Code of Federal Regulations, 2013 CFR
2013-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2010 CFR
2010-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2011 CFR
2011-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2012 CFR
2012-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2014 CFR
2014-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Mullite Whiskers and Mullite-whisker Felt
NASA Technical Reports Server (NTRS)
Talmy, Inna G.; Haught, Deborah A.
1993-01-01
The Naval Surface Warfare Center has developed processes for the preparation of mullite (3(Al2O3)(dot)2(SiO2)) whiskers and mullite-whisker felt. Three patents on the technology were issued in 1990. The processes are based on chemical reactions between AlF3, Al2O3, and SiO2. The felt is formed in-situ during the processing of shaped powdered precursors. It consists of randomly oriented whiskers which are mutually intergrown forming a rigid structure. The microstructure and properties of the felt and size of the whiskers can be modified by varying the amount of Al2O3 in the starting mixture. Loose mullite whiskers can be used as a reinforcement for polymer-, metal-, and ceramic-matrix composites. The felt can be used as preforms for fabricating composite materials as well as for thermal insulation and high temperature, chemically stable filters for liquids (melts) and gases.
Sensory interaction and descriptions of fabric hand.
Burns, L D; Chandler, J; Brown, D M; Cameron, B; Dallas, M J
1995-08-01
82 subjects who viewed and felt fabrics (sensory interaction group) used different categories of terms to describe fabric hand than did 38 subjects who only felt the fabrics. Therefore, the methods used to measure fabric hand that isolate the senses may not accurately assess the way in which subjects describe fabric hand in nonlaboratory settings.
Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting
NASA Technical Reports Server (NTRS)
Calamito, Dominic P.
1989-01-01
Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Felted Fabric Processing... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Development of Advanced Conformal Ablative TPS Fabricated from Rayon- and PAN-Based Carbon Felts
NASA Technical Reports Server (NTRS)
Gasch, Matthew; Stackpoole, Margaret; White, Susan; Boghozian, Tane
2016-01-01
The conformal ablative TPS first developed under NASA's Hypersonics Project in the early 2000's demonstrated very low through the thickness conductivity compared to state-ofthe- art PICA. However, in initial arcjet testing of Conformal-1, surface recession rates were 2x higher than PICA. Because commercial carbon felts are currently available as very thin substrates, this was a concern if conformal TPS were to be considered for a mission that required thicker material. Discussed in this paper are the results of the development of an Advanced Conformal TPS derived from thicker, higher density carbon felt. Two substrate systems were evaluated, the first material was a needled rayon-based carbon felt and the other a needled PAN-based carbon felt. Both substrates were impregnated with phenolic resin following the PICA/CPICA process to add a low density phenolic matrix to the system prior to aerothermal screening at the LaRC HyMETS facility and larger scale testing in the NASA ARC Interaction Heating Facility (IHF) at heating fluxes ranging from 250-1700 W/cm2.
Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping
2016-05-05
Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. Copyright © 2016 Elsevier B.V. All rights reserved.
Enzyme processing of textiles in reverse micellar solution.
Sawada, K; Ueda, M
2001-08-23
Scouring of cotton using pectinase enzyme, bioscouring, in reverse micellar system was studied. The effectiveness of bioscouring was evaluated by measuring weight loss of cotton, analyzing pectin and cotton wax remaining and by wetness testing. Pectinase enzyme showed excellent activity even in organic media, and the effectiveness of scouring was equivalent or better than that achieved by conventional alkaline process or bioscouring in aqueous media. Enzymatic modification of wool using protease enzyme in the same system was also studied. It has found that felting property and tensile strength of wool fabrics treated by protease in reverse micellar system were superior to those in aqueous media. Possibilities of utilization of the same system for the subsequent textile dyeing process were also investigated. It was found that cotton and polyester fabrics were dyed satisfactorily by reverse micellar system compared to conventional aqueous system.
Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Lee, Ilzoo
1990-01-01
The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.
Castor bean allergy in the upholstery department of a furniture factory.
Topping, M D; Tyrer, F H; Lowing, R K
1981-01-01
In this study, undertaken to identify the cause of allergy in several upholstery workers in a furniture factory, the workers were handling several different materials, including glue, silicone spray, upholstery fabrics, and felt. Radio-allergo-sorbent test (RAST) assays showed that sera from sensitised workers contained specific IgE towards the felt; however, further investigations using RAST showed that the allergen was not the felt itself but a contaminant of the felt. The felt was manufactured from sacks, some of which had been used to store castor beans. The sera with raised IgE to the felt also had raised IgE to the castor bean extract. By means of RAST inhibition we confirmed that castor bean allergens in the felt were solely responsible for the raised IgE in the sera. The in-vitro RAST results were found to correlate well with the in-vivo pick tests and clinical symptoms. PMID:7272244
Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment
NASA Astrophysics Data System (ADS)
M. Borghei, S.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.
2013-01-01
In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.
