Sample records for fel pulse format

  1. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  2. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  3. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  4. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

  5. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  6. Pulse Duration of Seeded Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  7. Pulse Duration of Seeded Free-Electron Lasers

    DOE PAGES

    Finetti, Paola; Hoppner, Hauke; Allaria, Enrico; ...

    2017-06-16

    The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seededmore » FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. Finally, the measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.« less

  8. Laser-induced fine structures on silicon exposed to THz-FEL

    NASA Astrophysics Data System (ADS)

    Irizawa, Akinori; Suga, Shigemasa; Nagashima, Takeshi; Higashiya, Atsushi; Hashida, Masaki; Sakabe, Shuji

    2017-12-01

    We found the irradiation of focused linearly polarized terahertz (THz)-waves emitted from THz free-electron laser (THz-FEL) engraved fine periodic stripe structures on the surfaces of single-crystal Si wafers. The experiments were performed at several wavelengths ranging from 50 to 82 μm with a macro-pulse fluence up to 32 J/cm2. The engraved structures are considered equivalent to the laser-induced periodic surface structures (LIPSS) produced by the irradiation of a femtosecond (fs)-pulsed laser in the near-infrared (NIR) region. However, the minimum period of ˜1/25 of the wavelength in the present case of THz-FEL is surely much smaller than those reported so far by use of fs-lasers and no more explicable by the so far proposed mechanisms. The finer LIPSS confirmed by longer-wavelength laser excitation by means of THz-FEL motivates investigation into the universal mechanism of LIPSS formation, which has been under a hot debate for decades.

  9. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  10. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    PubMed Central

    De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-01-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. PMID:26290320

  11. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  12. Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application.

    PubMed

    Kuwada-Kusunose, Takao; Kusunose, Alisa; Wakami, Masanobu; Takebayashi, Chikako; Goto, Haruhiko; Aida, Masahiro; Sakai, Takeshi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu; Hayakawa, Ken; Suzuki, Kunihiro; Sakae, Toshiro

    2017-08-01

    In the application of lasers in dentistry, there is a delicate balance between the benefits gained from laser treatment and the heat-related damage arising from laser irradiation. Hence, it is necessary to understand the different processes associated with the irradiation of lasers on dental materials. To obtain insight for the development of a safe and general-purpose laser for dentistry, the present study examines the physical effects associated with the irradiation of a near-infrared free-electron laser (FEL) on the surface of a commonly used silver dental alloy. The irradiation experiments using a 2900-nm FEL confirmed the formation of a pit in the dental alloy. The pit was formed with one macro-pulse of FEL irradiation, therefore, suggesting the possibility of efficient material processing with an FEL. Additionally, there was only a slight increase in the silver alloy temperature (less than 0.9 °C) despite the long duration of FEL irradiation, thus inferring that fixed prostheses in the oral cavity can be processed by FEL without thermal damage to the surrounding tissue. These results indicate that dental hard tissues and dental materials in the oral cavity can be safely and efficiently processed by the irradiation of a laser, which has the high repetition rate of a femtosecond laser pulse with a wavelength around 2900 nm.

  13. A scheme for a shot-to-shot, femtosecond-resolved pulse length and arrival time measurement of free electron laser x-ray pulses that overcomes the time jitter problem between the FEL and the laser

    NASA Astrophysics Data System (ADS)

    Juranić, P. N.; Stepanov, A.; Peier, P.; Hauri, C. P.; Ischebeck, R.; Schlott, V.; Radović, M.; Erny, C.; Ardana-Lamas, F.; Monoszlai, B.; Gorgisyan, I.; Patthey, L.; Abela, R.

    2014-03-01

    The recent entry of X-ray free electron lasers (FELs) to all fields of physics has created an enormous need, both from scientists and operators, for better characterization of the beam created by these facilities. Of particular interest is the measurement of the arrival time of the FEL pulse relative to a laser pump, for pump-probe experiments, and the measurement of the FEL pulse length. This article describes a scheme that corrects one of the major sources of uncertainty in these types of measurements, namely the jitter in the arrival time of the FEL relative to an experimental laser beam. The setup presented here uses a combination of THz streak cameras and a spectral encoding setup to reduce the effect of an FEL's jitter, leaving the pulse length as the only variable that can affect the accuracy of the pulse length and arrival time measurement. A discussion of underlying principles is also provided.

  14. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  15. GINGER simulations of short-pulse effects in the LEUTL FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Fawley, W.M.

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less

  16. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  17. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  18. Simulations of a FIR Oscillator with Large Slippage parameter at Jefferson Lab for FIR/UV pump-probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Campbell, L. T.; McNeil, B.W.T.

    We previously proposed a dual FEL configuration on the UV Demo FEL at Jefferson Lab that would allow simultaneous lasing at FIR and UV wavelengths. The FIR source would be an FEL oscillator with a short wiggler providing diffraction-limited pulses with pulse energy exceeding 50 microJoules, using the exhaust beam from a UVFEL as the input electron beam. Since the UV FEL requires very short pulses, the input to the FIR FEL is extremely short compared to a slippage length and the usual Slowly Varying Envelope Approximation (SVEA) does not apply. We use a non-SVEA code to simulate this systemmore » both with a small energy spread (UV laser off) and with large energy spread (UV laser on).« less

  19. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  20. Invited Article: Coherent imaging using seeded free-electron laser pulses with variable polarization: First results and research opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capotondi, F.; Pedersoli, E.; Mahne, N.

    2013-05-15

    FERMI-Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a 'seeded' scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline.more » The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump/FEL-probe with two color FEL pulses generated by the same electron bunch.« less

  1. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  2. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less

  3. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  4. Few-cycle pulse generation in an x-ray free-electron laser.

    PubMed

    Dunning, D J; McNeil, B W J; Thompson, N R

    2013-03-08

    A method is proposed to generate trains of few-cycle x-ray pulses from a free-electron laser (FEL) amplifier via a compact "afterburner" extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zs may be obtained. This is approximately two orders of magnitude shorter than that possible for normal FEL amplifier operation. The spectrum is discretely multichromatic with a bandwidth envelope increased by approximately 2 orders of magnitude over unseeded FEL amplifier operation. Such a source would significantly enhance research opportunity in atomic dynamics and push capability toward nuclear dynamics.

  5. Diffraction and pulse slippage in the Boeing 1 kW FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, J.; Wong, R.K.; Colson, W.B.

    1995-12-31

    A four-dimensional simulation in x, y, z, and t, including betatron motion of the electrons, is used to study the combined effects of diffraction, pulse slippage and desynchronism in the Boeing 1 kW FEL oscillator.

  6. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    PubMed

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  7. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE PAGES

    Feng, Y.; Schafer, D. W.; Song, S.; ...

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  8. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Schafer, D. W.; Song, S.

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  9. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  10. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  11. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    2016-01-01

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  12. Experimental setups for FEL-based four-wave mixing experiments at FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian

    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less

  13. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation

    DOE PAGES

    Yang, Bo; Wang, Songwei; Wu, Juhao

    2018-01-01

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especiallymore » under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ~10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Here, due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.« less

  14. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Wang, Songwei; Wu, Juhao

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especiallymore » under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ~10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Here, due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.« less

  15. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation.

    PubMed

    Yang, Bo; Wang, Songwei; Wu, Juhao

    2018-01-01

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especially under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ∼10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.

  16. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIRmore » region with over 100 W/cm-1 output.« less

  17. Nonlinear optics with coherent free electron lasers

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  18. Future of ePix detectors for high repetition rate FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G., E-mail: blaj@slac.stanford.edu; Caragiulo, P.; Carini, G.

    2016-07-27

    Free-electron lasers (FELs) made the imaging of atoms and molecules in motion possible, opening new science opportunities with high brilliance, ultra-short x-ray laser pulses at up to 120 Hz. Some new or upgraded FEL facilities will operate at greatly increased pulse rates (kHz to MHz), presenting additional requirements on detection. We will present the ePix platform for x-ray detectors and the current status of the ePix detectors: ePix100 for low noise applications, ePix10k for high dynamic range applications, and ePixS for spectroscopic applications. Then we will introduce the plans to match the ePix detectors with the requirements of currently plannedmore » high repetition rate FELs (mainly readout speed and energy range).« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  20. Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions

    NASA Astrophysics Data System (ADS)

    Medvedev, N.; Volkov, A. E.; Ziaja, B.

    2015-12-01

    In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.

  1. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Wurtele, J.; Penn, G.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is usedmore » as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.« less

  2. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    PubMed

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  3. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J., E-mail: j.schmidt@hzdr.de; Helm, M.; Technische Universität Dresden, 01062 Dresden

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. Inmore » addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.« less

  4. First results from the commissioning of the FERMI@Elettra free electron laser by means of the Photon Analysis Delivery and Reduction System (PADReS)

    NASA Astrophysics Data System (ADS)

    Zangrando, M.; Cudin, I.; Fava, C.; Gerusina, S.; Gobessi, R.; Godnig, R.; Rumiz, L.; Svetina, C.; Parmigiani, F.; Cocco, D.

    2011-06-01

    The Italian Free Electron Laser (FEL) facility FERMI@Elettra has started to produce photon radiation at the end of 2010. The photon beam is presently delivered by the first undulator chain (FEL1) that is supposed to produce photons in the 100-20 nm wavelength range. A second undulator chain (FEL2) will be commissioned at the end of 2011, and it will produce radiation in the 20-4nm range. The Photon Analysis Delivery and Reduction System (PADReS) was designed to collect the radiation coming from both the undulator chains (FEL1 and FEL2), to characterize and control it, and to redirect it towards the following beamlines. The first parameters that are checked are the pulse-resolved intensity and beam position. For each of these parameters two dedicated monitors are installed along PADReS on each FEL line. In this way it possible to determine the intensity reduction that is realized by the gas reduction system, which is capable of cutting the intensity by up to four orders of magnitude. The energy distribution of each single pulse is characterized by an online spectrometer installed in the experimental hall. Taking advantage of a variable line-spacing grating it can direct the almost-full beam to the beamlines, while it uses a small fraction of the beam itself to determine the spectral distribution of each pulse delivered by the FEL. The first light of FERMI@Elettra, delivered to the PADReS section in late 2010, is used for the first commissioning runs and some preliminary experiments whose results are reported and discussed in detail.

  5. X-ray Free-electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldhaus, J.; /DESY; Arthur, J.

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, andmore » can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.« less

  6. Self-seeded injection-locked FEL amplifer

    DOEpatents

    Sheffield, Richard L.

    1999-01-01

    A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.

  7. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  8. Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors

    DOE PAGES

    Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...

    2018-01-01

    Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less

  9. Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi

    2012-06-22

    Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase belowmore » 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.« less

  10. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    DOE PAGES

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...

    2017-04-10

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  11. A non-invasive online photoionization spectrometer for FLASH2.

    PubMed

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  12. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  13. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin

    NASA Astrophysics Data System (ADS)

    Schöllkopf, Wieland; Gewinner, Sandy; Junkes, Heinz; Paarmann, Alexander; von Helden, Gert; Bluem, Hans P.; Todd, Alan M. M.

    2015-05-01

    A mid-infrared oscillator FEL has been commissioned at the Fritz Haber Institute. The accelerator consists of a thermionic gridded gun, a subharmonic buncher, and two S-band standing-wave copper structures. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (< 50 keV ps) and transverse emittance (< 20 πmm mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 µs. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 µm. A characterization of the FEL performance in terms of pulse energy, bandwidth, and micro-pulse shape of the IR radiation is given. In addition, selected user results are presented. These include, for instance, spectroscopy of bio-molecules (peptides and small proteins) either conformer selected by ion mobility spectrometry or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase.

  14. Possibilities for serial femtosecond crystallography sample delivery at future light sourcesa)

    PubMed Central

    Chavas, L. M. G.; Gumprecht, L.; Chapman, H. N.

    2015-01-01

    Serial femtosecond crystallography (SFX) uses X-ray pulses from free-electron laser (FEL) sources that can outrun radiation damage and thereby overcome long-standing limits in the structure determination of macromolecular crystals. Intense X-ray FEL pulses of sufficiently short duration allow the collection of damage-free data at room temperature and give the opportunity to study irreversible time-resolved events. SFX may open the way to determine the structure of biological molecules that fail to crystallize readily into large well-diffracting crystals. Taking advantage of FELs with high pulse repetition rates could lead to short measurement times of just minutes. Automated delivery of sample suspensions for SFX experiments could potentially give rise to a much higher rate of obtaining complete measurements than at today's third generation synchrotron radiation facilities, as no crystal alignment or complex robotic motions are required. This capability will also open up extensive time-resolved structural studies. New challenges arise from the resulting high rate of data collection, and in providing reliable sample delivery. Various developments for fully automated high-throughput SFX experiments are being considered for evaluation, including new implementations for a reliable yet flexible sample environment setup. Here, we review the different methods developed so far that best achieve sample delivery for X-ray FEL experiments and present some considerations towards the goal of high-throughput structure determination with X-ray FELs. PMID:26798808

  15. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  16. Analyzing the effect of slotted foil on radiation pulse profile in a mode locked afterburner X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Hur, Min Sup; Chung, Moses

    2017-06-01

    Extremely short X-ray pulses in the attosecond (as) range are important tools for ultrafast dynamics, high resolution microscopy, and nuclear dynamics study. In this paper, we numerically examine the generation of gigawatt (GW) mode-locked (ML) multichromatic X-rays using the parameters of the Pohang Accelerator Laboratory (PAL)-X-ray free electron laser (XFEL), the Korean XFEL. In this vein, we analyze the ML-FEL [Thompson and McNeil, Phys. Rev. Lett. 100, 203901 (2008)] and mode-locked afterburner (MLAB) FEL [Dunning et al., Phys. Rev. Lett. 110, 104801 (2013)] schemes on the hard X-ray beamline of the PAL-XFEL. Using the ML scheme, we numerically demonstrate a train of radiation pulses in the hard X-ray (photon energy ˜12.4 keV) with 3.5 GW power and 16 as full-width half maximum (FWHM) pulse duration. On the other hand, using the MLAB scheme, a train of radiation pulses with 3 GW power and 1 as FWHM (900 zs in RMS) pulse duration has been obtained at 12.4 keV photon energy. Both schemes generate broadband, discrete, and coherent spectrum compared to the XFEL's narrowband spectrum. Furthermore, the effect of slotted foil is also studied first time on the MLAB-FEL output. Numerical comparisons show that the temporal structure of the MLAB-FEL output can be improved significantly by the use of the slotted foil. Such short X-ray pulses at XFEL facilities will allow the studies of electron-nuclear and nuclear dynamics in atoms or molecules, and the broadband radiation will substantially improve the efficiency of the experimental techniques such as X-ray crystallography and spectroscopy, paving the way for outstanding progress in biology and material science.

  17. Short-wavelength free-electron laser sources and science: a review.

    PubMed

    Seddon, E A; Clarke, J A; Dunning, D J; Masciovecchio, C; Milne, C J; Parmigiani, F; Rugg, D; Spence, J C H; Thompson, N R; Ueda, K; Vinko, S M; Wark, J S; Wurth, W

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

  18. Statistical properties of the radiation from SASE FEL operating in the linear regime

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents comprehensive analysis of statistical properties of the radiation from self amplified spontaneous emission (SASE) free electron laser operating in linear mode. The investigation has been performed in a one-dimensional approximation, assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied: field correlations, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and photoelectric counting statistics of SASE FEL radiation. It is shown that the radiation from SASE FEL operating in linear regime possesses all the features corresponding to completely chaotic polarized radiation.

  19. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  20. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation

    NASA Astrophysics Data System (ADS)

    Zhaunerchyk, V.; Kamińska, M.; Mucke, M.; Squibb, R. J.; Eland, J. H. D.; Piancastelli, M. N.; Frasinski, L. J.; Grilj, J.; Koch, M.; McFarland, B. K.; Sistrunk, E.; Gühr, M.; Coffee, R. N.; Bostedt, C.; Bozek, J. D.; Salén, P.; Meulen, P. v. d.; Linusson, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Richter, R.; Prince, K. C.; Takahashi, O.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Feifel, R.

    2015-12-01

    Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. The results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).

  1. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation

    DOE PAGES

    Zhaunerchyk, V.; Kaminska, M.; Mucke, M.; ...

    2015-10-28

    Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. Furthermore, the results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).

  2. A theory for optical wavelength control in short pulse free electron laser oscillators

    NASA Astrophysics Data System (ADS)

    Wilkenson, Wade F.

    1993-06-01

    The future safety of the U.S. Navy warship depends on the development of a directed energy self-defense system to keep pace with the ever-improving technology of anti-ship missiles. Two candidates are reviewed. The free electron laser (FEL) has the most advantages, but a chemical laser proposed by TRW is ready for installation on existing ships. Initial testing of issues related to directed energy use at sea can be conducted with the chemical laser. When the technology of the FEL matures, it can replace the chemical laser to provide the best possible defense in the shortest period of time. Continuous tunability is a key advantage of the FEL over the conventional laser. But since the output wavelength is dependent on electron energy, it is subject to random fluctuations originating from the beam source. At the Stanford University Superconducting (SCA) Free Electron Laser (FEL) Facility, the effects are minimized through negative feedback by changing the input electron energy proportional to the observed wavelength drift. The process is simulated by modifying a short pulse FEL numerical program to allow the resonant wavelength to vary over many passes. The physical effects behind optical wavelength control are explained. A theory for the preferential nature of the FEL to follow the resonant wavelength from longer to shorter wavelengths is presented. Finally, the response of the FEL to a rapidly changing resonant wavelength is displayed as a transfer function for the system.

  3. Reflection Matrix for Optical Resonators in FEL (Free Electron Lasers) Oscillators

    DTIC Science & Technology

    1988-09-22

    is the dominant factor determining the reflction coefficient. The effects of deflecting tho’ light beam enter as small corrections, of first order in...RESONATORS IN FEL OSCILLATORS I. INTRODUCTION 1-7 Free Electron Lasers (FEL) operating as oscillators require the 8-10 trapping of light pulses between...The simplest oscillator configuration is that of an open resonator with two opposed identical mirrors. The radiation vector potential for this

  4. Generation of coherent two-color pulses at two adjacent harmonics in a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhouyu; Li, Heting; Jia, Qika

    2018-02-01

    The growing requirements of pump-probe techniques and nonlinear optics experiments greatly promote the studies of two-color free-electron lasers (FELs). We propose a new method to generate coherent two-color pulses in a high-gain harmonic generation (HGHG) FEL. In this scheme, an initial tilted electron beam is sent though the modulator and dispersive section of an HGHG FEL to generate the bunching at harmonics of the seed laser. Then a transverse gradient undulator (TGU) is adopted as the radiator and in such radiator, only two separated fractions of the tilted beam will resonate at two adjacent harmonics of the seed laser and are enabled to emit the coherent two-color pulses simultaneously. The time separation between the two pulses are on the order of hundreds of femtoseconds, and can be precisely controlled by varying the tilted amplitude of the electron beam and/or the transverse gradient of the TGU radiator. Numerical simulations confirm the validity and feasibility of this scheme in the extreme ultraviolet waveband.

  5. Laser-plasma accelerator-based single-cycle attosecond undulator source

    NASA Astrophysics Data System (ADS)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  6. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    NASA Astrophysics Data System (ADS)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  7. Method for separating FEL output beams from long wavelength radiation

    DOEpatents

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  8. Energy sweep compensation of induction accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, S.E.; Caporaso, G.J.; Chen, Y-J

    1990-09-12

    The ETA-II linear induction accelerator (LIA) is designed to drive a microwave free electron laser (FEL). Beam energy sweep must be limited to {plus minus}1% for 50 ns to limit beam corkscrew motion and ensure high power FEL output over the full duration of the beam flattop. To achieve this energy sweep requirement, we have implemented a pulse distribution system and are planning implementation of a tapered pulse forming line (PFL) in the pulse generators driving acceleration gaps. The pulse distribution system assures proper phasing of the high voltage pulse to the electron beam. Additionally, cell-to-cell coupling of beam inducedmore » transients is reduced. The tapered PFL compensates for accelerator cell and loading nonlinearities. Circuit simulations show good agreement with preliminary data and predict the required energy sweep requirement can be met.« less

  9. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    NASA Astrophysics Data System (ADS)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  10. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separatedmore » by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.« less

  11. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  12. Short-wavelength free-electron laser sources and science: a review

    NASA Astrophysics Data System (ADS)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  13. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  14. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  15. Towards short wavelengths FELs workshop

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  16. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  17. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  18. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  19. Design of sub-Angstrom compact free-electron laser source

    NASA Astrophysics Data System (ADS)

    Bonifacio, Rodolfo; Fares, Hesham; Ferrario, Massimo; McNeil, Brian W. J.; Robb, Gordon R. M.

    2017-01-01

    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.

  20. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

  1. Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Y.; She, Y.; Murphy, J.B.

    2011-03-28

    We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less

  2. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  3. Novosibirsk Free Electron Laser: Recent Achievements and Future Prospects

    NASA Astrophysics Data System (ADS)

    Shevchenko, O. A.; Arbuzov, V. S.; Vinokurov, N. A.; Vobly, P. D.; Volkov, V. N.; Getmanov, Ya. V.; Davidyuk, I. V.; Deychuly, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Knyazev, B. A.; Kolobanov, E. I.; Kondakov, A. A.; Kozak, V. R.; Kozyrev, E. V.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Krutikhin, S. A.; Medvedev, L. E.; Motygin, S. V.; Ovchar, V. K.; Osipov, V. N.; Petrov, V. M.; Pilan, A. M.; Popik, V. M.; Repkov, V. V.; Salikova, T. V.; Sedlyarov, I. K.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Tribendis, A. G.; Cheskidov, V. G.; Chernov, K. N.; Shcheglov, M. A.

    2017-01-01

    Free electron lasers (FELs) are unique sources of electromagnetic radiation with tunable wavelength. A high-power FEL has been created at the G. I.Budker Institute for Nuclear Physics. Its radiation frequency can be tuned over a wide range in the terahertz and infrared spectral ranges. As the source of electron bunches, this FEL uses a multi-turn energy-recovery linac, which has five straight sections. Three sections are used for three FELs which operate in different wavelength ranges (90-240 μm for the first, 37-80 μm for the second, and 5-20 μm for the third ones). The first and the second FELs were commissioned in 2003 and 2009, respectively. They are used for various applied and research problems now. The third FEL is installed on the last, forth accelerator loop, in which the electron energy is the maximum. It comprises three undulator sections and a 40 m optical cavity. The first lasing of this FEL was obtained in the summer of 2015. The radiation wavelength was 9 μm and the average power was about 100 W. The design power is 1 kW at a pulse repetition rate of 3.75 MHz. Radiation of the third FEL will be delivered to user stations from the protected hall in the near future. The third FEL commissioning results are presented and the current status of the first and second FELs as well as their future development prospects are described.

  4. A high-average-power FEL for industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less

  5. Serial snapshot crystallography for materials science with SwissFEL

    DOE PAGES

    Dejoie, Catherine; Smeets, Stef; Baerlocher, Christian; ...

    2015-04-21

    New opportunities for studying (sub)microcrystalline materials with small unit cells, both organic and inorganic, will open up when the X-ray free electron laser (XFEL) presently being constructed in Switzerland (SwissFEL) comes online in 2017. Our synchrotron-based experiments mimicking the 4%-energy-bandpass mode of the SwissFEL beam show that it will be possible to record a diffraction pattern of up to 10 randomly oriented crystals in a single snapshot, to index the resulting reflections, and to extract their intensities reliably. The crystals are destroyed with each XFEL pulse, but by combining snapshots from several sets of crystals, a complete set of datamore » can be assembled, and crystal structures of materials that are difficult to analyze otherwise will become accessible. Even with a single shot, at least a partial analysis of the crystal structure will be possible, and with 10–50 femtosecond pulses, this offers tantalizing possibilities for time-resolved studies.« less

  6. Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS

    DOE PAGES

    Blaj, G.; Kenney, C. J.; Dragone, A.; ...

    2017-10-11

    Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less

  7. Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G.; Kenney, C. J.; Dragone, A.

    Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultrafast, X-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori, allowing single-event decomposition of pile-up and spectroscopic photon counting. We designed a pulse function and demonstrated that the signal amplitude (i.e., proportional to the detected energy and obtained from fitting with the pulse function), rise time, and pulse height aremore » interrelated, and at short peaking times, the pulse height and pulse area are not optimal estimators for detected energy; instead, the signal amplitude and rise time are obtained for each pulse by fitting, thus removing the need for pulse shaping. By avoiding pulse shaping, rise times of tens of nanoseconds resulted in reduced pulse pile-up and allowed decomposition of remaining pulse pile-up at photon separation times down to hundreds of nanoseconds while yielding time-of-arrival information with the precision of 10 ns. Waveform fitting yields simultaneously high energy resolution and high counting rates (two orders of magnitude higher than current digital pulse processors). At pulsed sources or high photon rates, photon pile-up still occurs. We showed that pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We then developed a photon pile-up statistical model for constant intensity sources, extended it to variable intensity sources (typical for FELs), and used it to fit a complex pileup spectrum. We subsequently developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to six photons from six monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the X-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with a similar performance to an SDD, in a compact, robust and affordable package.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A.; Pellegrini, C.; Rosenzweig, J.

