; Wolfrum, Ed.

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each), were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good

  11. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE PAGES

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; ...

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and

  12. Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production

    PubMed Central

    Ribeiro, Bernardo Dias; de Castro, Aline Machado; Coelho, Maria Alice Zarur; Freire, Denise Maria Guimarães

    2011-01-01

    Lipases represent one of the most reported groups of enzymes for the production of biofuels. They are used for the processing of glycerides and fatty acids for biodiesel (fatty acid alkyl esters) production. This paper presents the main topics of the enzyme-based production of biodiesel, from the feedstocks to the production of enzymes and their application in esterification and transesterification reactions. Growing technologies, such as the use of whole cells as catalysts, are addressed, and as concluding remarks, the advantages, concerns, and future prospects of enzymatic biodiesel are presented. PMID:21785707

  13. [ERGOGENIC SPORT SUPPLEMENTS FOR ATHLETES].

    PubMed

    Arieli, Rakefet; Lahav, Yair

    2016-06-01

    Use of performance-enhancing supplements occurs at all levels of sports, from recreational athletes to professional athletes. Although some supplements do enhance athletic performance, many have no proven benefits and have adverse effects. Nutritional supplements are categorized into the following categories: I. Apparently Effective. II. Possibly Effective. III. Too Early To Tell. IV. Apparently Ineffective. This article will review 4 ergogenic supplements which are categorized in the first category--"Apparently Effective"--1) Buffer agents 2) Creatine 3) Caffeine and 4 Nitric Oxide. Given the widespread use of performance enhancing supplements, physicians, and dietitians should be prepared to counsel athletes about their effectiveness, safety and legality.

  14. Effective Nutritional Supplement Combinations

    NASA Astrophysics Data System (ADS)

    Cooke, Matt; Cribb, Paul J.

    Few supplement combinations that are marketed to athletes are supported by scientific evidence of their effectiveness. Quite often, under the rigor of scientific investigation, the patented combination fails to provide any greater benefit than a group given the active (generic) ingredient. The focus of this chapter is supplement combinations and dosing strategies that are effective at promoting an acute physiological response that may improve/enhance exercise performance or influence chronic adaptations desired from training. In recent years, there has been a particular focus on two nutritional ergogenic aids—creatine monohydrate and protein/amino acids—in combination with specific nutrients in an effort to augment or add to their already established independent ergogenic effects. These combinations and others are discussed in this chapter.

  15. Systems analysis of hydrogen supplementation in natural gas pipelines

    SciTech Connect

    Hermelee, A.; Beller, M.; D'Acierno, J.

    1981-11-01

    The potential for hydrogen supplementation in natural gas pipelines is analyzed for a specific site from both mid-term (1985) and long-term perspectives. The concept of supplementing natural gas with the addition of hydrogen in the existing gas pipeline system serves to provide a transport and storage medium for hydrogen while eliminating the high investment costs associated with constructing separate hydrogen pipelines. This paper examines incentives and barriers to the implementation of this concept. The analysis is performed with the assumption that current developmental programs will achieve a process for cost-effectively separating pure hydrogen from natural gas/hydrogen mixtures to produce a separable and versatile chemical and fuel commodity. The energy systems formulation used to evaluate the role of hydrogen in the energy infrastructure is the Reference Energy System (RES). The RES is a network diagram that provides an analytic framework for incorporating all resources, technologies, and uses of energy in a uniform manner. A major aspect of the study is to perform a market analysis of traditional uses of resources in the various consuming sectors and the potential for hydrogen substitution in these sectors. The market analysis will focus on areas of industry where hydrogen is used as a feedstock rather than for its fuel-use opportunities to replace oil and natural gas. The sectors of industry where hydrogen is currently used and where its use can be expanded or substituted for other resources include petroleum refining, chemicals, iron and steel, and other minor uses.

  16. Supplementation patterns in marathon runners.

    PubMed

    Nieman, D C; Gates, J R; Butler, J V; Pollett, L M; Dietrich, S J; Lutz, R D

    1989-11-01

    The purpose of the present investigation was to study the use of supplements in a large group of endurance runners (no. = 347) who had participated in the 1987 Los Angeles Marathon. Three-day dietary records were analyzed for nutrient content and supplement usage. The runners' supplementation patterns with respect to demographics, dietary quality, training habits, and race performance were investigated. In general, no significant associations were found between supplement use and the aforementioned variables. Use of supplements, especially vitamins C and E, calcium, and zinc, increased with age (p less than .05). Daily use of at least one type of supplement was reported by 29% of the runners; 48% reported use of at least one type of supplement within the 3-day period.