Advanced Strain-Isolation-Pad Material with Bonded Fibrous Construction
NASA Technical Reports Server (NTRS)
Seibold, R. W.; Saito, C. A.; Buller, B. W.
1982-01-01
The feasibility of utilizing air lay and liquid lay felt deposition techniques to fabricate strain isolation pad (SIP) materials for the Space Shuttle Orbiter was demonstrated. These materials were developed as candidate replacements for the present needled felt SIP used between the ceramic tiles and the aluminum skin on the undersurface of the Orbiter. The SIP materials that were developed consisted of high temperature aramid fibers deposited by controlled fluid (air or liquid) carriers to form low density unbonded felts. The deposited felts were then bonded at the fiber intersections with a small amount of high temperature polyimide resin. This type of bonded felt construction can potentially eliminate two of the problems associated with the present SIP, viz., transmittal of localized stresses into the tiles and load history dependent mechanical response. However, further work is needed to achieve adequate through thickness tensile strength in the bonded felts.
Anti-rewet felt for use in a papermaking machine
Beck, David A.
2003-09-09
An anti-rewet fabric is used for carrying a fiber web through an air press. The anti-rewet fabric includes at least one air distribution fabric layer, one air distribution fabric layer being configured for contacting the fiber web, and a perforated film layer, the perforated film layer being made of a polyester film. The perforated film layer has a first film side and a second film side, the first film side being one of laminated and attached to the one air distribution fabric layer.
A wearable fabric-based speech-generating device: system design and case demonstration.
Fleury, Amanda; Wu, Gloria; Chau, Tom
2018-05-26
Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal was to design and test a wearable SGD incorporating resistive textile-based switches for a nonverbal pediatric participant with vision impairment. Quad-key fabric keypads were designed using two conductive fabrics in combination with felt and mesh insulators. The keypad with the most repeatable low force activations and the least cross-talk among keys was chosen for implementation in a wrist-worn, four-message textile SGD. The fabric-based SGD was used by a nonverbal pediatric participant for two one-week analysis periods, alternating with the user's current device for usage reference. Data were derived from usage logs, parent questionnaires and an end-of-study participant interview. The best performing keypad consisted of two layers of woven conductive fabrics and one layer of insulating felt with 10 mm apertures. Communicative interactions were higher with the fabric-based SGD, particularly at school. Unprompted initiation of communication was observed only with the fabric-based SGD. The persistent availability of the textile solution, along with esthetic appeal likely contributed to its utilization. While the participant preferred the fabric-based SGD, the parent opted for the iPod alternative, citing enhanced message intelligibility. Fabric-based SGDs are a new alternative to conventional SGD designs using rigid electronics. As such, tactile differentiability of keys, device wearability and esthetic personalization may be promising advantages for pediatric users. Implications for rehabilitation Fabric-based switches may be a promising alternative to conventional electro-mechanical switches for the control of speech-generating devices, offering functional (e.g., comfort and tactile differentiability), expressive (e.g., non-stigmatizing textile integration) and esthetic (e.g., colors and textures) appeal. The material combination of two layers of woven conductive material and one insulating layer of felt with 10 mm diameter apertures seems to provide a fabric-based keypad suitable for pediatric use, requiring low-force activation and minimal cross-talk among buttons. Fabric-based devices offer advantages of tactile differentiability and thus may be particularly suited to individuals with vision impairments. Wearable textile SGDs can be persistently available and may thus increase opportunities for communication.
Development of tailorable advanced blanket insulation for advanced space transportation systems
NASA Technical Reports Server (NTRS)
Calamito, Dominic P.
1987-01-01
Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.
16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.
Code of Federal Regulations, 2014 CFR
2014-01-01
... be worn by individuals except hats, gloves, and footwear: Provided, however, That such hats do not... form an integral part of another garment: And provided further, That such footwear does not consist of...) The term fabric means any material (other than fiber, filament, or yarn) woven, knitted, felted, or...