    The VISA (Visible to Infrared SASE Amplifier) project is designed to be a SASE-FEL driven to saturation in the sub-micron wavelength region. Its goal is to test various aspects of the existing theory of Self-Amplified Spontaneous Emission, as well as numerical codes. Measurements include: angular and spectral distribution of the FEL light at the exit and inside of the undulator; electron beam micro-bunching using CTR; single-shot time resolved measurements of the pulse profile, using auto-correlation technique and FROG algorithm. The diagnostics are designed to provide maximum information on the physics of the SASE-FEL process, to ensure a close comparison ofmore » the experimental results with theory and simulations.« less

  9. An XUV/VUV free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  10. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  11. Laser Applications in Microelectronic and Optoelectronic Manufacturing IV

    DTIC Science & Technology

    1999-07-15

    laser irradiation of the clusters with 6000 laser pulses of X...insulating ma- terials during and after irradiation by tunable, ultrashort pulses from a mid-infrared laser . The three salient examples we con- sider...with ultrashort pulses re- sembles the rear-side ablation seen in irradiation of calcite by Nd:YAG lasers (1064 nm), while the off-resonance FEL

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, B. H.; Applied Science and Technology, University of California, Berkeley, California 94720; Tilborg, J. van

    Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}≲0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ∼6.5×10{sup −7}, divergence ∼7−15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configurationmore » enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.« less

  13. Four Dimensional Analysis of Free Electron Lasers in the Amplifier Configuration

    DTIC Science & Technology

    2007-12-01

    FEL. The power capability of this device was so much greater than that of conventional klystrons and magnetrons that records for peak power ...understand the four dimensional behavior of the high power FEL amplifier. The simulation program required dimensionless input parameters, which make...33 OPTICAL PARAMETERS inP Seed laser power inT Seed pulse duration S Distance to First Optic 0Z Rayleigh length 2 0 0 WZ π λ= λ

  14. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  15. Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.

    2017-12-01

    The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.

  16. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  18. The ETA-II induction linac as a high-average-power FEL driver

    NASA Astrophysics Data System (ADS)

    Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.

    1990-10-01

    The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.

  19. Serial Femtosecond Crystallography Opens New Avenues for Structural Biology

    PubMed Central

    Coe, Jesse; Fromme, Petra

    2016-01-01

    Free electron lasers (FELs) provide X-ray pulses in the femtosecond time domain with up to 1012 higher photon flux than synchrotrons and open new avenues for the determination of difficult to crystallize proteins, like large complexes and human membrane proteins. While the X-ray pulses are so strong that they destroy any solid material, the crystals diffract before they are destroyed. The most successful application of FELs for biology has been the method of serial femtosecond crystallography (SFX) where nano or microcrystals are delivered to the FEL beam in a stream of their mother liquid at room temperature, which ensures the replenishment of the sample before the next X-ray pulse arrives. New injector technology allows also for the delivery of crystal in lipidic cubic phases or agarose, which reduces the sample amounts for an SFX data set by two orders of magnitude. Time-resolved SFX also allows for analysis of the dynamics of biomolecules, the proof of principle being recently shown for light-induced reactions in photosystem II and photoactive yellow protein. An SFX data sets consist of thousands of single crystal snapshots in random orientations, which can be analyzed now “on the fly” by data analysis programs specifically developed for SFX, but de-novo phasing is still a challenge, that might be overcome by two-color experiments or phasing by shape transforms. PMID:26786767

  20. Component-resolved microarray analysis of IgE sensitization profiles to Felis catus major allergen molecules in Russian cat-allergic patients.

    PubMed

    Dolgova, Anna Sergeevna; Sudina, Anna Evgenevna; Cherkashina, Anna Sergeevna; Stukolova, Olga Alekseevna

    We aimed to determine the profile of IgE reactivity to three major cat allergens, Fel d 1, Fel d 2 and Fel d 4, in cat-allergic patients in the Moscow region in Russia. sIgE levels to recombinant proteins expressed in Escherichia coli (Fel d 1 and Fel d 4) and to Fel d 2 protein purified from cat serum were measured using a microarray method developed in our laboratory. Sera from 174 anonymous subjects with a positive reaction (≥0.35 IU/mL) to cat dander extract (e1, ImmunoCAP) and 56 negative controls were used for IgE testing. Fel d 1 was recognized by 92.5%, Fel d 2 by 29.9% and Fel d 4 by 39.1% of the tested patient sera. The sensitivity to these three proteins was approximately 98% compared to cat dander extract (correlation coefficient to ImmunoCAP is 0.94 with PPV = 0.99 and NPV = 0.95). These predictive values appeared to be even more statistically significant than the divergence between the ISAC IgE test and the extract-based singleplex ImmunoCAP. The combination of the three investigated proteins (Fel d 1, Fel d 2 and Fel d 4) is suitable for in vitro molecular (serological) diagnosis of cat allergy in this region as a complement to cat dander extract. Moreover, with this method, we found distinction between Fel d 2 and other Feline sIgEs formation.

  1. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  2. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  3. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  4. Effects of autoionising states on the single and double ionisation yields of neon with soft X-ray fields. JMO Series: Attosecond and Strong Field Science

    NASA Astrophysics Data System (ADS)

    Middleton, D. P. W.; Nikolopoulos, L. A. A.

    2012-11-01

    In this work, single and double ionisation yields of neon under extreme ultraviolet free-electron laser (FEL) radiation tuned in the vicinity of the autoionising states (AIS) of Ne+ were studied. Density matrix equations were developed and were used to calculate the dependence of the branching ratios of singly and doubly ionised neon on the field intensity and its duration. In addition, in response to a recent experiment [M. Martins et al., Phys. Rev. A 2011, 80, 023411], a quantitative analysis was undertaken in order to reproduce the magnitude of the branching ratios by varying the FEL photon frequency in the range 41.0-42.0 eV in accordance with the experimental report. While the reported variations of the species' branching ratios as a function of the FEL field's photon energy were found, their magnitude and shape differ. In general, the branching ratios are found to be heavily dependent on the given combination of the peak intensity and the pulse duration. Furthermore, the FEL's stochastic fluctuation has been modelled by solving the average density matrix equations and it was found that stochastic effects should also affect branching ratios, mainly due to the increase in the effective bandwidth of the pulse in comparison with the AIS's decay ionisation width. Our calculations suggest that field fluctuations generally diminish the resonance features of the branching ratios.

  5. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE PAGES

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.; ...

    2018-04-27

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  6. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  7. Statistical properties of radiation from VUV and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-03-01

    The paper presents a comprehensive analysis of the statistical properties of the radiation from a self-amplified spontaneous emission (SASE) free electron laser operating in linear and nonlinear mode. The investigation has been performed in a one-dimensional approximation assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied in detail: time and spectral field correlations, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after the monochromator installed at the FEL amplifier exit and radiation spectrum. The linear high gain limit is studied analytically. It is shown that the radiation from a SASE FEL operating in the linear regime possesses all the features corresponding to completely chaotic polarized radiation. A detailed study of statistical properties of the radiation from a SASE FEL operating in linear and nonlinear regime has been performed by means of time-dependent simulation codes. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.

  8. Bunch Length Measurements at JLab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Evtushenko; J. L. Coleman; K. Jordan

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  9. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, S.; /UCLA; Bane, K.L.F.

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELAmore » and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.« less

  10. Coherence properties of the radiation from FLASH

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2016-02-01

    Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  11. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; hide

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  12. Synthesis of [Fe(Leq)(Lax)] n coordination polymer nanoparticles using blockcopolymer micelles.

    PubMed

    Göbel, Christoph; Klimm, Ottokar; Puchtler, Florian; Rosenfeldt, Sabine; Förster, Stephan; Weber, Birgit

    2017-01-01

    Spin-crossover compounds are a class of materials that can change their spin state from high spin (HS) to low spin (LS) by external stimuli such as light, pressure or temperature. Applications demand compounds with defined properties concerning the size and switchability that are maintained when the compound is integrated into composite materials. Here, we report the synthesis of [Fe(L eq )(L ax )] n coordination polymer (CP) nanoparticles using self-assembled polystyrene- block -poly(4-vinylpyridine) (PS- b -P4VP) block copolymer (BCP) micelles as template. Variation of the solvent (THF and toluene) and the rigidity of the axial ligand L ax (L ax = 1,2-di(pyridin-4-yl)ethane) (bpea), trans -1,2-di(pyridin-4-yl)ethene (bpee), and 1,2-di(pyridin-4-yl)ethyne) (bpey); L eq = 1,2-phenylenebis(iminomethylidyne)-bis(2,4-pentanedionato)(2-)) allowed the determination of the preconditions for the selective formation of nanoparticles. A low solubility of the CP in the used solvent and a high stability of the Fe-L bond with regard to ligand exchange are necessary for the formation of composite nanoparticles where the BCP micelle is filled with the CP, as in the case of the [FeL eq (bpey)] n @BCP. Otherwise, in the case of more flexible ligands or ligands that lead to high spin complexes, the formation of microcrystals next to the CP-BCP nanoparticles is observed above a certain concentration of [Fe(L eq )(L ax )] n . The core of the nanoparticles is about 45 nm in diameter due to the templating effect of the BCP micelle, independent of the used iron complex and [Fe(L eq )(L ax )] n concentration. The spin-crossover properties of the composite material are similar to those of the bulk for FeL eq (bpea)] n @BCP while pronounced differences are observed in the case of [FeL eq (bpey)] n @BCP nanoparticles.

  13. Fast pulsed excitation wiggler or undulator

    DOEpatents

    van Steenbergen, Arie

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  14. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  15. Measurements of reduced corkscrew motion on the ETA-II linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Brand, H.R.; Chambers, F.W.

    1991-05-01

    The ETA-II linear induction accelerator is used to drive a microwave free electron laser (FEL). Corkscrew motion, which previously limited performance, has been reduced by: (1) an improved pulse distribution system which reduces energy sweep, (2) improved magnetic alignment achieved with a stretched wire alignment technique (SWAT) and (3) a unique magnetic tuning algorithm. Experiments have been carried out on a 20-cell version of ETA-II operating at 1500 A and 2.7 MeV. The measured transverse beam motion is less than 0.5 mm for 40 ns of the pulse, an improvement of a factor of 2 to 3 over previous results.more » Details of the computerized tuning procedure, estimates of the corkscrew phase, and relevance of these results to future FEL experiments are presented. 11 refs.« less

  16. The ETA-2 induction linac as a high average power FEL driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.

    1989-10-16

    The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less

  17. Start-Up of a Pulsed Beam Free Electron Laser (FEL) Oscillator

    DTIC Science & Technology

    1983-04-01

    By slightly increasing the frequency of the R.F. accelerating field, Wacc during the start-up period, i.e., decreasing the beam pulse separation, the...levels. The required fractional increase in Wacc is 16L 1- 6L2 1/Lbow 10 - 6 for the parameters of ref. (3,4). The same 6 effect may also be realized

  18. Simulation of free-electron lasers seeded with broadband radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl

    2011-03-10

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FELmore » process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.« less

  19. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Ding, Y.; Huang, Z.

    2011-12-14

    The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievablemore » with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.« less

  20. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Evtushenko; James Coleman; Kevin Jordan

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beammore » with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  1. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P.; Coleman, J.; Jordan, K.

    2006-11-20

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam withmore » any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  2. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; /LBL, Berkeley; Bane, K.L.F.

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  3. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  4. Free electron laser with masked chicane

    DOEpatents

    Nguyen, Dinh C.; Carlsten, Bruce E.

    1999-01-01

    A free electron laser (FEL) is provided with an accelerator for outputting electron beam pulses; a buncher for modulating each one of the electron beam pulses to form each pulse into longitudinally dispersed bunches of electrons; and a wiggler for generating coherent light from the longitudinally dispersed bunches of electrons. The electron beam buncher is a chicane having a mask for physically modulating the electron beam pulses to form a series of electron beam bunches for input to the wiggler. In a preferred embodiment, the mask is located in the chicane at a position where each electron beam pulse has a maximum dispersion.

  5. Embryonic expression of festina lente (fel), a novel maternal gene, in the oligochaete annelid Tubifex tubifex.

    PubMed

    Nakamura, Takuma; Shiomi, Inori; Shimizu, Takashi

    2017-11-01

    We have cloned and characterized the expression of a novel maternal gene festina lente (designated Ttu-fel) from the clitellate annelid Tubifex tubifex. Northern blot analyses have shown that Ttu-fel mRNA is approximately 8 kbp in length and that its expression is restricted to oocytes undergoing maturation division and early embryos up to 22-cell stage. Maternal transcripts of Ttu-fel are first detected in oocytes in the ovary of young adults (ca. 40 days after hatching); its expression continues in growing oocytes in the ovisac. Ttu-fel mRNA is distributed broadly throughout the egg undergoing maturation divisions. During the process of ooplasmic segregation that results in the pole plasm formation, Ttu-fel mRNA becomes concentrated to the animal and vegetal poles. The RNA in the animal hemisphere is distributed in a gradient with highest concentration in the cortical region. During the first two cleavages, Ttu-fel mRNA is segregated to CD cell then to D cell; it is subsequently inherited by the three D quadtrant micromeres, 1d, 2d and 3d. Around the time of transition to 22-cell stage, Ttu-fel mRNA becomes undetectable throughout the embryo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    NASA Astrophysics Data System (ADS)

    Hacker, Kirsten

    2014-09-01

    Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL) light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  7. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli.

    PubMed

    Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne

    2003-10-10

    Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  9. Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range

    PubMed Central

    Kozub, John; Ivanov, Borislav; Jayasinghe, Aroshan; Prasad, Ratna; Shen, Jin; Klosner, Marc; Heller, Donald; Mendenhall, Marcus; Piston, David W.; Joos, Karen; Hutson, M. Shane

    2011-01-01

    Prior work with free-electron lasers (FELs) showed that wavelengths in the 6- to 7-µm range could ablate soft tissues efficiently with little collateral damage; however, FELs proved too costly and too complex for widespread surgical use. Several alternative 6- to 7-µm laser systems have demonstrated the ability to cut soft tissues cleanly, but at rates that were much too low for surgical applications. Here, we present initial results with a Raman-shifted, pulsed alexandrite laser that is tunable from 6 to 7 µm and cuts soft tissues cleanly—approximately 15 µm of thermal damage surrounding ablation craters in cornea—and does so with volumetric ablation rates of 2–5 × 10−3 mm3/s. These rates are comparable to those attained in prior successful surgical trials using the FEL for optic nerve sheath fenestration. PMID:21559139

  10. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  11. Roadmap to MaRIE March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory’s proposed MaRIE facility is slated to introduce the world’s highest energy hard x-ray free electron laser (XFEL). As the light source for the Matter-Radiation Interactions in Extremes experimental facility (MaRIE), the 42-keV XFEL, with bursts of x-ray pulses at gigahertz repetition for studying fast dynamical processes, will help accelerate discovery and design of the advanced materials needed to meet 21st-century national security and energy security challenges. Yet the science of free-electron lasers has a long and distinguished history at Los Alamos National Laboratory (LANL), where for nearly four decades Los Alamos scientists have been performing research,more » design, development, and collaboration work in FEL science. The work at Los Alamos has evolved from low-gain amplifier and oscillator FEL development to highbrightness photoinjector development, and later, self-amplified spontaneous emission (SASE) and high-gain amplifier FEL development.« less

  12. Soviet Free-Electron Laser Research

    DTIC Science & Technology

    1985-05-01

    can generate a narrow band electromagnetic radiation over a wide frequency range that can potentially extend from microwaves through the visible and...refer to experiments listed in Table 2. Table 2 COMPARISON OF SOVIET-U.S. HIGH-CURRENT FEL EXPERIMENT S SOVIET u.s. Pulse line accelerators...Power ... Pulse length Efficiency . 3cm 10MW 0.7 p.sec 1.5% 2. Columbia, 2 February 1977 [9] Hollow electron beam Energy

  13. Grazing-incidence grating compressor for applications to free-electron-lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frassetto, Fabio, E-mail: fabio.frassetto@pd.ifn.cnr.it; Miotti, Paolo; Poletto, Luca, E-mail: luca.poletto@ifn.cnr.it

    2016-07-27

    The design of a grating compressor for FEL pulses is discussed here. The design is based on the use of two grazing-incidence gratings. The available grating geometries, the classical diffraction mount and the off-plane one, are discussed.

  14. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  15. Simulation of Mirror Distortion in Free-Electron LASER Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Freund; S. V. Benson; Michelle D. Shinn

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measuremore » the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.« less

  16. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomicmore » states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).« less

  17. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes the need for transport optics for the XUV photons and the need for additional optics to overlap the seed beam with the electron beam at the undulator entrance. By operating at sub-relativistic laser strengths, harmonics up to the 17th order of 800 nm light are produced using an SHHG technique known as coherent wake emission (CWE). CWE pulse properties such as divergence, energy, conversion efficiency, and spectrum are measured for a wide range of tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. The measured pulse properties for the 15th harmonic from VHS tape (conversion efficiency 6.5x10-7 and an rms divergence of 12 mrad), the 100 mJ-level, 40-50 fs-class drive laser, produces peak powers of several MW's of XUV pulses. The results of a 1D model indicate that these CWE pulses with MW level powers are sufficient for seed-induced FEL gain. (Abstract shortened by ProQuest.).

  18. Selective Photothermolysis to target Sebaceous Glands: Theoretical Estimation of Parameters and Preliminary Results Using a Free Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernanda Sakamoto, Apostolos Doukas, William Farinelli, Zeina Tannous, Michelle D. Shinn, Stephen Benson, Gwyn P. Williams, H. Dylla, Richard Anderson

    2011-12-01

    The success of permanent laser hair removal suggests that selective photothermolysis (SP) of sebaceous glands, another part of hair follicles, may also have merit. About 30% of sebum consists of fats with copious CH2 bond content. SP was studied in vitro, using free electron laser (FEL) pulses at an infrared CH2 vibrational absorption wavelength band. Absorption spectra of natural and artificially prepared sebum were measured from 200 nm to 3000 nm, to determine wavelengths potentially able to target sebaceous glands. The Jefferson National Accelerator superconducting FEL was used to measure photothermal excitation of aqueous gels, artificial sebum, pig skin, humanmore » scalp and forehead skin (sebaceous sites). In vitro skin samples were exposed to FEL pulses from 1620 to 1720 nm, spot diameter 7-9.5 mm with exposure through a cold 4C sapphire window in contact with the skin. Exposed and control tissue samples were stained using H and E, and nitroblue tetrazolium chloride staining (NBTC) was used to detect thermal denaturation. Natural and artificial sebum both had absorption peaks near 1210, 1728, 1760, 2306 and 2346 nm. Laser-induced heating of artificial sebum was approximately twice that of water at 1710 and 1720 nm, and about 1.5x higher in human sebaceous glands than in water. Thermal camera imaging showed transient focal heating near sebaceous hair follicles. Histologically, skin samples exposed to {approx}1700 nm, {approx}100-125 ms pulses showed evidence of selective thermal damage to sebaceous glands. Sebaceous glands were positive for NBTC staining, without evidence of selective loss in samples exposed to the laser. Epidermis was undamaged in all samples. Conclusions: SP of sebaceous glands appears to be feasible. Potentially, optical pulses at {approx}1720 nm or {approx}1210 nm delivered with large beam diameter and appropriate skin cooling in approximately 0.1 s may provide an alternative treatment for acne.« less

  19. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    NASA Astrophysics Data System (ADS)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  20. Histological observation on dental hard tissue irradiated by ultrashort-pulsed laser

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2006-04-01

    In the field of dentistry, effectiveness of USPL irradiation is researched because USPL has less thermal side effect to dental hard tissue. In this paper, we observed morphological change and optical change of dental hard tissue irradiated by USPL for discussing the safety and effectiveness of USPL irradiation to dental hard tissues. Irradiated samples were crown enamel and root dentin of bovine teeth. Lasers were Ti:sapphire laser, which had pulse duration (P d)of 130 fsec and pulse repetition rate (f) of 1kHz and wavelength (l) of 800nm, free electron laser (FEL), which had P d of 15 μsec and f of 10Hz and wavelength of 9.6μm, and Er:YAG laser, which had P d of 250 μsec and f of 10Hz and wavelength of 2.94μm. After laser irradiation, the sample surfaces and cross sections were examined with SEM and EDX. The optical change of samples was observed using FTIR. In SEM, the samples irradiated by USPL had sharp and accurate ablation with no crack and no carbonization. But, in FEL and Er:YAG laser, the samples has rough ablation with crack and carbonization. It was cleared that the P/Ca ratio of samples irradiated by USPL had same value as non-irradiated samples. There was no change in the IR absorption spectrum between samples irradiated by USPL and non-irradiated sample. But, they of samples irradiated by FEL and Er:YAG laser, however, had difference value as non-irradiated samples. These results showed that USPL might be effective to ablate dental hard tissue without thermal damage.

  1. Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    NASA Astrophysics Data System (ADS)

    Jia, Botao

    2011-12-01

    The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral broadening effect, to further enhance the accuracy of measuring the electron beam energy spread. Taking advantage of the direct measurement method of the electron beam energy spread, we have developed another novel technique to simultaneously measure the FEL power, electron beam energy spread, and other beam parameters. This allowed us to study the FEL power in a systematic manner for the first time. Based on the experimental findings and results of the theoretical predictions, we have proposed a compact formula to predict the FEL power using only the knowledge of electron beam current, beam energy, and bunch length. As part of the dissertation work, we have developed a self-consistent numerical model to study the storage ring FEL. The simulation program models the electron beam propagation along the storage ring, multi-turn FEL interaction in the undulators, gradual intra-cavity optical power buildup, etc. This simulation code captures the main features of a storage ring FEL at different time and space scales. The simulated FEL gain has been benchmarked against measured gain and calculated gain with good agreement. The simulation package can provide comprehensive information about the FEL gain, optical pulse growth, electron beam properties, etc. In the near future, we plan to further improve the simulation model, by including additional physics effects such as microwave instability, to make it a more useful tool for FEL research.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  3. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  4. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    PubMed

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  5. Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics.

    PubMed

    Yang, Caiqin; Guo, Wei; Lin, Yulong; Lin, Qianqian; Wang, Jiaojiao; Wang, Jing; Zeng, Yanli

    2018-05-30

    In this study, a new cocrystal of felodipine (Fel) and glutaric acid (Glu) with a high dissolution rate was developed using the solvent ultrasonic method. The prepared cocrystal was characterized using X-ray powder diffraction, differential scanning calorimetry, thermogravimetric (TG) analysis, and infrared (IR) spectroscopy. To provide basic information about the optimization of pharmaceutical preparations of Fel-based cocrystals, this work investigated the thermal decomposition kinetics of the Fel-Glu cocrystal through non-isothermal thermogravimetry. Density functional theory (DFT) simulations were also performed on the Fel monomer and the trimolecular cocrystal compound for exploring the mechanisms underlying hydrogen bonding formation and thermal decomposition. Combined results of IR spectroscopy and DFT simulation verified that the Fel-Glu cocrystal formed via the NH⋯OC and CO⋯HO hydrogen bonds between Fel and Glu at the ratio of 1:2. The TG/derivative TG curves indicated that the thermal decomposition of the Fel-Glu cocrystal underwent a two-step process. The apparent activation energy (E a ) and pre-exponential factor (A) of the thermal decomposition for the first stage were 84.90 kJ mol -1 and 7.03 × 10 7  min -1 , respectively. The mechanism underlying thermal decomposition possibly involved nucleation and growth, with the integral mechanism function G(α) of α 3/2 . DFT calculation revealed that the hydrogen bonding between Fel and Glu weakened the terminal methoxyl, methyl, and ethyl groups in the Fel molecule. As a result, these groups were lost along with the Glu molecule in the first thermal decomposition. In conclusion, the formed cocrystal exhibited different thermal decomposition kinetics and showed different E a , A, and shelf life from the intact active pharmaceutical ingredient. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  7. R&D for a Soft X-Ray Free Electron Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corlett, John; Attwood, David; Byrd, John

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate andmore » with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu; Shu, Deming, E-mail: shu@aps.anl.gov

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaohao; Shu, Deming; Sinn, Harald

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL (http://www.xfel.eu/). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  10. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  11. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  12. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  13. Status of the Northrop Grumman Compact Infrared Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehrman, I.S.; Krishnaswamy, J.; Hartley, R.A.

    1995-12-31

    The Compact Infrared Free Electron Laser (CIRFEL) was built as part of a joint collaboration between the Northrop Grumman Corporation and Princeton University to develop FEL`s for use by researchers in the materials, medical and physical sciences. The CIRFEL was designed to lase in the Mid-IR and Far-IR regimes with picosecond pulses, megawatt level peak powers and an average power of a few watts. The micropulse separation is 7 nsec which allows a number of relaxation phenomenon to be observed. The CIRFEL utilizes an RF photocathode gun to produce high-brightness time synchronized electron bunches. The operational status and experimental resultsmore » of the CERFEL will be presented.« less

  14. Radiation damage to macromolecules: kill or cure?

    PubMed

    Garman, Elspeth F; Weik, Martin

    2015-03-01

    Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.

  15. Generation of double pulses at the Shanghai soft X-ray free electron laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Feng, Chao; Gu, Qiang

    2017-01-28

    In this paper, we present the promise of a new method generating double electron pulses with the picosecond-scale pulse length and the tunable interpulse spacing at several picoseconds, which has been witnessed an impressive potential of application in pump-probe techniques, two-color X-ray free electron laser (FEL), high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in the linear accelerator. Some comparisons have been made between the new method and the existing ways as well.

