Science.gov

Sample records for fel design studies

  1. Design study of a longer wavelength FEL for FELIX

    SciTech Connect

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-12-31

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations.

  2. Optimization Studies of the FERMI at ELETTRA FEL Design

    SciTech Connect

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves,William

    2005-08-25

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.

  3. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  4. Theoretical study of the design and performance of a high-gain, high-extraction-efficiency FEL oscillator

    SciTech Connect

    Goldstein, J.; Nguyen, D.C.; Sheffield, R.L.

    1996-10-01

    We present the results of theoretical and simulation studies of the design and performance of a new F type of FEL oscillator. This device, known by the acronym RAFEL for Regenerative Amplifier Free-Electron Laser, will be constructed in the space presently occupied by the AFEL (Advanced FEL) at Los Alamos, and will be driven by an upgraded (to higher average power) version of the present AFEL linac. In order to achieve a long-time-averaged optical output power of {approximately} 1 kW using an electron beam with an average power of {approximately} 20 kW, a rather high extraction efficiency {eta} {approximately} 5% is required. We have designed a 2-m-long undulator to attain this goal: the first meter is untapered and provides high gain while the second meter is linearly-tapered in magnetic field amplitude to provide high extraction efficiency in the standard K-M-R manner. Two-plane focusing and linear polarization of the undulator are assumed. Electron-beam properties from PARMEIA simulations of the AFEL accelerator were used in the design. A large saturated gain, {approximately} 500, requires a very small optical feedback to keep the device operating at steady-state. However, the large gain leads to distorted optical modes which require two- and three-dimensional simulations to adequately treat diffraction effects. This FEL will be driven by 17 MeV electrons and will operate in the 16 {mu}m spectral region.

  5. Design study of the bending sections between harmonic cascade FEL stages

    SciTech Connect

    Wan, Weishi; Corlett, John; Fawley, William; Zholents, A.

    2004-06-30

    The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.

  6. Energy recovery transport design for PKU FEL

    SciTech Connect

    Guimei Wang; Yu-Chiu Chao; KUI Zhao; Xiangyang Lu; Jiejia Zhuang; Chuyu Liu; Zhenchao Liu; Jiaer Chen

    2007-06-25

    A free-electron laser based on superconducting linac is under construction in Peking University(PKU). To increase FEL output power, energy recovery is chosen as one of the most potential and popular way. The design of beam transport system for energy recovery is presented, which is suitable for Peking University construction area. Especially, a chicane structure is chosen to change path length at +/-18 degree and R56 in the arc is adjusted for fully bunch compression.

  7. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  8. Study of waveguide resonators for FEL operating at submillimeter wavelengths

    SciTech Connect

    Yakover, I.M.; Pinhasi, Y.; Gover, A.

    1995-12-31

    This paper presents theoretical results of waveguide resonator study for FEL operating at the submillimeter wavelength region. Because of increased ohmic losses it is harder to obtain high Q waveguide cavities at these wavelengths. The following unconventional multimode waveguides: metal-dielectric, corrugated and curved parallel plates, were considered. The type and structure of the operating modes were determined and their attenuation constant, effective mode area and wave impedance were calculated. On the basis of this analysis small-signal gain simulations were made. We have performed a parametric study of the various FEL oscillator cavity designs based on the parameters of the Israeli Tandem FEL experiment. It was found that an FEL utilizing unconventional waveguides has much better performance in comparison to an FEL based on conventional multimode rectangular and circular waveguides. In particular, promising design parameters for a sub-mm wavelength FEL utilizing a metal-dielectric waveguide were identified: gain of 45%/Amp and ohmic losses of 2% at frequency 300 GHz, and gain of 20%/Amp and ohmic losses 1% at frequency 675 GHz.

  9. Design of High Power FELS and the Effects of Diffraction on Detuning in an FEL Oscillator

    DTIC Science & Technology

    2015-12-01

    also show the effects of emittance versus electron beam energy and mirror shift versus mirror tilt on extraction. Analysis of these results examine the...robustness of FEL designs. 14. SUBJECT TERMS FEL, emittance, energy spread, mirror tilt, mirror shift 15. NUMBER OF PAGES 63 16. PRICE CODE 17...results that agree better with experiments. The results of new 4D simulations also show the effects of emittance versus electron beam energy and mirror

  10. Optimisation of An HHG-Seeded Harmonic Cascade FEL Design for the NLS Project

    SciTech Connect

    Dunning, David; Thompson, Neil; Bartolini, Riccardo; Geng, Huiping; Huang, Zhirong; McNeil, Brian; /Strathclyde U.

    2012-06-25

    Optimization studies of an HHG-seeded harmonic cascade FEL design for the UK's proposed New Light Source (NLS) facility are presented. Three separate FELs are planned to meet the requirements for continuous coverage of the photon energy range 50-1000 eV with variable polarization, 20 fs pulse widths and good temporal coherence. The design uses an HHG seed source tuneable from 50-100 eV to provide direct FEL seeding in this range, and one or two stage harmonic cascades to reach the higher photon energies. Studies have been carried out to optimize a harmonic cascade FEL operating at 1 keV; topics investigated include modulator configuration, seed power level and ef- fects of the HHG seed structure. FEL simulations using realistic electron beam distributions are presented and tolerance to increased emittance has been considered.

  11. R&D Requirements, RF Gun Mode Studies, FEL-2 Steady-StateStudies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary LayoutOption Investigation

    SciTech Connect

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-10-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI {at} Elettra Technical Optimization study. It describes proposed R&D activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac.

  12. A 300-nm compact mm-wave linac FEL design

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  13. Non equilibrium studies on FEL facilities

    NASA Astrophysics Data System (ADS)

    Harmand, Marion

    2013-06-01

    The recent development of Free Electron Lasers (FEL), giving ultrafast, high intensity pulses in the X-ray and XUV energy range is opening new opportunities for WDM studies. Development of X-ray diagnostics such as X-ray absorption spectroscopy and X-ray scattering, has received much attention for the in situ measurement of the structure and physical properties of matter at extreme conditions. Coupled to ultrafast pump - probe schemas, such diagnostics are giving new insights into out-of-equilibrium processes and thus validate current models. We report recent developments to perform few fs time resolved pump - probe experiments, giving access to ultrafast transient WDM states. We also present collective Thomson Scattering with soft x-ray Free Electron Laser radiation (at FLASH) as a method to track the evolution of highly transient warm dense hydrogen with around 100 fs time resolution. In addition, recent experiments at LCLS are suggesting the possibility to perform X-ray absorption spectroscopy (XANES) on FEL facilities to provide simultaneously information on the valence electrons and on the atomic local arrangement within sub-ps time scales.

  14. Energy Recovery Transport Design for Peking University FEL

    SciTech Connect

    G. M. Wang; Y.-C. Chao; J.-E. Chen; C. Liu; Z. C. Liu; X. Y. Lu; K. Zhao; J. Zhuang

    2007-08-01

    A free-electron laser based on a superconducting linac is under construction in Peking University. To increase FEL output power, energy recovery is chosen as one of the most potential and popular ways. The design of a beam transport system for energy recovery is presented, which is suitable for the Peking University construction area. Especially, a chicane structure is chosen to change path length at ±20 degree and M56 in the arc is adjusted for fully bunch compression.

  15. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  16. Parameter study of the VUV-FEL at the Tesla Test Facility

    SciTech Connect

    Brefeld, W.; Faatz, B.

    1995-12-31

    In this contribution we present a detailed study of the influence of the electron beam and machine parameters on the performance of the TTF VUV FEL, which is in its design stage at DESY. The TTF FEL will be a 6 nm SASE device operating with the beam provided by the Tesla Test Facility superconducting linac, driven by an rf photcathode gun. The FEL output power and saturation length have been assessed with the use of different 2D3-D steady state simulation codes. The parameter range over which the FEL would reach saturation within the specified undulator length of 25 to 30 m have been determined and checked against semi-analytical expressions.

  17. Design and simulations of CAEP THz FEL resonator

    NASA Astrophysics Data System (ADS)

    Dou, Yuhuan; Shu, Xiaojian; Deng, Derong; Yang, Xingfan; Li, Ming

    2015-02-01

    A high power China Academy of Engineering Physics(CAEP) THz free electron laser (FEL) is designed and optimized in a radiation frequency range of 1~3 THz and average output power of about 10 W. The main work focuses on the optimization of different schemes through physical analysis. The wiggler peak field strength and electron beam energy have been selected with eleven frequencies ranging from 1 THz to 3 THz. It is found that the values of the gain and output power of the cavity are largest at 2.6 THz. So we can test the facility at this frequency. While the value of the output power is less than the design goal at the lower frequency region of about 1.0 THz due to the serious slippage between the electron bunch and radiation pulse. To increase the output power at the lower frequency region, the scheme of elliptical hole-coupling optical resonator is proposed to solve this problem. The simulation results show that the elliptical hole-coupling output is effective and applicable for the THz FEL and the output power can be increased by more than 30%.

  18. Design Principles for a Compact High Average Power IR FEL

    SciTech Connect

    Lia Merminga; Steve Benson

    2001-08-01

    Progress in superconducting rf (srf) technology has led to dramatic changes in cryogenic losses, cavity gradients, and microphonic levels. Design principles for a compact high average power Energy Recovery FEL at IR wavelengths, consistent with the state of the art in srf, are outlined, High accelerating gradients, of order 20 MV/m at Q{sub 0}{approx}1x10{sup 10} possible at rf frequencies of 1300 MHz and 1500 MHz, allow for a single-cryomodule linac, with minimum cryogenic losses. Filling every rf bucket, at these high frequencies, results in high average current at relatively low charge per bunch, thereby greatly ameliorating all single bunch phenomena, such as wakefields and coherent synchrotron radiation. These principles are applied to derive self-consistent sets of parameters for 100 kW and 1 MW average power IR FELs and are compared with low frequency solutions. This work supported by U.S. DOE Contract No. DE-AC05-84ER40150, the Commonwealth of Virginia and the Laser Processing Consortium.

  19. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  20. Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science

    SciTech Connect

    Corlett, John; Fawley, William; Penn, Gregory; Wan, Weishi; Zholents, A.; Reinsch, M.; Wurtele, Jonathan

    2004-08-25

    LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For a given cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine certain aspects of the predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, some sensitivity studies and requirements on the undulator alignment, and temporal pulse evolution initiated by short input radiation seeds.

  1. High-power FEL design issues - a critical review

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  2. Studies of Resistive Wall Heating at JLAB FEL

    SciTech Connect

    Li, Rui; Benson, Stephen V.

    2013-06-01

    When the JLAB FEL is under CW operation, it had been observed that temperature rises over the wiggler vacuum chamber, presumably as the result of the power deposition on the resistive wall of the wiggler chamber. Previous analyses have been done on the resistive wall impedance for various cases, such as DC, AC, and anomalous skin effects*. Here we report an investigation on the beam kinetic energy losses for each of these cases. This study includes the non-ultrarelativistic effect on resistive wall loss, for both round pipe and parallel plates. We will present the comparison of our results with the measured data obtained during CW operation of the JLAB FEL. Other possible factors contributing to the measured heating will also be discussed.

  3. Physical design of FEL injector based on the performance-enhanced EC-ITC RF gun

    NASA Astrophysics Data System (ADS)

    Hu, Tong-Ning; Chen, Qu-Shan; Pei, Yuan-Ji; Li, Ji; Qin, Bin

    2014-01-01

    To meet the requirements of high performance THz-FEL (Free Electron Laser), a compact scheme of FEL injector was proposed. A thermionic cathode was chosen to emit electrons instead of a photo-cathode with its complex structure and high cost. The effective bunch charge was improved to ~200 pC by adopting an enhanced EC-ITC (External Cathode Independently Tunable Cells) RF gun to extract micro-bunches; back bombardment effects were almost eliminated as well. Constant gradient accelerator structures were designed to improve energy to ~14 MeV, while the focusing system was applied for emittance suppressing and bunch state maintenance. The physical design and beam dynamics of the key components for the FEL injector were analyzed. Furthermore, start-to-end simulations with multi-pulses were performed using homemade MATLAB and Parmela. The results show that continual high brightness electron bunches with a low energy spread and emittance could be obtained stably.

  4. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  5. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    NASA Astrophysics Data System (ADS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  6. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    SciTech Connect

    Liu, H.; Kehne, D.; Benson, S.

    1995-12-31

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient ({approx}10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed.

  7. Two FEL`s in one

    SciTech Connect

    Epp, V.; Nikitin, M.

    1995-12-31

    A new scheme for a FEL operation is proposed. The conventional principle of FEL operation is means that the electron bunch passes through the interaction area of FEL only in one direction. We suggest another possible layout which implies that the electron bunch makes a turn after leaving the wiggler and entries the wiggler at the same end. Actually the wiggler is a kind of a bridge between two storage rings. The electron bunches on the orbit are expected to be adjusted in the way that after one of them leaves the wiggler, another one enters in the opposite direction and in the proper phase with the wave pulse emitted by the previous bunch. So the electron bunch comes in interaction with the amplified electromagnetic wave in both directions i.e. twice per period. It is especially important for the short wavelength FELs, because each reflection from the mirror causes a significant losses of the wave magnitude. The proposed design gives one interaction per each reflection instead of one interaction per two reflections in the traditional scheme. Another way to realize the suggested principle of operating is to insert the wiggler in the electron-positron storage ring. But this layout can be less efficient because of low intensity of the positron beam. The comparison study of radiation from different types of described double wigglers is fulfilled. The synchronization problems are discussed in this paper.

  8. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    SciTech Connect

    Hall, C. C.; Biedron, S.; Burleson, Theodore A.; Milton, Stephen V.; Morin, Auralee L.; Benson, Stephen V.; Douglas, David R.; Evtushenko, Pavel E.; Hannon, Fay E.; Li, Rui; Tennant, Christopher D.; Zhang, Shukui; Carlsten, Bruce E.; Lewellen, John W.

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  9. Optical design and performance of an XUV FEL (free-electron laser) oscillator

    SciTech Connect

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1989-01-01

    A study of numerical simulation of the performance of a multifacet metal mirror ring resonator FEL is presented for several XUV wavelengths. Laser performance in the presence of mirror aberrations and thermal distortion is calculated for two different output coupling methods, a scraper mirror and a hole. 11 refs., 1 fig.

  10. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at theLBNL LOASIS Facility

    SciTech Connect

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-09-01

    We present a design for a compact FEL source of ultrafast, high-peak flux, soft x-ray pulses employing a high-current, GeV-energy electron beam from the existing laser-plasma accelerator at the LBNL LOASIS laser facility. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing both to the high current ({approx} 10 kA) and reasonable charge/pulse ({approx} 0.1-0.5 nC) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially 10{sup 13}--10{sup 14} photons/pulse. We examine devices based both on SASE and high-harmonic generated input seeds to give improved coherence and reduced undulator length, presenting both analytic scalings and numerical simulation results for expected FEL performance. A successful source would result in a new class of compact laser-driven FELs in which a conventional RF accelerator is replaced by a GeV-class laser-plasma accelerator whose active acceleration region is only a few cm in length.

  11. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    SciTech Connect

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculator design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.

  12. Coherence and linewidth studies of a 4-nm high power FEL

    SciTech Connect

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.

  13. Design of the SRF Driver ERL for the Jefferson Lab UV FEL

    SciTech Connect

    Douglas, David R; Benson, Stephen; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, Michael; Kortze, James; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Wilson, Frederick; Zhang, Shukui

    2011-03-01

    We describe the design of the SRF Energy-Recovering Linac (ERL) providing the CW electron drive beam at the Jefferson Lab UV FEL. Based on the same 135 MeV linear accelerator as and sharing portions of the recirculator with the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a novel bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation (including correction of RF curvature effects) without the use of magnetic chicanes or harmonic RF. Stringent phase space requirements at the wiggler, low beam energy, high beam current, and use of a pre-existing facility and legacy hardware subject the design to numerous constraints. These are imposed not only by the need for both transverse and longitudinal phase space management, but also by the potential impact of collective phenomena (space charge, wakefields, beam break-up (BBU), and coherent synchrotron radiation (CSR)), and by interactions between the FEL and the accelerator RF system. This report addresses these issues and presents the accelerator design solution that is now in operation.

  14. Design of broadly tuned FIR FEL based on a variable-period microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    A varible-period microwiggler is proposed and investigated. The fundamental period of the microwiggler is designed as {lambda}o=2mm, and the period of the microwiggler can be turned from {lambda}o to n{lambda}o (n=1,2,3,{hor_ellipsis}) The wiggler fields with the period 3{lambda}o, 4{lambda}o, and 5{lambda}o are measured and compared with the theoretical results. Finally, a broadly tuned FIR FEL is designed based on the performance of the variable-period microwiggler.

  15. 40-{angstrom} FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C.; Nuhn, H.D.; Tatchyn, R.; Winick, H.; Pellegrini, C.

    1991-12-31

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  16. 40- angstrom FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C. ); Nuhn, H.D.; Tatchyn, R.; Winick, H. . Stanford Synchrotron Radiation Lab.); Pellegrini, C. . Dept. of Physics)

    1991-01-01

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  17. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  18. Progress at the Jefferson Laboratory FEL

    SciTech Connect

    Tennant, Christopher

    2009-01-01

    As the only currently operating free electron laser (FEL) based on a CW superconducting energy recovering linac (ERL), the Jefferson Laboratory FEL Upgrade remains unique as an FEL driver. The present system represents the culmination of years of effort in the areas of SRF technology, ERL operation, lattice design, high power optics and DC photocathode gun technology. In 2001 the FEL Demo generated 2.1 kW of laser power. Following extensive upgrades, in 2006 the FEL Upgrade generated 14.3 kW of laser power breaking the previous world record. The FEL Upgrade remains a valuable testbed for studying a variety of collective effects, such as the beam breakup instability, longitudinal space charge and coherent synchrotron radiation. Additionally, there has been exploration of operation with lower injection energy and higher bunch charge. Recent progress and achievements in these areas will be presented, and two recent milestones â installation of a UV FEL and establishment of a DC gun test s

  19. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  20. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  1. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  2. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    SciTech Connect

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  3. JINR test facility for studies FEL bunching technique for CLIC driving beam

    SciTech Connect

    Dolbilov, G.V.; Fateev, A.A.; Ivanov, I.N.

    1995-12-31

    SILUND-21 linear induction accelerator (energy up to 10 MeV, peak current about of 1 kA, pulse duration 50 - 70 ns) is constructed at JINR in the framework of experimental program to study free electron laser physics, a problem of two-beam acceleration and microwave electronics. In this paper we present project of an experiment to adopt the FEL bunching technique for generation of the CLIC driving beam.

  4. Studies Of Coherent Synchrotron Radiation And Longitudinal Space Charge In The Jefferson Lab FEL Driver

    SciTech Connect

    Tennant, Christopher D.; Douglas, David R.; Li, Rui; Tsai, C.-Y.

    2014-12-01

    The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was moved along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.

  5. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    NASA Astrophysics Data System (ADS)

    Junbiao, Zhu; Yonggui, Li; Nianqing, Liu; Guoqing, Zhang; Minkai, Wang; Gan, Wu; Xuepin, Yan; Yuying, Huang; Wei, He; Yanmei, Dong; Xuejun, Gao

    2001-12-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 μm, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO 2 laser. FTIR absorption spectra in the range of 2.5-15.4 μm for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results will be presented.

  6. Lattice design of a quasi-isochronous ring for a storage-ring FEL

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1995-12-31

    Design work for a Quasi-Isochronous Ring (QI-Ring) dedicated to Storage Ring FELs in Electrotechnical Laboratory has been completed. The motivation for this work is to shorten the electron bunch length in order to get a high peak current in a compact Storage-Ring (SR). By placing an inverted dipole field in a location where the energy dispersion function is relatively large, one can reduce the momentum compaction factor ({alpha}) and shorten a bunch length in a SR. The main requirements for the QI-Ring are: 1.5GeV maximum beam energy; 80m circumference; two 10m-long dispersion free straight sections for insertion devices. A few meters dispersion free straight sections for RF cavities and injection bumpers; and a wide tune ability in betatron functions and momentum compaction factor ({alpha}). As shown in figure 1, the lattice includes two 49 degree, 3 T superconducting bending magnets to reduce the circumference of the ring, a -8 degree normal inverted dipole magnet (ID), 4 families quadrupole magnets (QF, QD, QFA, QDA), and 3 families sextupole magnets. Each quadrupole family has a specific function: QF & QD control the betatron tunes, and QFA & QDA control the {alpha} and suppress the energy dispersion in a straight section. In this type of ring it is important to compensate the second order momentum compaction factor ({alpha}{sub 2}), so at least three families of sextupoles are required.

  7. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  8. Resonantly enhanced multiphoton ionization under XUV FEL radiation: a case study of the role of harmonics

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, G. M.; Lambropoulos, P.

    2015-12-01

    We provide a detailed quantitative study of the possible role of a small admixture of harmonics on resonant two-photon ionization. The motivation comes from the occasional presence of 2nd and 3rd harmonics in FEL radiation. We obtain the dependence of ionic yields on the intensity of the fundamental, the percentage of 2nd harmonic and the detuning of the fundamental from resonance. Having examined the cases of one and two intermediate resonances, we arrive at results of general validity and global behaviour, showing that even a small amount of harmonic may seem deceptively innocuous.

  9. Three-dimensional study of the multi-cavity FEL

    SciTech Connect

    Krishnagopal, S.; Kumar, V.

    1995-12-31

    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  10. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  11. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  12. Performance study of a soft X-ray harmonic generation FEL seededwith an EUV laser pulse

    SciTech Connect

    Gullans, M.; Wurtele, J.S.; Penn, G.; Zholents, A.A.

    2007-02-01

    The performance of a free electron laser (FEL) using alow-power extreme ultraviolet (EUV) pulse as an input seed isinvestigated. The parameters are appropriate for 30 nm seeds producedfrom high-power Ti:Sa pulses using high harmonic generation schemes. Itis found that, for reasonable beam parameters, robust FEL performance canbe obtained. Both time-independent and time-dependent simulations areperformed for varying system parameters using the GENESIS simulationcode. A comparison is made with a two-stage harmonic FEL that is seededby a high-power Ti:Sa pulse.

  13. The Stanford Picosecond FEL Center

    SciTech Connect

    Schwettman, H.A.; Smith, T.I.; Swent, R.L.

    1995-12-31

    In the past two years, FELs have decisively passed the threshold of scientific productivity. There are now six FEL facilities in the United States and Europe, each delivering more than 2000 hours of FEL beam time per year. at the present time approximately 100 papers are published each in referred journals describing optics experiments performed with FELs. Despite the recent success there are important challenges the FEL facilities must address. At Stanford these challenges include: (1) Providing sufficient experimental time at reasonable cost: At Stanford we provide 2000 hours of experimental time per year at a cost of approximately $500 per hour: We are now studying options for markedly increasing experimental time and decreasing cost per hour. (2) Competing effectively with conventional lasers in the mid-IR: Despite the NRC report we do not intend to concede the mid-IR to conventional lasers. FELs are capable of providing optical beams of exceptional quality and stability, and they can also be remarkable flexible devices. Improvements in our superconducting linac driver and our optical beam conditioning systems will dramatically enhance our FEL experimental capabilities. (3) making the transition from first generation to second generation experiments: Important pump-probe and photon echo experiments have been performed at Stanford and others are feasible using present capabilities. None-the-less we are now investing substantial experimental time to improving signal-to-noise and developing other optical cababilities. (4) Extending operation to the far-infrared where the FEL is unique inits capabilities: {open_quotes}FIREFLY{close_quotes} will extend our FEL capabilities to 100 microns. We are now seeking funds for optical instrumentation. (5) Creating and maintaining a good environment for graduate students.

  14. Photon Source Capabilities of the Jefferson Lab FEL

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2013-03-22

    Jefferson Lab operates a superconducting energy recovered linac which is operated with CW RF and which powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with >10{sup 13} photons per pulse (1.0%BW) at pulse repetition frequencies up to 75 MHz. Useful harmonics extend into the vacuum ultraviolet (VUV). Based on FEL model calculations validated using this facility, we have designed both an oscillator-based VUV-FEL that would produce 6 10{sup12} coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing lasing at THz and UV wavelengths. The VUV-FEL would utilize a novel high gain, low Q cavity, while the THz source would be an FEL oscillator with a short wiggler providing diffraction limited pulses with pulse energy exceeding 50 microJoules. The THz source would use the exhaust beam from a UVFEL. Such multiphoton capabilities would provide unique opportunities for out of equilibrium dynamical studies at time-scales down to 50 fs. The fully coherent nature of all these sources results in peak and average brightness values that are many orders of magnitude higher than storage rings. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  15. X-band prebunched FEL amplifier

    SciTech Connect

    Saito, Kazuyoshi; Takayama, Ken; Ozaki, Toshiyuki

    1995-12-31

    Following the successful results of the ion-channel-guiding FEL experiments, we began a new experiment {open_quotes}prebunched FEL{close_quotes}. It is an FEL driven by prebunched beams, whose configuration is a normal FEL system with a prebuncher like the bunching section of a klystron. There are two purposes in this prebunched FEL system; (1) Demonstration of a compact/efficient FEL. Attaining the saturation power level with a short wiggler length (compact wiggler) and enhancing the power through the remaining wiggler length by wiggler tapering (high efficiency FEL). (2) Experimental simulation of multi-stage FELs in the FEL-TBA. Examination of FEL interactions with prebunched injection beams, especially, about the controllability of the output RF phase by changing the RF phase of the input seed power to the wiggler. Recent experimental results show: (1) The saturation power of 120MW has been attained at the wiggler length of 1.1m by 1.5MeV prebunched beams with a 45%-modulated 750A current. However, enhanced power has not been observed yet by wiggler tapering. (2) The current modulation of the injection beam (1.5MeV-500A) becoming higher than 30%, the adjustable range of the output RF phase was limitted less than 40 degrees by the input power of 60kW only. Detail explanations of design concept, theoretical and experimental results will be presented at the conference.

  16. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    SciTech Connect

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  17. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  18. Transport studies of LPA electron beam towards the FEL amplification at COXINEL

    NASA Astrophysics Data System (ADS)

    Khojoyan, M.; Briquez, F.; Labat, M.; Loulergue, A.; Marcouillé, O.; Marteau, F.; Sharma, G.; Couprie, M. E.

    2016-09-01

    Laser Plasma Acceleration (LPA) [1] is an emerging concept enabling to generate electron beams with high energy, high peak current and small transverse emittance within a very short distance. The use of LPA can be applied to the Free Electron Laser (FEL) [2] case in order to investigate whether it is suitable for the light amplification in the undulator. However, capturing and guiding of such beams to the undulator is very challenging, because of the large divergence and high energy spread of the electron beams at the plasma exit, leading to large chromatic emittances. A specific beam manipulation scheme was recently proposed for the COXINEL (Coherent X-ray source inferred from electrons accelerated by laser) setup, which makes an advantage from the intrinsically large chromatic emittance of such beams [3]. The electron beam transport is studied using two simulation codes: a SOLEIL in-house one and ASTRA [4]. The influence of the collective effects on the electron beam performance is also examined.

  19. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  20. The APS SASE FEL : modeling and code comparison.

    SciTech Connect

    Biedron, S. G.

    1999-04-20

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  1. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  2. Studies for a beam trajectory monitor for TTF-FEL at DESY

    SciTech Connect

    Mueller, Ute Carina

    1997-06-01

    A beam trajectory monitor for the FEL at the TESLA test facility at DESY has been proposed for the reconstruction of the electron beam trajectory by observing the spontaneous undulator radiation along the beam using the pinhole camera principle. Simulations for this concept have been performed and results are presented here.

  3. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    SciTech Connect

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  4. Heritability of calcaneal quantitative ultrasound measures in healthy adults from the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Towne, Bradford; Demerath, Ellen W; Chumlea, Wm Cameron; Sun, Shumei S; Siervogel, Roger M

    2004-11-01

    Quantitative ultrasound (QUS) measurements of bone have been reported to predict osteoporotic fracture risk in postmenopausal women and older men. Although many studies have examined the heritability of bone mineral density (BMD), few studies have estimated the heritability of calcaneal QUS phenotypes. In the present study, we examined the genetic regulation of calcaneal QUS parameters in individuals from nuclear and extended families. The study population includes 260 men and 295 women aged 18-91 years (mean+/-SD: 46+/-16 years) who belong to 111 pedigrees in the Fels Longitudinal Study. Three measures of calcaneal structure were collected from both the right and left heel using the Sahara bone sonometer. These measures included broadband ultrasound attenuation (BUA), speed of sound (SOS), and the quantitative ultrasound index (QUI). We used a variance components based maximum likelihood method to estimate the heritability of QUS parameters while simultaneously adjusting for covariate effects. Additionally, we used bivariate extensions of these methods to calculate additive genetic and random environmental correlations among QUS measures. All phenotypes demonstrated statistically significant heritabilities (P<0.0000001). Heritabilities in the right heel (h2+/-SE) were h2=0.59+/-0.10 for BUA, h2=0.73+/-0.09 for SOS, and h2=0.72+/-0.09 for QUI. Similarly, heritabilities for the left heel were h2=0.52+/-0.10, h2=0.75+/-0.10, and h2=0.70+/0.10, respectively. There was evidence for significant genetic and environmental correlations among these six QUS measures. Combinations of QUS measures in the right and left heel demonstrated genetic correlations of 0.94-0.99 and all were significantly different from one indicating at least a partially unique genetic architecture for each of these measures. This study demonstrates that QUS measures of the calcaneus among healthy men and women are heritable, and there are large shared additive genetic effects among all of the traits

  5. A Parameter Optimization for a National SASE FEL Facility

    SciTech Connect

    Yavas, O.; Yigit, S.

    2007-04-23

    The parameter optimization for a national SASE FEL facility was studied. Turkish State Planing Organization (DPT) gave financial support as an inter-universities project to begin technical design studies and test facility of National Accelerator Complex starting from 2006. In addition to a particle factory, the complex will contain a linac based free electron laser, positron ring based synchrotron radiation facilities and a proton accelerator. In this paper, we have given some results of main parameters of SASE FEL facility based on 130 MeV linac, application potential in basic and applied research.

  6. An FEL design for gamma-gamma colliders based on chirped pulse amplification techniques

    SciTech Connect

    Kim, K.J.; Xie, M.; Sessler, A.M.