16 CFR 1609.1 - Text of the Flammable Fabrics Act of 1953, as amended in 1954.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be worn by individuals except hats, gloves, and footwear: Provided, however, That such hats do not... form an integral part of another garment: And provided further, That such footwear does not consist of...) The term fabric means any material (other than fiber, filament, or yarn) woven, knitted, felted, or...
A cochlear implant fabricated using a bulk silicon-surface micromachining process
NASA Astrophysics Data System (ADS)
Bell, Tracy Elizabeth
1999-11-01
This dissertation presents the design and fabrication of two generations of a silicon microelectrode array for use in a cochlear implant. A cochlear implant is a device that is inserted into the inner ear and uses electrical stimulation to provide sound sensations to the profoundly deaf. The first-generation silicon cochlear implant is a passive device fabricated using silicon microprobe technology developed at the University of Michigan. It contains twenty-two iridium oxide (IrO) stimulating sites that are 250 mum in diameter and spaced at 750 mum intervals. In-vivo recordings were made in guinea pig auditory cortex in response to electrical stimulation with this device, verifying its ability to electrically evoke an auditory response. Auditory thresholds as low as 78 muA were recorded. The second-generation implant is a thirty-two site, four-channel device with on-chip CMOS site-selection circuitry and integrated position sensing. It was fabricated using a novel bulk silicon surface micromachining process which was developed as a part of this dissertation work. While the use of semiconductor technology offers many advantages in fabricating cochlear implants over the methods currently used, it was felt that even further advantages could be gained by developing a new micromachining process which would allow circuitry to be distributed along the full length of the cochlear implant substrate. The new process uses electropolishing of an n+ bulk silicon sacrificial layer to undercut and release n- epitaxial silicon structures from the wafer. An extremely abrupt etch-stop between the n+ and n- silicon is obtained, with no electropolishing taking place in the n-type silicon that is doped lower than 1 x 1017 cm-3 in concentration. Lateral electropolishing rates of up to 50 mum/min were measured using this technique, allowing one millimeter-wide structures to be fully undercut in as little as 10 minutes. The new micromachining process was integrated with a standard p-well CMOS integrated circuit process to fabricate the second-generation active silicon cochlear implants.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Carter, Pam
2010-12-01
When I was first introduced to the Six Sigma process, I resisted it with every ounce of energy I had. I continuously fabricated reasons so that I was unable to complete the training that my company required. When it came time for my performance review, I could not hide the truth from my manager; I had not completed the required training. It was then that I began my journey into the world of Six Sigma. Once I understood that a black belt and a green belt certification had nothing to do with karate, I felt much better. Copyright 2010, SLACK Incorporated.
16 CFR 1611.31 - Terms defined.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., which is woven, knitted, felted or otherwise produced from any natural or man-made fiber, or substitute... include those fabrics having fancy woven, knitted or flock printed surfaces. (h) The term raised surface...
Recent disasters in Sri Lanka: lessons learned.
Somasundaram, Daya
2013-09-01
Sri Lanka has faced several disasters in the recent past, both manmade and natural. The mental health and psychosocial consequences have been felt at the individual, family, and collective levels. Individuals developed normal distress, posttraumatic stress disorder, depression, or alcohol abuse. There were changes in family and social processes causing a tearing of the social fabric, lack of social cohesion, disconnection, mistrust, hopelessness, dependency, lack of motivation, powerlessness, and despondency. Because of the widespread nature of mental health needs, a community approach would reach the most number of people. Copyright © 2013 Elsevier Inc. All rights reserved.
Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator
McCoy, L.R.
1981-01-23
A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.
Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator
McCoy, Lowell R.
1982-01-01
A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.
Felting as Expressive Art Form.
ERIC Educational Resources Information Center
Cirillo, Sandi
1998-01-01
Describes felting as the process of making felt using sheep's wool from fibers without weaving or knitting. Explains that teachers can incorporate felting into a lesson exploring the background behind this process, as an extension of collage or textile arts, as a means to studying abstract art, or in a fashion design unit. (CMK)
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
Heat sealable, flame and abrasion resistant coated fabric
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R. (Inventor)
1983-01-01
Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.
Performance of advanced chromium electrodes for the NASA Redox Energy Storage System
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Charleston, J.; Ling, J. S.; Reid, M. A.