  16. Status report on the NIST-NRL free electron laser

    NASA Astrophysics Data System (ADS)

    Philip, Debenham; Robert, Ayres; Wayne, Cassatt A.; Carol Johnson, B.; Ronald, Johnson G.; Eric, Lindstrom L.; Paul, Liposky J.; Anthony, Marella B.; David, Mohr L.; Julian, Whittaker K.; Neil, Wilkin D.; Mark, Wilson A. D.; Tang, Cha-Mei; Sprangle, Phillip; Penner, Samuel

    1991-07-01

    A free electron laser (FEL) user facility is being constructed at the National Institute of Standards and Technology (NIST) in collaboration with the Naval Research Laboratory (NRL). The FEL, which will be operated as an oscillator, will be driven by the 17 to 185 MeV electron beam of the NIST continuous-wave racetrack microtron. Anticipated performance of the FEL includes: wavelength tuneable from 200 nm to 10 μm, a continuous train of 3 ps pulses at either 16.5 or 66.1 MHz, and average power of 10 to 200 W. Construction of the RTM will be completed in May, 1991. The 3.64 m long undulator is assembled at the factory and is scheduled to be delivered in February, 1991. The measured rms field error is 0.6%, which is sufficiently small for good gain. Due to the broad tuning range, the use of lasers to align the cavity end mirrors is impractical. With a full-scale model of the 9 m long optical cavity, we have developed a method of aligning the mirrors to the required accuracy using white light and an autocollimator/telescope. We have performed three-dimensional simulations of performance including the effects of the electron beam (emittance, pulse length and shape, and timing jitter), undulator field errors, and cavity losses. These calculations predict adequate gain for lasing across the full wavelength range. Additional calculations are underway to predict the performance at saturation.

  17. Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1982-01-01

    The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.

  18. Femtosecond timing distribution and control for next generation accelerators and light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li -Jin

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even attosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. Anmore » increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objective of the work described in this proposal is to set up an optical timing distribution system based on mode locked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.« less

  19. Hartmann wavefront sensors and their application at FLASH.

    PubMed

    Keitel, Barbara; Plönjes, Elke; Kreis, Svea; Kuhlmann, Marion; Tiedtke, Kai; Mey, Tobias; Schäfer, Bernd; Mann, Klaus

    2016-01-01

    Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.

  20. THz pulses from 4th generation X-ray light sources: Perspectives for fully synchronized THz pump X-ray probe experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gensch, M.

    2010-02-03

    In this paper the prospects of terahertz (THz) pulses generated at 4th generation X-ray light sources are presented on the example of recent results from a prototype set-up at the soft X-ray FEL FLASH. It is shown, that the THz pulses from the relativistic ultra short electron bunches have unique properties, that at FLASH are utilized for novel THz pump X-ray probe experiments with a robust few fs resolution. Based on these experiences it is discussed, how future facilities can benefit from implementation of similar or further improved instrumentation.

  1. High brightness fully coherent x-ray amplifier seeded by a free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yan, Jiawei; Feng, Chao; Zhang, Meng; Deng, Haixiao

    2018-04-01

    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting-edge tool for fully coherent x-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current, as well as residual energy chirp from chicane compressor, are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent x-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.

  2. rf traveling-wave electron gun for photoinjectors

    NASA Astrophysics Data System (ADS)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  4. Dissociation of β-Sheet Stacking of Amyloid β Fibrils by Irradiation of Intense, Short-Pulsed Mid-infrared Laser.

    PubMed

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi; Nakamura, Kazuhiro

    2018-02-05

    Structure of amyloid β (Aβ) fibrils is rigidly stacked by β-sheet conformation, and the fibril state of Aβ is profoundly related to pathogenesis of Alzheimer's disease (AD). Although mid-infrared light has been used for various biological researches, it has not yet been known whether the infrared light changes the fibril structure of Aβ. In this study, we tested the effect of irradiation of intense mid-infrared light from a free-electron laser (FEL) targeting the amide bond on the reduction of β-sheet content in Aβ fibrils. The FEL reduced entire contents of proteins exhibiting β-sheet structure in brain sections from AD model mice, as shown by synchrotron-radiation infrared microscopy analysis. Since Aβ 1-42 fibril absorbed a considerable FEL energy at amide I band (6.17 μm), we irradiated the FEL at 6.17 μm and found that β-sheet content of naked Aβ 1-42 fibril was decreased using infrared microscopic analysis. Consistent with the decrease in the β-sheet content, Congo-red signal is decreased after the irradiation to Aβ 1-42 fibril. Furthermore, electron microscopy analysis revealed that morphologies of the fibril and proto-fibril were largely changed after the irradiation. Thus, mid-infrared light dissociates β-sheet structure of Aβ fibrils, which justifies exploration of possible laser-based therapy for AD.

  5. X -band rf driven free electron laser driver with optics linearization

    DOE PAGES

    Sun, Yipeng; Emma, Paul; Raubenheimer, Tor; ...

    2014-11-13

    In this paper, a compact hard X-ray free electron lasers (FEL) design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1) design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation ismore » investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS). At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.« less

  6. Tunable Soft X-Ray Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less

  7. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  8. Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures.

    PubMed

    Soloviev, A; Burdonov, K; Chen, S N; Eremeev, A; Korzhimanov, A; Pokrovskiy, G V; Pikuz, T A; Revet, G; Sladkov, A; Ginzburg, V; Khazanov, E; Kuzmin, A; Osmanov, R; Shaikin, I; Shaykin, A; Yakovlev, I; Pikuz, S; Starodubtsev, M; Fuchs, J

    2017-09-22

    Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast "PEARL" laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.

  9. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity.

    PubMed

    Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W

    2012-05-07

    The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.

  10. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    NASA Astrophysics Data System (ADS)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  11. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras

    NASA Astrophysics Data System (ADS)

    Veber, Sergey L.; Tumanov, Sergey V.; Fursova, Elena Yu.; Shevchenko, Oleg A.; Getmanov, Yaroslav V.; Scheglov, Mikhail A.; Kubarev, Vitaly V.; Shevchenko, Daria A.; Gorbachev, Iaroslav I.; Salikova, Tatiana V.; Kulipanov, Gennady N.; Ovcharenko, Victor I.; Fedin, Matvey V.

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup.

  12. Detectors in Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G.; Carini, G.; Carron, S.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less

  13. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; ...

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  14. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less

  15. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less

  16. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less

  17. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  18. X-band EPR setup with THz light excitation of Novosibirsk Free Electron Laser: Goals, means, useful extras.

    PubMed

    Veber, Sergey L; Tumanov, Sergey V; Fursova, Elena Yu; Shevchenko, Oleg A; Getmanov, Yaroslav V; Scheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Daria A; Gorbachev, Iaroslav I; Salikova, Tatiana V; Kulipanov, Gennady N; Ovcharenko, Victor I; Fedin, Matvey V

    2018-03-01

    Electron Paramagnetic Resonance (EPR) station at the Novosibirsk Free Electron Laser (NovoFEL) user facility is described. It is based on X-band (∼9 GHz) EPR spectrometer and operates in both Continuous Wave (CW) and Time-Resolved (TR) modes, each allowing detection of either direct or indirect influence of high-power NovoFEL light (THz and mid-IR) on the spin system under study. The optics components including two parabolic mirrors, shutters, optical chopper and multimodal waveguide allow the light of NovoFEL to be directly fed into the EPR resonator. Characteristics of the NovoFEL radiation, the transmission and polarization-retaining properties of the waveguide used in EPR experiments are presented. The types of proposed experiments accessible using this setup are sketched. In most practical cases the high-power radiation applied to the sample induces its rapid temperature increase (T-jump), which is best visible in TR mode. Although such influence is a by-product of THz radiation, this thermal effect is controllable and can deliberately be used to induce and measure transient signals of arbitrary samples. The advantage of tunable THz radiation is the absence of photo-induced processes in the sample and its high penetration ability, allowing fast heating of a large portion of virtually any sample and inducing intense transients. Such T-jump TR EPR spectroscopy with THz pulses has been previewed for the two test samples, being a useful supplement for the main goals of the created setup. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Hemostatic properties of the free-electron laser

    NASA Astrophysics Data System (ADS)

    Cram, Gary P., Jr.; Copeland, Michael L.

    1998-09-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam® (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam® or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely support previous reports of hemostasis of these two lasers obtained in other models.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechsig, U.; Follath, R.; Reiche, S.

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-raymore » pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.« less

  1. Reduction of beam corkscrew motion on the ETAII linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Allen, S.L.; Brand, H.R.

    1990-09-04

    The ETAII linear induction accelerator (6MeV, 3kA, 70ns) is designed to drive a microwave free electron laser (FEL) and demonstrate the front end accelerator technology for a shorter wavelength FEL. Performance to date has been limited by beam corkscrew motion that is driven by energy sweep and misalignment of the solenoidal focusing magnets. Modifications to the pulse power distribution system and magnetic alignment are expected to reduce the radius of corkscrew motion from its present value of 1 cm to less than 1 mm. The modifications have so far been carried out on the first 2.7 MeV (injector plus 20more » accelerator cells) and experiments are beginning. In this paper we will present calculations of central flux line alignment, beam corkscrew motion and beam brightness that are anticipated with the modified ETAII. 10 refs., 4 figs., 1 tab.« less

  2. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.

  3. Magnetically Delayed Low-Pressure Gas Discharge Switching

    DTIC Science & Technology

    1993-06-01

    the gap, minimizes this effect. It is this version of the low- pressure switch that we are presently studying. Our magnetically delayed low... pressure switch (MDLPS) test-stand was built primarily to support the long-pulse, relativistic klystron (RK) and free electron laser (FEL) work at... pressure switch and compared the performance with and without the saturable inductor. A comparison of typi- cal closure properties is shown in Fig

  4. Integrated ultraviolet and tunable mid-infrared laser source for analyses of proteins

    NASA Astrophysics Data System (ADS)

    Hazama, Hisanao; Takatani, Yoshiaki; Awazu, Kunio

    2007-02-01

    Mass spectrometry using matrix-assisted laser desorption/ionization (MALDI) technique is one of the most widely used method to analyze proteins in biological research fields. However, it is difficult to analyze insoluble proteins which have important roles in researches on disease mechanisms or in developments of drugs by using ultraviolet (UV) lasers which have commonly been used for MALDI. Recently, a significant improvement in MALDI process of insoluble proteins using a combination of a UV nitrogen laser and a tunable mid-infrared (MIR) free electron laser (FEL) was reported. Since the FEL is a very large and expensive equipment, we have developed a tabletop laser source which can generate both UV and tunable MIR lasers. A tunable MIR laser (5.5-10 μm) was obtained by difference frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers using two AgGaS II crystals. The MIR laser can generate pulses with an energy of up to 1.4 mJ at a repetition rate of 10 Hz. A UV laser was obtained by third harmonic generation of a Nd:YAG laser splitted from that used for DFG. A time interval between the UV and the MIR laser pulses can be adjusted with a variable optical delay.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARR,R.; CORNACCHIA,M.; EMMA,P.

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulatormore » comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 pm per field gain length.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, R.; Cornacchia, M.; Emma, P.

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulatormore » comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than {+-}50 {micro}m per field gain length.« less

  7. Dispersion interference in the pulsed-wire measurement method

    NASA Astrophysics Data System (ADS)

    Shahal, O.; Elkonin, B. V.; Sokolowski, J. S.

    1990-10-01

    The magnetic profile of the wiggler to be used in the planned Weizmann Institute FEL has been measured using the pulsed-wire method. The main transverse deflection pattern caused by an electrical current pulse in a wire placed along the wiggler was sometimes accompanied by minor faster and slower parasitic components. These components interfered with the main profile, resulting in distorted mapping of the wiggler magnetic field. Their periodical structure being very close to the main pattern could not be easily resolved by applying a numerical Fourier transform. A strong correlation between the wire tension and the amplitude of the parasitic patterns was found. Significant damping of these oscillations was achieved by applying high enough tension to the wire (close the yield point), allowing to disregard their contribution to the measurement accuracy.

  8. THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs

    PubMed Central

    Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Stojanovic, Nikola

    2018-01-01

    FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine’s full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented. PMID:29271749

  9. THz pulse doubler at FLASH: double pulses for pump-probe experiments at X-ray FELs.

    PubMed

    Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Schreiber, Siegfried; Stojanovic, Nikola

    2018-01-01

    FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine's full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented.

  10. Free-electron laser spectroscopy in biology, medicine, and materials science; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwettman, H.A.

    1993-01-01

    Various papers on FEL spectroscopy in biology, medicine, and materials science are presented. Individual topics addressed include: Vanderbilt University FEL Center, FIR FEL facility at the University of California/Santa Barbara, FEL research facilities and opportunities at Duke, facilities at the Stanford Picosecond FEL Center, FIR nonlinear response of electrons in semiconductor nanostructures, FIR harmonic generation from semiconductor heterostructures, intrinsic response times of double-barrier resonant tunneling diodes at tetrahertz frequencies, semiconductor spectroscopy and ablation processes with the Vanderbilt FEL. Also discussed are: picosecond nonlinear optics in semiconductor quantum wells with the SCA FEL, excitation spectroscopy of thin-film disordered semiconductors, biophysical applicationmore » of FELs, FEL investigation of energy transfer in condensed phase systems, probing protein photochemistry and dynamics with ultrafast infrared spectroscopy, plasma ablation of hard tissues by FEL, FEL irradiation of the cornea.« less

  11. An infrared free-electron laser for the Chemical Dynamics Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerfulmore » two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.« less

  12. An infrared free-electron laser for the Chemical Dynamics Research Laboratory. Design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    1992-04-01

    This document describes a free-electron laser (FEL) proposed as part of the Chemical Dynamics Research Laboratory (CDRL), a user facility that also incorporates several advanced lasers of conventional design and two beamlines for the ALS. The FEL itself addresses the needs of the chemical sciences community for a high-brightness, tunable source covering a broad region of the infrared spectrum -- from 3 to 50 {mu}m. All of these sources, together with a variety of sophisticated experimental stations, will be housed in a new building to be located adjacent to the ALS. The radiation sources can be synchronized to permit powerfulmore » two-color, pump-probe experiments that will further our fundamental understanding of chemical dynamics at the molecular level, especially those aspects relevant to practical issues in combustion chemistry. The technical approach adopted in this design makes use of superconducting radiofrequency (SCRF) accelerating structures. The primary motivation for adopting this approach was to meet the user requirement for wavelength stability equal to one part in 10{sup 4}. Previous studies concluded that a wavelength stability of only one part in 10{sup 3} could be achieved with currently available room-temperature technology. In addition, the superconducting design operates in a continuous-wave (cw) mode and hence offers considerably higher average optical output power. It also allows for various pulse-gating configurations that will permit simultaneous multiuser operations. A summary of the comparative performance attainable with room-temperature and superconducting designs is given. The FEL described in this report provides a continuous train of 30-ps micropulses, with 100{mu}J of optical energy per micropulse, at a repetition rate of 6.1 MHz. The device can also deliver pulses at a cw repetition rate of 12.2 MHz, with a peak power of 50 {mu}J per micropulse. 70 ref.« less

  13. Linac coherent light source (LCLS) undulator RF BPM system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Waldschmidt, G.; Morrison, L.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  14. Linac Coherent Light Source Undulator RF BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  15. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOEpatents

    Warren, R.W.

    1992-09-01

    A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.

  16. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOEpatents

    Warren, Roger W.

    1992-01-01

    A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  17. Attenuation of midinfrared free electron laser energy with eyewear

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Gabella, William

    2005-04-01

    Purpose: To determine the attenuation of free electron laser (FEL) energy at several wavelengths through microscope objective and eyeglass lenses. Materials and Methods: The FEL at wavelengths of 2.3 um, 2.5 um, 3.0 um, 3.5 um, 4.0 um, 4.5 um, 5.0 um, 6.45 um, 7.0 um, 7.5 um, and 8.0 um was telescoped using a 500 mm nominal focal length lens and a 200 mm focal length lens. The beam had a final spot of about 3 mm and was passed through a 3 mm aperture and onto the 8 mm active area of a J9LP Molectron detector. The eyeglass sample was placed 3 cm in front of the detector. Energy readings were averaged over multiple pulses. Results: Attenuation varied greatly with wavelength and sample from a low attenuation of 0.46 dB, 90% transmission, for short wavelengths through common glass to greater than 60 dB attenuation (transmission at the detector noise level) for IR safe glass by Aura, Inc. Conclusion: Only the designated laser safety goggles effectively attenuate free electron laser energy at 2.3 um and 2.5 um. A microscope objective lens, polycarbonate, and silica glass eyewear is capable of effectively attenuating FEL energy at wavelengths greater than 4.5 um, but the polycarbonate lenses demonstrated material damage.

  18. XUV ionization of aligned molecules

    NASA Astrophysics Data System (ADS)

    Kelkensberg, F.; Rouzée, A.; Siu, W.; Gademann, G.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.; Vrakking, M. J. J.

    2011-11-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  19. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  20. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; van der Slot, P. J. M.; Grimminck, D. L. A. G.; Setija, I. D.; Falgari, P.

    2017-02-01

    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise. In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton-Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade oscillator experiment at the Thomas Jefferson National Accelerator Facility.

  2. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE PAGES

    David, C.; Karvinen, P.; Sikorski, M.; ...

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  3. XUV ionization of aligned molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkensberg, F.; Siu, W.; Gademann, G.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  4. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  5. Exploring the folding free energy landscape of a β-hairpin miniprotein, chignolin, using multiscale free energy landscape calculation method.

    PubMed

    Harada, Ryuhei; Kitao, Akio

    2011-07-14

    The folding process for a β-hairpin miniprotein, chignolin, was investigated by free energy landscape (FEL) calculations using the recently proposed multiscale free energy landscape calculation method (MSFEL). First, coarse-grained molecular dynamics simulations searched a broad conformational space, then multiple independent, all-atom molecular dynamics simulations with explicit solvent determined the detailed local FEL using massively distributed computing. The combination of the two models enabled efficient calculation of the free energy landscapes. The MSFEL analysis showed that chignolin has an intermediate state as well as a misfolded state. The folding process is initiated by the formation of a β-hairpin turn, followed by the formation of contacts in the hydrophobic core between Tyr2 and Trp9. Furthermore, mutation of Tyr2 shifts the population to the misfolded conformation. The results indicate that the hydrophobic core plays an important role in stabilizing the native state of chignolin. © 2011 American Chemical Society

  6. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.

  7. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enoughmore » to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.« less

  8. Separation of Dynamics in the Free Energy Landscape

    NASA Astrophysics Data System (ADS)

    Ekimoto, Toru; Odagaki, Takashi; Yoshimori, Akira

    2008-02-01

    The dynamics of a representative point in a model free energy landscape (FEL) is analyzed by the Langevin equation with the FEL as the driving potential. From the detailed analysis of the generalized susceptibility, fast, slow and Johari-Goldstein (JG) processes are shown to be well described by the FEL. Namely, the fast process is determined by the stochastic motion confined in a basin of the FEL and the relaxation time is related to the curvature of the FEL at the bottom of the basin. The jump motion among basins gives rise to the slow relaxation whose relaxation time is determined by the distribution of the barriers in the FEL and the JG process is produced by weak modulation of the FEL.

  9. Duke storage rink UV/VUV FEL: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL andmore » the Duke storage ring are discussed.« less

  10. Novel Out-Coupling Techniques for Terahertz Free Electron Lasers

    DTIC Science & Technology

    2012-06-01

    4  1.   FEL “ Pendulum ” Equation and Electron Dynamics .......................4  2.   FEL...4 B. FEL THEORY 1. FEL “ Pendulum ” Equation and Electron Dynamics The dynamics of electron motion as it passes through the undulator are governed...I.5, then the FEL “ pendulum equation” is derived , (I.7) where is the dimensionless laser field amplitude[1]. From this, it is shown that changes

  11. Non-thermal damage to lead tungstate induced by intense short-wavelength laser radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vozda, Vojtech; Boháček, Pavel; Burian, Tomáš; Chalupský, Jaromir; Hájková, Vera; Juha, Libor; Vyšín, Ludek; Gaudin, Jérôme; Heimann, Philip A.; Hau-Riege, Stefan P.; Jurek, Marek; Klinger, Dorota; Krzywinski, Jacek; Messerschmidt, Marc; Moeller, Stefan P.; Nagler, Robert; Pelka, Jerzy B.; Rowen, Michael; Schlotter, William F.; Swiggers, Michele L.; Sinn, Harald; Sobierajski, Ryszard; Tiedtke, Kai; Toleikis, Sven; Tschentscher, Thomas; Turner, Joshua J.; Wabnitz, Hubertus; Nelson, Art J.; Kozlova, Maria V.; Vinko, Sam M.; Whitcher, Thomas; Dzelzainis, Thomas; Renner, Oldrich; Saksl, Karel; Fäustlin, Roland R.; Khorsand, Ali R.; Fajardo, Marta; Iwan, Bianca S.; Andreasson, Jakob; Hajdu, Janos; Timneanu, Nicusor; Wark, Justin S.; Riley, David; Lee, Richard W.; Nagasono, Mitsuru; Yabashi, Makina

    2017-05-01

    Interaction of short-wavelength free-electron laser (FEL) beams with matter is undoubtedly a subject to extensive investigation in last decade. During the interaction various exotic states of matter, such as warm dense matter, may exist for a split second. Prior to irreversible damage or ablative removal of the target material, complicated electronic processes at the atomic level occur. As energetic photons impact the target, electrons from inner atomic shells are almost instantly photo-ionized, which may, in some special cases, cause bond weakening, even breaking of the covalent bonds, subsequently result to so-called non-thermal melting. The subject of our research is ablative damage to lead tungstate (PbWO4) induced by focused short-wavelength FEL pulses at different photon energies. Post-mortem analysis of complex damage patterns using the Raman spectroscopy, atomic-force (AFM) and Nomarski (DIC) microscopy confirms an existence of non-thermal melting induced by high-energy photons in the ionic monocrystalline target. Results obtained at Linac Coherent Light Source (LCLS), Free-electron in Hamburg (FLASH), and SPring-8 Compact SASE Source (SCSS) are presented in this Paper.

  12. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    DOE PAGES

    Wu, Juhao; Hu, Newman; Setiawan, Hananiel; ...

    2016-11-20

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out in this paper employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance inmore » the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Finally, analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.« less

  13. Compact single-pass X-ray FEL with harmonic multiplication cascades

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2018-07-01

    The generation of X-ray radiation in cascaded single-pass free electron laser (FEL), which amplifies high harmonics of a two-frequency undulator, is studied. Power dynamics of FEL harmonics is explored with the help of the phenomenological model of a single pass FEL. The model describes both linear and non-linear harmonic generation, starting from a coherent seed laser and initial shot noise with account for main loss factors for each harmonic in each cascade individually: the energy spread and beam divergence, the coupling losses between FEL cascades, the diffraction etc. The model was validated with the experiment and with relevant 3-D simulations. It is employed for modeling the cascaded FELs with harmonic multiplication and analyzing the evolution of FEL harmonic power with the aim to obtain the maximum high harmonic power in the X-ray band at the shortest possible FEL length with the lowest possible seed frequency. The advantages of two-frequency undulators in HGHG FELs are elucidated. The requirements for the electron beam are studied; the need for low energy spread is evidenced: our evaluations yield σe < 2 × 10-4. Several cascaded HGHG FELs with two-frequency undulators are modeled. Generation of soft X-ray radiation at λ = 2 . 71 nm, reaching ∼50 MW power with I0 ∼ 100 A in a cascaded FEL at just 40 m with 13.51 nm seed, matching peak reflectivity of Mo/Si, is demonstrated. The generation of 40 MW radiation power at λ = 2 . 27 nm with the beam current I0 ∼ 100 A, energy E = 950 MeV and the energy spread σe = 2 × 10-4 is studied, using second and third harmonics in three-stage 45 m long FEL. The multistage FEL is modeled for generating radiation in nanometer band: ∼40 MW power at λ ∼ 2 . 6 nm with I0 ∼ 175 A current in just ∼40 m long FEL with commercially available F2 excimer UV laser seed at 157 nm. The peak radiation power rises to ∼0.5 GW for ∼1 kA beam current.

  14. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, E.; Allaria, E.; Buck, J.

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  15. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE PAGES

    Ferrari, E.; Allaria, E.; Buck, J.; ...

    2015-08-28

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  16. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  17. Development of a High Average Current Thermionic Injector for Free-Electron Lasers

    DTIC Science & Technology

    2013-02-11

    high   average   power   FEL   should   produce   high ...The  cathode  heater   is   powered  by  a  60  Hz  AC   feed  that  floats  on  the   high  voltage  pulse... high -­‐voltage   power  supply  for  the  IOT  gun  is  a  70  kV  Rockwell  hard  tube   modulator   with  

  18. Innovative FEL schemes using variable-gap undulators

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2017-06-01

    We discuss theoretical background and experimental verification of advanced schemes for X-ray FELs using variable gap undulators (harmonic lasing self-seeded FEL, reverse taper etc.) Harmonic lasing in XFELs is an opportunity to extend operating range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental. Another interesting application of harmonic lasing is Harmonic Lasing Self-Seeded (HLSS) FEL that allows to improve longitudinal coherence and spectral power of a SASE FEL. Recently this concept was successfully tested at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. That was also the first experimental demonstration of harmonic lasing in a high-gain FEL and at a short wavelength (before it worked only in infrared FEL oscillators). Another innovative scheme that was tested at FLASH2 is the reverse tapering that can be used to produce circularly polarized radiation from a dedicated afterburner with strongly suppressed linearly polarized radiation from the main undulator. This scheme can also be used for an efficient background-free production of harmonics in an afterburner. Experiments on the frequency doubling that allowed to reach the shortest wavelength at FLASH as well as on post-saturation tapering to produce a record intencity in XUV regime are also discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, J.; Hao, H.; Li, J. Y.