    1995-12-31

    A next generation e{sup +}-e{sup -} linear collider in the TeV range can be converted into a {gamma}-{gamma} collider by converting it to e{sup -}-e{sup -} operation and then generating {gamma}-rays via Compton backscattering with optical beams. This provides unique access to some areas of fundamental physics as well as highly desirable redundancy to the collisions. The required optical beam (with a wavelength of about 1 micron) must have very high peak power, (about 1 TW) as well as average power (about 10 kW). To achieve a 1 : 1 conversion from an electron to {gamma}-quantum, each micropulse must contain about one Joule and must be about one picosecond long, the micropulse peak power being about one Terawatt. To match the electron beam pulse structure, a macropulse consists of a sequence of about one hundred micropulses separated by about one nanosecond, and the macropulses am repeated at a rate of about 100 Hz. Thus, the time average power is about 10 kW propose and analyze a promising scheme to produce the required optical beam based on the chirped pulse amplification technique. In this scheme, a low power optical beam of the same time structure required for the {gamma}-{gamma} collider is passed through a grating pair to stretch and chirp the picosecond micropulses to about one nanosecond, so that each macropulse will be an almost continuous, 100 nanosecond long pulse, but with chirps (from red to blue) within each nanosecond. The optical beam is then amplified in an FEL, driven by an intense electron beam from an induction linac. The amplified beam is then passed through another grating pair to compress the micropulses, thus recovering the original time structure, but containing about one Joule per micropulse. The requirements for electron beams, about 100 MeV energy, 1 kA current, 50 mm-mrad rms emittance, 10{sup -3} energy spread, are consistent with the state-of-the-art induction linac technology.

  7. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    SciTech Connect

    Yashchuk, V. V.; Yuan, S.; Baker, S.; Bozek, J.; Celestre, R.; Church, M.; Goldberg, K. A.; Fernandez-Perea, M.; Kelez, N.; Kunz, M.; McKinney, W. R.; Morrison, G.; Padmore, H. A.; Soufli, R.; Tamura, N.; Warwick, T.

    2010-06-02

    We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.

  8. A high-power compact regenerative amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-08-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction (< 10%) of the optical power into a high-gain ({approximately}10{sup 5} in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept.

  9. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    SciTech Connect

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-06-02

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.

  10. Beam Dynamics Study of X-Band Linac Driven X-Ray FELS

    SciTech Connect

    Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; Sun, Y.; /SLAC

    2011-12-13

    Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics

  11. On a theory of an FEL oscillator with multicomponent undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Some novel results of a theory of an FEL oscillator with multicomponent undulator are presented. Two popular FEL oscillator configuration are under consideration: optical klystron and FEL oscillator with a prebuncher and tapered main undulator. Using similarity techniques, universal formulae and plots are obtained which allow one to calculate the FEL oscillator lasing conditions an output parameters at saturation. A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way. In particular, at smooth increasing of the tapering depth, the lasing frequency may change by a leap and lasing occurs at another local maximum of the gain curve. This effect influences significantly on the FEL oscillator operation at saturation. As a result, generally accepted method of undulator tapering (for instance, by decreasing undulator field at fixed period) provides an efficiency increase only in a narrow range of the parameters of tapering. We show that in some cases, so called {open_quotes}negative tapering{close_quotes} (for instance, by increasing undulator field at fixed period) has a benefit against traditional tapering method. Ignoring of these basic features of the FEL oscillator with the tapered undulator have led many FEL research groups to nonoptimal design of the FEL experiments and incorrect interpretation of the obtained results.

  12. RF FEL for power beaming

    NASA Astrophysics Data System (ADS)

    Burke, Robert

    The laser device components associated with operating a radio frequency-free electron laser (RF-FEL) for beaming power from Earth were designed and tested. Analysis of the power beaming system requirements reveals that the FEL, identified by NASA as the laser of choice, is the major subsystem requiring demonstration before proceeding further in proving the efficacy of laser power beaming. Rocketdyne has identified a series of low cost, low risk demonstrations which proceed sequentially, as follows: (1) a 1 kW proof-of-principle demonstration; (2) a 150 kW demonstration of beaming power to a satellite; and (3) a MW class demonstration of Earth to lunar surface power transmission. This sequence of events can be completed in 5.5 years at a cost of $188M, with key milestones each year.

  13. Multidimensional simulation studies of the SELENE FEL oscillator/buncher followed by a radiator/amplifier output scheme

    SciTech Connect

    Hahn, S.J.; Fawley, W.M.

    1995-02-01

    We analyze and present numerical simulations of the so-called electron output scheme [G. I. Erg et al., 15th Int. FEL Conf., The Hague, The Netherlands, 1993, Book of Abstracts p. 50; Preprint Budker INP 93-75] applied to the SELENE proposal of using a high power FEL to illuminate satellite solar cells. In this scheme, a first stage FEL oscillator bunches the electron beam while a second stage ``radiator`` extracts high power radiation. Our analysis suggests only in the case where the radiator employs a long, tapered undulator will the electron output scheme produce a significant increase in extraction efficiency over what is obtainable from a simple, single-stage oscillator. 1- and 2-D numerical simulations of a 1.7{mu}m FEL employing the electron output scheme show reasonably large bunching fractions ({approximately} 0.3--0.4) at the output of the oscillator stage but only {le}2% extraction efficiency from the radiator stage.

  14. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  15. Ther FERMI FEL project at TRIESTE

    SciTech Connect

    Walker, R.P.; Bulfone, D.; Cargnello, F.

    1995-12-31

    The goal of the FERMI project - Free Electron Radiation and Matching Instrumentation - is to construct a new user facility for FEL radiation beams covering a broad spectral range (2-250 {mu}m) to complement the high brightness VUV/Soft-Xray radiation available from the ELETTRA synchrotron radiation facility at Trieste. A unique feature of the project will be the possibility of carrying out {open_quote}pump-probe{close_quote} experiments using synchronized radiation beams from FERMI and ELETTRA on the same sample. The project was launched at a meeting with Italian FEL experts held in Trieste on the 18th November 1994, chaired by C. Rubbia, as a collaboration between Sincrotrone Trieste, ENEA (Frascati), INFN (Frascati) and the University of Naples (Department of Electronic Engineering). The facility will make use of an existing linac, that forms part of the ELETTRA injection system, and a hall into which the beam can be extracted. In addition, for the first phase of the project equipment will be used from the suspended INFN/ENEA {open_quote}SURF{close_quote} FEL experiment, including the undulator, beam transport magnets and optical cavity. In this first International FEL Conference report on the project, we summarize the main features of the project, concentrating in particular on the most recent activities, including: results of measurements of the linac beam in the FEL mode of operation, further studies of the electron beam transport system including possibilities for bunch length manipulations, and further numerical calculations of the FEL performance.

  16. Nonlinear harmonic generation and proposed experimental verification in SASE FELs.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Milton, S. V.

    1999-08-24

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  17. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Pierini, P.

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  18. Photon Beam Diagnostics for VISA FEL

    SciTech Connect

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.; Frigola, P.; Musumeci, P.; Tremaine, A.; Babzien, M.; Ben-Zvi, I.; Doyuran, A.; Johnson, E.; Skaritka, J.; Wang, X.J.; Van Bibber, K.; Hill, J.M.; LeSage, G.P.; Nguyen, D.; Cornacchia, M.

    1999-11-05

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison of the experimental results with theory and simulations.

  19. Quantitative genetics of cortical bone mass in healthy 10-year-old children from the Fels Longitudinal Study

    PubMed Central

    Duren, Dana L.; Sherwood, Richard J.; Choh, Audrey C.; Czerwinski, Stefan A.; Chumlea, Wm. Cameron; Lee, Miryoung; Sun, Shumei S.; Demerath, Ellen W.; Siervogel, Roger M.; Towne, Bradford

    2007-01-01

    The genetic influences on bone mass likely change throughout the life span, but most genetic studies of bone mass regulation have focused on adults. There is, however, a growing awareness of the importance of genes influencing the acquisition of bone mass during childhood on lifelong bone health. The present investigation examines genetic influences on childhood bone mass by estimating the residual heritabilities of different measures of second metacarpal bone mass in a sample of 600 10-year-old participants from 144 families in the Fels Longitudinal Study. Bivariate quantitative genetic analyses were conducted to estimate genetic correlations between cortical bone mass measures, and measures of bone growth and development. Using a maximum likelihood-based variance components method for pedigree data, we found a residual heritability estimate of 0.71 for second metacarpal cortical index. Residual heritability estimates for individual measures of cortical bone (e.g., lateral cortical thickness, medial cortical thickness) ranged from 0.47 to 0.58, at this pre-pubertal childhood age. Low genetic correlations were found between cortical bone measures and both bone length and skeletal age. However, after Bonferonni adjustment for multiple testing, ρG was not significantly different from 0 for any of these pairs of traits. Results of this investigation provide evidence of significant genetic control over bone mass largely independent of maturation while bones are actively growing and before rapid accrual of bone that typically occurs during puberty. PMID:17056310

  20. An Analysis of Shot Noise Propagation and Amplificationin Harmonic Cascade FELs

    SciTech Connect

    Huang, Z.; /SLAC

    2006-12-11

    The harmonic generation process in a harmonic cascade (HC) FEL is subject to noise degradation which is proportional to the square of the total harmonic order. In this paper, we study the shot noise evolution in the first-stage modulator and radiator of a HC FEL that produces the dominant noise contributions. We derive the effective input noise for a modulator operating in the low-gain regime, and analyze the radiator noise for a density-modulated beam. The significance of these noise sources in different harmonic cascade designs is also discussed.

  1. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  2. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  3. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  4. CEBAF UV/IR FEL subsystem testing and validation program

    SciTech Connect

    G.R. Neil; S.V. Benson; H.F. Dylla; H. Liu

    1995-01-01

    A design has been established for IR and UV FELs within the Laser Processing Consortium's (LPC) program for development and application of high-average-power FELs for materials processing. Hardware prototyping and testing for the IR portion of the system are underway. The driver portion has been designed based on the superconducting radio-frequency (SRF) technology now seeing large-scale application in the commissioning of CEBAF, the Continuous Electron Beam Accelerator Facility, where LPC activities are centered. As of July 1994, measurements of beam performance confirm SRF's benefits in beam quality and stability, which are applicable to high-average-power FELs.

  5. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  6. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  7. Tapered undulators for SASE FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2002-05-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  8. Power beaming with FEL lasers

    NASA Astrophysics Data System (ADS)

    Lampel, Michael C.; Curtin, Mark S.; Burke, Robert J.; Cover, Ralph A.; Rakowsky, George; Bennett, Glenn T.

    1993-06-01

    FEL power beaming has broad application to space operations. The Rocketdyne Division of Rockwell International Corporation has examined the commercial applications of beamed power from Earth to space using the Radio Frequency LINAC Free Electron Laser (RF FEL) and has determined that there is a substantial addressable market. Rocketdyne's experience in developing and demonstrating FEL technologies, optics and atmospheric compensation and advanced power and power distribution systems ideally positions the Division to conduct the initial demonstration to prove the feasibility of using a FEL to beam power to space platforms.

  9. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  10. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  11. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  12. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    SciTech Connect

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian; Abrami, Alessandro; Battistoni, Andrea; Borghes, Roberto; Capotondi, Flavio; Cucini, Riccardo; Dallari, Francesco; Danailov, Miltcho; Demidovich, Alexander; Fava, Claudio; Gaio, Giulio; Gerusina, Simone; Gessini, Alessandro; Giacuzzo, Fabio; Gobessi, Riccardo; Godnig, Roberto; Grisonich, Riccardo; Kiskinova, Maya; Kurdi, Gabor; Loda, Giorgio; Lonza, Marco; Mahne, Nicola; Manfredda, Michele; Mincigrucci, Riccardo; Pangon, Gianpiero; Parisse, Pietro; Passuello, Roberto; Pedersoli, Emanuele; Pivetta, Lorenzo; Prica, Milan; Principi, Emiliano; Rago, Ilaria; Raimondi, Lorenzo; Sauro, Roberto; Scarcia, Martin; Sigalotti, Paolo; Zaccaria, Maurizio; Masciovecchio, Claudio

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

  13. An induction linac developed for FEL application

    NASA Astrophysics Data System (ADS)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V < 1%) has been built using a resonant charging system and magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  14. New RF gun for Novosibirsk ERL FEL

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir N.; Arbusov, Vladimir S.; Kenzhebulatov, Ermek K.; Kolobanov, Evgeniy I.; Kondakov, Aleksey A.; Kozyrev, Evgeniy V.; Krutikhin, Sergey A.; Kurkin, Grigoriy Ya.; Kuptsov, Igor V.; Motygin, Sergey V.; Ovchar, Vladimir K.; Petrov, Victor M.; Pilan, Andrey M.; Rotov, Evgeniy A.; Sedlyarov, Igor K.; Serednykov, Stanislav S.; Shevchenko, Oleg A.; Scheglov, Mikhail A.; Tribendis, Aleksey G.; Vinokurov, Nikolay A.

    The new radiofrequency (RF) gun making an intensive high-quality electron beam for injecting in Novosibirsk microtron recuperator (ERL) and driving Free Electron Laser (FEL) is made in Budker INP SB RAS. Bench tests of RF gun demonstrated good results in strict accordance with the calculations predicting average current of a bunch of 100 iA, energy of particles of 400 keV and normalized emittance less than 15 microns. The RF gun stand testing showed reliable work, unpretentious for vacuum conditions and stable in long-term operation. The additional injection beamline built-in to the existing system of the NovoFEL injector with the static gun is developed and designed.

  15. Intrabeam Scattering in an X-ray FEL Driver

    SciTech Connect

    Huang, Z.

    2005-01-31

    Intrabeam scattering (IBS) of a high-brightness electron beam in an x-ray free-electron laser (FEL) driver is studied. Such a beam is much ''colder'' in the longitudinal direction than in transverse ones. As a result, the beam energy spread is increased with negligible change of transverse emittances. We estimate the IBS induced energy spread in the Linac Coherent Light Source and evaluate its effects on FEL and CSR microbunching instabilities.

  16. Scientific Applications of a Hard-X-Ray FEL

    NASA Astrophysics Data System (ADS)

    Arthur, John

    1998-04-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1 angstrom. Due to the physics of the high-gain, single pass FEL process that these sources will exploit, the radiation produced will have unique properties. In particular: -- The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. -- The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. -- The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 10^9 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. X-ray crystallography could be used to determine the structures of very-short-lived states of photosynthetic reaction centers. X-ray photon correlation spectroscopy could be used to study fluctuations in materials such as gels and glass-forming liquids, on a time scale complementary to that probed by neutron spin echo and dynamic light scattering techniques, but with better spatial resolution. Snap-shot x-ray scattering experiments could be performed on samples in extreme conditions such as ultra-high pulsed magnetic fields. Furthermore, the high peak power of the FEL radiation could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. For example, the study of nonlinear photon interactions with core atomic electrons would test and

  17. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  18. A helical optical for circular polarized UV-FEL project at the UVSOR

    SciTech Connect

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  19. Review of High Gain FELs

    SciTech Connect

    Shintake, Tsumoru

    2007-01-19

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator.

  20. Possible enhancement of SASE FEL output field intensity induced by local phase jump

    NASA Astrophysics Data System (ADS)

    Varfolomeev, A. A.; Yarovoi, T. V.; Bousine, P. V.

    1998-02-01

    A possible influence on the FEL dynamics of a locally induced phase jump between the FEL radiation and electron beam is considered. A numerical study has been made for the SASE mode FEL supposing that the phase jumps are introduced at different depths inside the undulator. The FEL evolution starting from a small input signal was studied in 1D high gain approach. It was shown that the FEL radiation output is sensitive to the phase jump value if it is introduced at the depth where saturation of output power takes places. In the steady state regime, the phase displacement of order ˜π provides enhancement of the peak output power up to 50%. Some kind of optical tapering is also possible giving further FEL efficiency enhancement.

  1. Neutron dose rate at the SwissFEL injector test facility: first measurements.

    PubMed

    Hohmann, E; Frey, N; Fuchs, A; Harm, C; Hödlmoser, H; Lüscher, R; Mayer, S; Morath, O; Philipp, R; Rehmann, A; Schietinger, T

    2014-10-01

    At the Paul Scherrer Institute, the new SwissFEL Free Electron Laser facility is currently in the design phase. It is foreseen to accelerate electrons up to a maximum energy of 7 GeV with a pulsed time structure. An injector test facility is operated at a maximum energy of 300 MeV and serves as the principal test and demonstration plant for the SwissFEL project. Secondary radiation is created in unavoidable interactions of the primary beam with beamline components. The resulting ambient dose-equivalent rate due to neutrons was measured along the beamline with different commercially available survey instruments. The present study compares the readings of these neutron detectors (one of them is specifically designed for measurements in pulsed fields). The experiments were carried out in both, a normal and a diagnostic mode of operation of the injector.

  2. Development of a high average power, CW, MM-wave FEL

    SciTech Connect

    Ramian, G.

    1995-12-31

    Important operational attributes of FELs remain to be demonstrated including high average power and single-frequency, extremely narrow-linewidth lasing. An FEL specifically designed to achieve these goals for scientific research applications is currently under construction. Its most salient feature is operation in a continuous-wave (CW) mode with an electrostatically generated, high-current, recirculating, DC electron beam.

  3. Real time diagnostic for operation at a CW low voltage FEL

    SciTech Connect

    Balfour, C.; Shaw, A.; Mayhew, S.E.

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  4. Undulators for the BESSY SASE-FEL Project

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-01

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  5. Undulators for the BESSY SASE-FEL Project

    SciTech Connect

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Kuske, B.; Meseck, A.; Scheer, M.

    2004-05-12

    BESSY plans to build a SASE-FEL facility for the energy range from 20 eV to 1000 eV. The energy range will be covered by three APPLE II type undulators with a magnetic length of about 60 m each. This paper summarizes the basic parameters of the FEL-undulators. The magnetic design will be presented. A modified APPLE II design will be discussed which provides higher fields at the expense of reduced horizontal access. GENESIS simulations give an estimate on the tolerances for the beam wander and for gap errors.

  6. The ``TEU-FEL'' project

    NASA Astrophysics Data System (ADS)

    Ernst, G. J.; Witteman, W. J.; Verschuur, J. W. J.; Mols, R. F. X. A. M.; van Oerle, B. M.; Bouman, A. F. M.; Botman, J. I. M.; Hagedoorn, H. L.; Delhez, J. L.; Kleeven, W. J. G. M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 μm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 μm. Technical information will be presented on the different subsystems.

  7. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  8. Analysis of FEL optical systems with grazing incidence mirrors

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Bender, S.C.; Appert, Q.D.; Lawrence, G.; Barnard, C.

    1986-01-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock-up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  9. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  10. The FERMI @ Elettra Technical Optimization Study: General Layoutand Parameters and Physics Studies of Longitudinal Space Charge, theSpreader, the Injector, and Preliminary FEL Performance

    SciTech Connect

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox,Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-09-01

    The FERMI {at} Elettra facility will make use of the existing GeV linac at Sincrotrone Elettra, which will become available for dedicated FEL applications following the completion of construction of a new injector booster complex for the storage ring. With a new rf photocathode injector, and some additional accelerating sections, this linac will be capable of providing high brightness bunches at 1.2 GeV and up to 50 Hz repetition rates.

  11. A Test of Superradiance in an FEL Experiment

    SciTech Connect

    Boyce, R

    2004-12-14

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  12. The Mark III IR FEL: Improvements in performance and operation

    SciTech Connect

    Barnett, G.A.; Madey, J.M.J.; Straub, K.D.

    1995-12-31

    The Mark III IR FEL has been upgraded by the installation of a new thermionic microwave gun. The new gun yields a reduced emittance and allows operation at a higher repetition rate and an increased electron macropulse length. The RF system of the Mark III has also been phase-locked to the RF systemof the adjacent storage ring driver for the laboratory`s short-wavelength FEL sources, making possible two-color UV-IR pump probe experiments. In this paper, the design and performance of the new gun are presented and the implications of the improvements investigated.

  13. Rocketdyne FEL for power beaming using a regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Cover, R. A.; Bennett, G. T.; Burke, R. J.; Curtin, M. S.; Lampel, M. C.; Rakowsky, G.; Stone, J. P.

    1993-08-01

    The Rocketdyne free-electron laser (FEL) being presently developed for operation in the visible to one-micron regime is described, with particular attention given to some of the principal optics and atmospheric propagation issues. The paper describes the system assembly and discusses the performance requirements for power beaming, the resonator design, and the basic ideas and calculations involved in the beam propagating through the atmosphere and tilt corrections. This FEL will be capable of an average output of greater than 1 kW in the near infrared. The laser system has an ability of scaling to power levels required for beaming power to space platforms.

  14. Progress in the injector for FEL at CIAE

    SciTech Connect

    Tianlu Yang; Wenzhen Zhou; Shinian Fu

    1995-12-31

    An intense current RF-linac for the far-infrared FEL is now under construction at CIAE. The normalized brightness of 3.4 x 10{sup 9} A/(m-rad) was obtained from the injector of the linac. An acceleration section with 9 cells will be connected with the injector to provide an electron beam for the 200 {mu}m FEL oscillator. In this paper, the late results from the injector beam test will be reported. The physical design and research progress in the acceleration section, beam transport, undulator as well as optical cavity will be introduced respectively.

  15. Energy stability in a high average power FEL

    SciTech Connect

    Merminga, L.; Bisognano, J.J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M{sub 56}, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents determined. Design strategies to increase the instability threshold are discussed and the high average power FEL proposed for construction at CEBAF is used as an example.

  16. Operation of FERMI FELs for users

    NASA Astrophysics Data System (ADS)

    Svandrlik, M.

    2015-05-01

    The FERMI seeded free electron laser facility, located at the Elettra laboratory in Trieste (Italy), has been operated for user experiments in the past years using the first FEL line, FEL-1, covering the VUV - EVU spectral range (100 - 20 nm). After the conclusion of the commissioning for the soft-X ray FEL line, FEL-2, the facility is now ready to provide the scientific community with intense FEL pulses (<10 μJ) characterized by a high degree of coherence and spectral stability in the whole range from 100 nm down to 4 nm. We report about the recent achievement of FERMI FELs and our experience with operations for user requiring specific FEL configurations.

  17. High power induction linac for FEL applications at CESTA

    NASA Astrophysics Data System (ADS)

    Launspach, J.; Angles, J. M.; Angles, M.; Anthouard, P.; Bardy, J.; Bonnafond, C.; Bottollier-Curtet, H.; Devin, A.; Eyharts, P.; Eyl, P.; Gardelle, J.; Germain, G.; Grua, P.; Labrouche, J.; de Mascureau, J.; Le Taillandier, P.; Stadnikoff, W.; Thevenot, M.

    1991-07-01

    The purpose of the LELIA program developed at CESTA is to acquire the knowledge on induction accelerator technology for high peak power FEL applications. In a first step we study basic technology: (1) A high voltage pulse generator (150 kV, 60 ns, 2 ω) has been designed to drive the induction injector and the accelerating cells. It is able to work at high repetition rate (typically 1 kHz) by the use of magnetic switches. A flat top of 130 kV with {ΔV}/{V} = ±0.8% has been obtained for about 50 ns. (2) An induction cell prototype has been built in order to check technological choices (vacuum, mechanics, magnetic guiding, voltage supply, etc.) for injector and accelerating modules. (3) The injector geometry is being studied using Euphrosyne (a classical intense relativistic electron beam device) which consists of a concave thermo-ionic oxide cathode, an intermediate electrode and a hollow anode with a magnetic guiding channel. This diode delivers an electron beam between 1 and 3 MV, about 1 kA and a flat top pulse during 20 ns. We will carry on the injector studies with our induction injector LELIA I (1.5 MV, 1.5 kA, 1 kHz) which will be available at the end of 1990. An accelerating module is also being designed, taking into account guiding and stability problems. All these points are described in more detail in a poster paper [J. Bardy et al., these Proceedings (12th Int. FEL Conf., Paris, France, 1990) Nucl. Instr. and Meth. A304 (1991) 311]. The main goal is to build a 10 MV, 1-3 kA, 1 kHz induction accelerator and to have it running at CESTA in 1993. On the other hand, we want to use the electron beam provided by Euphrosyne then in LELIA I to perform FEL experiments at 35 GHz using a bifilar helical wiggler [H. Bottollier-Curtet et al., these Proceedings, p. 197].

  18. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  19. Photon Source Capabilities of the Jefferson Lab THz to VUV FEL

    NASA Astrophysics Data System (ADS)

    Williams, G. P.; Benson, S. V.; Douglas, D.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.

    2013-03-01

    Jefferson Lab operates a sub-picosecond photon science R&D facility with peak and average brightness values that are many orders of magnitude higher than storage rings in the THz - VUV range. It also has multiphoton capabilities that provide unique opportunities for out of equilibrium dynamical studies at time-scales down to ~ 100 fs FWHM. The facility is based on a superconducting energy recovered linac which is operated with CW RF that powers oscillator-based IR and UV Free Electron Lasers (FELs) with diffraction limited sub-picosecond pulses with > 1013 photons per pulse (1.0% BW) at pulse repetition frequencies up to 75 MHz. Details of the facility and its present performance will be presented along with some example science applications. In addition we will discuss on-going upgrades to the facility that will allow 10 eV lasing in the fundamental. Finally we will present two potential upgrades including the design of an oscillator-based VUV-FEL that would produce 6 × 1012 coherent (0.5% BW) 100 eV photons per pulse at multi-MHz repetition rates in the fundamental, and a dual FEL configuration that would allow simultaneous lasing at THz and UV wavelengths. We acknowledge support from the Commonwealth of Virginia. Jefferson Lab is supported by the U.S. DOE under Contract No. DE-AC05-84-ER40150.

  20. FEL Gain Length and Taper Measurements at LCLS

    SciTech Connect

    Ratner, Daniel; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.D.; Turner, J.; Welch, J.; White, W.; Wu, J.; Xiang, D.; Yocky, G.; /SLAC /LBL, Berkeley

    2010-07-30

    We present experimental studies of the gain length and saturation power level from 1.5 nm to 1.5 {angstrom} at the Linac Coherent Light Source (LCLS). By disrupting the FEL process with an orbit kick, we are able to measure the X-ray intensity as a function of undulator length. This kick method is cross-checked with the method of removing undulator sections. We also study the FEL-induced electron energy loss after saturation to determine the optimal taper of the undulator K values. The experimental results are compared to theory and simulations.

  1. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  2. High-efficiency FEL-oscillator with Bragg resonator operated in reversed guide field regime

    SciTech Connect

    Kaminsky, A.K.; Sedykh, S.N.; Sergeyev, A.P.

    1995-12-31

    The aim of the present work was to develop a narrow-band FEL-oscillator working in millimeter wavelength with, high efficiency. It looked promising to combine the high selective property of Bragg resonator with high efficiency and other advantages of FEL operation in the reversed guide-field regime. An experimental study of the FEL was performed using lilac LIU-3000 (JINR, Dubna) with the electron energy of 1 MeV, beam current up to 200 A and pulse duration of 200 ns. The beam was injected into the internction region with guide magnetic field of 2.9 kGs. Transverse oscillations of electrons were pumped by the helical wiggler with the period length of 6 cm and the field slowly up-tapering over the initial 6 periods. The FEI electrodynamic system consisted of a circular waveguide with diameter 20 mm and two Bragg reflectors. The H wave of the circular waveguide was shown for operation. Two effective feedback waves were observed in {open_quotes}cold{close_quotes} electrodynamic measurement in correspondence with calculations; the E wave near the frequency of 31. 5 GHz and the E wave - 37.5 GHz. The width of the both reflection resonances was about 2%. In {open_quotes}hot{close_quotes} experiments the radiation on the designed H wave and frequencies corresponding to the both feedback waves was registered separately. Selection of the frequency was realized by varying of the wiggler field strength. The spectrum was measured with a set of the cut--off waveguide filters with inaccuracy less than 2%. Calibrated Semiconductor detectors wire used to measure the radiation power. The radiation with the frequencies of 37.5 and 31.5 GHz was observed in vicinity of the wiggler field amplitude of 2.5 kGs. The measured spectrum width of the output FEL-oscillator radiation did not exceed the width of the Bragg reflector resonances for the both feedback waves.

  3. Performance of hole coupling resonator in the presence of asymmetric modes and FEL gain

    SciTech Connect

    Xie, Ming; Kim, Kwang-Je.

    1991-08-01

    We continue the study of the hole coupling resonator for free electron laser (FEL) application. The previous resonator code is further developed to include the effects of the azimutally asymmetric modes and the FEL gain. The implication of the additional higher order modes is that there are more degeneracies to be avoided in tuning the FEL wavelengths. The FEL interaction is modeled by constructing a transfer map in the small signal regime and incorporating it into the resonator code. The FEL gain is found to be very effective in selecting a dominant mode from the azimuthally symmetric class of modes. Schemes for broad wavelength tuning based on passive mode control via adjustable apertures are discussed. 12 refs., 7 figs., 1 tab.

  4. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  5. Design Studies for a VUV--Soft X-ray Free-Electron Laser Array

    SciTech Connect

    Corlett, J.; Baptiste, K.; Byrd, J.M.; Denes, P.; Falcone, R.; Kirz, J.; McCurdy, W.; Padmore, H.; Penn, G.; Qiang, J.; Robin, D.; Sannibale, F.; Schoenlein, R.; Staples, J.; Steier, C.; Venturnini, M.; Wan, W.; Wells, R.; Wilcox, R.; Zholents, A.

    2009-08-04

    Several recent reports have identified the scientific requirements for a future soft X-ray light source [1, 2, 3, 4, 5], and a high-repetition-rate free-electron laser (FEL) facility responsive to them is being studied at Lawrence Berkeley National Laboratory (LBNL) [6]. The facility is based on a continuous-wave (CW) superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individualFELs may be configured for either self-amplified spontaneous emission (SASE), seeded highgain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG), or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. This new light source would serve a broad community of scientists in many areas of research, similar to existing utilization of storage ring based light sources. To reduce technical risks and constructioncosts, accelerator research, development, and design studies at LBNL target the most critical components and systems of the facility. We are developing a high-repetition-rate low-emittance electron gun, high quantum efficiency photocathodes, and have embarked on design and optimization of the electron beam accelerator, FEL switchyard, and array of FELs. We continue our work on precision timing and synchronization systems critical for time-resolved experiments using pump-probe techniques.

  6. Technical report of biota, FEL Site 1, Lawrence Livermore National Laboratory: Final report

    SciTech Connect

    Taylor, D.W.; Davilla, W.; Orloff, S.