  17. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  18. Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography-mass spectrometry.

    PubMed

    Schale, Stephen P; Le, Trang M; Pierce, Karisa M

    2012-05-30

    The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography-quadrupole mass spectrometry (GC-qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.

  19. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    SciTech Connect

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.; Zabotina, Olga A.

    2012-12-28

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks.

  20. Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications.

    PubMed

    Banerjee, Indrani; Burrell, Brittany; Reed, Cara; West, Alan C; Banta, Scott

    2017-03-31

    Developing new feedstocks for the efficient production of biochemicals and biofuels will be a critical challenge as we diversify away from petrochemicals. One possible opportunity is the utilization of sulfide-based minerals in the Earth's crust. Non-photosynthetic chemolithoautotrophic bacteria are starting to be developed to produce biochemicals from CO2 using energy obtained from the oxidation of inorganic feedstocks. Biomining of metals like gold and copper already exploit the native metabolism of these bacteria and these represent perhaps the largest-scale bioprocesses ever developed. The metabolic engineering of these bacteria could be a desirable alternative to classical heterotrophic bioproduction. In this review, we discuss biomining operations and the challenges and advances in the engineering of associated chemolithoautotrophic bacteria for biofuel production. The co-generation of biofuels integrated with mining operations is a largely unexplored opportunity that will require advances in fundamental microbiology and the development of new genetic tools and techniques for these organisms. Although this approach is presently in its infancy, the production of biochemicals using energy from non-petroleum mineral resources is an exciting new biotechnology opportunity.

  1. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock

    PubMed Central

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank. PMID:27195694

  2. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

    PubMed Central

    2010-01-01

    As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses. PMID:20669951

  3. Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks

    PubMed Central

    Çetinkol, Özgül Persil; Smith-Moritz, Andreia M.; Cheng, Gang; Lao, Jeemeng; George, Anthe; Hong, Kunlun; Henry, Robert; Simmons, Blake A.; Heazlewood, Joshua L.; Holmes, Bradley M.

    2012-01-01

    Eucalypt species are a group of flowering trees widely used in pulp production for paper manufacture. For several decades, the wood pulp industry has focused research and development efforts on improving yields, growth rates and pulp quality through breeding and the genetic improvement of key tree species. Recently, this focus has shifted from the production of high quality pulps to the investigation of the use of eucalypts as feedstocks for biofuel production. Here the structure and chemical composition of the heartwood and sapwood of Eucalyptus dunnii, E. globulus, E. pillularis, E. urophylla, an E. urophylla-E. grandis cross, Corymbia citriodora ssp. variegata, and Acacia mangium were compared using nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD) and biochemical composition analysis. Some trends relating to these compositions were also identified by Fourier transform near infrared (FT-NIR) spectroscopy. These results will serve as a foundation for a more comprehensive database of wood properties that will help develop criteria for the selection of tree species for use as biorefinery feedstocks. PMID:23300786

  4. Evaluation of Physicochemical Properties of South African Cashew Apple Juice as a Biofuel Feedstock

    PubMed Central

    Deenanath, Evanie Devi; Rumbold, Karl; Daramola, Michael; Falcon, Rosemary; Iyuke, Sunny

    2015-01-01

    Cashew apple juice (CAJ) is one of the feedstocks used for biofuel production and ethanol yield depends on the physical and chemical properties of the extracted juice. As far as can be ascertained, information on physical and chemical properties of South African cashew apple juice is limited in open literature. Therefore, this study provides information on the physical and chemical properties of the South African cashew apple juice. Physicochemical characteristics of the juice, such as specific gravity, pH, sugars, condensed tannins, Vitamin C, minerals, and total protein, were measured from a mixed variety of cashew apples. Analytical results showed the CAJ possesses specific gravity and pH of 1.050 and 4.52, respectively. The highest sugars were glucose (40.56 gL−1) and fructose (57.06 gL−1). Other chemical compositions of the juice were condensed tannin (55.34 mgL−1), Vitamin C (112 mg/100 mL), and total protein (1.78 gL−1). The minerals content was as follows: zinc (1.39 ppm), copper (2.18 ppm), magnesium (4.32 ppm), iron (1.32 ppm), sodium (5.44 ppm), and manganese (1.24 ppm). With these findings, South African CAJ is a suitable biomass feedstock for ethanol production. PMID:26345160

  5. Increasing secondary and renewable material use: a chance constrained modeling approach to manage feedstock quality variation.