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less

  20. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  1. Tapered undulator for SASE FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  2. Storage ring two-color free-electron laser

    DOE PAGES

    Yan, J.; Hao, H.; Li, J. Y.; ...

    2016-07-05

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less

  3. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be... revised FEL for the remainder of their service lives, unless it is changed again under this section during...

  4. 40 CFR 1033.750 - Changing a locomotive's FEL at remanufacture.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Changing a locomotive's FEL at... Certification § 1033.750 Changing a locomotive's FEL at remanufacture. Locomotives are generally required to be... revised FEL for the remainder of their service lives, unless it is changed again under this section during...

  5. The Physics and Applications of High Brightness Beams: Working Group C Summary on Applications to FELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2003-03-19

    This is the summary of the activities in working group C, ''Application to FELs,'' which was based in the Bithia room at the Joint ICFA Advanced Accelerator and Beam Dynamics Workshop on July 1-6, 2002 in Chia Laguna, Sardinia, Italy. Working group C was small in relation to the other working groups at that workshop. Attendees include Enrica Chiadroni, University of Rome ape with an identical pulse length. ''La Sapienza'', Luca Giannessi, ENEA, Steve Lidia, LBNL, Vladimir Litvinenko, Duke University, Patrick Muggli, UCLA, Alex Murokh, UCLA, Heinz-Dieter Nuhn, SLAC, Sven Reiche, UCLA, Jamie Rosenzweig, UCLA, Claudio Pellegrini, UCLA, Susan Smith,more » Daresbury Laboratory, Matthew Thompson, UCLA, Alexander Varfolomeev, Russian Research Center, plus a small number of occasional visitors. The working group addressed a total of nine topics. Each topic was introduced by a presentation, which initiated a discussion of the topic during and after the presentation. The speaker of the introductory presentation facilitated the discussion. There were six topics that were treated in stand-alone sessions of working group C. In addition, there were two joint sessions, one with working group B, which included one topic, and one with working group C, which included two topics. The presentations that were given in the joint sessions are summarized in the working group summary reports for groups B and D, respectively. This summary will only discuss the topics that were addressed in the stand-alone sessions, including Start-To-End Simulations, SASE Experiment, PERSEO, ''Optics Free'' FEL Oscillators, and VISA II.« less

  6. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  7. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  8. The APS SASE FEL : modeling and code comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedron, S. G.

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  9. Bringing PW-class lasers to XFELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2017-06-01

    Experimental researches using high power optical lasers combined with free electron lasers (FELs) open new frontiers in high energy density (HED) sciences. Probing and pumping capabilities are dramatically improved due to the brightness of the XFEL pulses with ultrafast duration. Besides, the peak intensities of Ti:sapphire laser Chirped Pulse Amplification (CPA) systems reach petawatt (PW)-class with operating in few tens of fs and commercially available at a few Hz of repetition rate. We have been developing an experimental platform for HED sciences using high power, high intensity optical lasers at the XFEL facility, SACLA.Currently, an experimental platform with a dual 0.5 PW Ti:Sapphire laser system is under beam commissioning for experiments combined with the SACLA's x-ray beam for research objectives that require more peak power in the optical laser pulses with a few tens of fs. The optical laser system is designed to deliver two laser beams simultaneously with the maximum power of 0.5 PW in each into a target chamber located in an experimental hutch 6 (EH6) at BL2, which was recently commissioned as a SACLA's 2nd hard x-ray beamline. A focusing capability using sets of compound refractive lenses will be applied to increase the x-ray fluence on the target sample. One of the most key issues for the integrated experimental platform is development of diagnostics that meets requirements both from the high power laser (e.g. resistance to harsh environments) and from the XFEL (e.g. adaptation to the available data acquisition system). The status and future perspective of the development including automatic laser alignment systems will be reported in the presentation. We will discuss the most promising and important new physics experiments that will be enabled by the combination of PW-class lasers and the world-class FEL's x-ray beam.

  10. Start-Up of FEL Oscillator from Shot Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    In free-electron laser (FEL) oscillators, as inself-amplified spontaneous emission (SASE) FELs, the buildup of cavitypower starts from shot noise resulting from the discreteness ofelectronic charge. It is important to do the start-up analysis for thebuild-up of cavity power in order to fix the macropulse width from theelectron accelerator such that the system reaches saturation. In thispaper, we use the time-dependent simulation code GINGER [1]toperformthis analysis. We present results of this analysis for theparameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2]beingbuilt atRRCAT.

  11. Free-electron laser wavelength-selective materials alteration and photoexcitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tolk, N. H.; Albridge, R. G.; Barnes, A. V.; Barnes, B. M.; Davidson, J. L.; Gordon, V. D.; Margaritondo, G.; McKinley, J. T.; Mensing, G. A.; Sturmann, J.

    1996-10-01

    The free-electron laser (FEL) has become an important tool for producing high-intensity photon beams, especially in the infrared. Synchrotron radiation's primary spectral domains are in the ultraviolet and X-ray region. FEL's are therefore excellent complimentary facilities to synchrotron radiation sources. While FEL's have seen only limited use in experimentation, recently developed programs at Vanderbilt University in Nashville, TN, are swiftly rectifying this situation. This review paper examines practical experience obtained through pioneering programs using the Vanderbilt FEL, which currently hosts one of the largest FEL materials research programs. Results will be discussed in three areas: two-photon absorption in germanium, FEL-assisted internal photoemission measurements of interface energy barriers (FELIPE), and wavelength-specific laser diamond ablation.

  12. Design of compressors for FEL pulses using deformable gratings

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  13. longitudinal space charge assisted echo seeding of a free electron laser

    NASA Astrophysics Data System (ADS)

    Hacker, Kirsten

    2015-05-01

    Seed lasers are employed to improve the temporal coherence of free-electron laser light. However, when seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the un-seeded electrons can overwhelm the coherent, seeded radiation. In this paper a new seeding mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray Free-electron LASer in Hamburg, FLASH. The impacts of coherent synchrotron radiation, intra beam scattering, and high peak current operation are investigated.

  14. Narrowband Emission in Compton/Thomson Sources Operating in the High-Field Regime

    DOE PAGES

    Terzic, Balsa; Deitrick, Kirsten E.; Hofler, Alicia S.; ...

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the upshifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications, and reduces the spectral brilliance. In this paper we show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Further, we suggest a practical realizationmore » of this compensation idea in terms of a chirped-beam driven FEL oscillator configuration, and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions.« less

  15. Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Staroselskaya, E. I.; Douguet, N.; Bartschat, K.

    2018-01-01

    We investigate the coherent control of the photoelectron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs). In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schrödinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either 2 p -3 s or 2 p -4 s excitation. The contribution of the nonresonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.

  16. Immunological differences in the global release of the major cat allergen Fel d 1 are influenced by sex and behaviour.

    PubMed

    Bienboire-Frosini, Cécile; Cozzi, Alessandro; Lafont-Lecuelle, Céline; Vervloet, Daniel; Ronin, Catherine; Pageat, Patrick

    2012-07-01

    The biological function of Fel d 1, the major cat allergen released in the environment, is still unclear despite studies suggesting a putative role in chemical communication. Structural and immunological polymorphisms of Fel d 1 have been described. This study examined how Fel d 1 immunological polymorphism may have a physiological origin by estimating a potential relationship with the sex of cats and cat-human interactions. Samples from bath washes of 21 cats were screened to study antibody binding to Fel d 1 using an ELISA. Personality and Tolerance Handling scores were used to assess the behaviour of the cats. In the washes, Fel d 1 concentrations were significantly lower in females than in males (P<0.05). Slopes from the ELISA dose-dependent curves varied among the cats: males secreted Fel d 1 variants with higher antibody recognition than females (P<0.01). Females that were aggressive and difficult to handle displayed a diminished slope value, and therefore a weaker Fel d 1 immunoreactivity in global washes, compared to females that were sociable (P=0.09) and easy to handle (P=0.07). This study shows a variable immunological polymorphism of Fel d 1 within a cat population, particularly between males and females, and this polymorphism appears to be related to cat-human interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The cat lipocalin Fel d 7 and its cross-reactivity with the dog lipocalin Can f 1.

    PubMed

    Apostolovic, D; Sánchez-Vidaurre, S; Waden, K; Curin, M; Grundström, J; Gafvelin, G; Cirkovic Velickovic, T; Grönlund, H; Thomas, W R; Valenta, R; Hamsten, C; van Hage, M

    2016-10-01

    We investigated the prevalence of sensitization to the cat lipocalin Fel d 7 among 140 cat-sensitized Swedish patients and elucidated its allergenic activity and cross-reactivity with the dog lipocalin Can f 1. Sixty-five of 140 patients had IgE to rFel d 7 whereof 60 also had IgE to rCan f 1. A moderate correlation between IgE levels to rFel d 7 and rCan f 1 was found. rFel d 7 activated basophils in vitro and inhibited IgE binding to rCan f 1 in 4 of 13 patients, whereas rCan f 1 inhibited IgE binding to rFel d 7 in 7 of 13 patients. Fel d 7 and Can f 1 showed high similarities in protein structure and epitopes in common were found using cross-reactive antisera. Fel d 7 is a common allergen in a Swedish cat-sensitized population that cross-reacts with Can f 1, and may contribute to symptoms in cat- but also in dog-allergic patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Suppression of shot noise and spontaneous radiation in electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.

    2009-08-23

    Shot noise in the electron beam distribution is the main source of noise in high-gain FEL amplifiers, which may affect applications ranging from single- and multi-stage HGHG FELs to an FEL amplifier for coherent electron cooling. This noise also imposes a fundamental limit of about 10{sup 6} on FEL gain, after which SASE FELs saturate. There are several advantages in strongly suppressing this shot noise in the electron beam, and the corresponding spontaneous radiation. For more than a half-century, a traditional passive method has been used successfully in practical low-energy microwave electronic devices to suppress shot noise. Recently, it wasmore » proposed for this purpose in FELs. However, being passive, the method has some significant limitations and is hardly suitable for the highly inhomogeneous beams of modern high-gain FELs. I present a novel active method of suppressing, by many orders-of-magnitude, the shot noise in relativistic electron beams. I give a theoretical description of the process, and detail its fundamental limitation.« less

  19. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    PubMed Central

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  20. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    PubMed

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  1. Sensitization to minor cat allergen components is associated with type-2 biomarkers in young asthmatics.

    PubMed

    Tsolakis, N; Malinovschi, A; Nordvall, L; Mattsson, L; Lidholm, J; Pedroletti, C; Janson, C; Borres, M P; Alving, K

    2018-03-25

    Cat allergy is a major trigger of asthma world-wide. Molecular patterns of cat sensitization vary between individuals, but their relationship to inflammation in asthmatics has not been extensively studied. To investigate the prevalence and levels of IgE antibodies against different cat allergen components and their relationship to type-2 inflammation and total IgE among young asthmatic subjects sensitized to furry animals. Patients with asthma (age 10-35 years; n = 266) and IgE sensitization to cat, dog or horse extract (ImmunoCAP), were analysed for IgE to the cat allergen components Fel d 1 (secretoglobin), Fel d 2 (serum albumin), Fel d 4 and Fel d 7 (lipocalins). Independent associations between IgE-antibody concentrations, and fraction of exhaled nitric oxide (FeNO), blood eosinophil (B-Eos) count, and total IgE were analysed by multiple linear regression after adjustment for possible confounders. The level of IgE against Fel d 2 was independently related to FeNO (P = .012) and total IgE (P < .001), and IgE against Fel d 4 associated with Β-Eos count (P = .009) and total IgE (P < .001). IgE antibodies against Fel d 1 or cat extract did not independently relate to these inflammatory markers (P = .23-.51). Levels of IgE to lipocalin (Fel d 4) and serum albumin (Fel d 2), but not to secretoglobin (Fel d 1) or cat extract, were independently associated with type-2 biomarkers and total IgE in young asthmatics. We suggest that measurement of IgE to minor cat allergen components may be useful when investigating asthma morbidity in cat allergic subjects. © 2018 John Wiley & Sons Ltd.

  2. Medical free-electron laser: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Bell, James P.; Ponikvar, Donald R.

    1994-07-01

    The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.

  3. Generation and Amplification of Coherent Radiation with Optical Orbital Angular Momentum in a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik Willard

    The object of this work is to examine how coherent light that carries orbital angular momentum (OAM) can be generated and amplified in a single pass, high-gain free-electron laser (FEL) at the fundamental operating frequency. This concept unites two rapidly expanding, but at present largely non-overlapping fields of study: high-order OAM light modes, which interact in new ways with matter, and FELs, in which a relativistically energetic electron beam emits coherent, ultra high-brightness, highly frequency-tunable light. The ability to generate OAM light in an FEL enables new regimes of laser interaction physics to be explored at wavelengths down to hard x-rays. The theoretical portion of this dissertation attempts to provide a new predictive mathematical framework. It builds on existing work, and describes the three-dimensional electromagnetic field of the high-gain FEL as a sum of OAM modes such that the amplification properties of individual modes can be characterized. The effects of uncorrelated energy spread, longitudinal space charge, energy detuning, and transverse emittance in the electron beam are included, as is the diffraction of the laser light. Theoretical predictions are corroborated by detailed numerical Genesis 1.3 simulations. When the theory is extended to frequency harmonics, a novel interaction is uncovered that generates a helical electron beam density distribution. These predictions are also supported by numerical Tredi simulations. This type of highly correlated structure is shown to naturally emit OAM light, and forms the basis of a new high-gain, high-mode generation (HGHMG) scheme proposed in its entirety here. The experimental section examines the helical microbunching concept in a proof-of-principle experiment dubbed HELIX, performed at the UCLA Neptune laboratory. We present detailed measurement of the coherent transition radiation emitted by the 12.5 MeV electron beam that is microbunched in a second harmonic interaction with an input laser and helical undulator. The predicted dependence of the CTR signal on the input laser polarization is observed, and is consistent with microbunching that has a periodicity near the 10.6 mum wavelength of the 30 MW CO2 laser pulse. Scans of the interaction energy bandwidth are consistent with predictions that indicate a dominant azimuthal density mode with a bunching factor of 10%, and thus provide indication of the first experimental evidence of helical microbunching. This result offers support for future successful realization of the proposed HGHMG scheme to generate OAM modes in high-gain FELs.

  4. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  5. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  6. 40 CFR 1037.645 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... different FELs, we may apply a higher FEL within the family than was applied to the vehicle's configuration... of 200 g/ton-mile, 210 g/ton-mile, and 220 g/ton-mile, we may apply a 220 g/ton-mile in-use FEL to vehicles that were originally designated as part of the 200 g/ton-mile or 210 g/ton-mile sub-families. (2...

  7. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  8. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  9. Detector Damage at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Stan, C. A.; Tomada, A.

    2016-06-01

    Free-electron lasers (FELs) opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120 Hz pulses with 1012 to 1013 photons in 10 fs (billions of times brighter than at the most powerful synchrotrons). Concurrently, users and staff operate under high pressure due to flexible and often rapidly changing setups and low tolerance for system malfunction. This extreme detection environment raises unique challenges, from obvious to surprising, and leads to treating detectors as consumables. We discuss in detail the detector damage mechanisms observed in 7 years of operation at LCLS, together with the corresponding damage mitigation strategies and their effectiveness. Main types of damage mechanisms already identified include: (1) x-ray radiation damage (from “catastrophic” to “classical”), (2) direct and indirect damage caused by optical lasers, (3) sample induced damage, (4) vacuum related damage, (5) high-pressure environment. In total, 19 damage mechanisms have been identified. We also present general strategies for reducing damage risk or minimizing the impact of detector damage on the science program. These include availability of replacement parts and skilled operators and also careful planning, incident investigation resulting in updated designs, procedures and operator training.

  10. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang

    2017-12-01

    At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  11. Phase-Sensitive Reflective Imaging Device in the mm-wave and Terahertz Regions

    NASA Astrophysics Data System (ADS)

    Gallerano, Gian Piero; Doria, Andrea; Germini, Marzia; Giovenale, Emilio; Messina, Giovanni; Spassovsky, Ivan P.

    2009-12-01

    Two Free Electron Laser sources have been developed at ENEA-Frascati for a variety of applications: A Compact Free Electron Laser (C-FEL) that provides coherent radiation in the frequency range between 90 and 150 GHz Gallerano et al. (Infrared Phys. and Techn. 40:161, 1999), and a second source, FEL-CATS, which utilizes a peculiar radio-frequency structure to generate coherent emission in the range 0.4 to 0.7 THz Doria et al. (Phys. Rev. Lett 93:264801, 2004). The high peak power of several kW in 15 to 50 ps pulses, makes these sources particularly suitable for the assessment of exposure limits in biological systems and for long range detection. In this paper we present a phase-sensitive reflective imaging device in the mm-wave and THz regions, which has proven to be a valuable tool in the biological Ramundo-Orlando et al. (Bioelectromagnetics 28:587-598, 2007), environmental Doria et al. (2005) and art conservation fields Gallerano et al. (2008). Different setups have been tested at different levels of spatial resolution to image objects from a few centimeter square to larger sizes. Images have been compared to identify and characterize the contrast mechanism.

  12. Microfocusing of the FERMI@Elettra FEL beam with a K-B active optics system: Spot size predictions by application of the WISE code

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A. I.; Gauthier, D.; Zangrando, M.

    2013-05-01

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10-100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens-Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.

  13. High-power infrared and ultraviolet free electron lasers at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byung Yunn; Charles Sinclair; Christoph Leemann

    1992-06-15

    In response to requirements for national laboratory technology transfer, CEBAF has proposed an industrial R&D initiative: a Free Electron Laser(FEL) User Facility based on an infrared FEL and an ultraviolet FEL, with the injector and the north linac of the CEBAF superconducting,recirculating accelerator serving as drivers. The initiative is a collaborative effort with four U.S. corporate partners and capitalizes on CEBAF'ssuperconducting rf technology. The FELs will provide monochromatic, tunable (3.6 to 1.7 ¿m and 150 to 260 nm), high-average-power (-kW) lightfor technical applications and basic science studies. FEL capabilities will be competitive with those of similar initiatives worldwide. FEL operationmore » willnot impair beam delivered to CEBAF's nuclear physics experiments. Substational commitments are in hand from the industray partners and theCommonwealth of Virgina for cost-sharing the project with the Federal Government.« less

  14. High-power infrared and ultraviolet free electron lasers at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla, H.F.; Bisognano, J.J.; Douglas, D.

    1992-12-05

    In response to requirements for national laboratory technology transfer, CEBAF has proposed an industrial R D initiative: a Free Electron Laser (FEL) User Facility based on an infrared FEL and an ultraviolet FEL, with the injector and the north linac of the CEBAF superconducting, recirculating accelerator serving as drivers. The initiative is a collaborative effort with four U.S. corporate partners and capitalizes on CEBAF's superconducting rf technology. The FELs will provide monochromatic, tunable (3.6 to 1.7 [mu]m and 150 to 260 nm), high-average-power (-kW) light for technical applications and basic science studies. FEL capabilities will be competitive with those ofmore » similar initiatives worldwide. FEL operation will not impair beam delivered to CEBAF's nuclear physics experiments. Substational commitments are in hand from the industray partners and the Commonwealth of Virgina for cost-sharing the project with the Federal Government.« less

  15. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  16. Compact double-bunch x-ray free electron lasers for fresh bunch self-seeding and harmonic lasing

    DOE PAGES

    Emma, C.; Feng, Y.; Nguyen, D. C.; ...

    2017-03-03

    This study presents a novel method to improve the longitudinal coherence, efficiency and maximum photon energy of x-ray free electron lasers (XFELs). The method is equivalent to having two separate concatenated XFELs. The first uses one bunch of electrons to reach the saturation regime, generating a high power self-amplified spontaneous emission x-ray pulse at the fundamental and third harmonic. The x-ray pulse is filtered through an attenuator/monochromator and seeds a different electron bunch in the second FEL, using the fundamental and/or third harmonic as an input signal. In our method we combine the two XFELs operating with two bunches, separatedmore » by one or more rf cycles, in the same linear accelerator. We discuss the advantages and applications of the proposed system for present and future XFELs.« less

  17. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  18. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  19. Spectroscopic, potentiometric and theoretical studies on the binding properties of a novel tripodal polycatechol-imine ligand towards iron(III)

    NASA Astrophysics Data System (ADS)

    Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati

    2008-12-01

    A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.

  20. Saturation Measurements of a Visible SASE FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  1. Airborne megawatt class free-electron laser for defense and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the farmore » infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.« less

  2. Prototype Control System for Compensation of Superconducting Cavities Detuning Using Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.

    2009-08-01

    Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATANABE, T.; LIU, D.; MURPHY, J.B.

    The strong focusing VISA undulator is presented in this report. The proposed FEL will operate at the 1 {micro}m water window. Extensive simulations were performed to optimize an FEL amplifier based on the two-meter long VISA undulator which has a period of 1.8 cm and an undulator parameter K = 1.26. The betatron function inside the VISA undulator is about 30 cm. For an electron beam with a peak current {approx}1 kA and a normalized emittance of 5 mm-mrad, the FEL peak power can exceed 1 GW within the 2 m VISA undulator using a 5 kW peak power seedmore » laser. Such a device can produce a megawatt of average power for a 700 MHz rep rate. The transverse distribution of the FEL radiation along the undulator, as well as after the undulator, is explored by numerical simulation. The FEL power density at 5 m downstream from the undulator is less than 100 kW/cm{sup 2} for this MW-class FEL. We will also discuss the feasibility of an experimental demonstration of the laser seeded FEL amplifier based on the 2-m VISA undulator at the NSLS Source Development Lab (SDL).« less

  4. MITHRA 1.0: A full-wave simulation tool for free electron lasers

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Yahaghi, Alireza; Kärtner, Franz X.

    2018-07-01

    Free Electron Lasers (FELs) are a solution for providing intense, coherent and bright radiation in the hard X-ray regime. Due to the low wall-plug efficiency of FEL facilities, it is crucial and additionally very useful to develop complete and accurate simulation tools for better optimizing a FEL interaction. The highly sophisticated dynamics involved in a FEL process was the main obstacle hindering the development of general simulation tools for this problem. We present a numerical algorithm based on finite difference time domain/Particle in cell (FDTD/PIC) in a Lorentz boosted coordinate system which is able to fulfill a full-wave simulation of a FEL process. The developed software offers a suitable tool for the analysis of FEL interactions without considering any of the usual approximations. A coordinate transformation to bunch rest frame makes the very different length scales of bunch size, optical wavelengths and the undulator period transform to values with the same order. Consequently, FDTD/PIC simulations in conjunction with efficient parallelization techniques make the full-wave simulation feasible using the available computational resources. Several examples of free electron lasers are analyzed using the developed software, the results are benchmarked based on standard FEL codes and discussed in detail.

  5. Characterization of an 800 nm SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  6. An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen.

    PubMed

    Bonnet, B; Messaoudi, K; Jacomet, F; Michaud, E; Fauquert, J L; Caillaud, D; Evrard, B

    2018-01-01

    Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends.

  7. Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator

    DOE PAGES

    Baxevanis, Panagiotis; Huang, Zhirong; Ruth, Ronald; ...

    2015-01-27

    Here, the use of a transverse gradient undulator (TGU) is viewed as an attractive option for free-electron lasers (FELs) driven by beams with a large energy spread. By suitably dispersing the electron beam and tilting the undulator poles, the energy spread effect can be substantially mitigated. However, adding the dispersion typically leads to electron beams with large aspect ratios. As a result, the presence of higher-order modes in the FEL radiation can become significant. To investigate this effect, we study the eigenmode properties of a TGU-based, high-gain FEL, using both an analytically-solvable model and a variational technique. Our analysis, whichmore » includes the fundamental and the higher-order FEL eigenmodes, can provide an estimate of the mode content for the output radiation. This formalism also enables us to study the trade-off between FEL gain and transverse coherence. Numerical results are presented for a representative soft X-ray, TGU FEL example.« less

  8. Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Baxevanis, Panagiotis; Huang, Zhirong; Ruth, Ronald; Schroeder, Carl B.

    2015-01-01

    The use of a transverse gradient undulator (TGU) is viewed as an attractive option for free-electron lasers (FELs) driven by beams with a large energy spread. By suitably dispersing the electron beam and tilting the undulator poles, the energy spread effect can be substantially mitigated. However, adding the dispersion typically leads to electron beams with large aspect ratios. As a result, the presence of higher-order modes in the FEL radiation can become significant. To investigate this effect, we study the eigenmode properties of a TGU-based, high-gain FEL, using both an analytically-solvable model and a variational technique. Our analysis, which includes the fundamental and the higher-order FEL eigenmodes, can provide an estimate of the mode content for the output radiation. This formalism also enables us to study the trade-off between FEL gain and transverse coherence. Numerical results are presented for a representative soft X-ray, TGU FEL example.

  9. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    PubMed

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  10. Integrating the FEL on an All-Electric Ship

    DTIC Science & Technology

    2007-06-01

    6 4. Optical Cavity ( Oscillator Configuration...36 Figure 12. Optical energy in an oscillator FEL with an electron beam tilt. ......................37 Figure 13. Optical energy in an oscillator ...38 Figure 15. Optical energy in an oscillator FEL with a mirror tilt. ....................................39 Figure 16. Diagram of a

  11. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  12. 40 CFR 91.118 - Certification procedure-testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... difference between the old FEL and the new FEL; and that the new FEL applies to all engines covered by the... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification... test engine using the specified test procedures and appropriate test cycle. All test results must be...