    1986-09-26

    Lawrence Livermore National Laboratory is considering an expansion of laser test facilities adjacent to its existing LLNL Site 300 test location. Construction of a free-electron laser, known as the FEL Project, is being considered on approximately 3900 hectates (10,500 acres) of land. We will refer to this proposed site as FEL Site 1. Knowledge of the flora and vegetation resources of the proposed FEL Site 1 is necessary in order to plan for construction, operation, and possible future expansion of the FEL facility. The purpose of botanical sections of this report is to quantitatively describe the variation of vegetation on FEL Site 1, and to relate the vegetation to potential environmental impacts associated with present operation and possible expansion of site facilities. The primary purpose of the wildlife studies was to determine the presence and status of any endangered, threatened, fully protected, or otherwise sensitive species on FEL Site 1 that might be affected by the proposed FEL project. We directed our studies mainly toward the federally endangered San Joaquin kit fox (Vulpes macrotis mutica), but also toward another 14 special status species that potentially occur on site, including the state threatened Alameda striped racer (Masticophis lateralis euryxanthus).

  7. Compact FEL`s based on slow wave wigglers

    SciTech Connect

    Riyopoulos, S.

    1995-12-31

    Slow waves excited in magnetron-type cavities are attractive canditates as wigglers for compact Free Electron Lasers. Because of group velocities much below the speed of light, slow waves offer an order of magnitude increase in FEL gain under given circulating power in the wiggler resonator, compared to fast wave wigglers of similar period. In addition, they offer the versatility of operation either at modest beam energy via upshifing of the fundamental wavelength, or at low beam energy benefiting from the submillimeter wiggler harmonics. Because the main electron undulation is in the transverse direction for all spatial harmonics, the radiated power is increased by a factor {gamma}{sup 2} relative to the Smith-Purcell approach that relies on axial electron undulation. Technical advantages offered by magnetron-type wiggles are: the generation of the wiggler microwaves and the FEL interaction take place inside the same cavity, avoiding the issue of high power coupling between cavities; the excitation of wiggler microwaves relies on distributed electron emission from the cavity wall and does not require separate beam injection.

  8. A Comparison of Short Rayleigh Range FEL Performance with Simulations

    SciTech Connect

    Benson, Stephen; Evtushenko, Pavel; Michelle D. Shinn; Neil, George; Blau, Joe; Burggraff, D.; Colson, William; Crooker, P.P.; Sans Aguilar, J.

    2007-08-01

    One approach to attaining very high power in a free-electron laser (FEL) is to operate with a Rayleigh range much smaller than the wiggler length. Previously, 3D simulations of Free-electron laser (FEL) oscillators showed that FEL gain doesn't fall off with Rayleigh range as predicted by one-dimensional simulations*. They also predict that the angular tolerance for the mirrors is much large than simplistic theory predicts. Using the IR Upgrade laser at Jefferson Lab lasing at 935 nm we have studied the performance of an FEL with very short Rayleigh range. We also looked at the angular sensitivity for several different Rayleigh ranges. We find very good agreement between simulations and measured gain and angular sensitivities. Surprisingly the gain continues to rise as the Rayleigh range is shortened and continues to grow even when the resonator becomes geometrically unstable. The same behavior is seen in both the experiment and simulations. We also find that, even for large Rayleigh r

  9. Ultrafast Coherent Control and Characterization of Surface Reactions using FELs

    SciTech Connect

    Ogasawara, Hirohito; Nordlund, Dennis a Nilsson, Anders; /SLAC, SSRL

    2005-09-30

    The microscopic understanding of reactions at surfaces requires an in-depth knowledge of the dynamics of elementary processes on an ultrafast timescale. This can be accomplished using an ultrafast excitation to initiate a chemical reaction and then probe the progression of the reaction with an ultrashort x-ray pulse from the FEL. There is a great potential to use atom-specific spectroscopy involving core levels to probe the chemical nature, structure and bonding of species on surfaces. The ultrashort electron pulse obtained in the linear accelerator to feed the X-ray FEL can also be used for generation of coherent synchrotron radiation in the low energy THz regime to be used as a pump. This radiation has an energy close to the thermal excitations of low-energy vibrational modes of molecules on surfaces and phonons in substrates. The coherent THz radiation will be an electric field pulse with a certain direction that can collectively manipulate atoms or molecules on surfaces. In this respect a chemical reaction can be initiated by collective atomic motion along a specific reaction coordinate. If the coherent THz radiation is generated from the same source as the X-ray FEL radiation, full-time synchronization for pump-probe experiments will be possible. The combination of THz and X-ray spectroscopy could be a unique opportunity for FEL facilities to conduct ultrafast chemistry studies at surfaces.

  10. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  11. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  12. Polarization Analysis for Seeded FELs in a Crossed-Planar Undulator

    SciTech Connect

    Geng, Huiping; Ding, Yuantao; Huang, Zhirong; Bartolini, Riccardo; Dunning, David; Thompson, Neil; /Daresbury

    2012-06-25

    The crossed-planar undulator is a promising scheme for full polarization control in x-ray FELs. For SASE FELs, it has been shown a maximum degree of circular polarization of about 80% is achievable at fundamental wavelength just before saturation. In this paper, we study the effectiveness of a crossed undulator for a seeded x-ray FEL. The degree of circular polarization for both the fundamental and the harmonic radiation are considered. Simulations with realistic beam distributions show that a degree of circular polarization of over 90% and 80% is obtainable at the fundamental and 2nd harmonic frequencies, respectively.

  13. Beam transport for an SRF recirculating-linac FEL

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.

    1995-12-31

    The beam transport system for the CEBAF UV Demo FEL includes a two-pan transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that contact we discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tuneable, nearly-isochronous, large-momentum-acceptance import systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Issues such as injection and final energies, number of passes, linac focusing effects, beam separation, chronicity management, and stability constraints are critical. Various possible designs are discussed. Particle tracking results exploring the design options are also reported.

  14. 140 GHz microwave FEL experiments using ELF-II

    SciTech Connect

    Throop, A.L.; Jong, R.A.; Atkinson, D.P.; Clark, J.C.; Felker, B.; Ferguson, S.W.; Makowski, M.A.; Nexsen, W.E.; Stallard, B.W.; Stever, R.D.; Turner, W.C.

    1989-09-01

    We describe the modeling, the experimental facility, and the initial operating results for ELF-II, an induction-linac based free-electron laser designed to produce up to 2 GW of peak power at 140 GHz. ELF-II is the initial configuration of an FEL system which will eventually produce up to 2 MW of average power at a frequency of 250 GHz, for use in plasma heating experiments in the Microwave Tokamak Experiment. 6 refs., 9 figs.

  15. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  16. Diffraction and pulse slippage in the Boeing 1 kW FEL oscillator

    SciTech Connect

    Blau, J.; Wong, R.K.; Colson, W.B.

    1995-12-31

    A four-dimensional simulation in x, y, z, and t, including betatron motion of the electrons, is used to study the combined effects of diffraction, pulse slippage and desynchronism in the Boeing 1 kW FEL oscillator.

  17. FEL development at the Budker Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.

    1993-07-01

    There are three different FEL projects at the Budker Institute of Nuclear Physics: 1) the FEL on the VEPP-3 storage ring which operates in the visible and ultraviolet region; 2) the high power FEL using a racetrack microtron recuperator (this machine will provide an average power of about tens of kilowatt in the infrared region); and 3) the compact infrared FEL project, using a microton, and a powerful FEL on a dedicated superconducting storage ring, which is under consideration now.

  18. Laser-Pumped Coherent X-Ray FEL

    DTIC Science & Technology

    2008-11-14

    laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron beam and pump laser...and Line Width 16 IV. Comparison of Theory with Simulations 17 a) Wiggler based X-Ray FEL 17 b) Laser Pumped X-Ray FEL 18 V. Conclusions 19...FEL) an intense laser field replaces the magnetic wiggler field of a conventional FEL. Depending on the intensity and quality of both the electron

  19. First lasing of the IR upgrade FEL at Jefferson lab

    SciTech Connect

    Christopher Behre; Stephen Benson; George Biallas; James Boyce; Christopher Curtis; David Douglas; H. Dylla; L. Dillon-townes; Richard Evans; Albert Grippo; Joseph Gubeli; David Hardy; John Heckman; Carlos Hernandez-Garcia; Tommy Hiatt; Kevin Jordan; Nikolitsa Merminga; George Neil; Joseph Preble; Harvey Rutt; Michelle D. Shinn; Timothy Siggins; Hiroyuki Toyokawa; David W. Waldman; Richard Walker; Neil Wilson; Byung Yunn; Shukui Zhang

    2004-08-01

    We report initial lasing results from the IR Upgrade FEL at Jefferson Lab[1]. The electron accelerator was operated with low average current beam at 80 MeV. The time structure of the beam was 120 pC bunches at 4.678 MHz with up to 750 {micro}sec pulses at 2Hz. Lasing was established over the entire wavelength range of the mirrors (5.5-6.6 {micro}m). The detuning curve length, turn-on time, and power were in agreement with modeling results assuming a 1 psec FWHM micropulse. The same model predicts over 10 kW of power output with 10 mA of beam and 10% output coupling, which is the ultimate design goal of the IR Upgrade FEL. The behavior of the laser while the dispersion section strength was varied was found to qualitatively match predictions. Initial CW lasing results also will be presented.

  20. Energy stability in a high average power FEL

    SciTech Connect

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-12-31

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples.

  1. A wiggler magnet for FEL low voltage operation

    SciTech Connect

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  2. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  3. Synthesis and cyclic voltammetric studies of diiron complexes, ER2[(η5-C5H4)Fe(L2)Me]2 (E = C, Si, Ge, Sn; R = H, alkyl; L2 = diphosphine] and (η5-C5H5)Fe(L2)ER2Fc [Fc = (η5-C5H4)Fe(η5-C5H5)

    PubMed Central

    Kumar, Mukesh; Cervantes-Lee, Francisco; Pannell, Keith H.; Shao, Jianguo

    2009-01-01

    Summary The cyclic voltammetric studies on ER2[(η5-C5H4)Fe(L2)Me]2 (L2 = dppe; ER2 = CH2 (1a), SiMe2 (2a), GeMe2 (3a), SnMe2 (4a) revealed two well resolved reversible waves [1E1/2 = -0.33 V, 2E1/2 = -0.20 V (for 1a); 1E1/2 = -0.35 V, 2E1/2 = -0.21 V (for 2a);1E1/2 = -0.36 V, 2E1/2 = -0.23 V (for 3a);1E1/2 = -0.36 V, 2E1/2 = -0.22 V (for 4a)] in CH2Cl2 suggesting electronic communication between two iron centers which is seen for the first time in this family of organometallic complexes. The resolution between two reversible waves increases in the order of 1a < 2a < 3a < 4a; however, coordinating solvents such as pyridine, PhCN, DMSO and DMF decreased these interactions attributable to the stabilization of cationic species formed after the first oxidation. UV/Vis spectroelectrochemistry of 1a-4a revealed two distinct absorbance patterns for both redox processes and reflected the stepwise oxidation. Homobimetallic complexes containing ferrocenyl groups, (η5-C5H5)Fe(L2)ER2Fc [ER2 = none, L2 = cis-dppen (5a), ER2 = SiMe2, L2 = cis-dppen (6a), dppm (6b); ER2 = GeMe2, L2 = cis-dppen (7a), dppm (7b); ER2 = SntBu2, L2 = dmpe (8a); Fc = (η5-C5H4)Fe(η54-C5H5)] were prepared and studied in terms of electrochemistry. The cyclic voltammogram of 5a exhibited two well resolved one electron reversible waves at 1E1/2 = -0.21 V and 2E1/2 = 0.58 V corresponding to oxidation of the Fe(P-P) and Fc iron atoms respectively. Other complexes in this series (6a/6b, 7a/7b, 8a) containing direct Fe-E-Fc (E = Si, Ge and Sn) bridging units were not stable under electrochemical conditions and rupture of the Fe-E bonds was observed. PMID:19718238

  4. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  5. Statistical Analysis of Crossed Undulator for Polarization Control in a SASE FEL

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-02-01

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme (K.-J. Kim, Nucl. Instrum. Methods A 445, 329 (2000)) for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  6. Status report on the development of a high-power UV/IR FEL at CEBAF

    SciTech Connect

    Benson, S.; Bohn, C.; Dylla, H.F.

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  7. Status of the "TEU-FEL" project

    NASA Astrophysics Data System (ADS)

    Ernst, G. J.; Witteman, W. J.; Verschuur, J. W. J.; Haselhoff, E. H.; Mols, R. F. X. A. M.; Bouman, A. F. M.; Botman, J. I. M.; Hagedoorn, H. L.; Delhez, J. L.; Kleeven, W. J. G. M.

    1992-07-01

    The free-electron laser of the TEU-FEL project will be realized in two phases. In phase I the FEL will be driven by a 6 MeV photoelectric linac. In phase II the linac will be used as an injector for a 25 MeV race-track microtron. Information is presented on some technical details and the status of the different subsystems.

  8. Temporal characteristics of a SASE FEL.

    SciTech Connect

    Li, Y,; Huang, Z.; Kim, K.-J.; Lewellen, J.; Milton, S. V.; Sajaev, V.

    2003-01-01

    We have performed a single-shot, time-resolved measurement of the output field of a SASE FEL using the frequency-resolved optical gating (FROG) technique. The measurement reveals the phase and the amplitude of the SASE output as functions of time and frequency, hence enables us to perform a full characterization of the SASE FEL output. We examined both the single-shot field evolution as well as the statistics over multiple shots on the phase and intensity evolution.

  9. Mid-infrared FEL absorption spectra

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Feng, Bibo; Gabella, William E.

    2002-04-01

    The Vanderbilt Mark III FEL is a tunable source of high- intensity coherent mid-infrared radiation occurring as a train of picosecond pulses spaced 350ps apart. The laser beam is transported to each laboratory under vacuum, but is typically transmitted through some distance of atmosphere before reaching the target. Losses due to absorption by water vapor and CO2 can be large, and since the bandwidth of the FEL is several percent of the wavelength, the spectrum can be altered by atmospheric absorptions. In order to provide an accurate representation of the laser spectrum delivered to the target, and to investigate any non-linear effects associated with transport of the FEL beam, we have recorded the spectrum of the FEL output using a vacuum spectrometer positioned after measured lengths of atmosphere. The spectrometer is equipped with a linear pyroelectric array which provides the laser spectrum for each pulse. Absorption coefficients are being measured for laboratory air, averaged over the bandwidth of the FEL. The high peak powers of this Fel have induced damage in common infrared-transparent materials; we are also measuring damage thresholds for several materials at various wavelengths.

  10. Optical beam transport system at FEL-SUT

    NASA Astrophysics Data System (ADS)

    Nomaru, K.; Kawai, M.; Yokoyama, M.; Oda, F.; Nakayama, A.; Koike, H.; Kuroda, H.

    2000-05-01

    Kawasaki Heavy Industries Ltd. has installed an FEL beam transport system at the IR FEL Research Center of the Science University of Tokyo (FEL-SUT). This system transports the FEL output beam from the FEL machine room to the optical diagnostic room through a vacuum tube. The in-vacuum multi-mirror synchronized system operated from the FEL control room enables the operator to control the multiple mirrors simultaneously on or off axis of the FEL beam and to distribute the FEL output to one of the laboratories. The essential component of the transport system is the passive control optics that is composed of an elliptical and parabolic mirror couple. Once the control optics is aligned, a parallel FEL beam with a good pointing stability is obtained without any active operation to tune the optical system for different wavelengths.

  11. A cost estimation model for high power FELs

    SciTech Connect

    Neil, G.R.

    1995-12-31

    A cost estimation model for scaling high-power free-electron lasers has been developed for estimating the impact of system-level design choices in scaling high-average-power superconducting-accelerator-based FELs. The model consists of a number of modules which develop subsystem costs and derive as an economic criterion the cost per kilojoule of light produced. The model does not include design engineering or development costs, but represents the 2nd through nth device. Presented in the paper is the relative sensitivity of designs to power and linac frequency while allowing the operating temperature of the superconducting cavities to optimize.

  12. Serial snapshot crystallography for materials science with SwissFEL

    SciTech Connect

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; Tamura, Nobumichi; Pattison, Philip; Abela, Rafael; McCusker, Lynne B.

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of data can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.

  13. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  14. Summary of the working group on FEL theory

    SciTech Connect

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  15. Predicted performance of a multi-section VUV FEL with the Amsterdam pulse stretcher and storage ring AmPS

    SciTech Connect

    Bazylev, V.A.; Pitatelev, M.I.; Tulupov, A.V.

    1995-12-31

    A design is proposed to realize a VUV FEL with the Amsterdam Pulse Stretcher and Storage Ring (AmPS). The FEL is based on 4 identical undulator sections and 3 dispersive sections. The total magnetic system has a length of 12 m. 3 D simulations with the actual electron beam parameters of AmPS have been done with a version of TDA code modified for multi-sectional FELs. The spectral range between 50 and 100 nm has been considered. The simulations show that an amplification as large as 1*E5 - 1*E7 can be achieved. The amplification can be enhanced by a further optimisation procedure.

  16. Electron bunch length measurement at the Vanderbilt FEL

    SciTech Connect

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M.

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  17. Technical Design and Optimization Study for the FERMI@Elettra FELPhotoinjector

    SciTech Connect

    Lidia, Steven M.; Penco, Giuseppe; Trovo', Mauro

    2006-06-30

    The FERMI {at} Elettra FEL project will provide a novel, x-ray free electron laser user facility at Sincrotrone Trieste based on seeded and cascade FEL techniques. The electron beam source and injector systems play a crucial role in the success of the facility by providing the highest quality electron beams to the linac and FEL undulators. This Technical Note examines the critical technology components that make up the injector system, and demonstrates optimum beam dynamics solutions to achieve the required high quality electron beams. Section 2 provides an overview of the various systems and subsystems that comprise the photoinjector. The different operating modes of the injector are described as they pertain to the different linac configurations driven by the FEL and experimental design. For each mode, the required electron beam parameters are given. Sections 3 and 4 describe the critical beamline elements in the injector complex: the photocathode and drive laser, and the RF gun. The required drive laser parameters are given at the end of Section 3. Additional details on the design of the photoinjector drive laser systems are presented in a separate Technical Note. Design considerations for the RF gun are extensively presented in Section 4. There, we describe the variation of the cavity geometry to optimize the efficiency of the energy transfer to the electron beam. A study of the power coupling into the various cavity modes that interact within the bandwidth of the RF drive pulse is presented, followed by a study of the transient cavity response under several models and, finally, the effects on extracted beam quality. Section 5 describes the initial design for the low energy, off-axis diagnostic beamline. Beam dynamics simulations using ASTRA, elegant, and MAD are presented. Section 6 presents the optimization studies for the beam dynamics in the various operating modes. The optimized baseline configurations for the beamline and incident drive laser pulse are

  18. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  19. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    SciTech Connect

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, {approximately}1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length ({approximately}1 m) of short period ({lambda}{sub {omega}} = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab.

  20. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  1. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  2. Scaling formulae for FEL operating in linear and non linear regime

    SciTech Connect

    Dattoli, G.; Mezi, L.; Segreto, A.

    1995-12-31

    Scaling relations for the FEL gain, including the e-beam quality effects, have been usefully exploited to design FEL devices. We propose further extension of the above formulae including high gain, inhomogeneous broadening and saturation effects. A crucial role to get these relations is the use of approximant methods generalizing the Pade procedure. We derive gain equations containing the corrections due to energy spread, emittances and field intensity. It is shown that these equations can be exploited to {open_quotes}simulate{close_quotes} the FEL evolution with an almost negligible computational effort. Comments on the role of the saturation intensity and its dependence on the e-beam quality, high gain corrections etc. are also presented.

  3. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    SciTech Connect

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick; Zhang, Shukui

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  4. Some novel features of an FEL oscillator with tapered undulator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    A one-dimensional analysis of an FEL oscillator with a linear undulator tapering is presented. Some principally novel results have been obtained. The origin of these results is in principal difference between the FEL oscillator and an FEL amplifier. In the case of the FEL amplifier the frequency of the amplified wave and all the other parameters are defined by an experimenter. Contrary to this, the case of the FEL oscillator with tapered undulator is more complicated. The lasing frequency is defined by the maximum of the small-signal gain and depends on the tapering depth in some complex way.

  5. Evidence for a Fel d I-like molecule in the "big cats" (Felidae species).

    PubMed

    de Groot, H; van Swieten, P; Aalberse, R C

    1990-07-01

    In this study, we investigated the cross-reactivity pattern of IgE and IgG4 antibodies to the major feline allergen, Fel d I. We studied the IgE and IgG4 response of 11 cat-allergic patients against Fel d I-like structures in eight members of the Felidae family: ocelot, puma, serval, siberian tiger, lion, jaguar, snow leopard, and caracal. Hair from these "big cats" was collected, extracted, and used in a RAST system and histamine-release test. By means of a RAST-inhibition assay with affinity-purified Fel d I from cat dander, it was established that, in the Felidae species, a Fel d I equivalent is present that reacts with IgE and IgG4 antibodies. We found that all patients had cross-reacting IgE antibodies to seven of the Felidae tested; no IgE antibodies reactive with the caracal were found. Eight of 10 patients with IgG4 antibodies directed to cat dander also had IgG4 antibodies directed to several Felidae species, including the caracal. However, the correlation between the IgE and the IgG4 antibody specificity was low, indicating that, in the case of Fel d I IgE and IgG4, antibodies do not necessarily have the same specificity.

  6. The DarkLight Experiment at the JLab FEL

    NASA Astrophysics Data System (ADS)

    Fisher, Peter

    2013-10-01

    DarkLight will study the production of gauge bosons associated with Dark Forces theories in the scattering of 100 MeV electrons on proton a target. DarkLight is a spectrometer to measure all the final state particles in e- + p -->e- + p +e- +e+ . QED allows this process and the invariant mass distribution of the e+e- pair is a continuum from nearly zero to nearly the electron beam energy. Dark Forces theories, which allow the dark matter mass scale to be over 1 TeV, predict a gauge boson A' in the mass range of 10-1,000 MeV and decays to an electron-positron pair with an invariant mass of mA'. We aim to search for this process using the 100 MeV, 10 mA electron beam at the JLab Free Electron Laser impinging on a hydrogen target with a 1019 cm-2 density. The resulting luminosity of 6 ×1035/cm2-s gives the experiment enough sensitivity to probe A' couplings of 10-9 α . DarkLight is unique in its design to detect all four particles in the final state. The leptons will be measured in a large high-rate TPC and a silicon sensor will measure the protons. A 0.5 T solenoidal magnetic field provides the momentum resolution and focuses the copious Møller scattering background down the beam line, away from the detectors. A first beam test has shown the FEL beam is compatible with the target design and that the hall backgrounds are manageable. The experiment has been approved by Jefferson Lab for first running in 2017.

  7. Critical review of high gain x-ray FEL experiments

    SciTech Connect

    Kim, Kwang-Je

    1996-08-01

    There is a renewed interest at the present time to develop x-ray free electron lasers (FELs). The interest is driven by the scientific opportunities with coherent x-rays glimpsed at the third generation light sources. With the recent development in linac technology in producing high-energy, high-brightness electron beams, it is now possible to design intense coherent x-ray source for wavelengths as short as one Angstrom based on the self- amplified spontaneous emission (SASE) principle. Major linac laboratories such as SLAC and DESY are therefore actively pursuing detailed design studies for the x-ray SASE facilities. The x-rays from these facilities will provide a peak brightness more than ten orders of magnitude higher than that of the current synchrotron radiation sources. Short wavelength coherent radiation could also be generated with harmonic generation techniques in linacs or storage rings. However, these schemes are not expected to be effective for 1 {Angstrom} wavelengths. This review will therefore concentrate on the linac based SASE scheme. The critical components of the SASE are: an electron source consisting of an RF photocathode gun with the emittance corrector producing high brightness electron beam; the beam bunching and acceleration; and a long undulator in which the radiation develops from initially incoherent radiation to intense, coherent radiation. We discuss the critical experimental issues in these components highlighting some relevant recent experiments. We also discuss issues related to the SASE experiment which are distinct from the usual free electron lasers. We give a brief survey of the world-wide SASE experiments. We conclude with a summary and outlook.

  8. A compact FEL upconverter of coherent radiation

    SciTech Connect

    Liu, Y.; Marshall, T.C.

    1995-12-31

    The objective is to generate a powerful millimeter-wave FEL signal in a single pass, using a coherent microwave source (24GHz) to prebunch the electron beam for a harmonically-related wave (72GHz). We use the Columbia FEL facility, operating the electron beam at 600kV, 100A; undulator period = 1.85cm and 250G (K = 0.25); electron beam diameter = 3mm inside a 8.5 mm ID drift tube; guiding field of 8800G. Under these conditions, both the microwave signal (5kW input) and the millimeter signal will show travelling-wave gain in the TE11 mode. We report initial experimental results for the millimeter wave spectrum and find an overall power gain of {approximately}20 for the 24GHz input wave. Also presented will be numerical solutions of the wave growth using the FEL equations with slippage. This device has the advantage of producing a high-power FEL output in a single-pass travelling-wave configuration, obtaining a millimeter wave which is phase-referenced to a coherent laboratory source.

  9. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    SciTech Connect

    Fawley, William; Vay, Jean-Luc

    2010-08-16

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

  10. Preliminary study for the OFFELO

    SciTech Connect

    Hao, Y.; Litvinenko, V.N.

    2010-08-23

    X-ray Optics-Free FEL Oscillator (OFFELO) has potential of becoming a choice for next generation light sources. Using electron beam for the feedback allows OFFELO to be completely tunable and to combine the peak power of high-gain SASE FELs with extremely narrow bandwidth of the oscillator. While the high-gain X-ray FELs has been studied in depth and has been successfully demonstrated, two other concepts (the transport and the feed-back) involved in OFFELO still need detail studies. In this short paper we focus on the simulation of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. In our initial studies of OFFELO studied the saturation of the system and also its evolution using Genesis 2.0 code with a homemade wrapping code. While and lattice design from the modulator to the radiator, in order to minimize the feedback information loss in transporting the beam.

  11. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  12. Grating-based pulse compressor for applications to FEL sources

    NASA Astrophysics Data System (ADS)

    Poletto, Luca; Frassetto, Fabio; Miotti, Paolo; Gauthier, David; Fajardo, Marta; Mahieu, Benoit; Svetina, Cristian; Zangrando, Marco; Zeitoun, Philippe; De Ninno, Giovanni

    2015-05-01

    We present the optical layout of a reflective grating compressor specifically designed for extreme-ultraviolet FEL sources. The working principle is based on the use of a couple of constant-line-spaced gratings used at grazing incidence and illuminated in divergent light. The two possible grating configurations, namely the on-plane and off-plane, are analyzed and compared. The Group Delay Dispersion (GDD) introduced by the compressor is analytically analyzed and quantified. The spatial chirp also is considered, and its effect analyzed. The deviation from the ideal case in which the instrument is feed with a collimated beam is considered. The effect of the beam divergence on the compressor response is quantified and the attenuation of this effect by a "de-tuning" of the compressor is proposed. This solution avoids the use of a pre-collimating optics, therefore incrementing the total instrumental throughput. Finally, it is shown the optical design of an actual compressor for the FERMI FEL, that can be inserted in the optical path without any deviation or translation of the photon beam with respect to the nominal path.

  13. Cat (Fel d 1) and dog (Can f 1) allergen levels in cars, dwellings and schools.

    PubMed

    Niesler, A; Ścigała, G; Łudzeń-Izbińska, B

    Pets are an important source of indoor allergens. The aim of the study was to compare cat and dog allergen levels in cars, schools and homes. The study was carried out in 17 cars, 14 classrooms and 19 dwellings located in the highly industrialized and urbanized region of Poland. Dust and air samples were analyzed for Fel d 1 and Can f 1 using a double monoclonal ELISA assay. The highest amounts of cat and dog allergens (Fel d 1: 1169 μg/g; Can f 1: 277 μg/g) were found in dwellings with pets. Allergen concentrations were correlated with the number of animals kept at home. Although concentrations on automobile seats were lower, Fel d 1 levels exceeded 8 μg/g in 23.5 % of cars and high levels of Can f 1 (>10 μg/g) were found in 17.6 % of cars. The study revealed that cars of pet owners may be reservoirs of cat and dog allergens even when animals are not transported in them. In schools, concentrations of pet allergens did not reach high levels, but the moderate levels of Fel d 1 (≥1-8 μg/g) and Can f 1 (≥2-10 μg/g) were detected in 42.9 and 7.1 % of the investigated classrooms. Concentrations of cat and dog allergen in schools were higher than in homes without pets. While airborne Fel d 1 and Can f 1 levels were found low, residential allergen concentrations in settled dust and air were correlated. The study results suggest that classrooms and cars of pet owners may be important sites of exposure to cat and dog allergens, though the highest concentrations of Fel d 1 and Can f 1 are found in homes of pet owners.

  14. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    SciTech Connect

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  15. Towards attosecond X-ray pulses from the FEL

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2004-07-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10{sup 18} sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results.

  16. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect

    Wang, Guimei

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  17. Wavelength dependent delay in the onset of FEL tissue ablation

    SciTech Connect

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-12-31

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 {mu}m and 6.45 {mu}m pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 {mu}m as compared to 6.45 {mu}m. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process.

  18. Design and experimental tests of free electron laser wire scanners

    NASA Astrophysics Data System (ADS)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.

    2016-09-01

    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  19. Duke storage rink UV/VUV FEL: Status and prospects

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  20. High-power, high-efficiency FELs

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs.

  1. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  2. A proposed visible FEL Facility at Boeing

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  3. [Ergonomic technology. Design study].

    PubMed

    Apostol, I; Ciobanu, O

    2007-01-01

    The paper deals with domains and technological developments and related supports that enhance the rehabilitation process. Ergonomic Technology, Rehabilitation Engineering, Accessibility and Assistive technology are factors involved in promoting a greater independence for people with disabilities by designing and developing new devices with improved design and functionality. Results of a device design study for people with disabilities are presented.

  4. Start-Up of FEL Oscillator from Shot Noise

    SciTech Connect

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-25

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  5. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  6. Serial snapshot crystallography for materials science with SwissFEL

    DOE PAGES

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; ...

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of datamore » can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.« less

  7. A proposed VUV oscillator-based FEL upgrade at Jefferson Lab

    SciTech Connect

    Benson, S. V.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Legg, R. A.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.