    PubMed

    Olivetti, Elsa A; Gaustad, Gabrielle G; Field, Frank R; Kirchain, Randolph E

    2011-05-01

    The increased use of secondary (i.e., recycled) and renewable resources will likely be key toward achieving sustainable materials use. Unfortunately, these strategies share a common barrier to economical implementation - increased quality variation compared to their primary and synthetic counterparts. Current deterministic process-planning models overestimate the economic impact of this increased variation. This paper shows that for a range of industries from biomaterials to inorganics, managing variation through a chance-constrained (CC) model enables increased use of such variable raw materials, or heterogeneous feedstocks (hF), over conventional, deterministic models. An abstract, analytical model and a quantitative model applied to an industrial case of aluminum recycling were used to explore the limits and benefits of the CC formulation. The results indicate that the CC solution can reduce cost and increase potential hF use across a broad range of production conditions through raw materials diversification. These benefits increase where the hFs exhibit mean quality performance close to that of the more homogeneous feedstocks (often the primary and synthetic materials) or have large quality variability. In terms of operational context, the relative performance grows as intolerance for batch error increases and as the opportunity to diversify the raw material portfolio increases.

  6. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock

    PubMed Central

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469

  7. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.

    PubMed

    Gour, Rakesh Singh; Chawla, Aseem; Singh, Harvinder; Chauhan, Rajinder Singh; Kant, Anil

    2016-01-01

    In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.

  8. Biocatalysis for the application of CO2 as a chemical feedstock

    PubMed Central

    Easton, Christopher J

    2015-01-01

    Summary Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy. PMID:26734087

  9. Product analysis from direct liquefaction of several high-moisture biomass feedstocks

    SciTech Connect

    Elliott, D.C.; Sealock, L.J. Jr.; Butner, R.S.

    1986-08-01

    The carbohydrate structures found in biomass can be converted thermochemically to a mixture of primarily phenolic compounds. Hydro carbons are not predominant yet they may survive the processing in a significant yield given an appropriate feedstock. Cyclic ketones are the other major component group which can be identified by GC/MS. Low molecular weight oxygenates and furans are minimized by the addition of base to the reaction medium. The product compositions of the napier grass and sorghum-derived product oils shown many similarities to wood-derived oils. In comparing with high-pressure processed oil from Douglas fir the same groups of cyclic ketones, phenols, naphthols, and dihydroxybenzenes dominate. The traces of hydrocarbon in the sorghum and napier grass oils are apparently feedstock related. Nitrogen-containing compounds were not found in the sorghum or napier grass oils reported here. The large fraction of nitrogen-containing cyclic compounds is the distinguishing factor between the hyacinth, kelp and grain oils when compared to earlier wood oil analyses. Similar compounds were found earlier in peat and sewage sludge oils. 20 refs., 4 tabs.

  10. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    SciTech Connect

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, and will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.

  11. Numerical simulation of multi-rifled tube drawing – finding proper feedstock dimensions and tool geometry

    NASA Astrophysics Data System (ADS)

    Bella, P.; Buček, P.; Ridzoň, M.; Mojžiš, M.; Parilák, L.’

    2017-02-01

    Production of multi-rifled seamless steel tubes is quite a new technology in Železiarne Podbrezová. Therefore, a lot of technological questions emerges (process technology, input feedstock dimensions, material flow during drawing, etc.) Pilot experiments to fine tune the process cost a lot of time and energy. For this, numerical simulation would be an alternative solution for achieving optimal parameters in production technology. This would reduce the number of experiments needed, lowering the overall costs of development. However, to claim the numerical results to be relevant it is necessary to verify them against the actual plant trials. Searching for optimal input feedstock dimension for drawing of multi-rifled tube with dimensions Ø28.6 mm × 6.3 mm is what makes the main topic of this paper. As a secondary task, effective position of the plug – die couple has been solved via numerical simulation. Comparing the calculated results with actual numbers from plant trials a good agreement was observed.