  13. 40 CFR 91.118 - Certification procedure-testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... difference between the old FEL and the new FEL; and that the new FEL applies to all engines covered by the... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification... test engine using the specified test procedures and appropriate test cycle. All test results must be...

  14. 40 CFR 91.118 - Certification procedure-testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... difference between the old FEL and the new FEL; and that the new FEL applies to all engines covered by the... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification... test engine using the specified test procedures and appropriate test cycle. All test results must be...

  15. 40 CFR 91.118 - Certification procedure-testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... difference between the old FEL and the new FEL; and that the new FEL applies to all engines covered by the... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification... test engine using the specified test procedures and appropriate test cycle. All test results must be...

  16. 40 CFR 91.118 - Certification procedure-testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... difference between the old FEL and the new FEL; and that the new FEL applies to all engines covered by the... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards and Certification... test engine using the specified test procedures and appropriate test cycle. All test results must be...

  17. Free energy landscape theory of glass transition

    NASA Astrophysics Data System (ADS)

    Odagaki, Takashi

    2010-03-01

    I first present a free energy landscape (FEL) description of statistical mechanics, which is an exact reformulation of statistical mechanics and can be applied to non-equilibrium systems. Then, I discuss thermodynamic and dynamic properties of the vitrification process on the basis of the FEL formalism. I show that thermodynamic and dynamic anomalies at the glass transition, including the cooling rate dependence, can be understood in a unified manner which has not been achieved by any other theories of the glass transition. Namely, I show that the vitrification is a transition from annealed to quenched averages in the FEL and that the fast beta, the JG and the slow alpha relaxations are attributed to stochastic dynamics within a basin of FEL, jumping motion among locally connected basins and diffusive dynamics over barriers of the FEL.

  18. Free electron laser and fundamental physics

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  19. Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Mawn, Louise A.; Shen, Jin-Hui; Jansen, E. Duco; Casagrande, Vivien A.

    2002-06-01

    Our previous studies using rabbits and monkeys showed that the Amide II wavelength (6.45 micrometers ) produced by the FEL could efficiently produce an optic nerve sheath fenestration with minimal damage. In order to determine if the technology safely could be applied to human surgery, we used 2 blind human eyes during enucleation to compare the results of producing fenestrations with the FEL or a scissors. FDA and Vanderbilt IRB approvals, and individual patient consents were obtained. The FEL energy was transmitted to a human operating room. After disinsertion of the medial rectus muscle, an optic nerve sheath fenestration (2 mm diameter) was made with either the FEL (6.45 micrometers , 325 micrometers spot size, 30 Hz, 3 mJ) through a hollow waveguide surgical probe or with a scissors. The enucleation was then completed. The optic nerve was dissected from the globe and fixed. Specimens were examined histologically. Dural incisions were effective with both methods. FEL energy at 6.45 micrometers can be transmitted to an operating room and delivered to human ocular tissue through a hollow waveguide surgical probe. This FEL wavelength can produce an optic nerve sheath fenestration without acute direct damage to the nerve in this case report.

  20. Cat allergen levels in public places in New Zealand.

    PubMed

    Martin, I R; Wickens, K; Patchett, K; Kent, R; Fitzharris, P; Siebers, R; Lewis, S; Crane, J; Holbrook, N; Town, G I; Smith, S

    1998-09-25

    Cat allergen (Fel d 1) is a known risk factor for asthma. Studies have demonstrated Fel d 1 in both public buildings and domestic dwellings where cats have never been. The aims of this study were to measure reservoir Fel d 1 levels in public buildings in New Zealand, to examine determinants of these levels and to compare them with previously measured domestic levels. Dust was obtained in two centres (Wellington and Christchurch) from hotels, hospitals, rest homes, churches, primary schools, childcare centres, cinemas, bank head offices and aeroplanes; and from North Island ski lodges. Measurements of temperature and relative humidity were taken. Information was collected on building characteristics. Fel d 1 levels (microg/g of fine dust) for floors (n=203), beds (n=64) and seats (n=24) were expressed as geometric means (95% confidence intervals). Detectable Fel d 1 levels were found in 95% of floor samples, 91% of bed samples and 100% of seat samples. Fel d 1 levels [geometric mean (95% confidence intervals)] were significantly higher on cinema and domestic aircraft seats [36.8 (20.8-65.3) microg/g and 33.3 (28.0-39.7) microg/g respectively] than on floors [3.6 (2.5-5.1) microg/g and 2.4 (1.8-3.0) microg/g respectively]. Floor Fel d 1 levels in the public buildings sampled were lower than those of domestic dwellings without cats [0.9 (0.6-1.4) microg/g vs 1.7 (1.2-2.4)] microg/g in Wellington and [2.0 (1.6-2.6) microg/g vs 4.0 (2.7-6.0] microg/g in Christchurch. After controlling for potential confounders, floor Fel d 1 levels were higher with carpeted floors (p<0.001) and lower in banks and hospitals (p<0.001). Fel d 1 levels in public buildings are low in New Zealand public places except for cinema and domestic aircraft seats where all but one sample had Fel d 1 levels potentially high enough to precipitate asthma symptoms in sensitised individuals.

  1. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  2. Validity and reliability of the Fels physical activity questionnaire for children.

    PubMed

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  3. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    PubMed

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  4. 40 CFR 1051.730 - What ABT reports must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., identify the date that you started using the new FEL and/or give the vehicle identification number for the first vehicle covered by the new FEL. In this case, identify each applicable FEL and calculate the... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Averaging, Banking, and...

  5. 40 CFR 1051.730 - What ABT reports must I send to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., identify the date that you started using the new FEL and/or give the vehicle identification number for the first vehicle covered by the new FEL. In this case, identify each applicable FEL and calculate the... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Averaging, Banking, and...

  6. 77 FR 75660 - Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...] Agency Information Collection Activities; Proposed Collection; Comments Requested: FEL Out-of-Business.... (2) Title of the Form/Collection: FEL Out of Business Records. (3) Form Number: None. Bureau of..., as well as a brief abstract: Primary: Business or other for-profit. Other: None. Need for Collection...

  7. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    EPA Science Inventory

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  8. Effects of finite beam and plasma temperature on the growth rate of a two-stream free electron laser with background plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdizadeh, N.; Aghamir, F. M.

    2013-02-28

    A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in themore » TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.« less

  9. Influence of nonlinear effects on statistical properties of the radiation from SASE FEL

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents analysis of statistical properties of the radiation from self-amplified spontaneous emission (SASE) free-electron laser operating in nonlinear mode. The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. It has been observed that the statistics of the instantaneous radiation power from SASE FEL operating in the nonlinear regime changes significantly with respect to the linear regime. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility under construction at DESY.

  10. Coherence and linewidth studies of a 4-nm high power FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output linemore » widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.« less

  11. Stochastic particle instability for electron motion in combined helical wiggler, radiation, and longitudinal wave fields

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; McMullin, Wayne A.

    1982-07-01

    The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.

  12. How Adequate are One- and Two-Dimensional Free Energy Landscapes for Protein Folding Dynamics?

    NASA Astrophysics Data System (ADS)

    Maisuradze, Gia G.; Liwo, Adam; Scheraga, Harold A.

    2009-06-01

    The molecular dynamics trajectories of protein folding or unfolding, generated with the coarse-grained united-residue force field for the B domain of staphylococcal protein A, were analyzed by principal component analysis (PCA). The folding or unfolding process was examined by using free-energy landscapes (FELs) in PC space. By introducing a novel multidimensional FEL, it was shown that the low-dimensional FELs are not always sufficient for the description of folding or unfolding processes. Similarities between the topographies of FELs along low- and high-indexed principal components were observed.

  13. Fused rock from Köfels, Tyrol

    USGS Publications Warehouse

    Milton, Daniel J.

    1964-01-01

    The vesicular glass from Köfels, Tyrol, contains grains of quartz that have been partially melted but not dissolved in the matrix glass. This phenomenon has been observed in similar glasses formed by friction along a thrust fault and by meteorite impact, but not in volcanic glasses. The explosion of a small nuclear device buried behind a steep slope produced a geologic structure that is a good small-scale model of that at Köfels. Impact of a large meteorite would have an effect analogous to that of a subsurface nuclear explosion and is the probable cause of the Köfels feature.

  14. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  15. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  16. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  17. Multi-dimensional free-electron laser simulation codes : a comparison study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  18. Multi-Dimensional Free-Electron Laser Simulation Codes: A Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  19. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2.

    PubMed

    Yamamoto, N

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10(-11). P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c(1), c(2), and c(3)) markers of P22. The color markers h(21), g, and m(3) of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages.

  20. Quantum theory for 1D X-ray free electron laser

    DOE PAGES

    Anisimov, Petr Mikhaylovich

    2017-09-19

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  1. Quantum theory for 1D X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  2. 3D theory of a high-gain free-electron laser based on a transverse gradient undulator

    NASA Astrophysics Data System (ADS)

    Baxevanis, Panagiotis; Ding, Yuantao; Huang, Zhirong; Ruth, Ronald

    2014-02-01

    The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a substantial reduction of the FEL gain, an effect which is especially relevant when one considers FELs driven by plasma accelerators or ultimate storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU). In this concept, the energy spread problem is mitigated by properly dispersing the electron beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based, high-gain FEL which takes into account three-dimensional (3D) effects, including beam size variations along the undulator. The results of our theory compare favorably with simulation and are used in fast optimization studies of various x-ray FEL configurations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, Petr Mikhaylovich

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  4. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    2015-07-01

    Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  5. Perspective: Opportunities for ultrafast science at SwissFEL

    PubMed Central

    Abela, Rafael; Beaud, Paul; van Bokhoven, Jeroen A.; Chergui, Majed; Feurer, Thomas; Haase, Johannes; Ingold, Gerhard; Johnson, Steven L.; Knopp, Gregor; Lemke, Henrik; Milne, Chris J.; Pedrini, Bill; Radi, Peter; Schertler, Gebhard; Standfuss, Jörg; Staub, Urs; Patthey, Luc

    2018-01-01

    We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science. PMID:29376109

  6. Investigation of the Effects of MIR-FELIrradiation on the Photoluminescence of Titanium Dioxides

    NASA Astrophysics Data System (ADS)

    Sonobe, T.; Bakr, M.; Yoshida, K.; Higashimura, K.; Kinjo, R.; Hachiya, K.; Kii, T.; Masuda, K.; Ohgaki, H.

    2010-02-01

    A mid-infrared free electron laser (MIR-FEL: 5 μm-20 μm) facility (KU-FEL: Kyoto University Free Electron Laser) has been constructed in Institute of Advanced Energy Kyoto University, and first laser saturation at 13.2 μm was achieved in May 2008. Currently, we have started to develop the application of MIR-FEL in the field of energy and material science. This study aimed at investigating the feasibility for the development of new evaluation technique of electron-phonon interaction in metal oxides by MIR-FEL. A preliminary result of electrical and optical properties of titanium dioxides was presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A.

    VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission FEL, which achieved saturation at 840 nm within a single-pass 4-m undulator. A gain length shorter than 18 cm has been obtained, yielding the gain of 2 x 10{sup 8} at saturation. The FEL performance, including spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. The results are compared to 3-D SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL system. Detailed agreement between simulations and experimental results is obtained over the wide range of themore » electron beam parameters.« less

  8. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  9. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Y.C.

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetricmore » electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.« less

  10. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    NASA Astrophysics Data System (ADS)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  11. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    NASA Astrophysics Data System (ADS)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  12. Special issue on the spectroscopy of transient plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-01-01

    Experimental and theoretical papers are invited for a special issue of Journal of Physics B: Atomic, Molecular and Optical Physics on Spectroscopy of Transient Plasmas, covering plasma conditions produced by pulsed laboratory sources including for example, short and long pulse lasers; pulsed power devices; FELs; XFELs and ion beams. The full range of plasma spectroscopy from the optical range up to high energy bremsstrahlung radiation will be covered. The deadline for submitting to this special issue is 1 March 2015. (Expected web publication: autumn 2015). Late submissions will be considered for the journal, but may not be included in the special issue. All submitted articles will be fully refereed to the journal's usual high standards. Upon publication, the issue will be widely promoted to the atomic, molecular and optical physics community, ensuring that your work receives maximum visibility. Articles should be submitted at http://mc04.manuscriptcentral.com/jphysb-iop. Should you have any questions regarding the preparation of manuscripts or the suitability of your work for this Issue, please do not hesitate to contact the J. Phys. B: At. Mol. Opt. Editorial team (jphysb@iop.org). We look forward to hearing from you and hope that we can welcome you as a contributing author.

  13. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  14. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  15. Absorber for wakefield interference management at the entrance of the wiggler of a free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchlik, Matthew; Biallas, George Herman

    A method for managing the broad band microwave and TeraHertz (THz) radiation in a free electron laser (FEL) having a wiggler producing power in the electromagnetic spectrum. The method includes placement of broadband microwave and TeraHertz (THz) radiation absorbers on the upstream end of the wiggler. The absorbers dampen the bounced back, broad band microwave and THz radiation returning from the surfaces outside the nose of the cookie-cutter and thus preventing broadening of the electron beam pulse's narrow longitudinal energy distribution. Broadening diminishes the ultimate laser power from the wiggler. The broadband microwave and THz radiation absorbers are placed onmore » either side of the slot in the cookie-cutter that shapes the wake field wave of the electron pulse to the slot shape of the wiggler chamber aperture. The broad band microwave and THz radiation absorber is preferably a non-porous pyrolytic grade of graphite with small grain size.« less

  16. Measurement and Instrumentation Challenges at X-ray Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Feng, Yiping

    2015-03-01

    X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.

  17. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation,more » and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.« less

  18. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  19. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornacchia, Massimo

    2002-08-19

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation ({approx} 1 {micro}J) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FELmore » radiation to produce coherent, femtosecond X-rays.« less

  20. GENETIC EVOLUTION OF BACTERIOPHAGE, I. HYBRIDS BETWEEN UNRELATED BACTERIOPHAGES P22 AND FELS 2*

    PubMed Central

    Yamamoto, Nobuto

    1969-01-01

    A new bacteriophage species, designated F22, was isolated from phage P22 stocks grown on Salmonella typhimurium Q1 lysogenic for Fels 2 at a frequency of less than 10-11. P22 has a very short tail with a hexagonal base plate and six spikes. Phage Fels 2 is morphologically similar to E. coli T-even phages, having a long tail with a contractile sheath and carrying no genetic region related to P22. Phage F22 is morphologically and serologically indistinguishable from Fels 2, but carries the c(c1, c2, and c3) markers of P22. The color markers h21, g, and m3 of P22 do not appear in F22. Thus, F22 is evidently a recombinant between the unrelated bacteriophages P22 and Fels 2. The recombination between unrelated bacteriophages could play an important role in the evolution of bacteriophages. Images PMID:4890254

  1. Terahertz Free Electron Laser: Design, Simulation and Analysis

    DTIC Science & Technology

    2014-12-01

    34 1. GINGER ...and Combination Magnets .........................................72 a. GINGER Results...wavelength using GINGER FEL code for the Niowave FEL parameters. ...............................................................................40

  2. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as described... emission families with FELs at or above 5.0 g/m2/day. To calculate emission credits for such emission... FEL of 10.4 g/m2/day. This would apply without regard to whether any of these emission families have...

  3. Optical design of the ARAMIS-beamlines at SwissFEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follath, R.; Flechsig, U.; Milne, C.

    2016-07-27

    SwissFEL is a free electron laser facility for hard and soft X-rays at the Paul Scherrer Institut in Switzerland. The first hard X-ray FEL named ARAMIS will deliver photons in the wavelength range from 1 Å to 7 Å in up to three beamlines alternatively. The beamlines are equipped with crystal monochromators, cover the full wavelength range and offer a variety of operational modes.

  4. A 1kW EUV source for lithography based on FEL emission in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Ruth, Ron; Loewen, Rod

    2017-10-01

    EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.

  5. Free Energy Landscape - Settlements of Key Residues.

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Svetlana

    2007-03-01

    FEL perspective in studies of protein folding transitions reflects notion that since there are ˜10^N conformations to scan in search of lowest free energy state, random search is beyond biological timescale. Protein folding must follow certain fel pathways and folding kinetics of evolutionary selected proteins dominates kinetic traps. Good model for functional robustness of natural proteins - coarse-grained model protein is not very accurate but affords bringing simulations closer to biological realm; Go-like potential secures the fel funnel shape; biochemical contacts signify the funnel bottleneck. Boltzmann-weighted ensemble of protein conformations and histogram method are used to obtain from MC sampling of protein conformational space the approximate probability distribution. The fel is F(rmsd) = -1/βLn[Hist(rmsd)], β=kBT and rmsd is root-mean-square-deviation from native conformation. The sperm whale myoglobin has rich dynamic behavior, is small and large - on computational scale, has a symmetry in architecture and unusual sextet of residue pairs. Main idea: there is a mathematical relation between protein fel and a key residues set providing stability to folding transition. Is the set evolutionary conserved also for functional reasons? Hypothesis: primary sequence determines the key residues positions conserved as stabilizers and the fel is the battlefield for the folding stability. Preliminary results: primary sequence - not the architecture, is the rule settler, indeed.

  6. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  7. Quantification of Fel d 1 in house dust samples of cat allergic patients by using monoclonal antibody specific to a novel IgE-binding epitope.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Aiumurai, Pisinee; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2018-03-01

    Avoidance of allergen exposure is an effective measure for preventing naÏve and allergic individuals from sensitization (primary intervention) and disease aggravation (secondary intervention), respectively. Regular monitoring of the allergens in the environment is required for the effective intervention. Thus, there is a need for cost-effective test kits for environmental allergen quantifications. To invent a test kit for quantification of cat major allergen, Fel d 1. A mouse monoclonal antibody (MAb) specific to the newly identified IgE-binding conformational epitope of the cat major allergen (Fel d 1) and rabbit polyclonal IgG to recombinant Fel d 1 were used as allergen capture and detection reagents, respectively. Native Fel d 1 was used in constructing a standard curve. Sixteen of 36 dust samples collected from houses of cat allergic subjects in Bangkok contained Fel d 1 above 0.29 μg/gram of dust which is considered as a novel threshold level for causing cat allergy sensitization or symptoms. Among them, 7 samples contained the allergen exceeding 2.35 μg/gram of dust which is the level that would aggravate asthma. Results of the allergen quantification using the locally made test kit showed strong correlation (r = 0.923) with the allergen quantification using commercialized reagents. The assay using MAb to Fel d 1 IgE-binding epitope of this study has potential application as an economic and practical tool for cat allergy intervention measure especially in localities where health resources are relatively limited.

  8. Chronic cat allergen exposure induces a TH2 cell-dependent IgG4 response related to low sensitization.

    PubMed

    Renand, Amedee; Archila, Luis D; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J; Thomas, Wayne R; Kwok, William W

    2015-12-01

    In human subjects, allergen tolerance has been observed after high-dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T-cell response that leads to IgG4 induction during chronic allergen exposure remains poorly understood. We sought to evaluate the relationship between cat allergen-specific T-cell frequency, cat allergen-specific IgE and IgG4 titers, and clinical status in adults with cat allergy with and without cat ownership and the cellular mechanism by which IgG4 is produced. Fel d 1-, Fel d 4-, Fel d 7-, and Fel d 8-specific T-cell responses were characterized by CD154 expression after antigen stimulation. In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4)-specific TH2 (sTH2) cells correlates with higher IgE levels and is linked to asthma. Paradoxically, we observed that subjects with cat allergy and chronic cat exposure maintain a high frequency of sTH2 cells, which correlates with higher IgG4 levels and low sensitization. B cells from allergic, but not nonallergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones and Fel d 1 peptide or the Fel d 1 recombinant protein. These experiments suggest that (1) allergen-experienced B cells with the capacity to produce IgG4 are present in allergic subjects and (2) cat allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  9. Free-electron laser simulations on the MPP

    NASA Technical Reports Server (NTRS)

    Vonlaven, Scott A.; Liebrock, Lorie M.

    1987-01-01

    Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.

  10. Vibrational Analysis of a Shipboard Free Electron Laser Beam Path

    DTIC Science & Technology

    2011-12-01

    2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical

  11. Quality of Expert Systems: Methods and Techniques (Kwaliteit van Expertsystemen: Methoden en Technieken)

    DTIC Science & Technology

    1989-12-01

    en Elektroniscb Laboratorium TNO (FEL-TNO), de Rijksuniversiteit Limburg (RL) en bet Research Instituut voor Kennis-Systemen (RIKS). In dit rapport...kwaliteitsbeheersing van kennissystemen. TNO rapport Pagina 2 report no : FEL-89-A267 bee Quality of Expert Systems: Methods and Techniques author(s) J.H.J. Lenting MA...Defence Research and Development. Participants in the project are TNO Physics and Electronics Laboratory (FEL-TNO), University of Limburg (RL) and

  12. Use of the CEBAF Accelerator for IR and UV Free Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Leemann, Christoph

    1992-08-01

    The CEBAF superconducting linac is capable of accelerating electron beams suitable for driving high-power free-electron lasers. The 45 MeV injector linac with a 6 cm period wiggler can produce kilowatt output powers of infrared light (3.6-17 micrometer), while the 400 MeV north linac can produce ultraviolet light (~200 nm) at similar powers. The FELs require the addition of a high-peak intensity electron source (~ 60 A peak current) and extraction beam lines to wigglers with appropriate electron and photon optics. FEL operation is compatible with simultaneous baseline CEBAF nuclear physics operation. A design for a CEBAF-based FEL facility has beenmore » developed. The current status of the FEL project is reported.« less

  13. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  14. A Smoluchowski model of crystallization dynamics of small colloidal clusters

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.

    2011-10-01

    We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.

  15. Optimization Studies of the FERMI at ELETTRA FEL Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation includingmore » vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported.« less

  16. The photon beam transport and diagnostics system at FERMI@Elettra, the Italian seeded FEL source: commissioning experience and most recent results

    NASA Astrophysics Data System (ADS)

    Zangrando, Marco; Abrami, Alessandro; Cocco, Daniele; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian; Parmigiani, Fulvio

    2012-10-01

    FERMI@Elettra, the Italian Free Electron Laser (FEL) source, is in an advanced commissioning phase, having already delivered radiation down to the endstations. The facility is routinely using the low energy branch (FEL1) to produce photons in the 65-20 nm range, while the 20-4 nm range will be covered by FEL2 that is now being commissioned. A dedicated system to collect, diagnose, transport and focus the radiation (PADReS) is used to provide informations about the photon beam intensity, position, spectral content, transverse coherence, and so on. The experience gathered so far, as well as the most recent results both from the diagnostic section and the beam manipulation part are presented here.

  17. The future SwissFEL facility - challenges from a radiation protection point of view

    NASA Astrophysics Data System (ADS)

    Strabel, Claudia; Fuchs, Albert; Galev, Roman; Hohmann, Eike; Lüscher, Roland; Musto, Elisa; Mayer, Sabine

    2017-09-01

    The Swiss Free Electron Laser is a new large-scale facility currently under construction at the Paul Scherrer Institute. Accessible areas surrounding the 720 m long accelerator tunnel, together with the pulsed time structure of the primary beam, lead to new challenges for ensuring that the radiation level in these areas remains in compliance with the legal constraints. For this purpose an online survey system based on the monitoring of the ambient dose rate arising from neutrons inside of the accelerator tunnel and opportunely calibrated to indicate the total dose rate outside of the tunnel, will be installed. The presented study provides a conceptual overview of this system, its underlying assumptions and measurements so far performed to validate its concept.

  18. Using superconducting undulator for enhanced imaging capabilities of MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yampolsky, Nikolai

    MaRIE x-ray free electron laser (FEL) is envisioned to deliver a burst of closely spaced in time pulses for enabling the capability of studying the dynamic processes in a sample. MaRIE capability can be largely enhanced using the superconducting undulator, which has the capability of doubling its period. This technology will allow reaching the photon energy as low as ~200-500 eV. As a result, the MaRIE facility will have a broader photon energy range enabling a larger variety of experiments. The soft x-ray capability is more likely to achieve the 3D imaging of dynamic processes in noncrystal materials than themore » hard x-ray capability alone.« less

  19. The LCLS Project

    NASA Astrophysics Data System (ADS)

    Paterson, James M.

    2000-04-01

    The Linac Coherent Light Source (LCLS) is a linac driven FEL which uses a 1km electron linac (the last third of the SLAC linac) and a 100m long undulator to produce 1.5 angstrom X-rays of extremely high peak brightness. This radiation is fully tranversely coherent and is in sub-picosecond long pulses. The LCLS Project is a four year R&D program to solidify the design, to develop required technologies, to optimize the cost and performance and to study the potential experimental programs using these unique beam characteristics. The program is conducted by a multi-institutional collaboration consisting of SLAC as the lead laboratory, along with ANL, BNL, LLNL, LANL and UCLA.The LCLS design and the R&D programs are described.