    2011-09-20

    Advances in superconducting linac technology offer the possibility of an upgrade of the Jefferson Lab Free Electron Laser (JLab FEL) facility to an oscillator-based VUV-FEL that would produce 6 x 10{sup 12} coherent 100 eV photons per pulse at multi-MHz repetition rates in the fundamental. At present JLab operates a pair of oscillator-based continuous-wave Free Electron Lasers (FELs) as a linac-based next generation light source in the IR and UV, with sub-picosecond pulses up to 75 MHz. Harmonics upwards of 10 eV are produced and the fully coherent nature of the source results in peak and average brightness values that are several orders of magnitude higher than storage rings. The accelerator uses an energy recovered linac design for efficiency of operation. New style superconducting linac cryomodules with higher gradient, combined with a new injector and beam transport system allow the development of the FEL to higher photon energies.

  8. Beam quality and wavelength limitation in visible and UV FEL oscillations

    SciTech Connect

    Tomimasu, T.

    1995-12-31

    The FELI linac beam has succeeded in visible-FEL oscillation on the third harmonics at 0.64 {mu}m using a 3-m undulator and a 6.72-m optical cavity with two Au-coated mirrors in Feb. 28, 1995. The beam is a 68-MeV, 40-A electron beam with a normalized emittance of 26 {pi}mm{center_dot}mrad and a relative energy spread of 1%. In 1993, an ultraviolet (UV) FEL oscillation was already achieved on the third harmonics at 0.37{mu} m using a 46-MeV, 130-A electron beam with a normalized emittance of 3{pi}mm{center_dot}mrad and a relative energy spread of 0.24% from the APEX L-band linac with an rf photocathode electron gun. However, we are now trying to achieve an FEL oscillation in the UV range using the FELI linac with the thermionic gun because of long-life, easy-operation, and low-cost of the thermionic gun, as the FELI ring with 9.8-m long straight sections capable of storing a long lived 1-A beam is in the design stage. Recent experimental and theoretical results on relations between beam quality and short wavelength FEL oscillations have been also reviewed and wavelength limitations due to normalized emittance and relative energy spread are discussed.

  9. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  10. Study design: the basics.

    PubMed

    Lim, Hyun Ja; Hoffmann, Raymond G

    2007-01-01

    In biomedical research, meaningful conclusions can only be drawn based on data collected from a valid scientific design using appropriate statistical methods. Therefore, the selection of an appropriate study design is important in order to provide an unbiased and scientific evaluation of the research questions. In this chapter, the different kinds of experimental studies commonly used in biology and medicine are introduced. A brief survey of basic experimental study designs, randomization, blinding, possible biases, issues in data analysis, and interpretation of the study results are mainly provided.

  11. JLAMP: AN AMPLIFIER-BASED FEL IN THE JLAB SRF ERL DRIVER

    SciTech Connect

    Kevin Jordan; Stephen V. Benson; David Douglas; Pavel Evtushenko; Carlos Hernandez-Garcia; George R. Neil

    2007-06-13

    Notional designs for energy-recovering linac (“ERL”) -driven high average power free electron lasers (“FEL”s) often invoke amplifier-based architectures. To date, however, amplifier FELs have been limited in average power output to values several orders of magnitude lower than those demonstrated in optical-resonator based systems; this is due at least in part to the limited electron beam powers available from their driver accelerators. In order to directly contrast the performance available from amplifiers to that provided by high-power cavity-based resonators, we have developed a scheme to test an amplifier FEL in the JLab SRF ERL driver. We describe an accelerator system design that can seamlessly and non-invasively integrate a 10 m wiggler into the existing system and which provides, at least in principle, performance that would support high-efficiency lasing in an amplifier configuration. Details of the design and an accelerator performance analysis will be presented

  12. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  13. Where Would Economics Education Be without Rendigs Fels?

    ERIC Educational Resources Information Center

    Siegfried, John J.; And Others

    1994-01-01

    Discusses the career of Rendigs Fels from his first academic appointment in 1948 until the present. Concludes that Fels is one of a small number of respected economists who have made interest, involvement, and research in the teaching of economics an important and respectable part of the profession. (CFR)

  14. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  15. Feedback Requirements for SASE-FELs

    SciTech Connect

    Loos, Henrik; /SLAC

    2012-07-06

    The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.

  16. Method for separating FEL output beams from long wavelength radiation

    SciTech Connect

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  17. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  18. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    SciTech Connect

    O`Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with {gamma}{gamma} colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered {gamma}-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized {gamma}-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a {gamma}-flux enhancement of approximately 10{sup 3} over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate {gamma}-rays up to 200 MeV in energy with an average flux in excess of 10{sup 7} /s/MeV, using a modest scattering beam of 10-mA average stored current. The {gamma}-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the {gamma}-ray beam. We will discuss the characteristics of the device and its research opportunities.

  19. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    SciTech Connect

    Attwood, David

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  20. THE SECOND STAGE OF FERMI@ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    SciTech Connect

    Allaria, E.; DeNinno, G.; Fawley, W. M.

    2009-08-14

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  1. FEL gain optimisation and spontaneous radiation

    SciTech Connect

    Bali, L.M.; Srivastava, A.; Pandya, T.P.

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  2. SUPERSTRUCTURES FOR HIGH CURRENT FEL APPLICATION

    SciTech Connect

    Jacek Sekutowicz; Kevin Beard; Peter Kneisel; Genfa Wu; Catherine Thomas; Zheng

    2003-05-01

    The next generations of FELs at TJNAF will produce coherent light at power levels of 10 kW and 100 kW, respectively [1]. To achieve these power levels, 200 MeV electron beams of 10 mA and 100 mA have to be accelerated in the linear accelerators of the devices. The accelerators will be based on superconducting technology. Stable operation of these machines is only possible if the cavity Higher Order Modes (HOM) excited by the beams can sufficiently be damped. One of the possible accelerating structures which can fulfill this requirement, is a superstructure (SST) made of two weakly coupled subunits and equipped with appropriate HOM couplers. Based on the positive experience at DESY with 1.3 GHz superstructures, we are investigating for possible use similar structures in the linacs for the FEL upgrades. We have built a copper model of the proposed superstructure, based on two copper models of the 5-cell CEBAF cavities. This contribution presents measured results on this model. We are now in the process of fabrication a Nb prototype and hope to perform its cold test by the end of this year.

  3. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    SciTech Connect

    D. Hardy; S.V. Benson; Michelle D. Shinn; S. Zhang

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  4. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  5. Amplification of current density modulation in a FEL with an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  6. The role of radiation reaction in Lienard-Wiechert description of FEL interaction

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursued the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.

  7. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  8. Use of a miniature Toroidal Grating Monochromator on the FEL Undulator at the NSLS

    SciTech Connect

    Johnson, P.D.; Hulbert, S.L.; Howells, M.R.

    1984-01-01

    The use of a miniature Toroidal Grating Monochromator is described which we intend to use to monochromatize the radiation from the free electron laser (FEL) Undulator at the NSLS. Some of the properties of Undulators are described with reference to the design of beamlines and review the properties of TGM's. The results of ray tracing a beamline using such a device and estimates of the expected flux are given.

  9. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  10. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  11. Performance Achievements and Challenges for FELs based on Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2006-08-27

    During the past decade several groups have assembled free electron lasers based on energy recovered linacs (ERLs). Such arrangements have been built to obtain high average power electron and photon beams, by using high repetition rate beam pulses driving FEL oscillators. In this paper the performance of many existing and several proposed facilities from around the world are reviewed. Going forward, many questions must be addressed to achieve still better performance including: higher average current injectors, better optimized accelerating cavities, higher energy acceptance and lower loss beam recirculation systems, and better optical cavity designs for dealing with the optical beam power circulating in the ERL FELs. This paper presents some of the current thinking on each of these issues.

  12. A hybrid type undulator for far-infrared FELs at FELI

    SciTech Connect

    Zako, A.; Miyauchi, Y.; Koga, A.

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  13. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  14. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  15. Analysis of the eigenvalue equation of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    The paper presents analysis of the eigenvalue problem of the FEL amplifier with axisymmetric electron beam and diaphragm focusing line. An FEL model is discussed wherein diffraction effects, space charge fields and energy spread of electrons in the beam are taken into account. To take into account diffraction effects at the diaphragms we apply the rigorous impedance boundary conditions proposed by Veinstein. The rigorous solutions of the eigenvalue problem leave been found for the stepped and bounded parabolic electron beam profiles. Analytical expressions for eigenfunctions of active open waveguide and formulae of their expansion in eigenfunctions of passive open waveguide, are derived, too. Asymptotic behaviour of the obtained solutions is studied in details. The multilayer approximation method has been used to solve the eigenvalue problem for the beams with an arbitrary gradient profile of current density. This novel type of an FEL amplifier has perspective to be used for applications where high average and peak radiation power is required.

  16. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  17. Recent Progress in High-Gain FEL Theory

    SciTech Connect

    Huang, Z.; /SLAC

    2005-09-30

    High-gain free electron lasers (FEL) are being developed as extremely bright x-ray sources of a next-generation radiation facility. In this paper, we review the basic theory and the recent progress in understanding the startup, the exponential growth and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). We will also discuss how the FEL performance may be affected by various errors and wakefield effects in the undulator.

  18. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  19. Studies of Energy Recovery Linacs at Jefferson Laboratory: 1 GeV Demonstration of Energy Recovery at CEBAF and Studies of the Multibunch, Multipass Beam Breakup Instability in the 10 kW FEL Upgrade Driver

    SciTech Connect

    Tennant, Christopher D.

    2006-10-01

    An energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. Two primary physics challenges exist in pushing the frontier of ERL performance. The first is energy recovering a high energy beam while demonstrating operational control of two coupled beams in a common transport channel. The second is controlling the high average current effects in ERLs, specifically a type of beam instability called multipass beam breakup (BBU). This work addresses both of these issues. A successful 1 GeV energy recovery demonstration with a maximum-to-injection energy ratio of 51:1 was carried out on the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in an effort to address issues related to beam quality preservation in a large scale system. With a 1.3 km recirculation length and containing 312 superconducting radio frequency (SRF) cavities, this experiment has demonstrated energy recovery on the largest scale, and through the largest SRF environment, to date. The BBU instability imposes a potentially severe limitation to the average current that can be accelerated in an ERL. Simulation results for Jefferson Laboratory's 10 kW free electron laser (FEL) Upgrade Driver predict the occurrence of BBU below the nominal operating current. Measurements of the threshold current are described and shown to agree to within 10% of predictions from BBU simulation codes. This represents the first time the codes have been benchmarked with experimental data. With BBU limiting the beam current, several suppression schemes were developed. These include direct damping of the higher-order mode using two different cavity-based feedbacks and modifying the electron beam optics to reduce the coupling between the beam and mode. Specifically the effect of implementing (1) point-to-point focusing (2

  20. Optical modeling of the Jefferson Lab IR Demo FEL

    SciTech Connect

    G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

  1. RF coupler for high-power CW FEL photoinjector

    SciTech Connect

    Kurennoy, S.; Young, L. M.

    2003-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. The design presently under way is a 100-mA 2.5-cell {pi}-mode, 700-MHz, normal conducting demonstration CW RF photoinjector. This photoinjector will be capable of accelerating 3 nC per bunch with an emittance at the wiggler less than 10 mm-mrad. The paper presents results for the RF coupling from ridged wave guides to hte photoinjector RF cavity. The LEDA and SNS couplers inspired this 'dog-bone' design. Electromagnetic modeling of the coupler-cavity system has been performed using both 2-D and 3-D frequency-domain calculations, and a novel time-domain approach with MicroWave Studio. These simulations were used to adjust the coupling coefficient and calculate the power-loss distribution on the coupling slot. The cooling of this slot is a rather challenging thermal management project.

  2. Fel d 1-airway inflammation prevention and treatment by co-immunization vaccine via induction of CD4+CD25-Foxp3+ Treg cells.

    PubMed

    Pei, Yechun; Geng, Shuang; Liu, Lin; Yan, Fengxiang; Guan, Hong; Hou, Jian; Chen, Yongfu; Wang, Bin; An, Xiaorong

    2013-05-01

    Pet allergens are major causes for asthma and allergic rhinitis. Fel d 1 protein, a key pet allergen from domestic cat, can sensitize host and trigger asthma attack. In this study, we report that co-immunization with recombinant Fel d 1 protein (rFel d 1) plus plasmid DNA that contains Fe1 d 1 gene was effective in preventing and treating the natural Fel d 1 (nFel d 1) induced allergic airway inflammation in mice. A population of T regulatory cells (iTreg) exhibiting a CD4+CD25-Foxp3+ phenotype and expressing IL-10 and TGF-β was induced by this co-immunization strategy. Furthermore, after adoptive transfers of the iTreg cells, mice that were pre-sensitized and challenged with nFel d 1 exhibited less signs of allergic inflammation, AHR and a reduced allergic immune response. These data indicate that co-immunization with DNA and protein mixture vaccine may be an effective treatment for cat allergy.

  3. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  4. Spontaneous and amplified radiation at the initial stage of a SASE FEL.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    2002-11-01

    At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous undulator radiation in certain experimental configurations can dominate the amplified signal over an extended undulator distance. In this paper they study both the spontaneous and the amplified radiation in the framework of the paraxial wave equation and determine the transition from the dominance of spontaneous emission to exponential amplification. They compare theoretical expectations with SASE simulation codes GINGER and GENESIS.

  5. Spontaneous and amplified radiation at the initial stage of a SASE FEL

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Kim, Kwang-Je

    2003-07-01

    At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous undulator radiation in certain experimental configurations can dominate the amplified signal over an extended undulator distance. In this paper we study both the spontaneous and the amplified radiation in the framework of the paraxial wave equation and determine the transition from the dominance of spontaneous emission to exponential amplification. We compare theoretical expectations with SASE simulation codes GINGER and GENESIS.

  6. Seal design alternatives study

    SciTech Connect

    Van Sambeek, L.L.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  7. Shuttle communications design study

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1975-01-01

    The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

  8. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Fateev, A. A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-12-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa.

  9. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    SciTech Connect

    Pflueger, J.; Nikitina, Y.M.

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  10. Current status of the HED instrument design at the European XFEL for studying plasma physics

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Appel, K.; Thorpe, I.; Priebe, G.; Pelka, A.; Cowan, T.; Tschentscher, Th.

    2014-10-01

    The High Energy Density Physics (HED) instrument at the European XFEL will provide an unique platform for experiments combining hard x-ray FEL radiation (3 -- 24 keV range) and the capability to generate matter under extreme conditions of pressure, temperature or electric field using high energy optical lasers (100 TW Ti-Sapphire and 100 J/ns diode-pumped laser) or pulsed magnets (30 T). Scientific applications will be studies of matter occurring inside exoplanets, of new extreme-pressure phases and solid-density plasmas, and of structural phase transitions of complex solids in high magnetic fields. Following the delivery of the technical design documents, the HED instrument is presently completed with the goal of first x-ray beam in spring 2017. User operation shall start at the end of 2017. The talk includes a presentation of the current HED instrument design as following from specific experiment requirements, which will be discussed.

  11. An Rf-gun-driven recirculated linac as injector and FEL driver.

    SciTech Connect

    Andersson, A.; Biedron, S.; Eriksson, M.; Freund, H.; Werin, S.

    1999-08-23

    A new pre-injector for the MAX-Laboratory is under design and construction. A thermionic rf gun, designed to operate at medium currents with low back bombardment power, is under construction. The gun will, via a magnetic compressor and energy filter, feed a recirculated linac consisting of two SLED-equipped structures giving 125 MeV each. The first will be delivered in 1999. The system is aimed as a pre-injector for the existing storage rings at MAX-Lab, but will also open up possibilities for a SASE FEL in the UV reaching above 100 MW below 100 run.

  12. Extension of the spectral range of the CLIO FEL

    SciTech Connect

    Marcouille, O.; Boyer, J.C.; Corlier, M.

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  13. A photocathode RF gun for x-ray FEL

    SciTech Connect

    Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-12-31

    A 1.6 cell photocathode RF gun was developed by a BNL/SLAC/UCLA collaboration for X-ray FEL and other applications. The objective of the collaboration is to develop a cost effective and more reliable photocathode RF gun based on the operational experience of the original BNL gun. The new photocathode RF gun is cable of producing 1 mm-mrad normalized rms emittance photocurrent with a peak current of 100 A. The half-cell length of the new RF gun was lengthened to reduce the peak field on the cavity surface, the side-coupled scheme for cavity and waveguide coupling was replaced by a symmetrized coupling to the full-cell. The cavity aperture was increased to improve the coupling between two cells and for flat beam application. The experimental results of cold testing the RF gun will be presented. We will also present an injector design based on the new photocathode RF gun and emittance compensation technique.

  14. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  15. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full

  16. Electron Beam Diagnostics Of The JLAB UV FEL

    SciTech Connect

    Evtushenko, Pavel; Benson, Stephen; Biallas, George; Coleman, James; Dickover, Cody; Douglas, David; Marchlik, Matthew; Sexton, Daniel; Tennant, Christopher

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A system of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.

  17. Temporal characterization of the Stanford Mid-IR FEL by frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-02-01

    We measure the time-dependent intensity and phase of laser pulses from the Stanford Mid-IR FEL. We present the first measurements of near-transform-limited, linearly chirped, and sideband modulated FEL pulses.

  18. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  19. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  20. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    SciTech Connect

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov,Gennady; Fawley, William M.; Reiche, Sven

    2005-08-25

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  1. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    SciTech Connect

    Fawley, W.M.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.-D.; Stupakov, G.; Reiche, S.; /UCLA

    2005-09-30

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  2. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    SciTech Connect

    Reiche, S.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.D.; Stupakov, G.V.; Fawley, W.M.; /LBL, Berkeley

    2006-03-17

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.

  3. Temporal and spectral evolution of a storage ring FEL source: Experimental results on Super-ACO and new theoretical approach

    SciTech Connect

    Hara, T.; Couprie, M.E. ||

    1995-12-31

    The Super-ACO FEL source in UV is now used for applications like a time-resolved fluorescence in biology and two colors experiments coupling FEL and Synchrotron Radiation, which are naturally synchronized. The stability of the FEL is then a critical issue for the users. Detailed experimental studies conducted on the temporal characteristics of the laser micropulse showed various phenomena, such as a longitudinal micropulse jitter and a deformation of a longitudinal micropulse distribution. A similar analysis has been performed on the laser spectral evolution with a scanning Fabry-Perot interferometer, showing a spectrum narrowing, and a wavelength drift. A longitudinal feedback system developed after the first user experiment, allowed to reduce significantly the longitudinal jitter, the intensity fluctuation and the spectral drift. Nevertheless, the stability of the FEL is very dependent on any perturbation, and the observed phenomena can not be described by former models like super-mode assuming a stationary regime. A new theoretical model has then been developed, in order to simulate dynamic behaviors. A simple iterative method is employed to obtain the laser spectrum. The access to the temporal distribution requires additional complexity, because the Fourier transformation has to be performed for each pass. The comparison between the experimental data and the simulation results will be given.

  4. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    SciTech Connect

    Cheng, S.; Destler, W.W.; Granatstein, V.L.

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  5. Time dependence of FEL-induced surface photovoltage on semiconductor interfaces measured with synchroton radiation photoemission spectroscopy

    SciTech Connect

    Marsi, M.; Delboulbe, A.; Garzella, D.

    1995-12-31

    During the last year, the first surface science experiments simultaneously using a Free Electron Laser (FEL) and Synchrotron Radiation (SR) have been performed on SuperACO at LURE (Orsay, France). These {open_quotes}two color{close_quotes} experiments studied the surface photovoltage (SPV) induced on semiconductor surfaces and interfaces by the SuperACO FEL, a storage ring FEL delivering 350 nm photons which am naturally synchronized with the SR; the SPV was measured by synchrotron radiation core-level photoemission spectroscopy on the high-resolution SU3 undulator beamline. We will describe the experimental setup, which allowed us to convey the FEL light onto the samples sitting in the SU3 experimental station by means of a series of mirrors, and show the results we obtained for prototypical systems such as Ag/GaAs(110) and Si(111) 2 x 1. The dependence of the SPV was studied in function of various parameters, changing sample doping and photon flux; but our efforts were mainly devoted to studying its dependence on the time delay between the FEL pump and the SR probe. On SuperACO, such delay can be varied between 1 and 120 ns, the limits being given by the time duration of a SR pulse and by the interval between two consecutive positron bunches, respectively. The results show a clear temporal dependence of the amount of SPV on cleaved Si surfaces, where as the Ag/GaAs(110) does not show any difference on the ns time scale. We will discuss these results in terms of the role of surface recombination in the dynamics of the photoinduced electron-hole pairs. These studies follow the evolution of the density of electrostatic charge at surfaces and interfaces on a nanosecond time scale, and might pave the way for a new series of experiments: for example, one might explore what are the physical mechanisms limiting the time response of Schottky diodes.

  6. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  7. Resonance hard radiation in a gas-loaded FEL

    SciTech Connect

    Gevorgian, L.A.

    1995-12-31

    The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.

  8. Calibration status and plans for the charge integrating JUNGFRAU pixel detector for SwissFEL

    NASA Astrophysics Data System (ADS)

    Redford, S.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Ekinci, Y.; Fröjdh, E.; Greiffenberg, D.; Mayilyan, D.; Mezza, D.; Mozzanica, A.; Rajeev, R.; Ramilli, M.; Ruder, C.; Schädler, L.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Zhang, J.

    2016-11-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector under development for photon science applications at free electron laser and synchrotron facilities. In particular, JUNGFRAU detectors will equip the Aramis end stations of SwissFEL, an X-ray free electron laser currently under construction at the Paul Scherrer Institut in Villigen, Switzerland. JUNGFRAU has been designed specifically to meet the challenges of photon science at XFELs, including high frame rates, single photon sensitivity in combination with a high dynamic range, vacuum compatibility and tilable modules. This has resulted in a charge integrating detector with three dynamically adjusting gains, a low noise of 55 ENC RMS, readout speeds in excess of 2 kHz, single photon sensitivity down to 2 keV (with a signal to noise ratio of 10) and a dynamic range covering four orders of magnitude at 12 keV. Each JUNGFRAU module consists of eight chips of 256 × 256 pixels, each 75 × 75 μm2 in size. The chips are arranged in 2 × 4 formation and bump-bonded to a single silicon sensor 320 μm thick, resulting in an active area of approximately 4 × 8 cm2 per module. Multi-module vacuum compatible systems comprising up to 16 Mpixels (32 modules) will be used at SwissFEL. The design of SwissFEL and the JUNGFRAU system for the Aramis end station A will be introduced, together with results from early prototypes and a characterisation using the first batch of final JUNGFRAU modules. Plans and first results of the pixel-by-pixel calibration will also be shown. The vacuum compatibility of the JUNGFRAU module is demonstrated for the first time.

  9. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  10. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  11. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  12. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  13. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  14. A beam trajectory monitor for the TTF-FEL

    SciTech Connect

    Ng, Johnny S. T.

    1997-06-01

    A method to determine the electron beam trajectory inside a long undulator module is described. Three-dimensional information is obtained by imaging the spontaneous radiation off-axis using pinholes and high resolution position sensors. The proposal for such a monitor for the SASE-FEL at the TESLA Test Facility is discussed.

  15. Integrating the FEL on an All-Electric Ship

    DTIC Science & Technology

    2007-06-01

    10 1. Undulator Fields and the Resonance Condition .............................10 2. Pendulum Equation and Electron Motion...12 3. The Wave Equation ...........................................................................14 4. FEL...presence of these fields is determined by the relativistic Lorentz force equation [5], ( ) ( )d e E B dt mc γβ β= − + × r rr r , (2.1) 2 1 1 γ β

  16. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  17. Status of the project of Novosibirsk high power FEL

    SciTech Connect

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G.

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  18. Efficiency optimization in a FEL with fields` nonadiabatic tapering

    SciTech Connect

    Goncharov, I.A.; Belyavskiy, E.D.; Silivra, A.A.

    1995-12-31

    Amplification of an electromagnetic wave in free electron lasers with a reversed guide field and right-hand polarized wiggler field is investigated both analytically and numerically. An effect of electron bunch trapping by the high frequency electromagnetic field is used for efficiency optimization. On the basis of motion stability criteria a possibility of bunches trapping by FEL parameters nonadiabatic (experimentally realizable) tapering is shown. The stability analysis of electron motion is based on Lyapunov theory for autonomy systems. A particle simulation is carried out for FEL parameters close to the experimental ones (relativistic factor {gamma}=4.75, wiggler field strength B{sub w}= 2.8 kG, guide field strength B{sub o}= -1.4 kG, operation wavelength {lambda}=6.2 mm) for the case of wiggler field tapering. Theoretically predicted rule of wiggler field tapering corresponding to FEL efficiency of 55% is approximated by stepped functions. For the experimentally realizable tapering it is found that FEL efficiency can be over 40%.

  19. The physics of FEL in an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.

    2010-10-07

    We solve linearized Vlasov-Maxwell FEL equations for a 3-D perturbation in the infinite electron beam with Lorentzian energy distributions using paraxial approximation. We present analytical solutions for various initial perturbations and discuss the effect of optical guiding in such system.

  20. Designing verbal autopsy studies

    PubMed Central

    2010-01-01

    Background Verbal autopsy analyses are widely used for estimating cause-specific mortality rates (CSMR) in the vast majority of the world without high-quality medical death registration. Verbal autopsies -- survey interviews with the caretakers of imminent decedents -- stand in for medical examinations or physical autopsies, which are infeasible or culturally prohibited. Methods and Findings We introduce methods, simulations, and interpretations that can improve the design of automated, data-derived estimates of CSMRs, building on a new approach by King and Lu (2008). Our results generate advice for choosing symptom questions and sample sizes that is easier to satisfy than existing practices. For example, most prior effort has been devoted to searching for symptoms with high sensitivity and specificity, which has rarely if ever succeeded with multiple causes of death. In contrast, our approach makes this search irrelevant because it can produce unbiased estimates even with symptoms that have very low sensitivity and specificity. In addition, the new method is optimized for survey questions caretakers can easily answer rather than questions physicians would ask themselves. We also offer an automated method of weeding out biased symptom questions and advice on how to choose the number of causes of death, symptom questions to ask, and observations to collect, among others. Conclusions With the advice offered here, researchers should be able to design verbal autopsy surveys and conduct analyses with greatly reduced statistical biases and research costs. PMID:20573233

  1. Harmonic millimeter radiation from a microwave FEL amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Y.-H.; Marshall, T. C.

    1997-02-01

    In this project, an electron beam is bunched at a microwave frequency and the harmonics of this bunching drive radiation at millimeter wavelengths, using a FEL, configured as a single-pass travelling wave amplifier. A 10 kW 24 GHz microwave input signal grows to ˜200 kW level using the lower-frequency unstable root of the waveguide FEL dispersion relation. The Columbia FEL facility operates at this frequency in the TE11 mode, using a helical undulator (1.85 cm period) and a 3 mm diameter 600 kV electron beam contained in a 8.7 mm ID cylindrical waveguide. The harmonic currents set up by the microwave are found to cause growth of harmonic power under two conditions. First, we choose the parameters of the device so that the upper frequency root corresponds to the third harmonic, in which case we observe a small amount of third-harmonic emission in the TE11 mode, accompanied by comparable second harmonic. The millimeter harmonic radiation produced is coherent and phase-related to the microwave source. Second, we have found substantial emission at the seventh harmonic, most likely from the TE72 mode — which, in cylindrical waveguide geometry, travels at very nearly the same wave speed as the 24 GHz TE11 power. In order to excite the seventh-harmonic radiation, the electron beam must be displaced from the system axis — ˜2 mm in this device. The seventh-harmonic output is potentially an attractive choice for a CW FEL which must generate appreciable power at ˜2 mm wavelength for plasma electron cyclotron heating since we can produce this radiation for electron beam energy as low as 400 kV. We present a theoretical model of the experiment which predicts that if the microwave signal is strong enough to drive the FEL into saturation, the harmonic emission becomes powerful.

  2. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  3. What Have We Learned from the kilowatt IR-FEL at Jefferson Lab?

    SciTech Connect

    Stephen V. Benson

    2002-05-01

    Recent work at Jefferson Lab has demonstrated the concept of same cell energy recovery to attain high average power in a free-electron laser (FEL)[1]. Since this device was the first of its kind, we learned a great deal about how to design such systems as we learned to operate the prototype. We are in the process of building a laser with an average power in excess of 10 kW in the infrared and have point designs for even higher power. This talk will summarize the problems which were thought to exist before the IR Demo lased and what we have learned since the laser operated successfully. The upgrade has its own challenges and these will be described and the proposed solutions will be described. The changes required in the electron beam transport [2] will be summarized. A new optical cavity has been designed which allows much higher power than the IR Demo. The design details will be covered.

  4. Observations of z-dependent microbunching harmonic intensities using COTR in a SASE FEL.

    SciTech Connect

    Lumpkin, A. H.; Biedron, S. G.; Dejus, R. J.; Berg, W. J.; Borland, M.; Chae, Y. C.; Erdmann, M.; Huang, Z.; Kim, K. -J.; Li, Y.; Lewellen, J. W.; Milton, S. V.; Moog, E.; Sajaev, V.; Yang, B. X.

    2002-09-24

    The nonlinear generation of harmonics in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) continues to be of interest. Complementary to such studies is the search for information on the electron beam microbunching harmonic components, which are revealed by coherent optical transition radiation (COTR) experiments. An initial z-dependent set of data has been obtained with the fundamental at 530 nm and the second harmonic at 265 nm. The latter data were collected after every other undulator in a nine-undulator string. These results are compared to estimates based on GINGER and an analytical model for nonlinear harmonic generation.

  5. Output characteristics of SASE-driven short wavelength FEL`s

    SciTech Connect

    Fawley, W.M.

    1997-02-01

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.

  6. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  7. Parameter analysis for a high-gain harmonic generation FEL using a recently developed 3D polychromatic code.

    SciTech Connect

    Biedron, S. G.; Freund, H. P.; Yu, L.-H.

    1999-09-10

    One possible design for a fourth-generation light source is the high-gain harmonic generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at a subharmonic of the desired output radiation interacts with the electron beam in an energy-modulating section. This energy modulation is then converted into spatial bunching while traversing a dispersive section (a three-dipole chicane). The final step is passage through a radiative section, an undulator tuned to the desired higher harmonic output wavelength. The coherent seed serves to remove noise and can be at a much lower subharmonic of the output radiation, thus eliminating the concerns found in self-amplified spontaneous emission (SASE) and seeded FELs, respectively. Recently, a 3D code that includes multiple frequencies, multiple undulatory (both in quantity and/or type), quadruple magnets, and dipole magnets was developed to easily simulate HGHG. Here, a brief review of the HGHG theory, the code development, the Accelerator Test Facility's (ATF) HGHG FEL experimental parameters, and the parameter analysis from simulations of this specific experiment will be discussed.