1981-01-01
Chromium electrodes were prepared for the NASA Redox Storage System with meet the performance requirements for solar-photovoltaic, wind-turbine and electric utility applications. Gold-lead catalyzed carbon felt electrodes up tp 930 sq cm were fabricated and tested in single cells and multicell stacks for hydrogen evolution, coulombic efficiency, catalyst stability and electrochemical activity. Factors which affect the overall performance of a particular electrode include the carbon felt lot, the cleaning treatment and the gold catalyzation method. Effects of the chromium solution chemistry and impurities on charge/discharge performance are also presented.
NASA Astrophysics Data System (ADS)
Pan, Minqiang; Zhong, Yujian
2018-01-01
Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- A closeup of the stitching being done on pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes a piece of insulation blanket from an “oven” after heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, covers another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, places pieces of insulation blanket into an “oven” for heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, gets ready to place insulation blankets on the shelf after they have been heated. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes another insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, prepares the cover of another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes an insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
Multifunctional non-woven fabrics of interfused graphene fibres
Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao
2016-01-01
Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 104 S m−1 and prominent thermal conductivity of ∼301.5 W m−1 K−1. Given the low density (0.22 g cm−3), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications. PMID:27901022
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis' nose cap. Behind her is a cover for the nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
NASA Astrophysics Data System (ADS)
Zhou, Gangyong; Xiong, Tianrou; He, Shuijian; Li, Yonghong; Zhu, Yongmei; Hou, Haoqing
2016-06-01
Nanostructured nickel-cobalt binary hydroxide (NiCosbnd BH) is widely investigated as supercapacitor electrode material. However, the aggregation and poor electrical conductivity of NiCosbnd BH limit its practical application as a supercapacitor. In this work, a flexible free-standing hierarchical porous composite composed of NiCosbnd BH nanosheets and titanium carbide-carbon nanofiber (NiCosbnd BH@TiC/CNF) is fabricated through electrospinning and microwave assisted method. The as-prepared composites exhibit desirable electrochemical performances, including high specific capacitance, cycling stability, and rate capability. In particular, the NiCosbnd BH41@TiC/CNF composite electrode exhibits a maximum specific capacitance of 2224 F g-1 at the current density of 0.5 A g-1 and excellent cyclic stability of 91% capacity retention after 3000 cycles at 5.0 A g-1. To expand its practical application, an asymmetric supercapacitor (ASC) is fabricated using the NiCosbnd BH41@TiC/CNF composite as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 55.93 Wh kg-1 and a high power density of 18,300 W kg-1 at 5.0 A g-1. The superior electrochemical property is attributed to the uniform dispersion of NiCosbnd BH nanosheets on the TiC/CNF felt matrix. The TiC/CNF felt with uniformed TiC nanoparticles makes the fiber surface more suitable for growing NiCosbnd BH nanosheets and simultaneously enhances the conductivity of electrode.
NASA Astrophysics Data System (ADS)
Minke, Christine; Kunz, Ulrich; Turek, Thomas
2017-02-01
Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis. In the foreground is a ring inside of which the blankets will be sewn to fit in the orbiter's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
ERIC Educational Resources Information Center
Inamdar, Shaukatali N.; Bhat, Mohsin A.; Haram, Santosh K.
2009-01-01
A reference electrode is one of the prerequisites of electrochemical investigations. Many electrodes are commercially available but are expensive and prone to accidental breakage by students. Here we report a simple, easy-to-fabricate, inexpensive, reliable, unbreakable, and reproducible Ag/AgCl reference electrode. The empty barrel of a…
Revitalization: How One High School Succeeded in Providing a Quality Welding Program
ERIC Educational Resources Information Center
Stott, Tim
2006-01-01
Like many schools in the United States, Delcastle Technical High School in New Castle, Delaware, has felt the pain of falling enrollment in its welding and fabrication program. At one point, the program had shrunk to just 19 students and, as a result, could not produce enough graduates for local businesses that relied on Delcastle graduates. It…
Liang, Liang; Yu, Fangke; An, Yiran; Liu, Mengmeng; Zhou, Minghua
2017-01-01
A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H 2 O 2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O 2 to H 2 O 2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that · OH played an important role in degradation of MO.
Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials
NASA Astrophysics Data System (ADS)
Das, Dipen Kumar
In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency band.
Development program to produce mullite fiber insulation
NASA Technical Reports Server (NTRS)
Long, W. G.