  20. Regions of Stability of FEL Oscillators,

    DTIC Science & Technology

    1987-10-01

    EGION5 OF STABILITY OF FEL OCCILLATORS(U) MARYLAND 1/1 UNIV COLLEGE PARK LAB FOR PLASMA AND FUSION ENERGY STUDIES B LEVUSH ET AL OCT 87 UNLPF-88...MARYLAND j LABRATRY ORPLASMA AND FUSION ENERGY . STUDIES...:’ COLLEGE PARK, MARYLANI) ’ 20742- a 0.6.3 ~0 DT!C IlELEcTEI REGIONS OF STABILITY OF FEL...University of Maryland, Laboratory for Plasma and Fusion Energy Studies ~IT~UTION ST TEMEN Approved iom public :elOOS61=D triution Unli __e REGIONS OF

  1. Efficiency Optimization for FEL Oscillators,

    DTIC Science & Technology

    1987-12-01

    I 7 -ŕvle 3IIATIONCIFOR FEL OSCILLATORS(U) MARYLAND i/1’ UNIV COLLEGE PARK LAS FOR PLASMIA AND FUSION ENERGY STUDIES A SERBETO ET AL DEC 87 UMLPF-88...University of Maryland, By3 f *O- 0Laboratory for Plasrra and Fusion Energy Studies D i~ Avciil adi r "UnOUIO SAEMNT A APPrOVed for public reloe...Distribution Unlimited EFFICIENCY OPTIMIZATION FOR FEL OSCILLATORS A. Serbeto, B. Levush, and T. M. Antonsen, Jr. Laboratory for Plasma and Fusion Energy Studies

  2. A Test of Superradiance in an FEL Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, R

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  3. Toward a terahertz-driven electron gun

    PubMed Central

    Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban; Hong, Kyung-Han; Fallahi, Arya; Wong, Liang Jie; Keathley, Phillip D.; Zapata, Luis E.; Kärtner, Franz X.

    2015-01-01

    Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV. PMID:26486697

  4. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jifei; Lu, Xiangyang, E-mail: xylu@pku.edu.cn; Yang, Ziqin

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. Themore » self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.« less

  5. Een Meetsysteem voor het Testen van Radiocommunicatie-Apparatuur (A measuring Facility for Testing of Radio Communication Equipment)

    DTIC Science & Technology

    1991-08-01

    insert various jamming signals. The criterion for classifying radio equipment under test is the quality of transferred information , that is the SINAD...UNCLASSFED) This report describes a test facility for measuring the behaviour and quality of radio communication equipment in a simulated operational...formation FEL has the disposal of a facility to test the quality of radio equipment in a simulated operational situation. (Y .. ,. -’ , / " " ’ TNO mppon 4

  6. Effect of an angular trajectory kick in a high-gain free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxevanis, Panagiotis; Huang, Zhirong; Stupakov, Gennady

    In a free-electron laser, a transverse momentum offset (or “kick”) results in an oscillation of the centroid of the electron beam about the undulator axis. Studying the influence of this effect on the free-electron laser (FEL) interaction is important both from a tolerance point of view and for its potential diagnostic applications. In this paper, we present a self-consistent theoretical analysis of a high-gain FEL driven by such a “kicked” beam. In particular, we derive a solution to the three-dimensional, linearized initial value problem of the FEL through an orthogonal expansion technique and also describe a variational method for calculatingmore » the average FEL growth rate. Lastly, our results are benchmarked with genesis simulations and provide a robust theoretical background for a comparison with previous analytical results.« less

  7. Effect of an angular trajectory kick in a high-gain free-electron laser

    DOE PAGES

    Baxevanis, Panagiotis; Huang, Zhirong; Stupakov, Gennady

    2017-04-18

    In a free-electron laser, a transverse momentum offset (or “kick”) results in an oscillation of the centroid of the electron beam about the undulator axis. Studying the influence of this effect on the free-electron laser (FEL) interaction is important both from a tolerance point of view and for its potential diagnostic applications. In this paper, we present a self-consistent theoretical analysis of a high-gain FEL driven by such a “kicked” beam. In particular, we derive a solution to the three-dimensional, linearized initial value problem of the FEL through an orthogonal expansion technique and also describe a variational method for calculatingmore » the average FEL growth rate. Lastly, our results are benchmarked with genesis simulations and provide a robust theoretical background for a comparison with previous analytical results.« less

  8. Analysis Of FEL Optical Systems With Grazing Incidence Mirrors

    NASA Astrophysics Data System (ADS)

    Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.

    1986-11-01

    The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.

  9. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  10. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    NASA Astrophysics Data System (ADS)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  11. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources

    PubMed Central

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-01

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources. PMID:28067288

  12. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser

    DOE PAGES

    Emma, C.; Lutman, A.; Guetg, M. W.; ...

    2017-04-10

    Here, we report the generation of ultrahigh brightness X-ray pulses using the Fresh Bunch Self-Seeding (FBSS) method in an X-ray Free Electron Laser (XFEL). The FBSS method uses two different electron slices or bunches, one to generate the seed and the other to amplify it after the monochromator. This method circumvents the trade-off between the seed power and electron slice energy spread, which limits the efficiency of regular self-seeded FELs. The experiment, the performance of which is limited by existing hardware, shows FBSS feasibility, generating 5.5 keV photon pulses which are 9 fs long and of 7.3 ×10 –5 bandwidthmore » and 50 GW power. FBSS performance is compared with Self Amplified Spontaneous Emission/self-seeding performance, measuring a brightness increase of twelve/two times, respectively. In an optimized XFEL, FBSS can increase the peak power a hundred times more than state-of-the-art to multi-TW, opening new research areas for nonlinear science and single molecule imaging.« less

  13. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources

    NASA Astrophysics Data System (ADS)

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-01

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

  14. The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams

    NASA Astrophysics Data System (ADS)

    Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.

    2015-05-01

    The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.

  15. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources.

    PubMed

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-09

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today's ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

  16. FLASH2: Operation, beamlines, and photon diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko,V.; Yakimenko, V.

    We propose undertaking a demonstration experiment on suppressing spontaneous undulator radiation from an electron beam at BNL's Accelerator Test Facility (ATF). We describe the method, the proposed layout, and a possible schedule. There are several advantages in strongly suppressing shot noise in the electron beam, and the corresponding spontaneous radiation. The self-amplified spontaneous (SASE) emission originating from shot noise in the electron beam is the main source of noise in high-gain FEL amplifiers. It may negatively affect several HG FEL applications ranging from single- to multi-stage HGHG FELs. SASE saturation also imposes a fundamental hard limit on the gain ofmore » an FEL amplifier in a coherent electron-cooling scheme. A novel active method for suppressing shot noise in relativistic electron beams by many orders-of-magnitude was recently proposed. While theoretically such strong suppression appears feasible, the performance and applicability of this novel method must be evaluated experimentally. Several practical questions about the proposed noise suppressor, such as 3D effects and/or sensitivity to the e-beam parameters also require experimental clarification. To do this, we propose here a proof-of-principle experiment using elements of the VISA FEL at BNL's Accelerator Test Facility.« less

  18. UCSB FEL user-mode adaption project. Final report, 1 Jan 86-31 Dec 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaccarino, V.

    1992-04-14

    This research sponsored by the SDIO Biomedical and Materials Sciences FEL Program held the following objectives. Provide a facility in which in-house and outside user research in the materials and biological sciences can be carried out in the Far Infrared using-the unique properties of the UCSB electrostatic accelerator-driven FEL. Develop and implement new FEL concepts and FIR technology and encourage the transfer and application of this research. Train graduate students, post doctoral researchers and technical personnel in varied aspects of scientific user disciplines, FEL science and FIR technology in a cooperative, interdisciplinary environment. In summary, a free electron laser facilitymore » has been developed which is operational from 200 GH z, (6.6 cm -1), to 4.8 THz, (160 cm-1) tunable under computer control and able to deliver kilowatts of millimeter wave and far-infrared power. This facility has a well equipped user lab that has been used to perform ground breaking experiments in scientific areas as diverse as bio-physics. Nine graduate students and post doctoral researchers have been trained in the operation, use and application of these free-electron lasers.« less

  19. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Hardy; S.V. Benson; Michelle D. Shinn

    2005-08-21

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS.

  20. BioCARS: a synchrotron resource for time-resolved X-ray science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graber, T.; Anderson, S.; Brewer, H.

    2011-08-16

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less

  1. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth.

    PubMed

    Epp, S W; Hada, M; Zhong, Y; Kumagai, Y; Motomura, K; Mizote, S; Ono, T; Owada, S; Axford, D; Bakhtiarzadeh, S; Fukuzawa, H; Hayashi, Y; Katayama, T; Marx, A; Müller-Werkmeister, H M; Owen, R L; Sherrell, D A; Tono, K; Ueda, K; Westermeier, F; Miller, R J D

    2017-09-01

    A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T 0 )-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T 0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T 0 . In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T 0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  2. BioCARS: a synchrotron resource for time-resolved X-ray science

    PubMed Central

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-01-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684

  3. Dog allergen (Can f 1) and cat allergen (Fel d 1) in US homes: Results from the National Survey of Lead and Allergens in Housing

    PubMed Central

    Arbes, Samuel J.; Cohn, Richard D.; Yin, Ming; Muilenberg, Michael L.; Friedman, Warren; Zeldin, Darryl C.

    2017-01-01

    Background Exposures to dog and cat allergens are believed to play important roles in the etiology of asthma; however, the levels of these allergens have never been assessed in a representative sample of US homes. Objective The objective of this study was to estimate and characterize exposures to Can f 1 (dog allergen) and Fel d 1 (cat allergen) in US homes. Methods Data were obtained from the National Survey of Lead and Allergens in Housing, a nationally representative survey of 831 US homes. Vacuumed-collected dust samples from the bed, bedroom floor, living room floor, and living room sofa were analyzed for concentrations of Can f 1 and Fel d 1 (micrograms of allergen per gram of dust). Results Although a dog or cat had lived in only 49.1% of homes in the previous 6 months, Can f 1 and Fel d 1 were detected in 100% and 99.9% of homes, respectively. Averaged over the sampled sites, geometric mean concentrations (µg/g) were 4.69 for Can f 1 and 4.73 for Fel d 1. Among homes with an indoor dog and cat, respectively, geometric mean concentrations were 69 for Can f 1 and 200 for Fel d 1. Among homes without the indoor pet, geometric mean concentrations were above 1.0. The independent predictors of elevated concentrations in homes without pets were all demographic variables that were also linked to a higher prevalence of pet ownership. Conclusions Can f 1 and Fel d 1 are universally present in US homes. Levels that have been associated with an increased risk of allergic sensitization were found even in homes without pets. Because of the transportability of these allergens on clothing, elevated levels in homes without pets, particularly among demographic groups in which pet ownership is more prevalent, implicate the community as an important source of these pet allergens. PMID:19055206

  4. Interobserver variation in the diagnosis of fibroepithelial lesions of the breast: a multicentre audit by digital pathology.

    PubMed

    Dessauvagie, Benjamin F; Lee, Andrew H S; Meehan, Katie; Nijhawan, Anju; Tan, Puay Hoon; Thomas, Jeremy; Tie, Bibiana; Treanor, Darren; Umar, Seemeen; Hanby, Andrew M; Millican-Slater, Rebecca

    2018-02-13

    Fibroepithelial lesions (FELs) of the breast span a morphological continuum including lesions where distinction between cellular fibroadenoma (FA) and benign phyllodes tumour (PT) is difficult. The distinction is clinically important with FAs managed conservatively while equivocal lesions and PTs are managed with surgery. We sought to audit core biopsy diagnoses of equivocal FELs by digital pathology and to investigate whether digital point counting is useful in clarifying FEL diagnoses. Scanned slide images from cores and subsequent excisions of 69 equivocal FELs were examined in a multicentre audit by eight pathologists to determine the agreement and accuracy of core needle biopsy (CNB) diagnoses and by digital point counting of stromal cellularity and expansion to determine if classification could be improved. Interobserver variation was high on CNB with a unanimous diagnosis from all pathologists in only eight cases of FA, diagnoses of both FA and PT on the same CNB in 15 and a 'weak' mean kappa agreement between pathologists (k=0.36). 'Moderate' agreement was observed on CNBs among breast specialists (k=0.44) and on excision samples (k=0.49). Up to 23% of lesions confidently diagnosed as FA on CNB were PT on excision and up to 30% of lesions confidently diagnosed as PT on CNB were FA on excision. Digital point counting did not aid in the classification of FELs. Accurate and reproducible diagnosis of equivocal FELs is difficult, particularly on CNB, resulting in poor interobserver agreement and suboptimal accuracy. Given the diagnostic difficulty, and surgical implications, equivocal FELs should be reported in consultation with experienced breast pathologists as a small number of benign FAs can be selected out from equivocal lesions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Targeting allergen to FcgammaRI reveals a novel T(H)2 regulatory pathway linked to thymic stromal lymphopoietin receptor.

    PubMed

    Hulse, Kathryn E; Reefer, Amanda J; Engelhard, Victor H; Patrie, James T; Ziegler, Steven F; Chapman, Martin D; Woodfolk, Judith A

    2010-01-01

    The molecule H22-Fel d 1, which targets cat allergen to FcgammaRI on dendritic cells (DCs), has the potential to treat cat allergy because of its T-cell modulatory properties. We sought to investigate whether the T-cell response induced by H22-Fel d 1 is altered in the presence of the T(H)2-promoting cytokine thymic stromal lymphopoietin (TSLP). Studies were performed in subjects with cat allergy with and without atopic dermatitis. Monocyte-derived DCs were primed with H22-Fel d 1 in the presence or absence of TSLP, and the resulting T-cell cytokine repertoire was analyzed by flow cytometry. The capacity for H22-Fel d 1 to modulate TSLP receptor expression on DCs was examined by flow cytometry in the presence or absence of inhibitors of Fc receptor signaling molecules. Surprisingly, TSLP alone was a weak inducer of T(H)2 responses irrespective of atopic status; however, DCs coprimed with TSLP and H22-Fel d 1 selectively and synergistically amplified T(H)2 responses in highly atopic subjects. This effect was OX40 ligand independent, pointing to an unconventional TSLP-mediated pathway. Expression of TSLP receptor was upregulated on atopic DCs primed with H22-Fel d 1 through a pathway regulated by FcgammaRI-associated signaling components, including src-related tyrosine kinases and Syk, as well as the downstream molecule phosphoinositide 3-kinase. Inhibition of TSLP receptor upregulation triggered by H22-Fel d 1 blocked TSLP-mediated T(H)2 responses. Discovery of a novel T(H)2 regulatory pathway linking FcgammaRI signaling to TSLP receptor upregulation and consequent TSLP-mediated effects questions the validity of receptor-targeted allergen vaccines. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  7. 40 CFR 1033.705 - Calculating emission credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable NOX or PM emission standard in g/bhp-hr (except that Std = previous FEL in g/bhp-hr for... life). FEL = the family emission limit for the engine family in g/bhp-hr. UL = the sales-weighted...

  8. 40 CFR 1033.705 - Calculating emission credits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable NOX or PM emission standard in g/bhp-hr (except that Std = previous FEL in g/bhp-hr for... life). FEL = the family emission limit for the engine family in g/bhp-hr. UL = the sales-weighted...

  9. Brightness analysis of an electron beam with a complex profile

    NASA Astrophysics Data System (ADS)

    Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi

    2018-05-01

    We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.

  10. Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons

    NASA Astrophysics Data System (ADS)

    Jeong, Young Uk; Miginsky, Sergey; Gudkov, Boris; Lee, Kitae; Mun, Jungho; Shim, Gyu Il; Bae, Sangyoon; Kim, Hyun Woo; Jang, Kyu-Ha; Park, Sunjeong; Park, Seong Hee; Vinokurov, Nikolay

    2016-04-01

    We have developed small-sized terahertz free-electron lasers by using low-cost and compact microtrons combining with magnetrons as high-power RF sources. We could stabilize the bunch repetition rate by optimizing a modulator for the magnetron and by coupling the magnetron with an accelerating cavity in the microtron. By developing high-performance undulators and low-loss waveguide-mode resonators having small cross-sectional areas, we could strengthen the interaction between the electron beam and the THz wave inside the FEL resonators to achieve lasing even with low-current electron beams from the microtron. We used a parallel-plate waveguide in a planar electromagnet undulator for our first THz FEL. We try to reduce the size of the FEL resonator by combining a dielectric-coated circular waveguide and a variable-period helical undulator to realize a table-top THz FEL for applying it to the security inspection on airports.

  11. Addressing Physics Grand Challenges Using the Jefferson Lab FEL

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.

    2006-11-01

    The Jefferson Lab Free Electron Laser[1] is the first of the so-called 4^th generation light sources to go operational. Capable of delivering extraordinarily bright, tunable light in ultrafast pulses from THz[2] through infrared to UV, the facility extends the experimental reach of accelerator-based light-sources by many orders of magnitude. This allows new opportunities to study many of the ``Grand Challenges'' recently defined by the Office of Science, Basic Energy Sciences Division, most of which are concerned with understandings of equilibrium and non-equilibrium behavior of materials in physics, chemistry and biology using precise pump and probe techniques. Specifically, in condensed matter physics, the JLab FEL permits new studies which go beyond earlier studies of reductionist behavior to those which examine emergent behavior. Thus, the understanding of high Tc superconductivity, colossal magneto-resistance, and observations of the breakdown of the Born-Oppenheimer approximation, are examples of collective behavior which is now treated theoretically via the concept of quasiparticles. In this presentation we will describe the dual pathways of light source development and physics challenges, and then show how they are combined in experiments that allow new insights to be developed to understand material function. We will illustrate this with details of the evolution of accelerator-based light sources, and with examples of work performed to date. References: [1] Neil et al. Phys. Rev.Letts 84, 662 (2000). [2] Carr, Martin, McKinney, Neil, Jordan & Williams, Nature 420, 153 (2002).

  12. Influence of intense THz radiation on spin state of photoswitchable compound Cu(hfac)2L(Pr).

    PubMed

    Veber, Sergey L; Fedin, Matvey V; Maryunina, Ksenia Yu; Boldyrev, Kirill N; Sheglov, Mikhail A; Kubarev, Vitaly V; Shevchenko, Oleg A; Vinokurov, Nikolay A; Kulipanov, Gennady N; Sagdeev, Renad Z; Ovcharenko, Victor I; Bagryanskaya, Elena G

    2013-02-21

    The family of magnetoactive compounds Cu(hfac)(2)L(R) exhibits thermo- and photoswitching phenomena promising for various applications. Photoswitching of the Cu(hfac)(2)L(Pr) compound can be observed at temperatures below 20 K and is accompanied by transition to metastable structural state. Reverse conversion to stable structure could not be induced by light of near-IR-vis-UV regions up to date. The far-IR spectra of metastable and stable structural states are different and show characteristic absorption lines in the range of 170-240 cm(-1). These frequencies are accessible by NovoFEL - high-power THz free-electron laser user facility in Novosibirsk. We investigate selective influence of THz radiation on relaxation processes from metastable to stable structural state, which can be monitored by electron paramagnetic resonance (EPR). For this purpose, the experimental station based on X-band EPR spectrometer has been constructed by the THz beamline of NovoFEL and equipped with multimodal THz waveguide allowing to fed radiation directly into the EPR resonator. It has been found that irradiation of studied compound with high-power THz light causes significant but nondestructive increase of its temperature. Apart from this effect, no resonant influence of THz irradiation on relaxation processes has been observed. The experimental results have been rationalized taking into account vibrational relaxation times of the studied compound. Further experiments based on pulse heating by THz radiation have been proposed.

  13. Harmonic lasing in x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2012-08-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the parameter space, corresponding to the operating range of soft x-ray beam lines of x-ray FEL facilities (like SASE3 beam line of the European XFEL), harmonics can grow faster than the fundamental wavelength. This feature can be used in some experiments, but might also be an unwanted phenomenon, and we discuss possible measures to diminish it.

  14. Research and development toward a 4.5-1.5 Å linac coherent light source (LCLS) at SLAC

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Arthur, J.; Baltay, M.; Bane, K.; Boyce, R.; Cornacchia, M.; Cremer, T.; Fisher, A.; Hahn, S.-J.; Hernandez, M.; Loew, G.; Miller, R.; Nelson, W. R.; Nuhn, H.-D.; Palmer, D.; Paterson, J.; Raubenheimer, T.; Weaver, J.; Wiedemann, H.; Winick, H.; Pellegrini, C.; Travish, G.; Scharlemann, E. T.; Caspi, S.; Fawley, W.; Halbach, K.; Kim, K.-J.; Schlueter, R.; Xie, M.; Meyerhofer, D.; Bonifacio, R.; De Salvo, L.

    1996-02-01

    In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3 km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 Å) Linac Coherent Light Source (LCLS), a Free-Electron Laser (FEL) operating in the Self-Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: 1) a peak current in the 7 kA range, 2) a relative energy spread of <0.05%, and 3) a transverse emittance, ɛ [rad-m], approximating the diffraction-limit condition ɛ = {λ}/{4π}, where λ[m] is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam-processing techniques necessary for LCLS operation down to ˜20 Å, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 Å LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas. These include the construction and operation of a linac test stand for developing laser-driven photocathode rf guns with normalized emittances approaching 1 mm-mrad; development of advanced beam compression, stability, and emittance control techniques at multi-GeV energies; the construction and operation of a FEL Amplifier Test Experiment (FATE) for theoretical and experimental studies of SASE at IR wavelengths; an undulator development program to investigate superconducting, hybrid/permanent magnet (hybrid/PM), and pulsed-Cu technologies; theoretical and computational studies of high-gain FEL physics and LCLS component designs; development of X-ray optics and instrumentation for extracting, modulating, and delivering photons to experimental users; and the study and development of scientific experiments made possible by the source properties of the LCLS.

  15. Metal Photocathodes for Free Electron Laser Applications

    NASA Astrophysics Data System (ADS)

    Greaves, Corin Michael Ricardo

    Synchrotron x-ray radiation sources have revolutionized many areas of science from elucidating the atomic structure of proteins to understanding the electronic structure of complex materials such as the cuprate superconductors. In a Free Electron Laser (FEL), the main difference to the synchrotron radiation mechanism is that the light field acts on the electron beam, over a long distance in an undulator, and causes electron bunching at the optical wavelength. Electrons in different parts of the electron bunch are therefore correlated, and so emit coherently, with a brightness that scales as the square of the number of electrons. In order to lase, the electron beam in a FEL must have a transverse geometric emittance less than the wavelength of the light to be produced. For the generation of x-ray wavelengths, this is one of the most difficult challenges in the design and construction of a FEL. The geometric emittance can be "compressed" by acceleration to very high energy, but with the penalty of very large physical size and very large cost. The motivation for this work was provided by the desire to investigate the fundamental origin of the emittance of an electron beam as it is born at a photocathode. If this initial, or "thermal" emittance can be reduced, the energy, scale and cost of accelerators potentially would be reduced. As the LCLS used copper as its photocathode, this material was the one studied in this work. Copper was used in the LCLS as it represented a "robust" material that could stand the very high accelerating gradients used in the photoinjector of the FEL. Metals are also prompt photoemitters, and so can be used to produce very short electron bunches. This can be a useful property for creation of extremely short FEL pulses, and also for creation of beams that are allowed to expand under space charge forces, but in a way that results in linear fields, allowing subsequent recompression. An ideal photocathode for FEL photoinjector should have high quantum efficiency (QE), small emittance, fast temporal response, long lifetime, and minimal complexity. High QE of cathodes require less power for driving laser and also reduce the risk of damaging the cathode materials. Small emittance reduce the scale of the accelerator, therefore, the cost. Metal photocathodes such as copper exhibit long lifetime and fast response, but have quite low quantum efficiency ( < 10-4). The aim in this work was to understand the quantum yield of the metal, and the transverse momentum spectrum, as the product of the latter and the cathode beam spot size gives the transverse emittance. Initial x-ray diffraction work provided evidence that the LCLS photocathode consisted of large low index single crystal grains, and so work focused on the study of single crystals that could be produced with atomically ordered surfaces, rather than a polycrystalline material. Present theories of quantum yield and transverse emittance assume the basic premise that the metal is entirely disordered, and work here shows that this is fundamentally incorrect, and that the order of the surface plays a critical role in determining the characteristics of emission. In order to investigate these surfaces, I constructed a laser-based ultra-low energy angle resolved photoemission system, capable of measuring the momentum spectrum of the emission and wavelength and angle dependent electron yield. This system has been commissioned, and data taken on low index surfaces of copper. Results from this work on single crystal copper demonstrates that emitted electrons from the band structure of a material can exhibit small emittance and high quantum efficiency. We show that the emission from the Cu(111) surface state is highly correlated between angle of incidence and excitation energy. This manifests itself in the form of a truncated emission cone, rather than the isotropic emission predicted from the normal model. This clearly then reduces the emittance from the normal values. It also results in extremely strong polarization dependence, with p-s asymmetry of up to 16 at low photon energy. It also directly suggests ways through changing materials, or by material design to significantly reduce emittance, at the same time increasing electron yield. These results show the benefits that could be gained from electronic engineering of cathodes and should have direct impact in the design of future FEL photoinjectors. (Abstract shortened by UMI.)