  8. Gain narrowing of temporal and spectral widths in the UVSOR-FEL

    SciTech Connect

    Kimura, K.; Yamazaki, J.; Kinoshita, T.

    1995-12-31

    Storage ring free electron laser (SR-FEL) dynamics on the UVSOR-FEL in the visible region has been studied with measurements of the temporal and the spectral widths of the laser micropulse. The micro- and the macro-temporal structures were measured using a dual sweep streak camera. We have also investigated spectral evolution of the laser with a Fabry-Perot etalon. Only a slow sweep function of the streak camera has been used for a fringe pattern formed by the air gap etalon to derive time-dependent variations of the spectral shape. We have measured the time-averaged pulsewidths and linewidths as a function of the ring current. We observed that every macropulse contains internal substructures in both the temporal and the spectral distributions. The internal substructure, however, disappeared when the spectra of more than fifty macropulses were superimposed, and the envelope of the distribution became close to a Gaussian. We have found that the pulsewidth and the linewidth become narrower as the ring current decays. In the gain-switching mode, the micropulse duration and the linewidth at the maximum ring current were 80 ps(FWHM) and 0.3 nm(FWHM), respectively, and decreased down to 20 ps and 0.1 nm just above the threshold current. The temporal and the spectral widths seem to follow the gain behavior. Assuming that the pulsewidth and the linewidth depend on the laser gain, the bandwidth in weakly saturated situation such as SR-FEL is determined by the gain narrowing of the laser amplifier. Because the gain evolution is able to be deduced from the macropulse shape, we can obtain the relation between the bandwidth and an effective gain above the mirror loss. The temporal and the spectral evolutions of the UVSOR-FEL were well explained by the gain narrowing related to a gain integrated from the oscillation build-up to the gain saturation. Detail of the experiment and the analysis will be presented.

  9. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  10. Locking Lasers to RF in an Ultra Fast FEL

    SciTech Connect

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  11. Cavity-mirror degradation in the deep-UV FEL

    SciTech Connect

    Yamada, K.; Yamazaki, T.; Sei, N.

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  12. AN EXPERIMENTAL TEST OF SUPERRADIANCE IN A SINGLE PASS SEEDED FEL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Superradiance and nonlinear evolution of a FEL pulse in a single-pass FEL were experimentally demonstrated at the National Synchrotron Light Source (NSLS) Source Development Laboratory (SDL). The experiment was performed using a 1.5 ps high-brightness electron beam and a 100fs Ti:Sapphire seed laser. The seed laser and electron beam interact in the 10 meter long NISUS undulator with a period of 3.89 cm. The FEL spectrum, energy and pulse length along the undulator were measured. FEL saturation was observed, and gain of more the 200 (relative to seed laser) was measured. Both FEL spectrum widening and pulse length shortening were observed; FEL pulses as short as 65 fs FWHM were measured. The superradiance and nonlinear evolution were also simulated using the numerical code GENESIS1.3 yielding good agreement with the experimental results.

  13. Evolution of longitudinal modes in low voltage FEL

    SciTech Connect

    Stuart, R.A.; Al-Shamma`a, A.; Shaw, A.

    1995-12-31

    A low voltage FEL operating at 130 kV which can be run cw with a continuous electron beam current level up to 12 mA has been constructed for the X-Band microwave range (8-12 GHz). In this poster, we will report on the dependence on time, after the electron beam is switched on, of the growth and competition of those longitudinal modes in the cavity having nett gain.

  14. Simulation of waveguide FEL oscillator using RF linac

    SciTech Connect

    Kuruma, S.; Asakawa, M.; Imasaki, K.

    1995-12-31

    One dimensional multifrequency simulation code for waveguide mode FEL has been developed. Using this simulation code, we analyzed the spontaneous emission from electron micropulse from RF Linac. It is found that some parameters both high and low frequency waveguide modes are growing simultaneously, so the two radiation pulses are generated and amplified. And the experimental data for cavity length detuning of the radiation power are analyzed.

  15. Multi-dimensional free-electron laser simulation codes: a comparison study

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    2000-05-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  16. Multi-dimensional free-electron laser simulation codes : a comparison study.

    SciTech Connect

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    1999-08-23

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  17. Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study

    SciTech Connect

    Nuhn, Heinz-Dieter

    2003-04-28

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  18. Commissioning the FELI linac and UV-FEL facility

    SciTech Connect

    Tomimasu, T.; Saeki, K.; Miyauchi, Y.

    1995-12-31

    The FELI 165-MeV linac and UV-FEL facility are in the commissioning, stage. A thermionic triode gun of the 6-MeV injector emits 500-ps pulses of 2.3A at 22.3125MHz. These pulses are compressed to 60AX 7ps by a 714-MHz prebuncher and a 2856-MHz buncher and seven ETL type accelerating waveguides with a length of 2.93m. The length of the linac including bending sections of two S-type BT systems for two undulators used for IR-FEL oscillations is 46m. The buncher and these accelerating waveguides are powered by two klystrons (E3729, 2856MHz, total 48MW, 24-{mu}s flat top long pulses). The flatness of our klystron modulator pulses is 0.067% at 24-{mu}s duration. An rf-ageing for new four accelerating waveguides will be started in May. An S-type BT line for 165-MeV beam from the linac will be installed in the end of April. A 2.68-m undulator ({lambda}u=4.0cm, N=67, Kmax gap length {ge}16mm) and an optical cavity (Lc=6.72m) will be installed early in July. The beam conditionings for UV-FEL experiments will be started in July.

  19. Lightning control system using high power microwave FEL

    SciTech Connect

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    1995-12-31

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightning control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.

  20. Proposal for FEL Experiments Driven by the National Bureau of Standards’ CW Microtron.

    DTIC Science & Technology

    1985-12-31

    CONTENTS 1. THE NES RACETRACK MICROTRON .......................... 1 II. FEL EXPERIMENTS....................................... 3 *III. SUMMARY...FOR FEL EXPERIMENTS DRIVEN BY THE NATIONAL BUREAU OF STANDARDS’ CW MICROTRON I. The NBS Racetrack Microtron The RTM has not previously received...Proposal for FEL Experiments Driven by the National Bureau of Standards’ CW Microtron CHA-MEI TANG AND P. SPRANGLE Plasma Theory Branch N Plasma Physics

  1. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    SciTech Connect

    Shvets, G.; Wurtele, J.S.; Gardent, D.

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  2. Preliminary evaluation of 1′-[18F]fluoroethyl-β-D-lactose ([18F]FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts

    PubMed Central

    Arumugam, Thiruvengadam; Paolillo, Vincenzo; Young, Daniel; Wen, XiaoXia; Logsdon, Craig D.; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    [18F]FEL may be useful for non-invasive imaging of early-stage pancreatic tumors by PET. The results warrant further studies. PMID:25189831

  3. Water-cooled, in-cavity apertures for high power operation of FEL oscillators

    NASA Astrophysics Data System (ADS)

    Huang, S.; Li, J.; Wu, Y. K.

    2009-07-01

    In an oscillator FEL, higher-order harmonic radiation from wigglers can cause serious damage to the downstream FEL resonator mirror and limit the maximum electron beam current for FEL operation due to thermal overload. These problems can be effectively dealt with for FELs driven by helical wigglers using a system to block off-axis wiggler harmonic radiation. In this paper, we report a new scheme to block the off-axis radiation from helical wigglers using a set of motorized, water-cooled, in-cavity apertures. These apertures can reduce the wiggler harmonic radiation power load on the downstream FEL resonator mirror by two orders of magnitude or more. With these apertures, we were able to operate the Duke FEL with record high intracavity power in infrared and visible wavelengths and extend FEL operation into ultraviolet wavelengths with a large electron beam current. The technique for limiting wiggler harmonic radiation using in-cavity apertures is expected to be useful for other types of FEL oscillators including high average power FEL oscillators driven by superconducting linacs.

  4. Spreader Design for FERMI@Elettra Free Electron Laser

    SciTech Connect

    Zholents, A.; Bacescu, D.; Chow, K.; Diviacco, B.; Ferianis, M.; Di Mitri, S.; Wells, R.

    2007-01-18

    In this note we describe a conceptual design of a part ofthe electron beam delivery system for FERMI@Elettra free electron laser(FEL) located between the end of the linac and the entrance to the FEL.This part includes the emittance diagnostic section, the electron beamswitchyard for two FELs called spreader and matching sections. The designmeets various constrains imposed by the existing and planned buildingboundaries, desire for utilization of existing equipment and demands forvarious diagnostic instruments.

  5. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    DTIC Science & Technology

    2015-12-01

    using the FEL 4-D code developed by the Physics Directed Energy (DE) Group at the Naval Postgraduate School (NPS). Propagation analysis is performed...on the designs using the Atmospheric NPS Code for High Energy Laser Optical Propagation (ANCHOR), also developed by the NPS Physics DE Group, to...and super-sonic anti- ship missiles. 14. SUBJECT TERMS directed energy weapons, high energy lasers, Free Electron Laser, FEL oscillator, FEL

  6. Instructional Designers at Work: A Study of How Designers Design

    ERIC Educational Resources Information Center

    Dicks, Dennis; Ives, Cindy

    2008-01-01

    Instructional design (ID) in its short life has been dominated by behaviourist approaches despite critique focusing on issues of practice as well as theory. Nonetheless, little research has addressed two fundamental questions: "What constitutes good instructional design?" and "How do instructional designers create good design?"…

  7. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy.

  8. Dielectric wakefield accelerator to drive to the future FEL light sourcei.

    SciTech Connect

    Power, J.G.; Zholents, A.; Jing, C.; Kanareykin, A. )

    2011-01-01

    X-ray free-electron lasers (FELs) are expensive instruments and the accelerator holds the largest portion of the cost of the entire facility. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may facilitate reduction of the facility size and significant cost saving. We show that a collinear dielectric wake-field accelerator can, in principle, accelerate low charge and high peak current electron bunches to a few GeV energy with up to 100 kHz bunch repetition rate. Several such accelerators can share the same tunnel and same CW superconducting linac (operating with a few MHz bunch repetition rate) whose sole purpose is feeding the DWAs with wake producing low energy, high charge electron bunches with a desirable periodicity. Then, ten or more x-ray FELs can operate independently, each using its own linac. In this paper, we present an initial case study of a single stage 850 GHz DWA based on a quartz tube with a {approx}100MV/m loaded gradient sufficient to accelerate a 50 pC main electron beam to 2.4 GeV at a 100 kHz bunch repetition rate in just under 30 meters.

  9. Visual Design Principles: An Empirical Study of Design Lore

    ERIC Educational Resources Information Center

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  10. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  11. Some issues and subtleties in numerical simulation of X-ray FEL's

    SciTech Connect

    Fawley, William M.

    2002-09-30

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  12. Some issues and subtleties in numerical simulation of X-ray FELs

    NASA Astrophysics Data System (ADS)

    Fawley, W. M.

    2003-07-01

    Part of the overall design effort for X-ray FELs such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent (i.e. polychromatic) codes such as GINGER (LBNL Report No. LBNL-49625, 2002), GENESIS (Nucl. Instr. and Meth. A 429 (1999) 243), and FAST3D (Nucl. Instr. and Meth. A 429 (1999) 233), including the effects of temporal discretization and the resultant limited spectral bandpass, and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  13. Calculations and Mitigation of THz Mirror Heating at the Jefferson Lab FEL

    SciTech Connect

    G.P. Williams; S.V. Benson; G.H. Biallas; D. Douglas; J.G. Gubeli; G. Neil; Michelle D. Shinn; S. Zhang; O.V. Chubar; P. D. Dumas

    2005-08-21

    Short bunches of electrons in the Jefferson Lab FEL emit multiparticle coherent edge radiation as they enter the dipole prior to the outcoupler mirror. This light is more collimated than synchrotron light and furthermore is modified by interference from the last chicane magnet after the high reflector. This light provides an additional heat load on the outcoupler in a wavelength range it was not designed to handle. We have performed calculations of this effect using a new extension of the Synchrotron Radiation Workshop code which, importantly, takes into account both acceleration and velocity (or Coulomb) terms of the emitted electric field. We have also measured THz properties of some of the mirrors. We show how the addition of a decompression chicane mitigates these problems.

  14. Coherent undulator radiation of electron beam, microbunched for the FEL power outcoupling

    SciTech Connect

    Kulipanov, G.N.; Sokolov, A.S.; Vinokurov, N.A.

    1995-12-31

    The spectral intensity of the coherent undulator radiation of electron beam, preliminarily microbunched by the FEL oscillator for the FEL power outcoupling, is approximately calculated by simple analytic considerations, taking into account the transverse emittances and the energy spread of the microbunched electron beams.

  15. Shot noise startup of the 6 nm SASE FEL at the TESLA test facility

    NASA Astrophysics Data System (ADS)

    Pierini, P.; Fawley, W. M.

    1996-02-01

    We present here the results of an extensive simulation activity for the TESLA SASE FEL. We have used the program GINGER to determine the FEL saturation length and the power fluctuations from shot to shot. The spectral properties of the output power and the correlation functions are investigated and compared with available theoretical models.

  16. On use of time-dependent microwave fields to increase an FEL oscillator efficiency

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Various schemes of a high efficiency FEL oscillator with time-dependent accelerating (or decelerating) microwave field in interaction region are proposed. All the, schemes are based on standard accelerating structure and undulator technology. Feasibility of the proposed schemes is confirmed by results of numerical simulations. Realistic examples of FEL oscillators of infrared and visible wavelength ranges with efficiency about 20 % are presented.

  17. Plasma switch as a temporal overlap tool for pump-probe experiments at FEL facilities

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Murphy, C. D.; Brown, C. R. D.; Cammarata, M.; Döppner, T.; Düsterer, S.; Fritz, D.; Förster, E.; Galtier, E.; Gaudin, J.; Glenzer, S. H.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Laarmann, T.; Lee, H. J.; Lemke, H.; Meiwes-Broer, K.-H.; Moinard, A.; Neumayer, P.; Przystawik, A.; Redlin, H.; Schulz, M.; Skruszewicz, S.; Tavella, F.; Tschentscher, T.; White, T.; Zastrau, U.; Toleikis, S.

    2012-08-01

    We have developed an easy-to-use and reliable timing tool to determine the arrival time of an optical laser and a free electron laser (FEL) pulses within the jitter limitation. This timing tool can be used from XUV to X-rays and exploits high FELs intensities. It uses a shadowgraph technique where we optically (at 800 nm) image a plasma created by an intense XUV or X-ray FEL pulse on a transparent sample (glass slide) directly placed at the pump - probe sample position. It is based on the physical principle that the optical properties of the material are drastically changed when its free electron density reaches the critical density. At this point the excited glass sample becomes opaque to the optical laser pulse. The ultra-short and intense XUV or X-ray FEL pulse ensures that a critical electron density can be reached via photoionization and subsequent collisional ionization within the XUV or X-ray FEL pulse duration or even faster. This technique allows to determine the relative arrival time between the optical laser and the FEL pulses in only few single shots with an accuracy mainly limited by the optical laser pulse duration and the jitter between the FEL and the optical laser. Considering the major interest in pump-probe experiments at FEL facilities in general, such a femtosecond resolution timing tool is of utmost importance.

  18. FEL beam sharing systems for eight user`s stations of the FELI

    SciTech Connect

    Okuma, S.; Saeki, K.; Kobayashi, A.

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI are now operating in the wavelength range of 1-20 {mu}m. Two kinds of FEL beam are sent from the exits of the optical cavities to the diagnostics room through the evacuated optical pipelines whose inner diameter is about 150 mm. From the diagnostic room to user`s stations, FEL beams are delivered through FEL beam sharing systems. Au-coated mirrors with fan-shaped holes are used instead of half mirrors such as ZnSe to share FEL beams to the diagnostics room and the following user`s stations, since maximum diameter of FEL beams is 50 mm in the wavelength range of 1-20 {mu}m and an opening angle of the fan-shaped holes can change a sharing ratio of delivering FEL average power for user`s stations; for instance, 10% to the diagnostics room and 90% to eight user`s stations. Each system enables us to use the same FEL beam simultaneously at the user`s stations. The two beam sharing systems will be installed in the user`s facility early in August.

  19. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  20. Small-signal gain in a gas-loaded FEL

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    At present, existing FEL facilities operate in the infrared and visible ranges of wavelengths. Generation of shorter waves (in the VUV and X-ray region) is of great scientific interest, but this would require a very expensive accelerator which could provide a high-current electron beam in the GeV-range of energies. A promising way to relax requirements on electron energy by introduction of a gas into the optical cavity was proposed nearly ten years ago. For small deviations from the vacuum wavelength, the idea was confirmed in experiments performed in Stanford; however, a detailed theory of such a device is still not developed. We present an analysis of the small-signal gain in a gas-loaded free-electron laser. Multiple scattering of electrons by the atoms of the gas inside the optical cavity is shown to lead to two additional effects, as compared to the case of a vacuum FEL: a loss of coherence between different parts of the electron trajectory and an enhancement of the phase {open_quotes}jitter{close_quotes}. Both effects become increasingly important at short wavelengths and significantly reduce the small-signal gain per pass. In 1D approximation analytical expressions are obtained and numerical calculations are made to estimate beam and undulator parameters necessary for lasing in the vacuum ultraviolet. Hydrogen-filled FELs are shown to have good prospects for this at today`s technological level. To operate in the range of wavelengths 125-140 nm, an electron beam should have an energy above 50 MeV and a good quality: a normalised emittance of the order of 5{pi} mm-mrad and an energy spread below 10{sup -3}. All these parameters are achieveable with modern linacs and photoinjectors.

  1. A Compact X-Band Linac for an X-Ray FEL

    SciTech Connect

    Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya; Nantista, Christopher D.; /SLAC

    2011-09-12

    With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an X-ray FEL.

  2. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  3. Steady State Analysis of Short-wavelength, High-gainFELs in a Large Storage Ring

    SciTech Connect

    Huang, Z.; Bane, K.; Cai, Y.; Chao, A.; Hettel, R.; Pellegrini, C.; /UCLA

    2007-10-15

    Storage ring FELs have operated successfully in the low-gain regime using optical cavities. Discussions of a high-gain FEL in a storage ring typically involve a special bypass to decouple the FEL interaction from the storage ring dynamics. In this paper, we investigate the coupled dynamics of a high-gain FEL in a large storage ring such as PEP and analyze the equilibrium solution. We show that an FEL in the EUV and soft x-ray regimes can be integrated into a very bright storage ring and potentially provides three orders of magnitude improvement in the average brightness at these radiation wavelengths. We also discuss possibilities of seeding with HHG sources to obtain ultra-short, high-peak power EUV and soft x-ray pulses.

  4. Liquid belt radiator design study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Fitzgerald, K. F.

    1986-01-01

    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).

  5. STUDY CARRELS, DESIGNS FOR INDEPENDENT STUDY SPACE.

    ERIC Educational Resources Information Center

    BEYNON, JOHN

    BECAUSE OF THE DEMAND FOR INDIVIDUALIZED INSTRUCTION, NEW SCHOOLS ARE BEING PLANNED WITH LESS CLASSROOM SPACE AND MORE LIBRARY AND INDIVIDUAL STUDY SPACES. THESE NEW SCHOOLS REQUIRE NEW KINDS OF FURNITURE DESIGNED PRIMARILY TO GIVE THE STUDENT A DEGREE OF PRIVACY RATHER THAN TO PROVIDE OPTIMUM CONTROL TO TEACHERS. THE CARREL, PREVIOUSLY USED…

  6. Status of the microwave inverse FEL experiment

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Marshall, T. C.; Wang, Mei; Hirshfield, J. L.

    1999-07-01

    A status report is presented on an inverse free-electron-laser accelerator experiment operating in the microwave regime (1). This proof-of-principle electron accelerator is powered by up to 15 MW of RF power at 2.86 GHz, which propagates in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator: solenoids provide an axial guiding magnetic field. Undulator pitch, which is initially 11.75 cm, is up-tapered to 13.5 cm over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The maximum attainable acceleration gradient with such a design, using 150 MW of RF power at 34 GHz, is estimated to be at least 30 MV/m. Results from bench tests of the structure and undulator are presented, along with preliminary beam measurements.

  7. Relationship of FEL physics to accelerator physics

    SciTech Connect

    Morton, P.L.

    1981-08-01

    The beam dynamics and operation of a free electron laser are discussed after a description of accelerator beam dynamics. Various wiggler field schemes are studied including the constant parameter wiggler, the variable parameter wiggler, and the gain-expanded wiggler. (WHK)

  8. Free electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs

    NASA Astrophysics Data System (ADS)

    Keens, Simon; Rossa, Bernhard; Frei, Marcel

    2016-03-01

    As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.

  9. Two-color FEL amplifier for femtosecond-resolution pump-probe experiments with GW-scale X-ray and optical pulses

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Körfer, M.; Möller, T.; Pflüger, J.; Saldin, E. L.; Schneidmiller, E. A.; Schreiber, S.; Yurkov, M. V.

    2004-08-01

    The paper describes a scheme for pump-probe experiments that could be performed at the soft X-ray SASE FEL at the TESLA Test Facility (TTF) at DESY and determines what additional hardware developments will be required to bring these experiments to fruition. Pump-probe experiments combining pulses from a XFEL and optical femtosecond laser are very attractive for sub-picosecond time-resolved studies. Since the synchronization between the two light sources to an accuracy of 100 fs is not yet solved, it is proposed to derive both femtosecond radiation pulses from the same electron bunch but from two insertion devices. This eliminates the need for synchronization and developing tunable, high power femtosecond quantum laser. In the proposed scheme for pump-probe experiments, GW-level soft X-ray pulse is naturally synchronized with his GW-level optical pulse and cancel jitter. The concept is based on generation of the optical radiation in the master oscillator-power FEL amplifier configuration. An attractive feature of the FEL amplifier scheme is the absence of limitation which would prevent operation in the femtosecond regime in a wide (200- 900 nm) wavelength range. The problem of tunable quantum seed laser can be solved with commercially available long pulse dye laser. An important feature of the proposed scheme is that optical radiator uses the spent electron beam. As a result, saturation mode of operation of the optical FEL does not interfere with the main mode of the soft X-ray SASE FEL operation.

  10. Warm gas TVC design study

    NASA Technical Reports Server (NTRS)

    Moorhead, S. B., Jr.

    1973-01-01

    A warm gas thrust vector control system was studied to optimize the injection geometry for a specific engine configuration, and an injection valve was designed capable of meeting the base line requirements. To optimize injection geometry, studies were made to determine the performance effects of varying injection location, angle, port size, and port configuration. Having minimized the injection flow rate required, a warm gas valve was designed to handle the required flow. A direct drive hydraulic servovalve capable of operating with highly contaminated hydraulic fluid was designed. The valve is sized to flow 15 gpm at 3000 psia and the direct drive feature is capable of applying a spool force of 200 pounds. The baseline requirements are the development of 6 deg of thrust vector control utilizing 2000 F (total temperature) gas for 180 seconds on a 1.37 million pound thrust engine burning LOX and RP-1 at a chamber pressure of 250 psia with a 155 inch long conical nozzle having a 68 inch diameter throat and a 153 inch diameter exit.

  11. Design Evolution Study - Aging Options

    SciTech Connect

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  12. The proton driver design study

    SciTech Connect

    Editors: W. Chou, C.M. Ankenbrandt and E.I. Malamud

    2001-03-08

    In a 1997 summer study, a team led by Steve Holmes formulated a development plan for the Fermilab proton source and described the results in TM-2021. Subsequently, at the end of 1998, a task group was formed to prepare a detailed design of a high intensity facility called the Proton Driver to replace the Fermilab Booster. In the past two years the design effort has attracted more than fifty participants, mostly from the Beams Division. Physicists and engineers from the Technical Division and FESS as well as other institutions, including the Illinois Institute of Technology (IIT), Stanford University, University of Hawaii, CERN in Switzerland, Rutherford Appleton Laboratory in England and the IHEP in Russia also contributed heavily. The results of that effort are summarized in this document describing the design of a 16 GeV synchrotron, two new beam transport lines (a 400 MeV injection line and a 12/16 GeV extraction line), and related improvements to the present negative ion source and the 400 MeV Linac. A construction cost estimate is presented in Appendix A.

  13. Design Issues in Transgender Studies

    PubMed Central

    Emel, Lynda; Hanscom, Brett; Zangeneh, Sahar

    2016-01-01

    Abstract: Transgender individuals constitute an important focus for HIV prevention, but studies in this population present some unique methodologic and operational challenges. We consider issues related to sampling, sample size, number of sites, and trial cost. We discuss relevant design issues for evaluating interventions in both HIV-negative and HIV-infected transgender populations, as well as a method for assessing the impact of an intervention on population HIV incidence. We find that HIV-endpoint studies of transgender individuals will likely require fewer participants but more sites and have higher operational costs than HIV prevention trials in other populations. Because any intervention targeted to transgender individuals will likely include antiretroviral drugs, small scale studies looking at potential interactions between antiretroviral therapy and hormone therapy are recommended. Finally, assessing the impact of an intervention targeted to transgender individuals will require better information on the contribution of such individuals to the population HIV incidence. PMID:27429191

  14. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  15. Performance of the SASE amplifier of the TEU-FEL project

    NASA Astrophysics Data System (ADS)

    Ernst, G. J.; Goldstein, J. C.

    1992-07-01

    The free-electron laser of the TEU-FEL project of the University of Twente will be driven by a photoinjector followed by a racetrack microtron. The injector, which is now under construction, will provide a very high-brightness electron beam with an energy of about 6 MeV. In phase I of the project, experiments are being planned in which this low energy beam from the injector will pass through an undulator and will generate radiation at a wavelength of about 200 μm via the process of self-amplified spontaneous emission (SASE). Numerical simulations of the performance of this source indicate that power levels of about 15 MW (averaged over a micropulse) can be obtained with a 1-m undulator. We present additional results derived from simulation studies of the performance of this device.

  16. MIUS community conceptual design study

    NASA Technical Reports Server (NTRS)

    Fulbright, B. E.

    1976-01-01

    The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.

  17. The FERMI @ Elettra Technical Optimization Study: PreliminaryParameter Set and Initial Studies

    SciTech Connect

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox,Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-08-01

    The goal of the FERMI {at} Elettra Technical Optimization Study is to produce a machine design and layout consistent with user needs for radiation in the approximate ranges 100 nm to 40 nm, and 40 nm to 10 nm, using seeded FEL's. The Study will involve collaboration between Italian and US physicists and engineers, and will form the basis for the engineering design and the cost estimation.

  18. Analysis of FEL-based CeC amplification at high gain limit

    SciTech Connect

    Wang, G.; Litvinenko, V.; Jing, Y.

    2015-05-03

    An analysis of Coherent electron Cooling (CeC) amplifier based on 1D Free Electron Laser (FEL) theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process.

  19. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  20. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine

    PubMed Central

    Tasaniyananda, Natt; Chaisri, Urai; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-01-01

    Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients. PMID:26954254

  1. High Power Operation of the JLab IR FEL Driver Accelerator

    SciTech Connect

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  2. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  3. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  4. Ultrahigh harmonics generation in a FEL with a seed laser

    SciTech Connect

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-12-31

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the {open_quotes}water window{close_quotes}. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today`s technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (!) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency.

  5. Coherent harmonic production using a two-section undulator FEL

    SciTech Connect

    Jaroszynski, D.A.; Prazeres, R.; Glotin, F.

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  6. Optical guiding and sideband suppression in the FEL and IFEL. Yearly technical progress report, July 1993--June 1994

    SciTech Connect

    Marshall, T.C.; Bhattacharjee, A.

    1994-10-01

    Several studies have been made of optical guiding and sideband effects that might occur using the hardware of certain experiments which are scheduled to operate in late 1994 at the Accelerator Test Facility at Brookhaven. We find that experimental observations of optical guiding and sidebanding would be fruitful in connection with the blue-green FEL oscillator experiment. Should the data bear out our expectations (obtained from TDA code runs described below), then some confidence would be established in our tentative conclusion --based upon the code as well as analytic theory-- that neither optical guiding nor sidebands are to be expected in connection with the IFEL accelerator.

  7. Novel Compressor Blade Design Study

    NASA Astrophysics Data System (ADS)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  8. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  9. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; Desalvosouza, L.; Pierini, P.; Scharlemann, E. T.

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10(exp -4) was obtained.

  10. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    SciTech Connect

    Bonifacio, R.; de Salvo Souza, L.; Pierini, P. . Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Milan ); Scharlemann, E.T. )

    1989-01-01

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10{sup -4} was obtained. 3 refs., 6 figs., 1 tab.

  11. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; De Salvo Souza, L.; Pierini, P.; Scharlemann, E. T.

    1990-10-01

    FEL operation at short wavelengths is limited by electron-beam quality, by the availability of mirrors for oscillators and by the availability of input sources for FEL amplifiers. It is possible to use an FEL amplifier as a resonant-frequency tripling device, generating light and strong bunching at the third harmonic of a conventional input source in an initial wiggler section, then using a second wiggler section resonant at the tripled frequency to amplify the short-wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of the electron-beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of the electron-beam power conversion to 80 nm light of nearly 10-4 was obtained.

  12. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  13. Optical properties of mid-infrared FELs from the FELI Facility I

    SciTech Connect

    Kobayashi, A.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility I has succeeded in mid-infrared FEL oscillation at 6 {mu} m using a 30-MeV, 42-A electron beam from the FELI S-band linac in October 31, 1994. The FELI Facility I is composed of a 2-m vertical type undulator ({lambda}u=3.4cm, N=58, K m a x = 55, gap length{ge}14mm) and a 6.72-m optical cavity. It can cover the wavelength range of 5-20{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 50-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, subpulses in FEL macropulse, FEL transverse profile are reported.

  14. Design Alternatives for a Free Electron Laser Facility

    SciTech Connect

    Jacobs, K; Bosch, R A; Eisert, D; Fisher, M V; Green, M A; Keil, R G; Kleman, K J; Kulpin, J G; Rogers, G C; Wehlitz, R; Chiang, T; Miller, T J; Lawler, J E; Yavuz, D; Legg, R A; York, R C

    2012-07-01

    The University of Wisconsin-Madison is continuing design efforts for a vacuum ultraviolet/X-ray Free Electron Laser facility. The design incorporates seeding the FEL to provide fully coherent photon output at energies up to {approx}1 keV. The focus of the present work is to minimize the cost of the facility while preserving its performance. To achieve this we are exploring variations in the electron beam driver for the FEL, in undulator design, and in the seeding mechanism. Design optimizations and trade-offs between the various technologies and how they affect the FEL scientific program will be presented.