  12. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    SciTech Connect

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  13. Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.

  14. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  15. Effect of crystallisation conditions and feedstock morphology on the aerosolization performance of micronised salbutamol sulphate.

    PubMed

    Shariare, M H; de Matas, M; York, P

    2011-08-30

    Salbutamol sulphate (SS) used in dry powder inhalers requires drug particles in the respirable size range of 1-5 μm to achieve a suitable therapeutic effect. The aim of this study was therefore to determine strategies for controlling drug substance characteristics pre and post-crystallisation to facilitate the production of micronised SS with desirable particle attributes for optimal delivery as an inhaled aerosol. SS batches were crystallised using an antisolvent method to produce a range of crystal morphologies. Air jet milling was then used to reduce the size of crystallised SS particles. Starting materials and micronised batches of SS were characterised in the solid state using a range of techniques with subsequent assessment of aerosol properties. Assessment of the aerodynamic characteristics of micronised SS delivered by DPI (without any carrier) indicated that fine particle fraction and emitted dose as a percentage of the total recovered dose were dependent on the quality attributes of the micronised SS, which were directly linked to the degree of imperfections and the morphology of the crystalline feedstock used in micronisation. Aerosolization performance of micronised SS can be optimised by manipulation of feedstock characteristics through crystal engineering and through definition of optimal processing conditions for micronisation.

  16. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  17. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production.

    PubMed

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Ramteke, P W

    2014-03-01

    Present investigation studied the potential of fresh water green microalga Scenedesmus abundans as a feedstock for biodiesel production. To study the biomass and lipid yield, the culture was grown in BBM, Modified CHU-13 and BG-11 medium. Among the tested nitrogen concentration using Modified CHU-13 medium, the highest biomass and lipid yield of 1.113±0.05g/L and 489±23mg/L respectively was found in the culture medium with 0.32g/L of nitrogen (KNO3). Different lipid extraction as well as transesterification methods were also tested. Fatty acid profile of alga grown in large scale indigenous made photobioreactor has shown abundance of fatty acids with carbon chain length of C16 and C18. Various biodiesel properties such as cetane number, iodine value and saponification value were found to be in accordance with Brazilian National Petroleum Agency (ANP255) and European biodiesel standard EN14214 which makes S. abundans as a potential feedstock for biodiesel production.

  18. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  19. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material.

    PubMed

    Water, Jorrit Jeroen; Bohr, Adam; Boetker, Johan; Aho, Johanna; Sandler, Niklas; Nielsen, Hanne Mørck; Rantanen, Jukka

    2015-03-01

    The aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during the processing. Release of NF from the disks was dependent on the drug loading in a concentration-dependent manner as a higher level of released drug was observed from disks with higher drug loads. Disks with 30% drug loading were able to prevent surface-associated and planktonic growth of Staphylococcus aureus over a period of 7 days. At 10% drug loading, the disks did not inhibit planktonic growth, but still inhibited surface-associated growth. Elemental analysis indicated the presence of microdomains of solid drug supporting the observed slow and partial drug release. This work demonstrates the potential of custom-made, drug-loaded feedstock materials for 3D printing of pharmaceutical products for controlled release.

  20. Prediction of syngas quality for two-stage gasification of selected waste feedstocks.

    PubMed

    De Filippis, Paolo; Borgianni, Carlo; Paolucci, Martino; Pochetti, Fausto

    2004-01-01

    This paper compares the syngas produced from methane with the syngas obtained from the gasification, in a two-stage reactor, of various waste feedstocks. The syngas composition and the gasification conditions were simulated using a simple thermodynamic model. The waste feedstocks considered are: landfill gas, waste oil, municipal solid waste (MSW) typical of a low-income country, the same MSW blended with landfill gas, refuse derived fuel (RDF) made from the same MSW, the same RDF blended with waste oil and a MSW typical of a high-income country. Energy content, the sum of H2 and CO gas percentages, and the ratio of H2 to CO are considered as measures of syngas quality. The simulation shows that landfill gas gives the best results in terms of both H2+CO and H2/CO, and that the MSW of low-income countries can be expected to provide inferior syngas on all three quality measures. Co-gasification of the MSW from low-income countries with landfill gas, and the mixture of waste oil with RDF from low-income MSW are considered as options to improve gas quality.