  16. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al.]. -- Working Group 1. Summary of working group 1 on electron sources / M. Ferrario and G. Gatti. Design and RF measurements of an X-band accelerating structure for the SPARC project / D. Alesini ... [et al.]. Mitigation of RF gun breakdown by removal of tuning rods in high field regions / A.M. Cook... [et al.]. Measurements of quantum efficiency of Mg films produced by pulsed laser ablation deposition for application to bright electron sources / G. Gatti ... [et al.]. The S-band 1.6 cell RF gun correlated energy spread dependence on Pi and 0 mode relative amplitude / F. Schmerge ... [et al.]. RF gun photo-emission model for metal cathodes including time dependent emission / J.F. Schmerge ... [et al.]. Superconducting photocathodes / J. Smedley ... [et al.]. -- Working Group 2. Summary of Working Group 2: diagnostics and beam manipulation / G. Travish. Observation of coherent edge radiation emitted by a 100 Femtosecond compressed electron beam / G. Andonian, M, Dunning, E. Hemsing, J. B. Rosenzweig ... [et al.]. PARMELA simulations for PITZ: first machine studies and interpretation of measurements / M. Boscolo ... [et al.]. The LCLS single-shot relative bunch length monitor system / M.P. Dunning ... [et al.]. Beam shaping and permanent magnet quadrupole focusing with applications to the plasma wakefield accelerator / R.J. England ... [et al.]. Commissioning of the SPARC movable emittance meter and its first operation at PITZ / D. Filippetto... [et al.]. Experimental testing of dynamically optimized photoelectron beams / J.B. Rosenzweig ... [et al.]. Synchronization between the laser and electron beam in a photocathode RF gun / A. Sakumi ... [et al.]. Method of bunch radiation photochronography with 10 Femtosecond and less resolution / A. Tron and I. Merinov -- Working Group 3. New challenges in theory and modeling-summary for working group 3. L. Giannessi. Resonant modes in a 1.6 cells RF gun / M. Ferrario and C. Ronsivalle. Emittance degradation due to wake fields in a high brightness photoinjector / M. Ferrario, V. Fusco, M. Migliorati and L. Palumbo. Simulations of coherent synchroton radiation effects in electron machines / M. Migliorati, A, Schiavi and G. Dattoli. QFEL: A numerical code for multi-dimensional simulation of free electron lasers in the quantum regime / A. Schiavi ... [et al.]. First simulations results on laser pulse jitter and microbunching instability at Saprxino / M. Boscolo ... [et al.]. -- Working Group 4. Working group 4 summary: applications of high brightness beams to advanced accelerators and light sources / M. Uesaka and A. Rossi. Study of transverse effects in the production of X-rays with free-electron laser based on an optical ondulator / A. Bacci ... [et al.]. Channeling projects at LNF: from crystal undulators to capillary waveguides / S.B. Dabagov ... [et al.]. Mono-Energetic electron generation and plasma diagnosis experiments in a laser plasma cathode / K. Kinoshita ... [et al.]. A high-density electron beam and quad-scan measurements at Pleiades Thompson X-ray source / J.K. Lim ... [et al.]. Laser pulse circulation system for compact monochromatic tunable hard X-ray source / H. Ogino ... [et al.]. Limits on production of narrow band photons from inverse compton scattering / J. Rosenzweig and O. Williams. Preliminary results from the UCLA/SLAC ultra-high gradient Cerenkov wakefield accelerator experiment / M.C. Thompson ... [et al.]. Status of the polarized nonlinear inverse compton scattering experiment at UCLA / O. Williams... [et al.]. Coupling laser power into a slab-symmetric accelerator structure / R.B. Yoder and J.B. Rosenzweig.

  17. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  18. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with futuremore » plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.« less

  19. Using The SLAC Two-Mile Accelerator for Powering an FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, W.A.; /LLNL, Livermore; Sessler, A.M.

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  20. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  1. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    DOE PAGES

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; ...

    2016-12-12

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF 3 single crystals at the cobalt M 2,3-edge at FERMI FELmore » (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.« less

  2. 40 CFR 90.708 - Cumulative Sum (CumSum) procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is 5.0×σ, and is a function of the standard deviation, σ. σ=is the sample standard deviation and is... individual engine. FEL=Family Emission Limit (the standard if no FEL). F=.25×σ. (2) After each test pursuant...

  3. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.

    Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less

  4. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation

    DOE PAGES

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; ...

    2017-05-01

    Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less

  5. Revision of iron(III)-citrate speciation in aqueous solution. Voltammetric and spectrophotometric studies.

    PubMed

    Vukosav, Petra; Mlakar, Marina; Tomišić, Vladislav

    2012-10-01

    A detailed study of iron (III)-citrate speciation in aqueous solution (θ=25°C, I(c)=0.7 mol L(-1)) was carried out by voltammetric and UV-vis spectrophotometric measurements and the obtained data were used for reconciled characterization of iron (III)-citrate complexes. Four different redox processes were registered in the voltammograms: at 0.1 V (pH=5.5) which corresponded to the reduction of iron(III)-monocitrate species (Fe:cit=1:1), at about -0.1 V (pH=5.5) that was related to the reduction of FeL(2)(5-), FeL(2)H(4-) and FeL(2)H(2)(3-) complexes, at -0.28 V (pH=5.5) which corresponded to the reduction of polynuclear iron(III)-citrate complex(es), and at -0.4V (pH=7.5) which was probably a consequence of Fe(cit)(2)(OH)(x) species reduction. Reversible redox process at -0.1 V allowed for the determination of iron(III)-citrate species and their stability constants by analyzing E(p) vs. pH and E(p) vs. [L(4-)] dependence. The UV-vis spectra recorded at varied pH revealed four different spectrally active species: FeLH (logβ=25.69), FeL(2)H(2)(3-) (log β=48.06), FeL(2)H(4-) (log β=44.60), and FeL(2)(5-) (log β=38.85). The stability constants obtained by spectrophotometry were in agreement with those determined electrochemically. The UV-vis spectra recorded at various citrate concentrations (pH=2.0) supported the results of spectrophotometric-potentiometric titration. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The role of radiation reaction in Lienard-Wiechert description of FEL interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimel, I.; Elias, L.R.

    1995-12-31

    The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursuedmore » the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.« less

  7. 40 CFR 92.304 - Compliance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission credits to offset the difference between the emission standard and the FEL for such engine family...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Certification Averaging, Banking, and... participate in certification averaging, banking and trading programs shall select a FEL for each engine family...

  8. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  9. Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Pin; Wang, Shi-Jian; Xu, Jing-Yue; Xu, Yong-Gen; Liu, Xiao-Xu; Lu, Hong; Huang, Xiao-Li; Zhang, Shi-Chang

    2014-02-01

    Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron-beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.

  10. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Seibert, M Marvin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; DePonte, Daniel P; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N Duane; Bostedt, Christoph; Bozek, John D; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  11. Free electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs

    NASA Astrophysics Data System (ADS)

    Keens, Simon; Rossa, Bernhard; Frei, Marcel

    2016-03-01

    As the semiconductor industry proceeds to develop ever better sources of extreme ultraviolet (EUV) light for photolithography applications, two distinct technologies have come to prominence: Tin-plasma and free electron laser (FEL) sources. Tin plasma sources have been in development within the industry for many years, and have been widely reported. Meanwhile, FELs represent the most promising alternative to create high power EUV frequencies and, while tin-plasma source development has been ongoing, such lasers have been continuously developed by academic institutions for use in fundamental research programmes in conjunction with universities and national scientific institutions. This paper follows developments in the field of academic FELs, and presents information regarding novel technologies, specifically in the area of RF design strategy, that may be incorporated into future industrial FEL systems for EUV lithography in order to minimize the necessary investment and operational costs. It goes on to try to assess the cost-benefit of an alternate RF design strategy, based upon previous studies.

  12. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Ekeberg, Tomas; Svenda, Martin; Seibert, M. Marvin; Abergel, Chantal; Maia, Filipe R. N. C.; Seltzer, Virginie; Deponte, Daniel P.; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V.; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N. Duane; Bostedt, Christoph; Bozek, John D.; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  13. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  14. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  15. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Seon Yeong; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hwang, Ji-Gwang

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using anmore » oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.« less

  16. Cat, dog and house dust mite allergen levels on children's soft toys.

    PubMed

    Wu, Francis Fu-Sheng; Wu, Mei-Wen; Ting, Ming-Hui; Crane, Julian; Siebers, Rob

    2014-02-01

    Children's soft toys are known to harbour house dust mite (HDM) allergens, but little is known whether they harbour cat or dog allergens. The objective of the study was to measure cat (Fel d 1), dog (Can f 1) and HDM allergens on children's soft toys. Dust was collected from 40 children's soft toys and their mattresses. Data were collected on pet ownership. Dust samples were analysed for Fel d 1, Can f 1, Der p 1 and Der f 1 by enzyme-linked immunosorbent assay (ELISA) and results are expressed as median levels with inter-quartile ranges. Thirty-five (87.5%) soft toys had detectable Fel d 1 levels (median: 0.73 µg/g; inter-quartile range: 0.26-2.56 µg/g) while 34 (85%) had detectable Can f 1 levels (1.20 µg/g; 0.53-2.68). Correspondingly, 32 (80%) mattresses had detectable Fel d 1 levels (0.18 µg/g, 0.07-1.01) while 34 (85%) had detectable Can f 1 levels (0.50 µg/g; 0.33-1.06). All mattresses and soft toys had detectable HDM allergen (Der p 1 + Der f 1) levels with soft toys containing about three times higher levels than mattresses. In homes with cats (n = 10) Fel d 1 levels were higher on soft toys than homes without cats (2.49 versus 0.48 µg/g; p = 0.0009). In homes with dogs (n = 25) Can f 1 levels were generally higher on soft toys (1.38 versus 0.63 µg/g; p = 0.10). This study has shown that soft toys can harbour cat and dog allergen as well as HDM allergens, some with very high levels. Cat and dog ownership resulted in higher Fel d 1 and Can f 1 levels on soft toys and mattresses. The levels of Fel d 1, Can f 1 and HDM allergens on soft toys could be of importance to sensitized asthmatic children.

  17. Analysis of feline and canine allergen components in patients sensitized to pets.

    PubMed

    Ukleja-Sokołowska, Natalia; Gawrońska-Ukleja, Ewa; Żbikowska-Gotz, Magdalena; Socha, Ewa; Lis, Kinga; Sokołowski, Łukasz; Kuźmiński, Andrzej; Bartuzi, Zbigniew

    2016-01-01

    Component resolved allergen diagnosis allows for a precise evaluation of the sensitization profiles of patients sensitized to felines and canines. An accurate interpretation of these results allows better insight into the evolution of a given patients sensitizations, and allows for a more precise evaluation of their prognoses. 70 patients (42 women and 28 men, aged 18-65, with the average of 35.5) with a positive feline or canine allergy diagnosis were included in the research group. 30 patients with a negative allergy diagnosis were included in the control group. The total IgE levels of all patients with allergies as well as their allergen-specific IgE to feline and canine allergens were measured. Specific IgE levels to canine (Can f 1, Can f 2, Can f 3, Can f 5) and feline (Fel d 1, Fel d 2, Fel d 4) allergen components were also measured with the use of the ImmunoCap method. Monosensitization for only one canine or feline component was found in 30% of patients. As predicted, the main feline allergen was Fel d 1, which sensitized as many as 93.9% of patients sensitized to felines. Among 65 patients sensitized to at least one feline component, for 30 patients (46.2%) the only sensitizing feline component was Fel d 1. Only 19 patients in that group (63.3%) were not simultaneously sensitized to dogs and 11 (36.7%), the isolated sensitization to feline Fel d 1 notwithstanding, displayed concurrent sensitizations to one of the canine allergen components. Fel d 4 sensitized 49.2% of the research group.64.3% of patients sensitized to canine components had heightened levels of specific IgE to Can f 1. Monosensitization in that group occurred for 32.1% of the patients. Sensitization to Can f 5 was observed among 52.4% of the patients. Concurrent sensitizations to a few allergic components, not only cross-reactive but also originating in different protein families, are a significant problem for patients sensitized to animals.

  18. INITIAL GAIN MEASUREMENTS OF A 800 NM SASE FEL, VISA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRIGOLA,P.; MUROKH,A.; ET AL

    2000-08-13

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  19. Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.

    2018-06-01

    A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.

  20. Harmonic generation with multiple wiggler schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonifacio, R.; De Salvo, L.; Pierini, P.

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  1. Mode pumping experiments on biomolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, R.H.; Erramilli, S.; Xie, A.

    1995-12-31

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T{sub 1} and T{sub 2} relaxation measurements at 1650 cm{sup -1}. (2) Probing the influence of collectivemore » dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm{sup -1}. A form of action spectrum using FEL excitation will be used to probe this state.« less

  2. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    EPA Science Inventory

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  3. 40 CFR 91.209 - Maintenance of records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., (3) Power rating for each configuration tested, (4) Projected sales volume for the model year, and (5) Actual sales volume for the model year for each FEL where FEL changes have been implemented during the... family, (2) The actual quarterly and cumulative applicable production/sales volume, (3) The values...

  4. 40 CFR 89.207 - Credit calculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...

  5. 40 CFR 1054.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day...

  6. 40 CFR 89.207 - Credit calculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...

  7. 40 CFR 1054.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day...

  8. 40 CFR 89.207 - Credit calculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...

  9. Endangered Languages and Literacy. Proceedings of the Fourth FEL Conference (Charlotte, North Carolina, September 21-24, 2000).

    ERIC Educational Resources Information Center

    Ostler, Nicholas, Ed.; Rudes, Blair, Ed.

    Papers for the fourth Foundation for Endangered Languages (FEL) Conference include the following: "Endangered languages and Literacy" (Nicholas Ostler, Blair Rudes); "Keynote Address: On Native Language Literacy: a Personal Perspective" (Ofelia Zepeda); "A Community's Solution to Some Literacy Problems: The Mayangna of…

  10. 40 CFR 1037.730 - ABT reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identification number for the first vehicle covered by the new FEL. In this case, identify each applicable FEL... EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Averaging, Banking, and Trading for Certification § 1037.730 ABT reports. (a) If any of your vehicle families are certified using the ABT provisions of this...

  11. 40 CFR 91.208 - Certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.208... engines for which certification is requested will not, to the best of the manufacturer's belief, cause the...'s engine families. (2) Declare an FEL for each engine family for HC plus NOX. The FEL must have the...

  12. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  13. 40 CFR 86.004-30 - Certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... simulation of such, resulting in an increase of 1.5 times the NMHC+NOX standard or FEL above the NMHC+NOX... simulation of such, resulting in exhaust emissions exceeding 1.5 times the applicable standard or FEL for... catastrophically failed, or an electronic simulation of such. (2)(i) Otto-cycle. An engine misfire condition is...

  14. 40 CFR 86.004-30 - Certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... simulation of such, resulting in an increase of 1.5 times the NMHC+NOX standard or FEL above the NMHC+NOX... simulation of such, resulting in exhaust emissions exceeding 1.5 times the applicable standard or FEL for... catastrophically failed, or an electronic simulation of such. (2)(i) Otto-cycle. An engine misfire condition is...

  15. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equations: (1) For vocational vehicles: Emission credits (Mg) = (Std-FEL) × (Payload Tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard associated with the specific tractor regulatory subcategory... credits (Mg) = (Std-FEL) × (Payload tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard...

  16. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equations: (1) For vocational vehicles: Emission credits (Mg) = (Std-FEL) × (Payload Tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard associated with the specific tractor regulatory subcategory... credits (Mg) = (Std-FEL) × (Payload tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard...

  17. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equations: (1) For vocational vehicles: Emission credits (Mg) = (Std-FEL) × (Payload Tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard associated with the specific tractor regulatory subcategory... credits (Mg) = (Std-FEL) × (Payload tons) × (Volume) × (UL) × (10−6) Where: Std = the emission standard...

  18. The Linac Coherent Light Source

    DOE PAGES

    White, William E.; Robert, Aymeric; Dunne, Mike

    2015-05-01

    The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

  19. FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL.

    ERIC Educational Resources Information Center

    BAIR, ROBERT A.; AND OTHERS

    THE OPERATION OF THE FELS FOUNDATION PROJECT FOR DEVELOPING YOUTH POTENTIAL IN HANFORD, CALIFORNIA, IS DESCRIBED. OF GENERAL CONCERN WAS THE PREPARATION OF CULTURALLY DEPRIVED CHILDREN FOR SCHOOL EXPERIENCES AND FOR FUTURE EMPLOYMENT. A MAJOR GOAL WAS TO IMPROVE THE SELF-IMAGE OF THE CHILDREN AND TO ASSIST THE PARENTS AND CHILDREN IN PROVIDING…

  20. 40 CFR 86.449 - Averaging provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (e)(1) Maintain and keep five types of properly organized and indexed records for each group and for... you project a credit deficit, state the source of credits needed to offset the credit deficit. (g) At... begin labeling motorcycles with the new FEL. (2) Manufacturers may ask to lower FELs based on test data...

  1. 40 CFR 86.449 - Averaging provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (e)(1) Maintain and keep five types of properly organized and indexed records for each group and for... you project a credit deficit, state the source of credits needed to offset the credit deficit. (g) At... begin labeling motorcycles with the new FEL. (2) Manufacturers may ask to lower FELs based on test data...

  2. 40 CFR 86.449 - Averaging provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (e)(1) Maintain and keep five types of properly organized and indexed records for each group and for... you project a credit deficit, state the source of credits needed to offset the credit deficit. (g) At... begin labeling motorcycles with the new FEL. (2) Manufacturers may ask to lower FELs based on test data...

  3. 40 CFR 94.304 - Compliance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...

  4. 40 CFR 94.304 - Compliance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...

  5. 40 CFR 94.304 - Compliance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...

  6. 40 CFR 94.304 - Compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...

  7. 40 CFR 94.304 - Compliance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...

  8. 40 CFR 1042.730 - ABT reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following information in their report: (i) The corporate names of the buyer and any brokers. (ii... the following information in their report: (i) The corporate names of the seller and any brokers. (ii... apply to the engine family. (3) The FEL for each pollutant. If you change the FEL after the start of...

  9. 40 CFR 1042.730 - ABT reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following information in their report: (i) The corporate names of the buyer and any brokers. (ii... the following information in their report: (i) The corporate names of the seller and any brokers. (ii... apply to the engine family. (3) The FEL for each pollutant. If you change the FEL after the start of...

  10. Theoretical and simulation studies of seeding methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Claudio

    We report the theoretical and experimental studies done with the support of DOE-Grant DE-SC0009983 to increase an X-ray FEL peak power from the present level of 20 to 40 GW to one or more TW by seeding, undulator tapering and using the new concept of the Double Bunch FEL.

  11. Multiscale molecular dynamics simulations of rotary motor proteins.

    PubMed

    Ekimoto, Toru; Ikeguchi, Mitsunori

    2018-04-01

    Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.

  12. The LCLS variable-energy hard X-ray single-shot spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, David; Zhu, Diling; Turner, James

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less

  13. Fels-Rand: an Xlisp-Stat program for the comparative analysis of data under phylogenetic uncertainty.

    PubMed

    Blomberg, S

    2000-11-01

    Currently available programs for the comparative analysis of phylogenetic data do not perform optimally when the phylogeny is not completely specified (i.e. the phylogeny contains polytomies). Recent literature suggests that a better way to analyse the data would be to create random trees from the known phylogeny that are fully-resolved but consistent with the known tree. A computer program is presented, Fels-Rand, that performs such analyses. A randomisation procedure is used to generate trees that are fully resolved but whose structure is consistent with the original tree. Statistics are then calculated on a large number of these randomly-generated trees. Fels-Rand uses the object-oriented features of Xlisp-Stat to manipulate internal tree representations. Xlisp-Stat's dynamic graphing features are used to provide heuristic tools to aid in analysis, particularly outlier analysis. The usefulness of Xlisp-Stat as a system for phylogenetic computation is discussed. Available from the author or at http://www.uq.edu.au/~ansblomb/Fels-Rand.sit.hqx. Xlisp-Stat is available from http://stat.umn.edu/~luke/xls/xlsinfo/xlsinfo.html. s.blomberg@abdn.ac.uk

  14. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  15. FEL Trajectory Analysis for the VISA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1998-10-06

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less

  16. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE PAGES

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; ...

    2017-12-18

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  17. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulatormore » tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (~10 % ) provides effective suppression of the sideband instability in the postsaturation regime.« less

  18. The LCLS variable-energy hard X-ray single-shot spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, David; Zhu, Diling; Turner, James

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for themore » continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10 -5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.« less

  19. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    DOE PAGES

    Liu, Tao; Qin, Weilun; Wang, Dong; ...

    2017-08-02

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less

  20. Parameter design considerations for an oscillator IR-FEL

    NASA Astrophysics Data System (ADS)

    Jia, Qi-Ka

    2017-01-01

    An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap, the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and the modified filling factor in the case of the waveguide are given, respectively. Supported by National Nature Science Foundation of China (21327901, 11375199)

  1. Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven

    2010-07-01

    In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).

  2. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

    2017-12-01

    When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

  3. In vitro evidence of efficacy and safety of a polymerized cat dander extract for allergen immunotherapy.

    PubMed

    Morales, María; Gallego, Mayte; Iraola, Victor; Taulés, Marta; de Oliveira, Eliandre; Moya, Raquel; Carnés, Jerónimo

    2017-02-24

    Allergy to cat epithelia is highly prevalent, being the major recommendation for allergy sufferers its avoidance. However, this is not always feasible. Allergen specific immunotherapy is therefore recommended for these patients. The use of polymerized allergen extracts, allergoids, would allow to achieve the high allergen doses suggested to be effective while maintaining safety. Cat native extract and its depigmented allergoid were manufactured and biochemically and immunochemically characterized. Protein and chromatographic profiles showed significant modification of the depigmented allergoid with respect to its corresponding native extract. However, the presence of different allergens (Fel d 1, Fel d 2, Fel d 3, Fel d 4 and Fel d 7) was confirmed in the allergoid. Differences in IgE-binding capacity were observed as loss of biological potency and lower stability of the IgE-allergen complex on surface plasmon resonance. The allergoid induced production of IgG antibodies able to block IgE-binding to native extract. Finally, studies carried out with peripheral-blood mononuclear cells from cat allergic patients showed that the allergoid induced IFN-γ and IL-10 production similar to that induced by native extract. Cat depigmented allergoid induced production of cytokines involved in a Th1 and Treg response, was able to induce production of IgG-antibodies that blocks IgE-binding to cat native extract, and showed reduced interaction with IgE, suggesting greater safety than native extract while maintaining in vitro efficacy.

  4. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis.

    PubMed

    Jones, Hannah B L; Wells, Stephen A; Prentice, Erica J; Kwok, Anthony; Liang, Liyin L; Arcus, Vickery L; Pudney, Christopher R

    2017-09-01

    Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach. © 2017 Federation of European Biochemical Societies.

  5. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  6. Usefulness of component resolved analysis of cat allergy in routine clinical practice.

    PubMed

    Eder, Katharina; Becker, Sven; San Nicoló, Marion; Berghaus, Alexander; Gröger, Moritz

    2016-01-01

    Cat allergy is of great importance, and its prevalence is increasing worldwide. Cat allergens and house dust mite allergens represent the major indoor allergens; however, they are ubiquitous. Cat sensitization and allergy are known risk factors for rhinitis, bronchial hyperreactivity and asthma. Thus, the diagnosis of sensitization to cats is important for any allergist. 70 patients with positive skin prick tests for cats were retrospectively compared regarding their skin prick test results, as well as their specific immunoglobulin E antibody profiles with regard to their responses to the native cat extract, rFel d 1, nFel d 2 and rFel d 4. 35 patients were allergic to cats, as determined by positive anamnesis and/or nasal provocation with cat allergens, and 35 patients exhibited clinically non-relevant sensitization, as indicated by negative anamnesis and/or a negative nasal allergen challenge. Native cat extract serology testing detected 100% of patients who were allergic to cats but missed eight patients who showed sensitization in the skin prick test and did not have allergic symptoms. The median values of the skin prick test, as well as those of the specific immunoglobulin E antibodies against the native cat extract, were significantly higher for allergic patients than for patients with clinically non-relevant sensitization. Component based diagnostic testing to rFel d 1 was not as reliable. Sensitization to nFel d 2 and rFel d 4 was seen only in individual patients. Extract based diagnostic methods for identifying cat allergy and sensitization, such as the skin prick test and native cat extract serology, remain crucial in routine clinical practice. In our study, component based diagnostic testing could not replace these methods with regard to the detection of sensitization to cats and differentiation between allergy and sensitization without clinical relevance. However, component resolved allergy diagnostic tools have individual implications, and future studies may facilitate a better understanding of its use and subsequently may improve the clinical management of allergic patients.

  7. A helical optical for circular polarized UV-FEL project at the UVSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Hiroyuki

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to bemore » shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.« less

  8. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  9. Endangered Languages and the Media. Proceedings of the Fifth FEL Conference (Agadir, Morocco, September 20-23, 2001).

    ERIC Educational Resources Information Center

    Moseley, Christopher, Ed.; Ostler, Nicholas, Ed.; Ouzzate, Hassan, Ed.

    Papers for the fifth Foundation for Endangered Languages (FEL) Conference include the following papers: "The State and the Global Marketplace in the Provision of Minority Media Services" (George Jones); "Local Language Media: What Does It Take?" (Paul Lewis); "Power of the Media for the Good of Small Languages: An Indian…

  10. Dispersion relations for 1D high-gain FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.D.; Litvinenko, V.N.

    2010-08-23

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  11. FEL system with homogeneous average output

    DOEpatents

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  12. Analysis of multibunch free electron laser operation

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Decking, Winfried; Branlard, Julien

    2017-09-01

    At the SASE-FEL user facilities FLASH and European XFEL, superconducting TESLA type cavities are used for acceleration of the driving electron bunches. The high achievable duty cycle allows for operating with long bunch trains, hence considerably increasing the efficiency of the machine. However, multibunch free electron lasers (FEL) operation requires longitudinal and transverse stability within the bunch train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and European XFEL. Key relationships of superconducting rf cavity operation and the resulting impact on the intrabunch-train trajectory variation are described. The observed trajectory variation during multibunch user runs at FLASH is analyzed and related to both, intrabunch-train variations of the rf and the following impact on the multibunch FEL performance.