  15. Reflection Matrix for Optical Resonators in FEL (Free Electron Lasers) Oscillators

    DTIC Science & Technology

    1988-09-22

    is the dominant factor determining the reflction coefficient. The effects of deflecting tho’ light beam enter as small corrections, of first order in...RESONATORS IN FEL OSCILLATORS I. INTRODUCTION 1-7 Free Electron Lasers (FEL) operating as oscillators require the 8-10 trapping of light pulses between...The simplest oscillator configuration is that of an open resonator with two opposed identical mirrors. The radiation vector potential for this

  16. Gain enhancement plasma-loaded FEL in the presence of beat waves

    SciTech Connect

    Shamamian, A.H.; Gevorgian, L.A.

    1995-12-31

    An expression for the dielectric permittivity of underdense plasma interacting with laser beat waves is derived. It is shown that the presence of beat waves in plasma results in an effective growth of the plasma frequency. The FEL Gain is investigated in the case when the frequency of soft photons weakly depending on the electron beam energy and the synchronism condition is maintained. It is shown that the plasma beat waves lead to the essential increase in FEL gain.

  17. Optimization of single-step tapering amplitude and energy detuning for high-gain FELs

    NASA Astrophysics Data System (ADS)

    Li, He-Ting; Jia, Qi-Ka

    2015-01-01

    We put forward a method to optimize the single-step tapering amplitude of undulator strength and initial energy tuning of electron beam to maximize the saturation power of high gain free-electron lasers (FELs), based on the physics of longitudinal electron beam phase space. Using the FEL simulation code GENESIS, we numerically demonstrate the accuracy of the estimations for parameters corresponding to the linac coherent light source and the Tesla test facility.

  18. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  19. Scaling of gain with energy spread and energy in the PEP FEL

    SciTech Connect

    Fisher, A.S.

    1992-07-13

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread {sigma}{sub {var_epsilon}}. I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field.

  20. Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL

    PubMed Central

    Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Julio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly A.; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2016-01-01

    Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit. PMID:27406404

  1. A study of commuter airplane design optimization

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Wyatt, R. D.; Griswold, D. A.; Hammer, J. L.

    1977-01-01

    Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program.

  2. Student-Designed River Study.

    ERIC Educational Resources Information Center

    Turkall, Sheila Florian

    1996-01-01

    Describes an integrated student-designed investigation in which students explore different aspects of the Chagrin River including the river ecosystem, velocity and average depth, river flooding, water quality, and economic and political factors. (JRH)

  3. New microwave beam position monitors for the TESLA test facility—FEL

    NASA Astrophysics Data System (ADS)

    Kamps, T.; Lorenz, R.

    1998-12-01

    Beam-based alignment is essential for the operation of the SASE-FEL at the TESLA Test Facility Linac. In order to ensure the overlap of the photon beam and the electron beam, the position of the electron beam has to be measured along the undulator beamline with a high resolution. Due to the severe space limitations, a new microwave concept is being considered. It is based on special ridged waveguides coupling by small slots to the magnetic field of the electron beam. The four waveguides and slots of each monitor were split into two symmetric pairs separated in beam direction. All waveguides are about 35 degrees apart in azimuth from the horizontal axis and will be fabricated using electro-discharge machining (EDM). Waveguide-to-coax adaptors were designed to couple the signal of each waveguide into a coaxial cable. The goal is to measure the averaged position of a bunch train in a narrowband receiver with a center frequency of 12 GHz. A prototype of this monitor was built and tested on a testbench, as well as at the CLIC Test Facility at CERN. The paper summarizes the concept, the design, and further improvements of the waveguide monitor.

  4. Multilayer optics to be used as FEL fundamental suppressors for harmonics selection

    NASA Astrophysics Data System (ADS)

    Pelizzo, M. G.; Corso, A. J.; Monaco, G.; Nicolosi, P.; Suman, M.; Zuppella, P.; Cocco, D.

    2011-04-01

    Pump and probe experiments are one of the most attractive and powerful tools offered by a free electron laser facility. In these experiments it is fundamental to pump the system with a particular wavelength (usually the fundamental one) and to probe it with a second wavelength (e.g. higher emitted harmonics). Radiation emitted at the fundamental wavelength is 100 or more times the number of photons emitted in higher harmonics; selection of higher harmonics can be therefore critical. Multilayer (ML) mirrors that are able to provide high reflectivity peak at the desired harmonic wavelength while rejecting the fundamental have been designed and their application is foreseen to the FERMI@Elettra FEL beam transport system. The photon beam will be split into two and one of these will pass through a set of ML mirrors optimized for third harmonics selection; this scheme is also useable to realize a delay line in which the few nanosecond time delay will be controlled by changing the mirrors distance. A set of target wavelengths has been considered and multilayer structure materials have been selected. The MLs have been designed using a method based on the control of standing wave distribution at the fundamental and third harmonics wavelength, using a capping layer as a key element to achieve the willing rejection. Fabrication and test of such structures are foreseen.

  5. RF couplers for normal-conducting photoinjector of high-power CW FEL

    SciTech Connect

    Kurennoy, S.

    2004-01-01

    A high-current emittance-compensated RF photoinjector is a key enabling technology for a high-power CW FEL. A preliminary design of a normal-conducting, 2.5-cell pi-mode, 700-MHz CW RF photoinjector that will be built for demonstration purposes, is completed. This photoinjector will be capable of accelerating a 100-mA electron beam (3 nC per bunch at 35 MHz bunch repetition rate) to 2.7 MeV while providing an emittance below 7 mm-mrad at the wiggler. More than 1 MW of RF power will be fed into the photoinjector cavity through two ridge-loaded tapered waveguides. The waveguides are coupled to the cavity by 'dog-bone' irises cut in a thick wall. Due to CW operation of the photoinjector, the cooling of the coupler irises is a rather challenging thermal management project. This paper presents results of a detailed electromagnetic modeling of the coupler-cavity system, which has been performed to select the coupler design that minimizes the iris heating due to RF power loss in its walls.

  6. Advanced Design Studies. Final report

    SciTech Connect

    Steiner, Don

    2012-12-01

    The ARIES-CS project was a multi-year multi-institutional project to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the sub ject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic field lines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 M W/m2 and the maximum peaking factor was 10.3, below prescribed limits of 10 M W/m2 and 15.6, respectively. The median length of field lines reaching the plates is about 250 m and their average angle of inclination to the surface is 2 deg. Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the field line algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most 1/3 of lost alphas

  7. Comparison of self-fields effects in two-stream electromagnetically pumped FEL with ion-channel guiding and axial magnetic field

    NASA Astrophysics Data System (ADS)

    Saviz, S.; Mehdian, H.; Aghamir, Farzin M.; Ghorannevis, M.; Ashkarran, A. A.

    2011-12-01

    A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.

  8. The new design of the THz streak camera at PSI

    NASA Astrophysics Data System (ADS)

    Gorgisyan, I.; Juranic, P. N.; Ischebeck, R.; Stepanov, A.; Schlott, V.; Pradervand, C.; Patthey, L.; Radovic, M.; Abela, R.; Hauri, C. P.; Monoszlai, B.; Ivanov, R.; Peier, P.; Liu, J.; Togashi, T.; Owada, S.; Ogawa, K.; Katayama, T.; Yabashi, M.; Rivkin, L.

    2015-05-01

    SwissFEL is the Free Electron Laser (FEL) facility under construction at the Paul Scherrer institute (PSI), aiming to provide users with X-ray pulses of lengths down to 2 femtoseconds at standard operation. The measurement of the length of the FEL pulses and their arrival time relative to the experimental laser is crucial for the pump-probe experiments carried out in such facilities. This work presents a new device that measures hard X-ray FEL pulses based on the THz streak camera concept. It describes the prototype setup called pulse arrival and length monitor (PALM) developed at PSI and tested in Spring-8 Angstrom Compact Free Electron Laser (SACLA) in Japan. Based on the first results obtained from the measurements, we introduce the new improved design of the second generation PALM setup that is currently under construction and will be used in SwissFEL photon diagnostics.

  9. Advances on ELIC Design Studies

    SciTech Connect

    Bogacz, S. Alex; Bogacz, S.; Chevtsov, P.; Derbenev, Ya.; Evtushenko, P.; Krafft, G.; Hutton, A.; Li, R.; Merminga, L.; Musson, J.; Yunn, B.; Zhang, Y.; Sayed, H.; Qiang, J.

    2008-06-16

    A conceptual design of a ring-ring electron-ion collider based on CEBAF with a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 has been proposed at JLab to fulfil science requirements. Here, we summarize design progress including collider ring and interaction region optics with chromatic aberration compensation. Electron polarization in the Figure-8 ring, stacking of ion beams in an accumulator-cooler ring, beam-beam simulations and a faster kicker for the circulator electron cooler ring are also discussed.

  10. Removal of cat major allergen (Fel d I) from futon (Japanese bedding) with a home washing machine.

    PubMed

    Hashimoto, M; Nigi, H; Sakaguchi, M; Inouye, S; Miyazawa, H; Watanabe, M; Mitsuseki, M; Yasueda, H; Nitta, H

    1994-06-01

    We evaluated the removal of a cat major allergen (Fel d I) from futons (Japanese bedding) with the use of a large-sized home washing machine. Before and after washing a futon that had been used in a home with a cat, a small amount of cotton was collected from the futon and Fel d I was extracted from the cotton. The levels of Fel d I were assayed by a sandwich enzyme-linked immunosorbent assay (ELISA). We found that washing reduced the Fel d I level in futons by more than 95%. In conclusion, washing of futons is an effective method for elimination of their cat allergens.

  11. Multimission Aircraft Design Study, Payload

    DTIC Science & Technology

    2003-03-01

    number MC2A Multisensor Command and Control Aircraft MC2A-X Multisensor Command and Control Aircraft Experiment MIDS Multifunctional Information and...reconnaissance (ISR) fleet. The MMA is alternately designated as the Multisensor Command and Control Aircraft (MC2A) as indicated in this text. Figure

  12. Design and Evaluation of a Novel Felbinac Transdermal Patch: Combining Ion-Pair and Chemical Enhancer Strategy.

    PubMed

    Liu, Nannan; Song, Wenting; Song, Tian; Fang, Liang

    2016-04-01

    The aim of this study was to design a novel felbinac (FEL) patch with significantly higher (P < 0.05) skin permeation amount than the commercial product SELTOUCH® using ion-pair and chemical enhancer strategy, overcoming the disadvantage of the large application area of SELTOUCH®. Six complexes of FEL with organic amines diethylamine (DEA), triethylamine (TEA), N-(2'-hydroxy-ethanol)-piperdine (HEPP), monoethanolamine (MEtA), diethanolamine (DEtA), and triethanolamine (TEtA) were prepared by ion-pair interaction, and their formation were confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), infared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy ((1)H-NMR). Subsequently, the effect of ion-pair complexes and chemical enhancers were investigated through in vitro and in vivo experiments using rabbit abdominal skin. Results showed that FEL-TEA was the most potential candidate both in isopropyl palmitate (IPP) solution and transdermal patches. Combining use of 10% N-dodecylazepan-2-one (Azone), the optimized FEL-TEA patch achieved a flux of 18.29 ± 2.59 μg/cm(2)/h, which was twice the amount of the product SELTOUCH® (J = 9.18 ± 1.26 μg/cm(2)/h). Similarly, the area under the concentration curve from time 0 to time t (AUC0-t ) in FEL-TEA patch group (15.94 ± 3.58 h.μg/mL) was also twice as that in SELTOUCH® group (7.31 ± 1.16 h.μg/mL). Furthermore, the in vitro skin permeation results of FEL-TEA patch was found to have a good correlation with the in vivo absorption results in rabbit. These findings indicated that a combination of ion-pair and chemical enhancer strategy could be useful in developing a novel transdermal patch of FEL.

  13. A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-02-17

    After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathode RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  14. Output characteristics of SASE-driven short-wavelength FELs

    NASA Astrophysics Data System (ADS)

    Fawley, William M.

    1997-05-01

    This paper investigates various properties of the 'microspikes' associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with P(omega) approaching a constant, asymptotic value. This is in marked contrast to the exponential gain regime where the spectrum steadily narrows, P(omega) grows, and the central wavelength remains constant with z. Via use of a spectrogram diagnostic S(omega, t), it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct 'sinews' whose widths (Delta) (lambda) remain approximately constant but whose central wavelengths can 'chirp' by varying a small extent with t.

  15. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  16. Spherical Focusing Mirror for the VUV-FEL

    SciTech Connect

    Chapman, H N

    2005-09-20

    Based on analysis and ray-tracing that he did, Jacek Krzywinski has suggested that it should be possible to focus the 32 nmVUV-FEL beam down below 0.2 {micro}m spot size with a normal-incidence multilayer-coated spherical mirror. There are advantages to a spherical mirror over an ellipsoid (or near-paraboloid) which are ease of manufacture and alignment. Off-axis aberrations are generally small, since for a beam that underfills the sphere's aperture, the beam itself defines the axis (rather than the optic). The dominant aberration for a sphere is spherical aberration, which decreases with increasing sphere radius of curvature. However, as the radius of curvature increases, so too does the focal length and f-number, and the diffraction-limited spot increases. Hence, as Jacek has pointed out, there is an optimum radius of curvature, to achieve the smallest possible spot, given a beam diameter. This optimum is determined by balancing the spread of the beam due to spherical aberration and the spread due to diffraction.

  17. Submersible Aircraft Concept Design Study

    DTIC Science & Technology

    2010-08-01

    lead to the tips of the wing stalling before the inboard sections, making the aircraft pitch up and potentially stall. In order to combat this, an...the lift being produced by the wing and so reduce hull draft, albeit at the expense of induced drag from the wing . Naval Surface Warfare Center... delta wing design with some blended wing body characteristics was adopted. This approach gives excellent internal volume characteristics whilst

  18. Merits of a sub-harmonic approach to a single-pass, 1.5-{Angstrom} FEL

    SciTech Connect

    Fawley, W.M.; Nuhn, H.D.; Bonifacio, R.; Scharlemann, E.T.

    1995-03-01

    SLAC/SSRL and collaborators elsewhere are studying th physics of a single-pass, FEL amplifier operating in th 1 -- 2 {Angstrom}, wavelength region based on electron beams from the SLAC linac at {approximately} 15 GeV energy. Hoping to reduce the total wiggler length needed to reach saturation when starting from shot noise, we have examined the benefits of making the first part of the wiggler resonant at a subharmonic wavelength (e.g. 4.5 {Angstrom}) at which the gain length can be significantly shorter. This leads to bunching of the electron beam at both the subharmonic and fundaments wavelengths, thus providing a strong coherent ``seed`` for exponential growth of radiation at the fundamental in the second part of the wiggler. Using both multi-harmonic and multi-frequency 2D FEL simulation codes, we have examined the predicted performance of such devices and the sensitivity to electron beam parameters such as current, emittance, and instantaneous energy spread.

  19. X-ray FEL Simulation with the MPP version of the GINGER Code

    NASA Astrophysics Data System (ADS)

    Fawley, William

    2001-06-01

    GINGER is a polychromatic, 2D (r-z) PIC code originally developed in the 1980's to examine sideband growth in FEL amplifiers. In the last decade, GINGER simulations have examined various aspects of x-ray and XUV FEL's based upon initiation by self-amplified spontaneous emission (SASE). Recently, GINGER's source code has been substantially updated to exploit many modern features of the Fortran90 language and extended to exploit multiprocessor hardware with the result that the code now runs effectively on platforms ranging from single processor workstations in serial mode to MPP hardware at NERSC such as the Cray-T3E and IBM-SP in full parallel mode. This poster discusses some of the numerical algorithms and structural details of GINGER which permitted relatively painless porting to parallel architectures. Examples of some recent SASE FEL modeling with GINGER will be given including both existing experiments such as the LEUTL UV FEL at Argonne and proposed projects such as the LCLS x-ray FEL at SLAC.

  20. Validation of the dissemination of spectral irradiance values using FEL lamps

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Graham, Gary D.; Saunders, Robert D.; Yoon, Howard W.; Shirley, Eric L.

    2012-09-01

    Scales of spectral irradiance are disseminated by NIST using assignment of values to FEL lamp standards for defined conditions. These lamp standards can be used for absolute calibrations of irradiance radiometers, or more typically, be used in conjunction with a diffuse reflectance standard to establish a scale of spectral radiance and for subsequent absolute calibrations of radiance radiometers. The NIST FEL standards are valuable artifacts requiring special care. Many users optimize resources by in-house transfer of their primary standard to working standards. There are a number of sources of uncertainty in utilizing FEL lamps, e.g., lamp current, alignment, distance setting, instrument aperture size, drift, scattered light, and interpolation in the wavelength grid for the specified irradiance values. In this work, we validated the transfer activity by ITT of their primary, NIST-traceable FEL lamp standards. A portable irradiance bench that had kinematic mounts for an FEL lamp, on-axis baffle, and three different irradiance radiometers was built, tested, and deployed to ITT in Rochester, NY. We report the results of this comparison activity. An uncertainty budget was developed and it was found that the results agreed well within the combined uncertainties of 1.5% to 1.6% (k = 2).

  1. On a theory of an FEL amplifier with circular waveguide and guiding magnetic field

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    We consider an FEL amplifier with an axisymmetric electron beam, circular waveguide, helical undulator and guiding magnetic field. The presented nonlinear theory of the FEL amplifier is based on Hamiltonian description of particle motion and radiation field representation with Green function method. The space charge fields, energy spread and diffraction effects are taken into consideration. Such an FEL amplifier configuration possesses some peculiarities when it operates in a regime with the negative longitudinal mass (i.e. when{mu}{sup -1}{proportional_to}dv{sub z}/dE < 0). It is shown that in the presence of strong space charge fields, the so-called {open_quotes}negative mass{close_quotes} instability may influence significantly on the FEL amplifier operation resulting in a significant increase in the FEL amplifier efficiency. It is proposed in the presented paper to use the effect of the {open_quotes}negative mass instability{close_quotes} to achieve an effective bunching of the CERN Linear Collider (LIC) driving beam.

  2. Critical Studies in Art and Design Education.

    ERIC Educational Resources Information Center

    Thistlewood, David, Ed.

    This book brings together British and U.S. contributions to the debate of a critical studies approach to art and design education. The approach links practice and appreciation. But critical differences exist in definitions of the term design, with the U.S. recognition of design as the use of principles and elements of art in works and a British…

  3. Design of a multipurpose mirror system for LCLS-2 photon transport studies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Morton, Daniel S.; Cocco, Daniele; Kelez, Nicholas M.; Srinivasan, Venkat N.; Stefan, Peter M.; Zhang, Lin

    2016-09-01

    LCLS-2 is a high repetition rate (up to 1 MHz) superconducting FEL and the soft x-ray branch will operate from 0.2 to 1.3 keV. Over this energy range, there is a large variation in beam divergence and therefore, a large variation in the beam footprint on the optics. This poses a significant problem as it creates thermal gradients across the tangential axis of the mirror, which, in turn, creates non-cylindrical deformations that cannot be corrected using a single actuator mechanical bender. To minimize power loss and preserve the wave front, the optics requires sub-nanometer RMS height errors and sub-microradian slope errors. One of the key components of the beam transport in the SXR beamline is the bendable focusing mirror system, operated in a Kirkpatrick-Baez Configuration. For the first time in the Synchrotron or FEL world, the large bending needed to focus the beam will be coupled with a cooling system on the same mirror assembly, since the majority of the FEL power is delivered through every optic leading up to the sample. To test such a concept, we have developed a mirror bender system to be used as a multipurpose optic. The system has been very accurately modeled in FEA. This, along with very good repeatability of the bending mechanism, makes it ideal for use as a metrology tool for calibrating instruments as well as to test the novel cooling/bending concept. The bender design and the tests carried out on it will be presented.

  4. MTX/ELF II (Microwave Tokamak Experiment/ Electron Laser Facility II) microwave power measurements and calibration for the 2-GW, 140-GHZ, ELF II free-electron laser (FEL)

    SciTech Connect

    Ferguson, S.W.; Stever, R.; Throop, A.; Felker, B.; Franklin, R.

    1989-09-27

    We have developed techniques for measuring the power and frequency of the Electron Laser Facility (ELF) II free-electron laser (FEL) used for plasma heating experiments on the Microwave Tokamak Experiment (MTX). We also have designed a multichannel, 140-GHz receiver capable of measuring FEL power levels from 10 mW to 0.1 {mu}W within an accuracy of {plus minus}1 dB with a 50-dB dynamic range and a 2-ns response time. By using calibrated attenuators, we can measure power levels from 10 GW to 0.1 {mu}W. We sample the microwave output of the FEL in a microwave load tank by using WR-8 or WR-28 stub waveguide antennas. Microwave turning mirrors are used to guide the microwave beam down an evacuated beam tube to the MTX. Stub, WR-8, fundamental-mode, waveguide antennas are used for beam detection on the microwave turning mirrors. Orthogonal, WR-8, stub waveguides are machined into the surfaces of the mirrors and used as directional couplers to measure forward and reflected power from the FEL. The microwave power is then transported to the microwave receiver via a low-loss, over-moded, WR-28 waveguide. A movable modes probe in the microwave load tank is used to scan across the microwave beam to determine the modes content of the beam. Frequency stability of the FEL is measured with a fast, frequency-modulation detector (FFMD) capable of measuring frequency shifts and modulation on a 2- to 4-ns time frame. 2 refs., 14 figs.

  5. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    NASA Astrophysics Data System (ADS)

    Zeng, Han; Xiong, Yongqian; Pei, Yuanji

    2014-11-01

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  6. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  7. Recycler ring conceptual design study

    SciTech Connect

    Jackson, G.

    1995-07-18

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  8. X-ray FEL induced multiphton ionization and molecular dissociation

    NASA Astrophysics Data System (ADS)

    Fang, Li

    2014-05-01

    X-ray Free electron lasers (FELs) enable multiphoton absorption at the core levels which is not possible with conventional light sources. Multiphoton ionization and the subsequent core-hole states relaxation lead to dramatic dynamics of the molecules. We present our experimental as well as theoretical results on multiphoton ionization and molecular fragmentation dynamics with the Linac Coherent Light Source (LCLS) at SLAC National Laboratory. We investigated simple diatomic system, N2 molecules, where we used multiphoton ionization as an internal clock for imaging the dynamics in time and the internuclear separation domain. We observed the modification of the ionization dynamic by varying the x-ray beam parameters and the effect of the spatial distribution on the ionization. We also investigated a complex system, C60, where we developed a full model to simulate the multiphoton ionization that results in various molecular ions and atomic carbon ions up to charge 6+. The calculation agrees well with our experimental results in ion kinetic energy distribution and charge state distribution. Moreover, our model provides further insights into the photoionization and dissociation dynamics as a function of time and molecular size. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Thank T. Osipov, B. Murphy, Z. Jurek, S.-K. Son, R. Santra, and N. Berrah, M. Hoener, O. Gessner, F. Tarantelli, S.T. Pratt, O. Kornilov, C. Buth, M. Güehr, E. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, L. DiMauro, M. Glownia, E. Kukk, S.R. Leone, L. Avaldi, P. Bolognesi, J. Eland, J. Farrell, R. Feifel, L. Frasinski, D.T. Ha, K. Hoffmann, B. McFarland, C. Miron, M. Mucke, R. Squibb, K. Ueda for their contributions to this work.

  9. X-band photoinjector for a chirped-pulse FEL

    SciTech Connect

    Luhmann, Jr., N. C.; Alvis, R. M.; Baldis, H. A.; Hartemann, F. V; Heritage, J. P.; Ho, C. H.; Landahl, E. C.; Li, K.; Troha,A. L.; White, W. E.

    1998-12-15

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. When > 100 coherently phased 5 MeV electron bunches are produced in bursts, the photoinjector should be an ideal electron source for a pulsed, pre-bunched free-electron laser (FEL) operating at 100 GHz. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously mode-locked AlGaAs quantum well laser has been achieved using the X0-band gun rf fields. This novel, GHz repetition rate, sub-picosecond laser system is being developed to replace the more conventional femtosecond Ti: Al2O3 system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.

  10. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    EPA Science Inventory

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  11. Interval Management Display Design Study

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Beyer, Timothy M.; Cooke, Stuart D.; Grant, Karlus A.

    2014-01-01

    In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace.

  12. Design study of an echo-enabled harmonic generation free electron laser for the 24th harmonics

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2017-01-01

    In this paper, we present an echo-enabled harmonic generation (EEHG) scheme to generate a free electron laser (FEL). The EEHG FEL utilizes two modulators and two chicanes that can generate a high harmonic density modulation with a low initial beam energy modulation. Using the beam parameters of a 150-MeV electron accelerator, we show that the EEHG scheme enhances FEL performance and generates coherent radiation with a wavelength of 100 nm. In this scheme, the 150-MeV electron beam is energy-modulated by using two lasers with wavelengths of 800 and 2400 nm. The modulated electron beam is sent to two chicanes whose dispersive strengths are 8.2 and 1.0 mm to convert energy modulation to density modulation. Finally, the density-modulated electron beam is sent to a radiator that is tuned to a wavelength of 100 nm and generates radiation with a peak power of 0.3 GW. We performed simulations of the laser-beam interaction by using the GENESIS code and showed that intense coherent radiation with a wavelength of 100 nm could be achieved from the two seeding lasers under the designed EEHG scheme.

  13. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    NASA Astrophysics Data System (ADS)

    Awazu, Kunio; Kinpara, Takeshi; Tamiya, Eiichi

    2002-05-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm 2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%.

  14. The research facilities of the Duke FEL Laboratory - uniqueness and challenges

    SciTech Connect

    Madey, J.M.J.; Barnett, G.; Burnham, B.

    1995-12-31

    FEL light sources offer unique promise as broadly tuneable, high brightness sources of radiation throughout the electromagnetic spectrum. But the effective utilization of these new light sources also raises a series of unprecedented issues and challenges arising, in general, from the limited number of beamlines which can be supported by a single source. The cost effective utilization of this technology therefore requires emphasis on (1) the realization of one or more truly unique research capabilities, (2) the optimization of access to the research beamlines which are available, and (3) the management and support services required by users to maximize their productivity. The experience we have acquired in the development and operation of the facilities of the Duke FEL Lab provide a point of reference which may prove useful to other research-oriented FEL facilities.

  15. Start-to-end Simulation for the LCLS Xray-FEL

    SciTech Connect

    Emma, Paul J

    2002-08-23

    X-ray FELs, such as the LCLS and TESLA FEL, require electron beams with large peak current and very small emittance. The X-ray peak power, temporal and spectral properties, depend significantly on details of the electron beam phase space distribution. The electron beam distribution is determined by many effects, as the emission process at the gun photo-cathode, bunch compression, acceleration and wakefields within the undulator. Although analytical results can give an estimate of the expected performance, the complexity of the electron beam generation, acceleration and compression can only be evaluated using a numerical simulation of all these processes, a start-to-end simulation. In this presentation we discuss the LCLS X-Ray FEL performance estimated by a start-to-end simulation, and we compare the results with those obtained using a simpler model.

  16. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    PubMed Central

    Engel, Robin; Düsterer, Stefan; Brenner, Günter; Teubner, Ulrich

    2016-01-01

    For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded. PMID:26698053

  17. A Dynamic Feedback Model for High Repetition Rate LINAC-Driven FELS

    SciTech Connect

    Mellado Munoz, M.; Doolittle, L.; Emma, P.; Huang, G.; Ratti, A.; Serrano, C.; Byrd, J. M.

    2012-05-20

    One of the concepts for the next generation of linacdriven FELs is a CW superconducting linac driving an electron beam with MHz repetition rates. One of the challenges for next generation FELs is improve the stability of the xray pulses by improving the shot-to-shot stability of the energy, charge, peak current, and timing jitter of the electron beam. A high repetition rate FEL with a CW linac presents an opportunity to use a variety of broadband feedbacks to stabilize the beam parameters. To understand the performance of such a feedback system, we are developing a dynamic model of the machine with a focus on the longitudinal beam properties. The model is being developed as an extension of the LITrack code and includes the dynamics of the beam-cavity interaction, RF feedback, beam-based feedback, and multibunch effects. In this paper, we present a detailed description of this model.

  18. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    SciTech Connect

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  19. DROPOUT STUDIES, DESIGN AND CONDUCT.

    ERIC Educational Resources Information Center

    SCHRIEBER, DANIEL; AND OTHERS

    ALTHOUGH THE DROPOUT PROBLEM IS ONE OF GREAT CONCERN AT BOTH LOCAL AND NATIONAL LEVELS, IT IS READILY APPARENT THAT THE PROBLEM IS NOT THE SAME EVERYWHERE IN THE COUNTRY. DROPOUT RATES VARY CONSIDERABLY FROM ONE COMMUNITY TO ANOTHER, AND EVEN DIFFER BETWEEN HIGH SCHOOLS IN THE SAME SCHOOL SYSTEM. LIMITATIONS IN PREVIOUS STUDIES OF THE PROBLEM HAVE…

  20. On the Science of Education Design Studies.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; Phillips, D. C.; Towne, Lisa; Feuer, Michael J.

    2003-01-01

    Asserts that design studies, like all scientific work, must comport with guiding scientific principles and provide adequate warrants for their knowledge claims. Provides a framework that links design study research questions as they evolve over time with corresponding research methods, thus allowing an integration of research methods focused on…

  1. Time-resolved protein dynamics using synchronized Ti sapphire regenerative amplifier/infrared FEL

    SciTech Connect

    Stanley, R.J.; Haar, P.; Boxer, S.G.

    1995-12-31

    We have synchronized a femtosecond 5 kHz Ti Sapphire regenerative amplifier (regen) to the Stanford Superconducting Accelerator/Free Electron laser (SCA/FEL) to within 2 picoseconds time jitter. We are using this capability to measure the time resolved spectral evolution of the radical cation band of the initial electron donor from bacterial reaction centers (Rb sphaeroides) after the initiation of electron transfer using a {approximately} 120 fs NIR pulse from the regen. The FEL is used to probe for the appearance of the radical cation band at {approximately} 4 {mu}m.

  2. Analysis of longitudinal bunching in an FEL driven two-beam accelerator

    SciTech Connect

    Lidia, S.; Gardelle, J.; Lefevre, T.; Donohue, J.T.; Gouard, P.; Rullier, J.L.; Vermare, C.

    2000-08-01

    Recent experiments have explored the use of a free-electron laser (FEL) as a buncher for a microwave two-beam accelerator, and the subsequent driving of a standing-wave rf output cavity. Here the authors present a deeper analysis of the longitudinal dynamics of the electron bunches as they are transported from the end of the FEL and through the output cavity. In particular, the authors examine the effect of the transport region and cavity aperture to filter the bunched portion of the beam.

  3. High gain FEL amplification of charge modulation caused by a hadron

    SciTech Connect

    Litvinenko,V.; Ben-Zvi, I.; Hao, Y.; Kayran, D.; Pozdeyev, E.; Wang, G.; Reiche, S.; Shevchenko, O.; Vinokurov, N. A.

    2008-08-24

    In scheme of coherent electron cooling (CeC) [1,2], a modulation of electron beam density induced by a copropagation hadron is amplified in high gain FEL. The resulting amplified modulation of electron beam, its shape, form and its lethargy determine number of important properties of the coherent electron cooling. In this talk we present both analytical and numerical (using codes RON [3] and Genesis [4]) evaluations of the corresponding Green functions. We also discuss influence of electron beam parameters on the FEL response.

  4. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    SciTech Connect

    Ng, C. K.; Bane, K. L.F.

    2015-06-09

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters long in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.

  5. Design study for asteroidal exploitation

    NASA Astrophysics Data System (ADS)

    Adams, Carl; Blissit, Jim; Jarrett, Dave; Sanner, Rob; Yanagawa, Koji

    1985-08-01

    A systematic approach to asteroidal exploitation for the 1990 to 2010 time frame is presented as an initial step toward expanding the use of space beyond the space station by providing a source of lower cost materials. With only a limited amount of information known about the asteroids, reconnaissance and exploration phases to determine the exact locations and compositions of several earth-approaching asteroids are required. Earth-based telescopes are used to locate and study the asteroids, while unmanned probes will return samples of asteroidal material to earth for analysis. After these phases are completed, the retrieval of a 35,000 metric ton piece of the asteroid Anteros is undertaken. A cargo transporter uses magnetoplasmadynamic (MPD) arcjets outbound and a mass-driver using asteroidal material inbound. A crew ship uses ion engines. Low thrust trajectories are used for both spacecraft. A materials processing facility will manufacture propellant pellets and retrieve non-propellant materials for spacecraft use. The cost is 1/10th that to transport the same materials from earth to high earth orbit. The project will cost 25 percent less if done in conjunction with a lunar and Martian base.

  6. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  7. Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics

    NASA Astrophysics Data System (ADS)

    Penn, G.; Reinsch, M.

    2011-09-01

    The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.

  8. Preliminary design study of lunar housing configurations

    NASA Technical Reports Server (NTRS)

    Reynolds, K. H.

    1992-01-01

    A preliminary design study assesses various configurations for habitation of the lunar surface. The study assumes an initial 4-man habitation module expandable to a 48-man concept. Through the numerous coupling combinations of identical modules, five basic configuration types are identified. A design model presents each configuration in light of certain issues. The issues include circulation, internal and external spatial characteristics, functional organizations, and future growth potential. The study discusses the attributes, potentials, and unique requirements of each configuration.

  9. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  10. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    SciTech Connect

    Wang, L.; Ding, Y.; Huang, Z.; /SLAC

    2011-12-14

    -compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.

  11. Design of sub-Angstrom compact free-electron laser source

    NASA Astrophysics Data System (ADS)

    Bonifacio, Rodolfo; Fares, Hesham; Ferrario, Massimo; McNeil, Brian W. J.; Robb, Gordon, R. M.

    2017-01-01

    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.

  12. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  13. Optimizing x-ray mirror thermal performance using variable length cooling for second generation FELs

    NASA Astrophysics Data System (ADS)

    Hardin, Corey L.; Srinivasan, Venkat N.; Amores, Lope; Kelez, Nicholas M.; Morton, Daniel S.; Stefan, Peter M.; Nicolas, Josep; Zhang, Lin; Cocco, Daniele

    2016-09-01

    The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.

  14. Simulation study of electron response amplification in coherent electron cooling

    SciTech Connect

    Hao Y.; Litvinenko, V.N.

    2012-05-20

    In Coherent Electron Cooling (CEC), it is essential to study the amplification of electron response to a single ion in the FEL process, in order to proper align the electron beam and the ion beam in the kicker to maximize the cooling effect. In this paper, we use Genesis to simulate the amplified electron beam response of single ion in FEL amplification process, which acts as Green's function of the FEL amplifier.

  15. First operation of an FEL in same-cell energy recovery mode

    SciTech Connect

    G.R. Neil; S. Benson; G. Biallas; C.L. Bohn; D. Douglas; H.F. Dylla; R. Evans; J. Fugitt; J. Gubeli; R. Hill; K. Jordan; G. Krafft; R. Li; L. Merminga; D. Oepts; P. Piot; J. Preble; Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

    1999-09-01

    The driver for Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers 75% of the electron-beam power and converts it to radio frequency power. As reported in FEL'98, the accelerator operated ''straight-ahead'' to deliver 38 MeV, 1.1 mA cw current for lasing at wavelengths in the vicinity of 5 microns. The waste beam was sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. The machine has now recirculated cw average current up to 4.6 mA and has lased cw with energy recovery up to 1,720 W output at 3.1 microns. This is the first FEL to ever operate in the ''same-cell'' energy recovery mode. Energy recovery offers several advantages (reduced RF power and dramatically reduced radio-nuclide production at the dump) and several challenges will be described. The authors have observed heating effects in the mirrors which will be described. They will also report on the additional performance measurements of the FEL that have been performed and connect those measurements to standard models.

  16. GINGER simulations of short-pulse effects in the LEUTL FEL

    SciTech Connect

    Huang, Z.; Fawley, W.M.

    2001-07-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.

  17. Availability Performance and Considerations for LCLS X-Ray FEL at SLAC

    SciTech Connect

    Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

  18. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    SciTech Connect

    Gandhi, P.; Wurtele, J.; Penn, G.; Reinsch, M.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is used as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.

  19. Effects of undulator interruptions on the performance of high-gain FEL amplifiers

    SciTech Connect

    Kim, K.J.; Xie, M.; Pelligrini, C.

    1995-12-31

    The high-gain amplifiers for short wavelength free electron lasers (FELs) such as the LCLS project require a long undulator. The construction of the undulator as well as the FEL operation would become easier if the undulator could be interrupted with drift sections every few gain lengths. We have investigated the influence of such interruption on the FEL performances. Three effects are considered: (i) the diffraction loss, (ii) the phase mismatch and, (iii) the phase smearing due to velocity spread and to dispersion errors. The effect (i) is the loss during the process in which the optical mode in a section of the undulator leaves the undulator, propagates through the free space and then re-enters and re-adjusts in the next section. The effect (ii) is the fact that the phase of the optical beam is displaced with respect to the electrons density modulation for optical FEL interaction due to the slippage of the electron beam in the interruption region. The effect (iii) is the fact that electrons velocity spread, emittance, and dispersion due to misalignment of the quadrupoles used for additional focusing lead to a reduction of the bunching factor. We present an approximate analysis of these effects. When applied to the LCLS parameters, we find that the effect (i) is negligible, the effect (ii) gives a condition on the length of the drift section, and the effects (iii) are small, but could be non-negligible if there are sufficient number of interruptions.

  20. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    SciTech Connect

    Pavel Evtushenko; James Coleman; Kevin Jordan; J. Michael Klopf; George Neil; Gwyn Williams

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  1. Progress of the commissioning of the DELTA storage ring FEL facility

    SciTech Connect

    Noelle, D.; Geisler, A.; Ridder, M.

    1995-12-31

    This paper will present the status of the ongoing commissioning of the DELTA storage-ring FEL facility. The commissioning of the LINAC started in autumn `94. The operation of the booster started in spring `95, the first stored beam was achieved end of march `95. During the summer of `95 the commissioning of the main storage ring will be started. Simultaneously, the first FEL FELICTA I was built. All FEL hardware is in house, the undulator is already mounted in the storage-ring. Thus first operation of the undulator with electron beam, will take place immediately after the first stored beam in DELTA. Therefore, first spontanous photons are to be expected in late summer `95. As soon as DELTA provides stable and rather reliable operation the experiments on FELICITA I will start. 16 mA total average current in DELTA at 500 MeV should be sufficient to reach the laser threshold in the FEL mode of FELICITA I. Operating the device as an optical klystron should result in lasing at substantial less currents.

  2. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    PubMed

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients.

  3. Sequential design approaches for bioequivalence studies with crossover designs.

    PubMed

    Potvin, Diane; DiLiberti, Charles E; Hauck, Walter W; Parr, Alan F; Schuirmann, Donald J; Smith, Robert A

    2008-01-01

    The planning of bioequivalence (BE) studies, as for any clinical trial, requires a priori specification of an effect size for the determination of power and an assumption about the variance. The specified effect size may be overly optimistic, leading to an underpowered study. The assumed variance can be either too small or too large, leading, respectively, to studies that are underpowered or overly large. There has been much work in the clinical trials field on various types of sequential designs that include sample size reestimation after the trial is started, but these have seen only little use in BE studies. The purpose of this work was to validate at least one such method for crossover design BE studies. Specifically, we considered sample size reestimation for a two-stage trial based on the variance estimated from the first stage. We identified two methods based on Pocock's method for group sequential trials that met our requirement for at most negligible increase in type I error rate.

  4. Simulation of the short pulse effects in the start-up from noise in high-gain FELS

    SciTech Connect

    Hahn, S.J.; Kim, K.J.

    1995-12-31

    The spatio-temporal evolution of high-gain free electron lasers from noise is investigated by 1-D simulation calculation. To understand the discrepancy between the experimental result and theoretical prediction of the self-amplified spontaneous emission (SASE), the strong slippage effect in the short pulse electron beam and the coherent bunched beam effect are considered. When the length over which the electron density varies significantly is comparable or smaller than the FEL wavelength, the initial noise level would be increased due to the enhanced coherence between electrons. With a proper computer modeling of the start-up from noise including the energy spread, the overall performance and characteristics of SASE are studied. This work will be helpful to increase the credibility of the simulation calculation to predict the SASE performance in all wave-length regions.

  5. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  6. Design optimization studies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.

    1993-01-01

    The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.

  7. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  8. Design Considerations for Artificial Pancreas Pivotal Studies.

    PubMed

    Russell, Steven J; Beck, Roy W

    2016-07-01

    The development of artificial pancreas systems has evolved to the point that pivotal studies designed to assess efficacy and safety are in progress or soon to be initiated. These pivotal studies are intended to provide the necessary data to gain clearance from the U.S. Food and Drug Administration, coverage by payers, and adoption by patients and clinicians. Although there will not be one design that is appropriate for every system, there are certain aspects of protocol design that will be considerations in all pivotal studies designed to assess efficacy and safety. One key aspect of study design is the intervention to be used by the control group. A case can be made that the control group should use the currently available best technology, which is sensor-augmented pump therapy. However, an equally, if not more, compelling case can be made that the control intervention should be usual care. In this Perspective, we elaborate on this issue and provide a pragmatic approach to the design of clinical trials of artificial pancreas systems.

  9. Engineering study for ISSTRS design concept

    SciTech Connect

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  10. Fabrication and characterization of cesium telluride photocathodes: A promising electron source for the Los Alamos Advanced FEL

    SciTech Connect

    Kong, S.H.; Nuguyen, D.C.; Sheffield, R.L.; Sherwood, B.A.

    1994-09-01

    The Advanced FEL at Los Alamos embodies a Y{sub 2}CsSb photocathode as an electron source. The photocathode consists of a K{sub 2}CsSb film deposited on a molybdenum plug that can be inserted into the linac of the FEL. However, because K{sub 2}CsSb is easily contaminated and has a half-life of less than a day when in use, switching to a more rugged high quantum efficiency (QE) material such as Cs{sub 2}Te is considered as a means to lengthen the beam time. Cs{sub 2}Te films were deposited on molybdenum plugs in an ultrahigh-vacuum research chamber. Several Cs{sub 2}Te films were measured in-situ for their spectral responses with a bias voltage of 90V; the resulting QEs were 12-18% at a wavelength of 254 nm, 0.2-1.2% at 334 nm, 10{sup {minus}4}-10{sup {minus}3} at 365 nm, and 10{sup {minus}7}-10{sup {minus}5} at 546 nm. For this cathode to be useful, the authors need to frequency quadruple the 1052 mn line of the Nd:YLF laser to achieve a wavelength of 263 mm. Initial studies showed that the 251-nm QE of Cs{sub 2}Te is much less sensitive to contamination than the 526-nm QE of K{sub 2}CsSb. The authors exposed Cs{sub 2}Te photocathodes to air at 10{sup {minus}4} torr for five minutes. As a result, the QEs dropped from 16-18% to 1-2% at 254 mn. However, heating the cathode to 165{degrees}C revived the QE to about 10%. They conclude that Cs{sub 2}Te is a very rugged photocathode material for use in an rf photoelectron source.

  11. Design Study of Small Efficient Cryocoolers.

    DTIC Science & Technology

    1980-11-01

    I~ V 1k I HL I 1 o’i AL A19 9 0 8 (92 DESIGN STUDY OF SMALL EFFICIENT CRYOCOOLERS PHILIPS LABORATORIES A Division of North American Philips...REPORT A PERIOD COVERED Final Technical Report DESIGN SJDY OF SMALL EFFICIENT CRYOCOOLERS April 14 - Sept. 11, 1980 6. PERFORMING ORG. REPORT NUMBER 7... Stirling cycle refrigerator linear motor cryogenic refrigerator for 100K triple-expansion Stirling -cycle refrigerator free-displacer, free-piston

  12. Cancer genome-sequencing study design.

    PubMed

    Mwenifumbo, Jill C; Marra, Marco A

    2013-05-01

    Discoveries from cancer genome sequencing have the potential to translate into advances in cancer prevention, diagnostics, prognostics, treatment and basic biology. Given the diversity of downstream applications, cancer genome-sequencing studies need to be designed to best fulfil specific aims. Knowledge of second-generation cancer genome-sequencing study design also facilitates assessment of the validity and importance of the rapidly growing number of published studies. In this Review, we focus on the practical application of second-generation sequencing technology (also known as next-generation sequencing) to cancer genomics and discuss how aspects of study design and methodological considerations - such as the size and composition of the discovery cohort - can be tailored to serve specific research aims.

  13. Office Design: A Study of Environment.

    ERIC Educational Resources Information Center

    Manning, Peter, Ed.

    Reporting upon a study of environment which was based on the design of office buildings and office space, the study forms part of a continuing program of environmental research sponsored by Pilkington Brothers Limited of St. Helens, England. In this report the word 'environment' is used in the sense of the sum of the physical and emotional…

  14. Experiments on ocular tissue ablation at 5.3 and 6.0 {mu}m with the Los Alamos advanced FEL

    SciTech Connect

    Nguyen, D.C.; Ren, Q.; Hill, R.

    1995-12-31

    We investigated the ablation characteristics of a picosecond free-electron laser and compared its ablation effects on ocular tissues at 5.3 {mu}m and 6.0 {mu}m. The Advanced FEL at Los Alamos, operating in the wavelength range 4-6 {mu}m, was used for this study. The 10-{mu}s macropulse consisted of {approximately}1000 micropulses, each approximately 15 ps in length and separated from one another by 9.2 ns. The FEL beam was passed through a series of attenuator and focused to a 200-{mu}m spot in the sample with a 150-mm f.l. CaF{sub 2} lens. The energy in each macropulse ranged from 5 to 120 mJ. Five transplantable corneal-scleral buttons preserved in corneal storage media were used for this study. The tissue sample was positioned at the focused FEL beam for the ablation, and then fixed for histologic study. Corneal cuts made at 6.0 {mu}m revealed a well-defined ablation boundary. The measured lateral zone of the tissue damage was 11 {+-} 2 {mu}m. The integrity of the adjacent tissue was well maintained. By contrast, the ablation boundary of the corneal cuts made at 5.3 {mu}m appeared to be very disruptive. The collagen fiber near the ablation was thermally denatured and lost its organized structure. The lateral dimension of such effect extended out to 220 {mu}m beyond the intended cut into the surrounding tissues. We concluded that a short-pulsed laser operating at 6 {mu}m may be a potentially effective tool for cutting ocular tissues.

  15. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  16. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength {lambda} = 0.5 {mu}m and providing flush energy E = 1 MJ and brightness 4 x 10{sup 22} W cm{sup -2} sr{sup -1} within steering pulse duration {tau} {approximately} 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R& D.

  17. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen

    PubMed Central

    Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  18. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  19. Preliminary design study of a baseline MIUS

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.

    1977-01-01

    Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.

  20. Deepening Kindergarteners' Science Vocabulary: A Design Study

    ERIC Educational Resources Information Center

    Parsons, Allison Ward; Bryant, Camille Lawrence

    2016-01-01

    Early, effective instruction to introduce both science vocabulary and general academic language may help children build a strong conceptual and linguistic foundation for later instruction. In this study, a design research intervention was employed to expose children to a variety of interrelated science content words to increase both the breadth…

  1. Designing a Futuristic Business Studies Curriculum

    ERIC Educational Resources Information Center

    Mei, Chiew Wye; Siraj, Saedah

    2013-01-01

    This paper is a discourse on the theoretical aspects underpinning the design of the Business Studies curriculum domain. It draws on recent shifts in the business and educational environment of Malaysia, and maps out the methodology and method for expanding and revamping the core ground of the discipline. Using the pragmatic worldview stance, this…

  2. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  3. Overall Rationale and Design of Study.

    ERIC Educational Resources Information Center

    Hegsted, D. Mark

    This paper outlines research designed to establish dietary correlates of malnutrition, and questions the common assumption that high protein foods should be used as dietary supplements in humans. Because thorough investigation of dietary needs in children is ethically unfeasible, squirrel monkeys were used in the research to study the biological…

  4. LST phase A design update study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An update is presented of the Phase A study of the Large Space Telescope (LST), based on changes in guidelines and new data developed subsequent to the Phase A study. The study defines an LST concept based on the broad mission guidelines provided by the Office of Space Science (OSS), the scientific requirements developed by OSS with the scientific community, and an understanding of long range NASA planning current at the time the study was performed. A low cost design approach was followed. This resulted in the use of standard spacecraft hardware, the provision for maintenance at the black box level, growth potential in systems designs, and sharing of shuttle maintenance flights with other payloads (See N73-18449 through N73-18453)

  5. The ENEA F-CUBE Facility: Trends in R.F. driven compact FELs and related diagnostics

    SciTech Connect

    Doria, A.; Gallerano, G.P.; Giovenale, E.

    1995-12-31

    The Frascati FEL Facility F-CUBE (FEL-Compact for User Basic Experiment) currently operates in the mm-wave region providing about 600 hrs of beam time per year to users. This FEL is a low cost compact device intended to be the first step in making the FEL a laboratory tool. It exploits some unique features like short pulses with coherent emission seeding and the dispersion properties of a waveguide resonator at {open_quotes}zero slippage{close_quotes} to provide wide band tunability. The system is presently being upgraded to extend these characteristics into the far infrared. A new NdFeB permanent magnet undulator has been built and magnetic measurements have been performed. FEL tunability in the interval from 400 to 900 pm will be provided by the variation of the undulator gap and of the gap of the planar waveguide in the resonator. Due to the short electron bunch duration coherent spontaneous emission is expected also in this wavelength range. Its effect on the FEL performance will be discussed together with a comparison of different coherent emission mechanisms, like coherent transition radiation (CTR), which can be used as a diagnostic tool.

  6. An empirical study of software design practices

    NASA Technical Reports Server (NTRS)

    Card, David N.; Church, Victor E.; Agresti, William W.

    1986-01-01

    Software engineers have developed a large body of software design theory and folklore, much of which was never validated. The results of an empirical study of software design practices in one specific environment are presented. The practices examined affect module size, module strength, data coupling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices were extracted from 887 FORTRAN modules developed for five flight dynamics software projects monitored by the Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault rate was analyzed using a contingency table procedure. The results show that some recommended design practices, despite their intuitive appeal, are ineffective in this environment, whereas others are very effective.

  7. L- and K-shell emission from X-FEL heated iron

    NASA Astrophysics Data System (ADS)

    Heimann, Philip; Hansen, Stephanie; Loisel, Guillaume; Bailey, James; Gamboa, Eliseo; Glenzer, Siegfried; Mancini, Roberto; Saunders, Alison; Falcone, Roger; Galtier, Eric

    2016-10-01

    At the LCLS MEC instrument, a tightly focused X-ray FEL beam is used to isochorically heat thin iron samples. Two compound refractive lenses produce a focus estimated to be 0.5 microns (FWHM). The L-emission from the hot, solid-density samples is measured by RAP(001) crystal and grating spectrometers. In addition, the K-emission is observed by a Ge(111) crystal spectrometer. The L-shell emission from iron, which is initially photoionized by the X-ray FEL, tests recent measurements indicating higher-than-predicted broadening of the L-shell emission lines. Heating at 7 and 9.2 keV photon energies compares different heating mechanisms.

  8. Intense inverse compton {gamma}-ray source from Duke storage ring FEL

    SciTech Connect

    Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    We suggest using FEL intracavity power in the Duke storage ring fortrays production via Inverse Compton Backscattering (ICB). The OK-4 FEL driven by the Duke storage ring will tens of watts of average lasing power in the UV/VUV range. Average intracavity power will be in kilowatt range and can be used to pump ICB source. The {gamma}-rays with maximum energy from 40 MeV to 200 MeV with intensity of 0.1-5 10{sup 10}{gamma} per second can be generated. In this paper we present expected parameters of {gamma}-ray beam parameters including its intensity and distribution. We discuss influence of e-beam parameters on collimated {gamma}-rays spectrum and optimization of photon-electron interaction point.

  9. FEL gain as a function of phace displacements induced by undulator intersection gaps

    SciTech Connect

    Varfolomeev, A.A.

    1995-12-31

    Gain characteristics are analytically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering. Gain characteristics are analitically considered for FEL based on a multisection undulator with short intersection gaps. It is shown that small phase displacements between laser beam and electron beam respectively caused by the above intersection gaps can seriously change the gain resonance frequency as well as gain curve shape. This effect is different from that of OK and can be used for fast undulator tuning or for its tapering.

  10. OPERATION AND COMMISSIONING OF THE JEFFERSON LAB UV FEL USING AN SRF DRIVER ERL

    SciTech Connect

    R. Legg; S. Benson; G. Biallas; K. Blackburn; J. Boyce; D. Bullard; J. Coleman; C. Dickover; D. Douglas; F. Ellingsworth; P. Evtushenko; F. Hannon; C. Hernandez-Garcia; C. Gould; J. Gubeli; D. Hardy; K. Jordan; M. Klopf; J. Kortze; M. Marchlik; W. Moore; G. Neil; T. Powers; D. Sexton; Michelle D. Shinn; C. Tennant; R. Walker; G. Wilson

    2011-03-01

    We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.

  11. Cryogenic Propellant Management Device: Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

    2010-01-01

    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

  12. Dynamical aspects on FEL interaction in single passage and storage ring devices

    SciTech Connect

    Dattoli, G.; Renieri, A.

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  13. Transformations of Gaussian Light Beams Caused by Reflection in FEL (free Electron Lasers) Resonators

    DTIC Science & Technology

    1988-10-27

    il FILE COPy Naval Research Laboratory Washingon, DC 20375-500 NRL Memorandum Report 6347 ,qJ. o Transformations of Gaussian Light Beams N Caused by...Transformations of 7aussian Light Beams Caused by Reflection in FEL Resonators 12 PERSONAL AUTHOR(S) Riyopoulos,* S., Tang, C.M. and Sprangle, P...34 𔃾-6603 -"I, -,’ SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACTS (Continued) cross-coupling among vector components of the radiation field, caused

  14. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    SciTech Connect

    Amirmadhi, F.; Becker, K.; Brau, C.A.

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  15. Advanced turbine systems: Studies and conceptual design

    SciTech Connect

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  16. A high average current DC GaAs photocathode gun for ERLs and FELs

    SciTech Connect

    C. Hernandez-Garcia; T. Siggins; S. Benson; D. Bullard; H. F. Dylla; K. Jordan; C. Murray; G. R. Neil; Michelle D. Shinn; R. Walker

    2005-05-01

    The Jefferson Lab (JLab) 10 kW IR Upgrade FEL DC GaAs photocathode gun is presently the highest average current electron source operational in the U.S., delivering a record 9.1 mA CW, 350 kV electron beam with 122 pC/bunch at 75 MHz rep rate. Pulsed operation has also been demonstrated with 8 mA per pulse (110 pC/bunch) in 16 ms-long pulses at 2 Hz rep rate. Routinely the gun delivers 5 mA CW and pulse current at 135 pC/bunch for FEL operations. The Upgrade DC photocathode gun is a direct evolution of the DC photocathode gun used in the previous JLab 1 kW IR Demo FEL. Improvements in the vacuum conditions, incorporation of two UHV motion mechanisms (a retractable cathode and a photocathode shield door) and a new way to add cesium to the GaAs photocathode surface have extended its lifetime to over 450 Coulombs delivered between re-cesiations (quantum efficiency replenishment). With each photocathode activation quantum efficiencies above 6% are routinely achieved. The photocathode activation and performance will be described in detail.

  17. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    NASA Astrophysics Data System (ADS)

    Schietinger, T.; Pedrozzi, M.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, B.; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-01

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  18. FERMI @ Elettra -- A Seeded Harmonic Cascade FEL for EUV and SoftX-rays

    SciTech Connect

    Bocchetta, C.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D'Auria,G.; DeNinno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; Wilcox, R.; Zholents, A.; Graves, W.; Ilday, F.O.; Kaertner,F.; Wang, D.; Zwart, T.; Cornacchia, M.; Emma, P.; Huang, Z.; Wu, J.

    2005-09-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10nm, with pulse duration from 40 fs to {approx} 1 ps, peak power GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate >40 nm, and a two stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  19. Physical design study of the CEPC booster

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang

    2016-09-01

    A physical design study of the Circular Electron-Positron Collider (CEPC) booster is reported. The booster provides 120 GeV electron and positron beams for the CEPC collider with top-up injection. The booster is mounted above the collider in the same tunnel. To save cost, the energy of the linac injector for the booster is chosen as 6 GeV, corresponding to a magnetic field of 30.7 Gs. In this paper, the booster lattice is described and optimization of the cell length is discussed. A novel scheme of bypass near the detector of the collider is designed. The extremely low magnetic field caused by low injection energy is studied, and a new ideal of wiggling bands is proposed to mitigate the low-field problem. Beam transfer and injection from the linac to the booster are considered.

  20. DU-AGG pilot plant design study

    SciTech Connect

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule.

  1. Study designs in thoracic surgery research

    PubMed Central

    Terzi, Alberto; Bertolaccini, Luca

    2016-01-01

    In this short review, we’ll try to specify the differences between evaluation procedures of groups of data, as they present to researchers. The way and time data are gathered defines the type of study is going to shape. When we observe a cluster of data without deliberately interfering with the process we mean to evaluate, we perform an observational study. Observational studies are the main topic of this issue. Upon the contrary, experimental studies imply the direct action of the observer on the study population in order to define the role of a given exposure. The topic of experimental study design will be covered in another issue of this series. PMID:27747029

  2. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  3. Preliminary shuttle structural dynamics modeling design study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.

  4. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  5. Microgravity isolation system design: A case study

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. In this paper, extended H(sub 2) synthesis is used to design an active isolator (i.e., controller) for a realistic single-input-multiple-output (SIMO) microgravity vibration isolation problem. Complex mu-analysis methods are used to analyze the isolation system with respect to sensor, actuator, and umbilical uncertainties. The paper fully discusses the design process employed and the insights gained. This design case study provides a practical approach for isolation problems of greater complexity. Issues addressed include a physically intuitive state-space description of the system, disturbance and noise filters, filters for frequency weighting, and uncertainty models. The controlled system satisfies all the performance specifications and is robust with respect to model uncertainties.

  6. MRF study. Part 2: Antenna design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An assessment of the practical feasibility of the design and construction of an antenna to meet the requirements of a conceptual radar system is studied. Both the subscale antenna, nominally 5 by 4 meters in dimensions, and the full scale antenna, taken as nominally 18 by 4 meters in size, were considered. The examination of feasibility was from electrical, mechanical, and thermal standpoints. Fundamental, electrical, microwave design questions applying to both the subscale and the full scale antennas were considered in greater detail than questions of mechanical configuration and thermal design. Layouts were made in the development of preliminary configurations, along with a deployment method, for the subscale antenna in conjunction with an antenna cluster for alternate arrangements of the three pallet configuration. Implementation of the array and support structure and attachment of the array to the support and thermal provision was considered. Results show that a microwave design of antennas that incorporate traveling wave arrays can be effected with the beam scanned to 45 degrees in elevation without occurrence of higher order beams.

  7. AFE ion mass spectrometer design study

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1989-01-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  8. Design study of a flexible diaphragm

    SciTech Connect

    Whatley, M E; Morgan, J G

    1982-10-01

    A design study was made to meet the requirements for a diaphragm for a rotary seal at the discharge end of the Consolidated Fuel Reprocessing Program`s prototypic voloxidizer. Using a computer program called NEPSAP, the study examined thickness, outer radius, corrugation wavelength and corrugation amplitude as variables, and established the general effect of each on stiffness and stresses. The result comprises a basis for the selection of diaphragms for similar applications. Limited experimental measurements of stress validate the stress values calculated by NEPSAP.

  9. Generation of doublet spectral lines at self-seeded X-ray FELs

    NASA Astrophysics Data System (ADS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two (or more) crystals arranged in a series to spectrally filter the SASE radiation at two (or more) closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet (or multiplet) spectral lines. Exploitations of such mode of operation involve any situation where there is a large change in cross-section over a narrow wavelength range. In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating "mode-beat" component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station, which have important applications. In this paper we briefly consider how the doublet structure of the XFEL generation spectra can be monitored by an

  10. VXIbus data collection system -- A design study

    SciTech Connect

    Hacker, U.; Richter, B.; Weinert, A.; Arlt, R.; Lewis, W.; Swinhoe, M.