  13. Beam Conditioning for FELs: Consequences and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolski, Andrzej; Penn, Gregory; Sessler, Andrew

    2003-10-09

    The consequences of beam conditioning in four example cases (VISA, a Soft X-Ray FEL, LCLS and a ''Greenfield'' FEL) are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance, and allows stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced up to a factor of two. The beam dynamics in a general conditioning system are studied, with ''matching conditions'' derived for achieving conditioning without growth in effective emittance. Various conditioners are considered, and expressions derived for the amount of conditioning provided in each case when the matchingmore » conditions are satisfied. We discuss the prospects for conditioners based on laser and plasma systems.« less

  14. The Tapered Hybrid Undulator (THUNDER) of the visible free-electron laser oscillator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.E.; Quimby, D.C.; Slater, J.M.

    A 5 m tapered hybrid undulator (THUNDER) has been designed and built as part of the Boeing Aerospace Company and Spectra Technology, Inc. visible free-electron laser (FEL) oscillator experiment. The performance goals required of an undulator for a visible oscillator with large extraction are ambitious. They require the establishment of stringent magnetic field quality tolerances which impact design and fabrication techniques. The performance goals of THUNDER are presented. The tolerances resulting from the FEL interaction are contrasted and compared to those of a synchrotron radiation source. The design, fabrication, and field measurements are discussed. The performance of THUNDER serves asmore » a benchmark for future wiggler/undulator design for advanced FEL's and synchrotron radiation sources.« less

  15. Multipurpose end-station for coherent diffraction imaging and scattering at FERMI@Elettra free-electron laser facility.

    PubMed

    Capotondi, Flavio; Pedersoli, Emanuele; Bencivenga, Filippo; Manfredda, Michele; Mahne, Nicola; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco; Demidovich, Alexander; Nikolov, Ivaylo; Danailov, Miltcho; Masciovecchio, Claudio; Kiskinova, Maya

    2015-05-01

    The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results. The ongoing upgrade is adding a reflection geometry setup for scattering experiments, expanding the application fields by providing both high lateral and depth resolution.

  16. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less

  17. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  18. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  19. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  20. Ozone formation behind pulsed-laser-generated blast waves in oxygen

    NASA Astrophysics Data System (ADS)

    Stricker, J.; Parker, J. G.

    1984-12-01

    The formation of ozone behind blast waves in oxygen generated by a pulsed laser has been investigated both experimentally and theoretically, over cell pressure range of 0.68-27 atm. Ozone buildup formed by successive pulses was monitored by recording UV absorption at 2540 Å. It was found that, as the number of pulses increase, the rate of ozone formation decreased until finally an equilibrium concentration was reached. This equilibrium magnitude was determined by the condition that the number of ozone molecules produced by the wave equals the number decomposed by the same wave. The decomposition and formation of O3 during a single pulse were monitored by time-resolved UV absorption measurements. In order to provide a fundamental basis for interpretation of the mechanism of ozone formation, a mathematical model was developed. Although qualitatively measurements and theory agree, the data, mainly on the number of O3 molecules produced per pulse, is in significant disagreement. Several possible explanations of this discrepancy are given.

  1. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.

    PubMed

    Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-10-05

    We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers.

  2. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  3. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy.

    PubMed

    Hwang, Yoonha; Ahn, Jinhyo; Mun, Jungho; Bae, Sangyoon; Jeong, Young Uk; Vinokurov, Nikolay A; Kim, Pilhan

    2014-05-19

    The recent development of THz sources in a wide range of THz frequencies and power levels has led to greatly increased interest in potential biomedical applications such as cancer and burn wound diagnosis. However, despite its importance in realizing THz wave based applications, our knowledge of how THz wave irradiation can affect a live tissue at the cellular level is very limited. In this study, an acute inflammatory response caused by pulsed THz wave irradiation on the skin of a live mouse was analyzed at the cellular level using intravital laser-scanning confocal microscopy. Pulsed THz wave (2.7 THz, 4 μs pulsewidth, 61.4 μJ per pulse, 3Hz repetition), generated using compact FEL, was used to irradiate an anesthetized mouse's ear skin with an average power of 260 mW/cm(2) for 30 minutes using a high-precision focused THz wave irradiation setup. In contrast to in vitro analysis using cultured cells at similar power levels of CW THz wave irradiation, no temperature change at the surface of the ear skin was observed when skin was examined with an IR camera. To monitor any potential inflammatory response, resident neutrophils in the same area of ear skin were repeatedly visualized before and after THz wave irradiation using a custom-built laser-scanning confocal microscopy system optimized for in vivo visualization. While non-irradiated control skin area showed no changes in the number of resident neutrophils, a massive recruitment of newly infiltrated neutrophils was observed in the THz wave irradiated skin area after 6 hours, which suggests an induction of acute inflammatory response by the pulsed THz wave irradiation on the skin via a non-thermal process.

  4. Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain

    1990-01-01

    Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.

  5. Alternatives to the Fish Early Life-Stage Test: A Research Strategy for Discovering and Annotating Adverse Outcome Pathways During Fish Development

    EPA Science Inventory

    The OECD 210 fish early life]stage (FELS) test is the primary guideline test used to estimate chronic fish toxicity, as well as support ecological risk assessments and chemical management programs around the world. As a step toward developing alternatives to the FELS test, a HES...

  6. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser.

    PubMed

    Halliwell, Diane E; Morais, Camilo L M; Lima, Kássio M G; Trevisan, Júlio; Siggel-King, Michele R F; Craig, Tim; Ingham, James; Martin, David S; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L

    2017-07-11

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.

  7. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser

    NASA Astrophysics Data System (ADS)

    Halliwell, Diane E.; Morais, Camilo L. M.; Lima, Kássio M. G.; Trevisan, Júlio; Siggel-King, Michele R. F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2017-07-01

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an 'intact' chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach.

  8. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  9. An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser

    PubMed Central

    Halliwell, Diane E.; Morais, Camilo L.M.; Lima, Kássio M.G.; Trevisan, Júlio; Siggel-King, Michele R.F.; Craig, Tim; Ingham, James; Martin, David S.; Heys, Kelly; Kyrgiou, Maria; Mitra, Anita; Paraskevaidis, Evangelos; Theophilou, Georgios; Martin-Hirsch, Pierre L.; Cricenti, Antonio; Luce, Marco; Weightman, Peter; Martin, Francis L.

    2017-01-01

    Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demography. All samples were collected before any treatment. Spectra were also collected using attenuated total reflection, Fourier-transform (ATR-FTIR) spectroscopy, to investigate the differences between the two techniques. Results of this pilot study suggests SNOM-IR-FEL may be able to distinguish cervical abnormalities based upon changes in the chemical profiles for each grade of dyskaryosis at designated wavelengths associated with DNA, Amide I/II, and lipids. The novel data sets are the first collected using SNOM-IR-FEL in transmission mode at the ALICE facility (UK), and obtained using whole cells as opposed to tissue sections, thus providing an ‘intact’ chemical profile. These data sets are suited to complementing future work on image analysis, and/or applying the newly developed algorithm to other datasets collected using the SNOM-IR-FEL approach. PMID:28696426

  10. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, whichmore » leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10 -5 .« less

  11. Lightning control system using high power microwave FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiho, M.; Watanbe, A.; Kawasaki, S.

    A research project for developing a thunder lightning control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a lightning path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed lightning control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when lightning occurs.« less

  12. Harmonium: An Ultrafast Vacuum Ultraviolet Facility.

    PubMed

    Arrell, Christopher A; Ojeda, José; Longetti, Luca; Crepaldi, Alberto; Roth, Silvan; Gatti, Gianmarco; Clark, Andrew; van Mourik, Frank; Drabbels, Marcel; Grioni, Marco; Chergui, Majed

    2017-05-31

    Harmonium is a vacuum ultraviolet (VUV) photon source built within the Lausanne Centre for Ultrafast Science (LACUS). Utilising high harmonic generation, photons from 20-110 eV are available to conduct steady-state or ultrafast photoelectron and photoion spectroscopies (PES and PIS). A pulse preserving monochromator provides either high energy resolution (70 meV) or high temporal resolution (40 fs). Three endstations have been commissioned for: a) PES of liquids; b) angular resolved PES (ARPES) of solids and; c) coincidence PES and PIS of gas phase molecules or clusters. The source has several key advantages: high repetition rate (up to 15 kHz) and high photon flux (1011 photons per second at 38 eV). The capabilities of the facility complement the Swiss ultrafast and X-ray community (SwissFEL, SLS, NCCR MUST, etc.) helping to maintain Switzerland's leading role in ultrafast science in the world.

  13. Recent results of PADReS, the Photon Analysis Delivery and REduction System, from the FERMI FEL commissioning and user operations.

    PubMed

    Zangrando, Marco; Cocco, Daniele; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian

    2015-05-01

    The Photon Analysis Delivery and REduction System of FERMI (PADReS) has been routinely used during the machine commissioning and operations of FERMI since 2011. It has also served the needs of several user runs at the facility from late 2012. The system is endowed with online and shot-to-shot diagnostics giving information about intensity, spatial-angular distribution, spectral content, as well as other diagnostics to determine coherence, pulse length etc. Moreover, PADReS is capable of manipulating the beam in terms of intensity and optical parameters. Regarding the optics, besides a standard refocusing system based on an ellipsoidal mirror, the Kirkpatrick-Baez active optics systems are key elements and have been used intensively to meet users' requirements. A general description of the system is given, together with some selected results from the commissioning/operations/user beam time.

  14. Critical system issues and modeling requirements: The problem of beam energy sweep in an electron linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, W.C.; Barrett, D.M.; Sampayan, S.E.

    1990-08-06

    In this paper we discuss system issues and modeling requirements within the context of energy sweep in an electron linear induction accelerator. When needed, particular parameter values are taken from the ETA-II linear induction accelerator at Lawrence Livermore National Laboratory. For this paper, the most important parameter is energy sweep during a pulse. It is important to have low energy sweep to satisfy the FEL resonance condition and to limit the beam corkscrew motion. It is desired to achieve {Delta}E/E = {plus minus}1% for a 50-ns flattop whereas the present level of performance is {Delta}E/E = {plus minus}1% in 10more » ns. To improve this situation we will identify a number of areas in which modeling could help increase understanding and improve our ability to design linear induction accelerators.« less

  15. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  16. Field Encapsulation Library The FEL 2.2 User Guide

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL authors. This type of flexibility would be difficult to offer without the support of the language. For users who may be having template-related problems, we offer the consolation that support for C++ templates is destined to improve with time. Efforts such as the Standard Template Library (STL) will inevitably drive vendors to provide more thorough, optimized tools for template code development. Furthermore, the benefits will become harder to resist for those who currently subscribe to the least-common-denominator "code it all in C" strategy. May FEL bring you both increased productivity and aesthetic satisfaction.

  17. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  18. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    NASA Astrophysics Data System (ADS)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  19. Advanced photoinjector experiment photogun commissioning results

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.

    2012-10-01

    The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  20. Robert R. Wilson Prize: The Quest for Bright, Coherent X-Rays: A Personal Story

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Je

    2014-03-01

    Stories associated with the advances in x-ray source techniques during the last several decades will be told from a personal viewpoint. I will start from the ``third-generation'' x-ray sources based on storage-ring-based undulators and a struggle to find a proper way to quantify the radiation strength. I will then discuss how the initially incoherent undulator radiation evolves into an intense-quasi-coherent radiation via free-electron laser (FEL) interaction. This so-called self-amplified spontaneous emission (SASE) in the x-ray region could be realized with the advent of laser-induced electron guns and forms the basis of the linac-driven ``fourth generation'' x-ray facilities. An x-ray FEL oscillator (XFELO) will also be feasible if Bragg reflectors, such as diamond crystals, are used as cavity mirrors. An XFELO driven by a CW superconducting linac would be a ``real x-ray laser,'' producing a steady stream of fully coherent, spectrally pure x-ray pulses. An XFELO can be mode-locked, thus producing x-ray spectral comb, if the cavity length can be fixed to a fraction of the x-ray wavelength by referencing to a narrow nuclear resonance. A mode-locked XFELO will enable x-ray quantum optics experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories for novel and ``cute'' schemes, such as a crossed undulator for polarization switching and an emittance exchanger for swapping the transverse and longitudinal phase space, will also be presented. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  1. INTRA-UNDULATOR MEASUREMENTS AT VISA FEL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MUROKH,A.; FRIGOLA,P.; ET AL

    2000-08-13

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  2. Intra-undulator measurements at VISA FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murokh, A; Frigola, P; Pellegrini, C

    2000-08-10

    We describe a diagnostics system developed, to measure exponential gain properties and the electron beam dynamics inside the strong focusing 4-m long undulator for the VISA (Visible to Infrared SASE Amplifier) FEL. The technical challenges included working inside the small undulator gap, optimizing the electron beam diagnostics in the high background environment of the spontaneous undulator radiation, multiplexing and transporting the photon beam. Initial results are discussed.

  3. 40 CFR 1054.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day... families with FELs at or above 5.0 g/m2/day. To calculate emission credits for such emission families, you... g/m2/day. This would apply without regard to whether any of these emission families have measured...

  4. 40 CFR 1042.145 - Interim provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... life 0.5 0.05 (g) Deficiencies for NTE standards. You may ask us to accept as compliant an engine that.../FELs. The PM adjustment does not apply for engines with a PM standard or FEL above 0.04 g/kW-hr. The... already used In-use adjustments (g/kW-hr) For Tier 4 NOX standards For Tier 4PM standards 0 75% of useful...

  5. Endangered Languages and Education. Proceedings of the Foundation for Endangered Languages (FEL) Conference (3rd, Maynooth, Ireland, September 17-19, 1999).

    ERIC Educational Resources Information Center

    Ostler, Nicholas, Ed.

    The theme of the third annual Foundation for Endangered Languages (FEL) Conference was Endangered Languages and Education, focusing on how education can be used to promote, resist, and reverse the decline of a language. The conference papers are broken into several sections covering the topic from a variety of aspects and perspectives.…

  6. Sensitization to food and inhalant allergens in relation to age and wheeze among children with atopic dermatitis.

    PubMed

    Wisniewski, J A; Agrawal, R; Minnicozzi, S; Xin, W; Patrie, J; Heymann, P W; Workman, L; Platts-Mills, T A; Song, T W; Moloney, M; Woodfolk, J A

    2013-10-01

    Atopic dermatitis (AD) is common in children; however, persistence of AD with or without asthma is less common. Longitudinal studies remain limited in their ability to characterize how IgE antibody responses evolve in AD, and their relationship with asthma. To use a cross-sectional study design of children with active AD to analyse age-related differences in IgE antibodies and relation to wheeze. IgE antibodies to food and inhalant allergens were measured in children with active AD (5 months to 15 years of age, n = 66), with and without history of wheeze. Whereas IgE antibodies to foods persisted at a similar prevalence and titre throughout childhood, IgE antibodies to all aeroallergens rose sharply into adolescence. From birth, the chance of sensitization for any aeroallergen increased for each 12-month increment in age (OR ≥ 1.21, P < 0.01), with the largest effect observed for dust mite (OR = 1.56, P < 0.001). A steeper age-related rise in IgE antibody titre to dust mite, but no other allergen was associated with more severe disease. Despite this, sensitization to cat was more strongly associated with wheeze (OR = 4.5, P < 0.01), and linked to Fel d 1 and Fel d 4, but not Fel d 2. Comparison of cat allergic children with AD to those without, revealed higher IgE levels to Fel d 2 and Fel d 4 (P < 0.05), but not Fel d 1. Differences in sensitization to cat and dust mite among young children with AD may aid in identifying those at increased risk for disease progression and development of asthma. Early sensitization to cat and risk for wheeze among children with AD may be linked to an increased risk for sensitization to a broader spectrum of allergen components from early life. Collectively, our findings argue for early intervention strategies designed to mitigate skin inflammation in children with AD. © 2013 John Wiley & Sons Ltd.

  7. Sensitization to Food and Inhalant Allergens in Relation to Age and Wheeze Among Children with Atopic Dermatitis

    PubMed Central

    Wisniewski, Julia; Agrawal, Rachana; Minnicozzi, Samantha; Xin, Wenjun; Patrie, James; Heymann, Peter; Workman, Lisa; Platts-Mills, Thomas; Song, Tae Won; Moloney, Marla; Woodfolk, Judith A.

    2013-01-01

    Background Atopic dermatitis (AD) is common in children; however, persistence of AD with or without asthma, is less common. Longitudinal studies remain limited in their ability to characterize how IgE antibody responses evolve in AD, and their relationship to asthma. Objective To use a cross-sectional study design of children with active AD to analyze age-related differences in IgE antibodies and relation to wheeze. Methods IgE antibodies to food and inhalant allergens were measured in children with active AD (5 months to 15 years of age, n=66), with and without history of wheeze. Results Whereas IgE antibodies to foods persisted at a similar prevalence and titer throughout childhood, IgE antibodies to all aeroallergens rose sharply into adolescence. From birth, the chance of sensitization for any aeroallergen increased for each 12-month increment in age (OR≥1.21, p≤0.01), with the largest effect observed for dust mite (OR=1.56, p<0.001). A steeper age-related rise in IgE antibody titer to dust mite, but no other allergen, was associated with more severe disease. Despite this, sensitization to cat was more strongly associated with wheeze (OR=4.5, p<0.01), and linked to Fel d 1 and Fel d 4, but not Fel d 2. Comparison of cat allergic children with AD to those without, revealed higher titers to Fel d 2 and Fel d 4 (p<0.05), but not Fel d 1. Conclusions and Clinical Relevance Differences in sensitization to cat and dust mite among young children with AD may aid in identifying those at increased risk for disease progression and development of asthma. Early sensitization to cat and risk for wheeze among children with AD may be linked to an increased risk for sensitization to a broader spectrum of allergen components from early life. Collectively, our findings argue for early intervention strategies designed to mitigate skin inflammation in children with AD. PMID:24074334

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Z.; Ruland, R.; Dix, B.

    The Stanford Linear Accelerator Center is evaluating the feasibility of placing a free electron laser (FEL) at the end of the linear accelerator. The proposal is to inject electrons two thirds of the way down the linac, accelerate the electrons for the last one third of the linac, and then send the electrons into the FEL. This project is known as the LCLS (Linac Coherent Light Source). To test the feasibility of the LCLS, a smaller experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments,more » each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 {micro}m [1]. This very demanding alignment is carried out in two steps [2]. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90{sup o}.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 {micro}m, both the fiducialization and magnet placement must be performed with errors much smaller than 50 {micro}m. It is desired to keep the errors from the wire finder and laser finder at the few {micro}m level.« less

  9. Should we Investigate Gastroenterology Patients for Pancreatic Exocrine Insufficiency? A Dual Centre UK Study.

    PubMed

    Campbell, Jennifer A; Sanders, David S; Francis, Katherine A; Kurien, Matthew; Lee, Sai; Taha, Hatim; Ramadas, Arvind; Joy, Diamond; Hopper, Andrew D

    2016-09-01

    Pancreatic exocrine insufficiency may be under recognised in gastroenterological practice. We aimed to identify the prevalence of pancreatic insufficiency in secondary care gastroenterology clinics and determine if co-morbidity or presenting symptoms could predict diagnosis. A secondary aim was to assess response to treatment. A dual centre retrospective analysis was conducted in secondary care gastroenterology clinics. Patients tested for pancreatic exocrine insufficiency with faecal elastase-1 (FEL-1) between 2009 and 2013 were identified in two centres. Demographics, indication and co-morbidities were recorded in addition to dose and response to pancreatic enzyme replacement therapy. Binary logistic regression was used to assess if symptoms or co-morbidities could predict pancreatic insufficiency. 1821 patients were tested, 13.1% had low FEL-1 (<200µg/g). This prevalence was sub-analysed with 5.4% having FEL-1 100-200µg/g (mild insufficiency) and 7.6% having faecal elastase readings <100µg/g. Low FEL-1 was most significantly associated with weight loss or steatorrhoea. Co-morbidity analysis showed that low levels were significantly associated with excess alcohol intake, diabetes mellitus or human immunodeficiency virus; 80.0% treated with enzyme supplements reported symptomatic benefit with no difference in response between high and low dose supplementation (p=0.761). Targeting the use of FEL-1 in individuals with specific symptoms and associated conditions can lead to improved recognition of pancreatic exocrine insufficiency in a significant proportion of secondary care patients. Intervening with lifestyle advice such as smoking cessation and minimising alcohol intake could improve outcomes. In addition, up to 80% of patients with low faecal elastase respond to supplementation.

  10. Study of Collective Beam Effects in Energy Recovery Linac Driven Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Christpher C.

    Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) can degrade the quality of high-energy electron beams used for applications such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based FELs brings exciting possibilities for very high-average current FELs that can operate with greater efficiency. However, due to the structure of ERLs, they may be even more susceptible to CSR. It is therefore necessary that these collective beam effects be well understood if future ERL-based designs are to be successful. The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at how CSR impacts the electron beam. Due to its novel design we can easily test how CSR's impact on the beam varies as a function of compression within the machine. In this work we will look at measurements of both average energy loss and energy spectrum fragmentation as a function of bunch compression. These results are compared to particle tracking simulations including a 1D CSR model and, in general, good agreement is seen between simulation and measurement. Of particular interest is fragmentation of the energy spectrum that is observed due to CSR and LSC. We will also show how this fragmentation develops and how it can be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D model is used to simulate CSR-beam interaction. Due to the parameters of the experiment it is expected that a 2D CSR model would yield different results than the 1D CSR model. However, excellent agreement is seen between the two CSR model results.

  11. Fire eater's lung: retrospective analysis of 123 cases reported to a National Poison Center.

    PubMed

    Franzen, Daniel; Kohler, Malcolm; Degrandi, Colette; Kullak-Ublick, Gerd A; Ceschi, Alessandro

    2014-01-01

    Fire eater's lung (FEL) is a distinct form of acute chemical toxic pneumonitis, which is caused by aspiration of flammable petrochemical derivatives used by street performers for 'fire eating'. The optimal management of this condition has not yet been determined. The aim of this study was to investigate patient characteristics, clinical features, treatment, and outcome of FEL. A single-center retrospective review of consecutive cases of FEL in children and adults reported to a national poison center (the Swiss Toxicological Information Center) between 1995 and 2012. 123 cases (83.7% males, mean age 21.9 years) were included. The most frequently reported symptom was cough (50.4%), followed by chest pain (45.5%), and fever (35.8%). Dyspnea was reported by 23.6%. Cough (p = 0.002) and chest pain (p = 0.02) were significantly more prevalent in subjects reporting to have aspirated the fuel compared to those who have swallowed it or who did not perceive poison exposure. A pulmonary infiltrate was detected in 83% of the cases in whom chest X-ray was performed. Overall, 22% were treated with an antibiotic agent for a mean duration of 10.4 days. Corticosteroids were administered in 4.9%. All showed complete recovery irrespective of the therapeutic management. The combination of intense pleuritic chest pain, cough, dyspnea, and fever, or any of these symptoms after 'fire eating' or erroneous swallowing of a petroleum distillate should alert the clinician to the diagnosis of FEL. Early antibiotic treatment of severe cases seems justified, considering that clinical, laboratory, and radiologic findings of FEL are overlapping with bacterial superinfection. Copyright © 2013 S. Karger AG, Basel.

  12. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weilun; Huang, S.; Liu, K.X.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flatmore » energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.« less

  13. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  14. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculatormore » design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.« less

  15. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot andmore » also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.« less

  16. Dense plasma formation on the surface of a ferroelectric induced by a driving pulse with a fast fall time

    NASA Astrophysics Data System (ADS)

    Chirko, K.; Krasik, Ya. E.; Sayapin, A.; Felsteiner, J.; Bernshtam, V.

    2003-08-01

    Experimental results are presented of dense plasma formation on the surface of a BaTi-based ferroelectric sample during the fall time of a driving pulse. A negative or positive driving pulse (⩽14 kV), with a slow rise time (˜450 ns) and a fast fall time (40-200 ns), was applied to the rear electrode of the ferroelectric. It was found by different electrical, optical, and spectroscopic diagnostics that this method allows one to form a plasma with a larger density (˜3×1013 cm-3) as compared with that formed by a driving pulse with a fast rise time (⩽4×1012 cm-3). It was shown that the shorter the fall time of the driving pulse the more intense plasma formation occurs. The most uniform and dense plasma formation occurs with a positive driving pulse. In addition, it was found that the shorter the fall time of the positive driving pulse the larger are the current amplitude, the energy, and the divergence of the emitted electrons. The obtained results are discussed in terms of the surface plasma formation and the compensation process of the polarization surface charge of the ferroelectric sample.

  17. 40 CFR 1054.740 - What special provisions apply for generating and using emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Calculate the value of transitional emission credits as described in § 1054.705, based on setting STD equal... enduring credits as described in § 1054.705, based on setting STD equal to 10.0 g/kW-hr and FEL to the... transitional emission credits as described in § 1054.705, based on setting STD equal to 11.0 g/kW-hr and FEL...

  18. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  19. Free Electron Laser Research in Europe.

    DTIC Science & Technology

    1983-03-03

    This report provides an Conference on High- Power Electron overview of the status of free and Ion-Beam Research and Techno- electron laser (FEL...p 231. high powered electromagnetic wave L .- ... .. : , _ .... 1 propagating in the opposite are given in the publications direction. The FEL... power was strongly dependent on the pump C. Bazin et al., "First field, but it tended to saturate Results of a Superconducting at higher values

  20. Harmonic cascade FEL designs for LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, G.; Reinsch, M.; Wurtele, J.

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1more » keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.« less

Top