    1995-12-31

    The German support program has sponsored the work to investigate the VXIbus as integration platform for safeguards instrumentation. This paper will cover the analysis of the user requirements for a VXIbus based monitoring system for integrated safeguards -- primarily for reliable unattended in-field collection of large amounts of data. The goal is to develop a suitable system architecture. The design of the system makes use of the VXIbus standard as the selected hardware platform Based upon the requirement analysis and the overriding need for high reliability and robustness, a systematic investigation of different operating system options, as well as development and integration tools will be considered. For the software implementation cycle high and low level programming tools are required. The identification of the constraints for the programming platform and the tool selection will be presented. Both the strategic approach, the rules for analysis and design work as well as the executive components for the support of the implementation and production cycle are given. Here all the conditions for reliable, unattended and integrated safeguards monitoring systems will be addressed. The definition of the basic and advanced design principles are covered. The paper discusses the results of a study on a system produced to demonstrate a high data rate timer/counter application.

  11. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  12. National accounts manager: Design study. Final report

    SciTech Connect

    Waggoner, J.

    1998-09-01

    This document addresses a typical application -- that of a hypothetical nationwide chain of restaurants. The design study uses the Reference Model for Open Distributed Processing (RM-ODP) as a guideline for specifying standard systems. Far from limiting the study`s usefulness to a particular type of National Account, this guideline is highly portable, and will be useful, with slight modifications only, in similarly specifying systems for other types of customers. A brief list of other applications could include many ``campus`` environments -- government agencies and university systems as well as manufacturers, airports, railyards, ski resorts, apartment complexes, hotels, hospitals, telecommunication facilities, oil fields, irrigation systems, municipal water/sewer systems, and so on.

  13. Protecting count queries in study design

    PubMed Central

    Sarwate, Anand D; Boxwala, Aziz A

    2012-01-01

    Objective Today's clinical research institutions provide tools for researchers to query their data warehouses for counts of patients. To protect patient privacy, counts are perturbed before reporting; this compromises their utility for increased privacy. The goal of this study is to extend current query answer systems to guarantee a quantifiable level of privacy and allow users to tailor perturbations to maximize the usefulness according to their needs. Methods A perturbation mechanism was designed in which users are given options with respect to scale and direction of the perturbation. The mechanism translates the true count, user preferences, and a privacy level within administrator-specified bounds into a probability distribution from which the perturbed count is drawn. Results Users can significantly impact the scale and direction of the count perturbation and can receive more accurate final cohort estimates. Strong and semantically meaningful differential privacy is guaranteed, providing for a unified privacy accounting system that can support role-based trust levels. This study provides an open source web-enabled tool to investigate visually and numerically the interaction between system parameters, including required privacy level and user preference settings. Conclusions Quantifying privacy allows system administrators to provide users with a privacy budget and to monitor its expenditure, enabling users to control the inevitable loss of utility. While current measures of privacy are conservative, this system can take advantage of future advances in privacy measurement. The system provides new ways of trading off privacy and utility that are not provided in current study design systems. PMID:22511018

  14. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  15. Single Mode Optical Waveguide Design Study.

    DTIC Science & Technology

    1981-11-23

    AD-I7g62 CORNING GLASS WORKS NY FIG 20/6 ADA0 21 SINGLE MODE OPTICAL WAVEGUIDE DESIGN STUDY.(U) NOV 81 V A BHAGAVATJLA. D B KECK, R A WESTWIG N00173...Ralph A. Westwig Corning Glass Works ’ 1 / Research and Development-Division Sullivan Park Corning, New York Th document ha bern c -yro vd Spubc rlea...Authors: Venkata A. Bhagavatula Donald B. Keck Ralph A. Westwig Corning Glass Works Research and Development Division Sullivan Park Corning, New York 11

  16. SP-100 radiator design trade study

    NASA Technical Reports Server (NTRS)

    Ewell, Richard

    1992-01-01

    A design trade study of the SP-100 heat rejection subsystem (HRSS) was made. A system code was used to evaluate the sensitivity of the HRSS mass and performance to changes. Variations in heat pipe diameter and cross-section, fin length and thickness, armor thickness, and overall configuration and materials were evaluated. The analysis indicates that the minimum system mass occurs for the case with many small diameter heat pipes, with ducting that maximizes the fraction of the heat pipe evaporator perimeter in contact with it.

  17. Advanced heat receiver conceptual design study

    NASA Technical Reports Server (NTRS)

    Kesseli, James; Saunders, Roger; Batchelder, Gary

    1988-01-01

    Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.

  18. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    SciTech Connect

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O'Hea, James; Nelson, Silke; Pare-Labrosse, Olivier; Oghbaey, Saeed; Miller, R. J. Dwayne; Owen, Robin L.

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

  19. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    DOE PAGES

    Sherrell, Darren A.; Foster, Andrew J.; Hudson, Lee; ...

    2015-01-01

    The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with themore » stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. Lastly, the setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.« less

  20. Genetic Epidemiology of COPD (COPDGene) Study Design

    PubMed Central

    Regan, Elizabeth A.; Hokanson, John E.; Murphy, James R.; Make, Barry; Lynch, David A.; Beaty, Terri H.; Curran-Everett, Douglas; Silverman, Edwin K.; Crapo, James D.

    2010-01-01

    Background COPDGeneis a multicenter observational study designed to identify genetic factors associated with COPD. It will also characterize chest CT phenotypes in COPD subjects, including assessment of emphysema, gas trapping, and airway wall thickening. Finally, subtypes of COPD based on these phenotypes will be used in a comprehensive genome-wide study to identify COPD susceptibility genes. Methods/Results COPDGene will enroll 10,000 smokers with and without COPD across the GOLD stages. Both Non-Hispanic white and African-American subjects are included in the cohort. Inspiratory and expiratory chest CT scans will be obtained on all participants. In addition to the cross-sectional enrollment process, these subjects will be followed regularly for longitudinal studies. A genome-wide association study (GWAS) will be done on an initial group of 4000 subjects to identify genetic variants associated with case-control status and several quantitative phenotypes related to COPD. The initial findings will be verified in an additional 2000 COPD cases and 2000 smoking control subjects, and further validation association studies will be carried out. Conclusions COPDGene will provide important new information about genetic factors in COPD, and will characterize the disease process using high resolution CT scans. Understanding genetic factors and CT phenotypes that define COPD will potentially permit earlier diagnosis of this disease and may lead to the development of treatments to modify progression. PMID:20214461

  1. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  2. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    SciTech Connect

    Vaughan, D.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerful two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.

  3. Inertial Motion Capture Costume Design Study.

    PubMed

    Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad

    2017-03-17

    The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system's architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results.

  4. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  5. Inertial Motion Capture Costume Design Study

    PubMed Central

    Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad

    2017-01-01

    The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337

  6. A few hundred femtosecond FEL with a few kW average and one GW peak power for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Sugimoto, Masayoshi; Yamauchi, Toshihiko; Hayakawa, Taketo; Shizuma, Toshiyuki

    2003-02-01

    The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing of 255fs ultrafast pulse, 6-9% high-efficiency, one gigawatt high peak power, a few kilowatts average power, and wide tenability of medium and far infrared wavelength regions at the same time. The new lasing was named to be "high-degeneracy superradianct lasing of FEL". Using the new lasing, we could realize a powerful and efficient free-electron laser(FEL) for industrial uses, for examples, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. Our discussions on the FEL will cover market-requirements and roadmap for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 10 years, our discovery of the new highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry.

  7. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

  8. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    SciTech Connect

    Cremer, T.; Tatchyn, R.

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  9. FEL indulators with the hollow-ring electron beam

    SciTech Connect

    Epp, V.; Bordovitsyn, V.; Kozhevnikov, A.

    1995-12-31

    A conceptual design of undulators with a modulated longitudinal magnetic field is proposed. The magnetic field is created by use of a solenoid with axis coincident with the electron beam axis. In order to modulate the magnetic field we propose an insertion of a row of alternating ferromagnetic and superconducting diaphragms in line with electron beam. The simulation of two-dimensional distribution of the magnetic field in the plane containing undulator axis was made using the computer code {open_quotes}Mermaid{close_quotes}. The magnetic field was analysed as a function of the system geometry. The dependence on the spacing l between superconducting diaphragms, inner a and outer b radii of the last ones is investigated. Two versions of the device are considered: with ferromagnetic rings made of magnetically soft material placed between the superconducting diaphragms and without them. It is shown that the field modulation depth increases with ratio of b/l and can exceed 50% in case of the ferromagnetic insertions. An approximate analytical calculation of the magnetic field distribution is performed as follows. The axial-symmetrical magnetic field can be defined by the vector potential with only one nonzero component A(r,{phi}) where r and {phi} are the cylindrical coordinates. The solution of the Laplace`s equation is found under the assumption that the magnetic field is infinitely extended and periodic along the z-axis. The boundary conditions are defined by the undulator design. The result is used for the calculation of the particle dynamics and for the investigations of the trajectory stability. The spectral and angular distribution of the radiation emitted from the described systems is found. The estimations show that the proposed design allows to create relatively high magnitude of the magnetic field (up to 1 T) with a short period about 1 cm or less.

  10. Performance of cesium telluride photocathodes as an electron source for the Los Alamos FEL

    SciTech Connect

    Kong, S.H.; Kinross-Wright, J.; Nuguyen, D.C.; Sheffield, R.L.; Weber, M.E.

    1994-09-01

    The Los Alamos Advanced FEL was successfully operated with a Cs{sub 2}Te photocathode driven by a frequency quadrupled Nd:YLF laser as the electron source. Lasing was achieved at 5-6 microns. Cs{sub 2}Te photocathodes with quantum efficiencies of 12-18% at 254 nm were fabricated in an ultrahigh-vacuum chamber and transferred under high vacuum to the FEL. 263 mn light from the drive laser was focused to an 8 mm spot on the center of the photocathode. The authors estimated the operational life time of Cs{sub 2}Te photocathodes to be at least 20 times that for K{sub 2}CsSb photocathodes. The measured dark current of 0.3 mA in an electric field of 22-24 MV/m is well within the acceptable level. The maximum amount of charge extracted was observed to be limited by space charge to about 3.5 nC per micropulse. The emittance of the beam was estimated by fitting the data from a quadrupole scan. The authors measured an emittance that is comparable with the emittance measured with a K{sub 2}CsSb photocathode in their system. A pulse length of 9.3 {+-} 2 ps for 1.3 {+-} 0.2 nC electron micropulses and a pulse length of 7.1 {+-} 0.7 ps for the laser pulses were measured with a streak camera. Therefore, the response of the Cs{sub 2}Te photocathode to the laser pulse is sufficiently fast for FEL applications.

  11. Step-tapered operation of the FEL: Efficiency enhancement and two-colour operation

    SciTech Connect

    Jaroszynski, D.A.; Prazeres, R.; Glotin, F.

    1995-12-31

    We present new measurements of the temporal and spectral properties of radiation produced from two step-tapered undulator free-electron lasers (FEL), CLIO in France and FELIX in the Netherlands. Using a two section undulator with independently adjustable deflection parameters (K) the FEL will operate either with enhanced efficiency and improved spectral properties (with a small positive {Delta}K step) or will operate simultaneously at two frequencies (for large {Delta}K). The first experiments demonstrating at two-colour operation were restricted to a maximum wavelength difference, {delta}{lambda}/{lambda} < 0.15 because of the influence of optical dispersion in the cavity introduced by a dielectric output coupling plate. Using a dispersion-free hole output coupler the maximum {delta}{lambda}/{lambda} has been extended to more than 0.6. We present these new dispersion-less two-colour operation results and show that quenching of one of the wavelength unless the optical cavity is detuned significantly so that the FEL operates with reduced efficiency and lower intracavity power. To overcome this problem a larger fraction of the radiation will need to be coupled in the future to limit the intracavity power. To determine the temporal distribution of the optical radiation at the two wavelengths we have carried out second order autocorrelation measurements using a nonlinear crystal and established that the optical pulses are very short, a few hundreds of femtoseconds long, and overlapping. To establish how the two colours build up in the cavity we have also measured the spectral and temporal evolution of the macropulse. To establish the efficiency over a wide range of {Delta}K values we have measured the electron spectra of the electrons leaving the undulator and find that the efficiency is enhanced significantly over normal undulator operation.

  12. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    NASA Astrophysics Data System (ADS)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  13. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  14. Preliminary systems design study assessment report

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  15. Preliminary Systems Design Study assessment report

    SciTech Connect

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in Volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendixes. 23 refs., 23 figs., 16 tabs.

  16. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  17. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  18. New autocorrelation technique for the IR FEL optical pulse width measurements

    SciTech Connect

    Amirmadhi, F.; Brau, K.A.; Becker, C.

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  19. A new undulator for the extension of the spectral range of the CLIO FEL

    SciTech Connect

    Marcouille, O.; Berset, J.M.; Glotin, F.

    1995-12-31

    We built a new undulator in order to extend the lasing range of the CLIO infrared FEL. Presently, CLIO operates in the wavelength range 2 - 17 {mu}m. Beyond 14 {mu}m, the power decreases rapidly, because of the diffraction losses of the vacuum chamber (7 mm height and 2 m long). Thus, lasing at higher wavelengths implies installing a chamber with a height approximately twice. Then the minimum gap is increased and the maximum deflection parameter, K, is reduced from 2 to 1 : the laser tunability is greatly reduced. This is why a new undulator has been built.

  20. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  1. Made to Measure: Designs Tailored to Your Study Needs.

    PubMed

    Jupiter, Daniel C

    2015-01-01

    What is the best study design? Why would we prefer one to another? With many different designs, what should we be looking for in our critical reading of the literature? We discuss a variety of designs, and their appropriate use.

  2. Chicago Healthy Aging Study: Objectives and Design

    PubMed Central

    Pirzada, Amber; Reid, Kathryn; Kim, Daniel; Garside, Daniel B.; Lu, Brandon; Vu, Thanh-Huyen T.; Lloyd-Jones, Donald M.; Zee, Phyllis; Liu, Kiang; Stamler, Jeremiah; Daviglus, Martha L.

    2013-01-01

    Investigators in the Chicago Healthy Aging Study (CHAS) reexamined 1,395 surviving participants aged 65–84 years (28% women) from the Chicago Heart Association Detection Project in Industry (CHA) 1967–1973 cohort whose cardiovascular disease (CVD) risk profiles were originally ascertained at ages 25–44 years. CHAS investigators reexamined 421 participants who were low-risk (LR) at baseline and 974 participants who were non-LR at baseline. LR was defined as having favorable levels of 4 major CVD risk factors: serum total cholesterol level <200 mg/dL and no use of cholesterol-lowering medication; blood pressure 120/≤80 mm Hg and no use of antihypertensive medication; no current smoking; and no history of diabetes or heart attack. While the potential of LR status in overcoming the CVD epidemic is being recognized, the long-term association of LR with objectively measured health in older age has not been examined. It is hypothesized that persons who were LR in 1967–1973 and have survived to older age will have less clinical and subclinical CVD, lower levels of inflammatory markers, and better physical performance/functioning and sleep quality. Here we describe the rationale, objectives, design, and implementation of this longitudinal epidemiologic study, compare baseline and follow-up characteristics of participants and nonparticipants, and highlight the feasibility of reexamining study participants after an extended period postbaseline with minimal interim contact. PMID:23669655

  3. HEALTHY study rationale, design and methods

    PubMed Central

    2009-01-01

    The HEALTHY primary prevention trial was designed and implemented in response to the growing numbers of children and adolescents being diagnosed with type 2 diabetes. The objective was to moderate risk factors for type 2 diabetes. Modifiable risk factors measured were indicators of adiposity and glycemic dysregulation: body mass index ≥85th percentile, fasting glucose ≥5.55 mmol l-1 (100 mg per 100 ml) and fasting insulin ≥180 pmol l-1 (30 μU ml-1). A series of pilot studies established the feasibility of performing data collection procedures and tested the development of an intervention consisting of four integrated components: (1) changes in the quantity and nutritional quality of food and beverage offerings throughout the total school food environment; (2) physical education class lesson plans and accompanying equipment to increase both participation and number of minutes spent in moderate-to-vigorous physical activity; (3) brief classroom activities and family outreach vehicles to increase knowledge, enhance decision-making skills and support and reinforce youth in accomplishing goals; and (4) communications and social marketing strategies to enhance and promote changes through messages, images, events and activities. Expert study staff provided training, assistance, materials and guidance for school faculty and staff to implement the intervention components. A cohort of students were enrolled in sixth grade and followed to end of eighth grade. They attended a health screening data collection at baseline and end of study that involved measurement of height, weight, blood pressure, waist circumference and a fasting blood draw. Height and weight were also collected at the end of the seventh grade. The study was conducted in 42 middle schools, six at each of seven locations across the country, with 21 schools randomized to receive the intervention and 21 to act as controls (data collection activities only). Middle school was the unit of sample size and

  4. Improving study design for antidepressant effectiveness assessment.

    PubMed

    Naudet, Florian; Millet, Bruno; Reymann, Jean Michel; Falissard, Bruno

    2013-09-01

    Antidepressants effectiveness in major depressive disorder (MDD) is still questioned because the extrapolation of randomized controlled trial (RCT) results to "real life" settings is problematic. The application of the RCT paradigm in a disorder of this type, where global care plays a central role, raises questions regarding the internal and external validity of this type of study. Outcome measurement, attrition rates, the ability of the double-blind design to control for expectations, placebo response, the representativeness of trial participants and publication bias are major methodological pitfalls. This review discusses these issues. It is illustrated using original data and proposes some alternatives for assessing antidepressant effectiveness via different approaches. Some are easy to implement, such as ecological measures, qualitative approaches, improvement of analytical strategy and improvement of blinding procedures. Some are sophisticated, involving temporary deception to deal with the confounding effect of expectations, and they raise ethical issues. Others resort to external validity, this being the case in observational studies. But all are necessary to explore antidepressant effectiveness.

  5. Parameter Selection and Longitudinal Phase Space Simulation for a Single Stage X-Band FEL Driver at 250 MeV

    SciTech Connect

    Sun, Yipeng; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2011-08-19

    Hard x-ray Free electron lasers (FEL) are being built or proposed at many accelerator laboratories as it supports wide range of applications in many aspects. Most of the hard x-ray FEL design is similar with the SLAC Linac Coherent Light Source (LCLS), which features a two (or multiple) stage bunch compression. For the first stage of the bunch compression, usually the beam is accelerated in a lower-frequency RF section (such as S-band for LCLS), and then the longitudinal phase space is linearized by a higher-frequency RF section (harmonic RF, such as X-band for LCLS). In this paper, a compact hard x-ray FEL design is proposed, which is based on X-band RF acceleration and eliminating the need of a harmonic RF. The parameter selection and relation is discussed, and the longitudinal phase space simulation is presented. The FEL coherence condition of the electron beam in the undulators requires a large charge density, a small emittance and small energy spread. The RMS electron bunch length from the injector is in the ps scale, with a bunch charge in the range of hundreds pC to several nC, which means that the current is roughly 0.1 kA. According to the requirement from soft x-ray lasing and hard x-ray lasing, a peak current of 1 kA and 3 kA is needed respectively. Thus the bunch has to be compressed. Usually a two stage bunch compression or multipole stage bunch compression is adopted. The z-correlated energy chirp is normally established by letting the beam pass through a section of RF cavities, with a RF phase off crest. As stated above, S-band RF (3 GHz) acceleration could be applied in this section. Due to the nature of RF acceleration wave, the chirp on the bunch is not linear, but has the RF curvature on it. In order to linearize the energy chirp, a harmonic RF section with higher frequency is needed. For LCLS a short X-band RF section (12 GHz) is used which is a fourth order harmonic. The linearized bunch is then passing by a dispersive region, in which the

  6. Instructional Design: Case Studies in Communities of Practice

    ERIC Educational Resources Information Center

    Keppell, Michael, Ed.

    2007-01-01

    "Instructional Design: Case Studies in Communities of Practice" documents real-world experiences of instructional designers and staff developers who work in communities of practice. "Instructional Design: Case Studies in Communities of Practice" explains the strategies and heuristics used by instructional designers when working…

  7. Design study of the storage ring EUTERPE

    NASA Astrophysics Data System (ADS)

    Xi, Boling; Botman, J. I. M.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    At present the 400 MeV electron storage ring EUTERPE is being constructed at the Eindhoven University of Technology. It is a university project set up for studies of charged particle beam dynamics and applications of synchroton radiation, and for the education of students in these fields. The design of the ring is described in this paper. Considering the requirements of users in different fields, a lattice based on a so-called triple bend achromat structure with a high flexibility has been chosen. With this lattice, different optical options, including the HBSB (high brightness, small beam), the SBL (short bunch length) and the HLF (high light flux) modes can be realized. A small emittance of 7 nm rad and a short bunch length of the order of several mm can be achieved. In the first phase the synchrotron radiation in the UV and XUV region (the critical wavelength is 8.3 nm) will be provided from the regular dipole magnets. Later on, a 10 T wiggler magnet and other special inserters will be added, and other applications and beam dynamics studies will be feasible. Bending magnets are of the parallel faced C configuration. The effective aperture of the vacuum chamber is 2.3 cm (vertical) in the bending magnets and 4.7 cm elsewhere with a working vacuum condition of 10-9 Torr. Collective effects have been studied initially. First calculations indicate that a lifetime of several hours, influenced by the Touschek effect and residual gas scattering will be achievable for a 200 mA beam in the HLF mode for the standard rf parameters. A 70 MeV racetrack microtron will serve as injector for the ring.

  8. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  9. Pharmacokinetic Studies in Infants Using Minimal-risk Study Designs

    PubMed Central

    Autmizguine, J; Benjamin, DK; Smith, PB; Sampson, M; Ovetchkine, P; Cohen-Wolkowiez, M.; Watt, KM

    2015-01-01

    Infants are therapeutic orphans. Many drugs used in infants are used “off-label”, increasing the risk of drug toxicity and suboptimal efficacy in this vulnerable population. This knowledge gap in clinical pharmacology is partly attributed to challenges associated with conducting clinical trials in infants. Consequently, there is a need for novel and efficient study designs more suited to this population. Available literature describing the use of minimal-risk approaches to characterize the pharmacokinetics (PK) of drugs in infants was critically reviewed. Population PK approach with sparse sampling was found to be well established. Other, more recent alternatives, like dried blood spots sampling, opportunistic design, and the use of non-blood matrices are promising strategies with an increasing number of applications in infants. Physiologically based pharmacokinetic modeling provides valuable insight in drug disposition but still needs more prospective validation. Increasing experience with these methods provides understanding of their strengths and limitations and will help improve the design of future PK studies in infants. PMID:24844642

  10. A Case Study in CAD Design Automation

    ERIC Educational Resources Information Center

    Lowe, Andrew G.; Hartman, Nathan W.

    2011-01-01

    Computer-aided design (CAD) software and other product life-cycle management (PLM) tools have become ubiquitous in industry during the past 20 years. Over this time they have continuously evolved, becoming programs with enormous capabilities, but the companies that use them have not evolved their design practices at the same rate. Due to the…

  11. New Study Designs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease. | The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease.

  12. Software design studies emphasizing Project LOGOS

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of a research project on the development of computer software are presented. Research funds of $200,000 were expended over a three year period for software design and projects in connection with Project LOGOS (computer-aided design and certification of computing systems). Abstracts of theses prepared during the project are provided.

  13. Low vision goggles: optical design studies

    NASA Astrophysics Data System (ADS)

    Levy, Ofer; Apter, Boris; Efron, Uzi

    2006-08-01

    Low Vision (LV) due to Age Related Macular Degeneration (AMD), Glaucoma or Retinitis Pigmentosa (RP) is a growing problem, which will affect more than 15 million people in the U.S alone in 2010. Low Vision Aid Goggles (LVG) have been under development at Ben-Gurion University and the Holon Institute of Technology. The device is based on a unique Image Transceiver Device (ITD), combining both functions of imaging and Display in a single chip. Using the ITD-based goggles, specifically designed for the visually impaired, our aim is to develop a head-mounted device that will allow the capture of the ambient scenery, perform the necessary image enhancement and processing, and re-direct it to the healthy part of the patient's retina. This design methodology will allow the Goggles to be mobile, multi-task and environmental-adaptive. In this paper we present the optical design considerations of the Goggles, including a preliminary performance analysis. Common vision deficiencies of LV patients are usually divided into two main categories: peripheral vision loss (PVL) and central vision loss (CVL), each requiring different Goggles design. A set of design principles had been defined for each category. Four main optical designs are presented and compared according to the design principles. Each of the designs is presented in two main optical configurations: See-through system and Video imaging system. The use of a full-color ITD-Based Goggles is also discussed.

  14. Heat source reentry vehicle design study

    NASA Technical Reports Server (NTRS)

    Ryan, R. L.

    1971-01-01

    The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.

  15. Optical alignment and tuning system for the HUST THz-FEL

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Kaifeng; Qin, Bin; Tan, Ping; Fu, Qiang; Wang, Wei; Pei, Yuanji

    2016-11-01

    A compact FEL oscillator with a radiation wavelength of 30 - 100 μm is proposed by HUST and NSRL. The optical cavity is very sensitive to misalignment errors of the mirror, due to its near-concentric and symmetric structure. The magnetic axis of the undulator, the optical axis of the resonator, and the electron beam propagation axis must all be aligned with high precision for achieving saturated lasing. This paper introduces a high-precision, multi-degree-of-freedom controlled optical alignment system, which has the ability to align in the transverse and longitudinal directions. The alignment tolerances are given by theoretical analysis and numerical simulations with three-dimensional FEL code GENESIS and optical propagation code (OPC). To accomplish optical alignment, two auxiliary HeNe laser systems were introduced. By adjusting the HeNe laser beam spot on the wedge, the optical axis can be aligned to the magnetic axis, and the estimated errors meet the tolerances. Finally, the electron beam will be guided through the hole in the central wedge to complete the transverse alignment. The longitudinal alignment and tuning methods are also described.

  16. State-of-the-art thin film X-ray optics for synchrotrons and FEL sources

    NASA Astrophysics Data System (ADS)

    Hertlein, Frank; Wiesmann, Jörg; Michaelsen, Carsten; Störmer, Michael; Seifert, Andreas

    2007-05-01

    Selected aspects of simulation, preparation and characterization of total reflection and multilayer X-ray optics will be discussed. The best multilayer is found by calculating the optical properties of the coating. Sophisticated improvements in deposition technology allow the precise realization of the specified parameters when manufacturing the X-ray optics. The quality of the shape of the substrate for the optics is measured with the aid of profilometry. X-ray reflectometry measures both film thickness as well as their lateral gradient. Last but not least we will be showing results of the development of carbon coatings as total reflection mirrors for FEL (free electron laser) sources. Over the past years we have developed optimized optics for the XUV range up to 200 eV. First FEL irradiation tests have shown that carbon coatings offer high reflectivity > 95%, high radiation stability, good uniformity in thickness and roughness. An optimized coating of two stripes for different beam energies was produced especially for a tomography beamline, where a Ru/C multilayer was chosen for energies between 10 and 22 keV and a W/Si multilayer for energies between 22 and 45 keV.

  17. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    NASA Astrophysics Data System (ADS)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  18. THz wiggler applied for measurements of electron bunch longitudinal structure in FEL

    NASA Astrophysics Data System (ADS)

    Syresin, E.; Kostromin, S.; Krasilnikov, M.; Makarov, R.; Morozov, N.; Petrov, D.

    2015-01-01

    The infrared undulator manufactured at JINR and installed at FLASH in 2007 is used for longitudinal bunch shape measurements in the range of several tenths of a micrometer. The presented electromagnetic wiggler is intended for generating a narrow-band THz radiation to measure the longitudinal electron bunch structure in FELs with an electron energy of several tens of MeV. This is a planar electromagnetic device with six regular periods, each 30 cm long. The K parameter is varied in the range 0.5-7.12 corresponding to the range B = 0.025-0.356 T of the peak field on the axis. The wiggler is simulated for 19.8 MeV/ c corresponding to the possible FEL option at PITZ. The wavelength range is 126 μm - 5.1 mm for this electron beam momentum. The 3D Opera simulations of the THz wiggler are discussed. A new PITZ photocathode laser system is proposed for the optimized performance of the high-brightness electron beam. The main goal is a production of 3D ellipsoidal electron bunches with homogeneous charge density. The electromagnetic wiggler is supposed to be used for measuring the longitudinal shape of these electron bunches.

  19. The Jefferson Lab VUV-FEL at 10 eV and above

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn; Fel Team

    2011-03-01

    We will present details of the vacuum ultraviolet performance of the Jefferson Lab Free Electron Laser. The JLab FEL is oscillator-based and uses a superconducting energy recovered linac for CW RF operation at up to 75 MHz. Lasing at a fundamental wavelength of 372 nm, the third harmonic is at 124 nm, corresponding to a photon energy of 10 eV. The energy per pulse in the fundamental is 20 microJoules, which at 9 MHz yields an average power of 180 Watts. The pulses have a FWHM of order 300 fs, which essentially determines the optical bandwidth. The third harmonic, which is a 0.1 - 1% fraction of this, is considerably brighter than any other source in the region. Further, being an FEL, there is a wide range of tunability in the 1 eV to 15 eV range. Additional reach is possible with increased electron beam energy, and some options will be discussed in the talk. We acknowledge funding from ONR, AFRL and DOE-BES under contract AC05-060R23177.

  20. Simple Limits on Achieving A Quasi-Linear Magnetic Compression for an FEL Driver

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-02-16

    Free electron lasers (FEL) need a very bright electron beam in three dimensions and a high peak charge density. In order to compress an initially longer electron bunch generated from the photoinjector, magnetic bunch compression systems are widely employed. In this paper, first harmonic RF linearization and its associated requirements are reviewed. Meanwhile it is also briefly discussed what is the relation between a proper initial bunch length and main RF frequency, when a harmonic RF linearization is included. Then given a reasonable bunch compression ratio, a proper initial bunch length as a function of the main RF frequency and RF phase is estimated analytically by several approaches, assuming that no harmonic RF section is needed to linearize the energy modulation introduced during main RF acceleration, and at the same time still linearly compress the bunch length. Next the upper limit of the bunch compression ratio in a single stage is evaluated analytically. The analytical relations derived on choosing a proper initial bunch length as a function of main RF frequency are confirmed by numerical simulation. These simple limit provide rough estimations and may be beneficial for choosing bunch compression ratios in different stages of an FEL driver, especially in a first stage bunch compression where there is usually a harmonic RF linearization applied. It may also be useful in evaluating the possibility of low charge operation mode without any harmonic RF linearization, where a shorter initial bunch length can be achieved from the photoinjector.