1975-01-01
Processing methods were utilized to form a mullite fiber-Kaowool felt. The formation of a blended felt using the Rotoformer wet-laying method was successful. Felt products were evaluated for tensile strength, thermal stability, thermal conductivity and structural integrity at 1259 C and 1371 C. Textile processing methods failed in an attempt to form a yarn from staple and multifilament mullite fiber due to fiber damage through mechanical handling. The refractoriness of pure Kaowool ceramic fiber is improved with additions of 30% or greater mullite fiber.
Process of making titanium carbide (TiC) nano-fibrous felts
Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao
2015-01-13
A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section.
Impact of the time-out process on safety attitude in a tertiary neurosurgical department.
McLaughlin, Nancy; Winograd, Deborah; Chung, Hallie R; Van de Wiele, Barbara; Martin, Neil A
2014-11-01
In July 2011, the UCLA Health System released its current time-out process protocol used across the Health System. Numerous interventions were performed to improve checklist completion and time-out process observance. This study assessed the impact of the current protocol for the time-out on healthcare providers' safety attitude and operating room safety climate. All members involved in neurosurgical procedures in the main operating room of the Ronald Reagan UCLA Medical Center were asked to anonymously complete an online survey on their overall perception of the time-out process. The survey was completed by 93 of 128 members of the surgical team. Overall, 98.9% felt that performing a pre-incision time-out improves patient safety. The majority of respondents (97.8%) felt that the team member introductions helped to promote a team spirit during the case. In addition, 93.5% felt that performing a time-out helped to ensure all team members were comfortable to voice safety concerns throughout the case. All respondents felt that the attending surgeon should be present during the time-out and 76.3% felt that he/she should lead the time-out. Unanimously, it was felt that the review of anticipated critical elements by the attending surgeon was helpful to respondents' role during the case. Responses revealed that although the time-out brings the team together physically, it does not necessarily reinforce teamwork. The time-out process favorably impacted team members' safety attitudes and perception as well as overall safety climate in neurosurgical ORs. Survey responses identified leadership training and teamwork training as two avenues for future improvement. Copyright © 2014 Elsevier Inc. All rights reserved.
Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel
2016-07-01
Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for making thin carbon foam electrodes
Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.
1999-01-01
A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.
NASA Astrophysics Data System (ADS)
Hu, Jinyi; Yuan, Wei; Chen, Wenjun; Xu, Xiaotian; Tang, Yong
2016-12-01
This study reports the fabrication of a novel stable superhydrophobic and superoleophylic porous metal material on a copper fiber sintered felt (CFSF) substrate via a simple solution-immersion method. Oxidation and modification times are two important factors related to the level of hydrophobicity; oxidation for 1 h and modification for 24 h are appropriate to build a superhydrophobic CFSF surface with a water contact angle of 152.83° and a kerosene contact angle of 0°. The stability and high temperature resistance of superhydrophobic CFSF were studied. A novel device was designed to measure the water repellent ability of the treated CFSF. The results indicated that the water repellent ability of superhydrophobic CFSF was almost constant after 40 cycles of sanding. Both the water contact angle and the microstructure of the modified CFSF surface remained nearly unchanged after experiencing ultrasonic vibration for 1 min. The modified CFSF surface maintains super hydrophobicity after being treated at 180 °C for 1 h. The separation efficiencies for different types of oils and organic solvents (kerosene, chloroform, n-hexane and gasoline) are more than 96%. The modified CFSF retains a high robustness of separation efficiency even after it is recycled for the separation of kerosene and water for more than 10 times.
Wang, Lei; Tricard, Simon; Yue, Pengwei; Zhao, Jihua; Fang, Jian; Shen, Weiguo
2016-03-15
A novel polypyrrole (PPy) and graphene quantum dots (GQDs) @ Prussian Blue (PB) nanocomposite has been grafted on a graphite felt (GF) substrate (PPy/GQDs@PB/GF), and has been proven to be an efficient electrochemical sensor for the determination of l-cysteine (l-cys). GQDs, which were fabricated by carbonization of citric acid and adsorbed on GF surface ultrasonically, played an important role for promoting the synthesis process of PB via a spontaneous redox reaction between Fe(3+) and [Fe(CN)6](3-). The PPy film has been electro-polymerized to improve the electrochemical stability of the PPy/GQDs@PB/GF electrode. The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and electrochemical methods. It exhibited an excellent activity for the electrocatalytic oxidation of l-cys, with a detection sensitivity equal to 0.41 Amol(-1) L for a concentration range of 0.2-50 μmolL(-1), and equal to 0.15 Amol(-1) L for a concentration range of 50-1000 μmolL(-1). A low detection limit of 0.15 μmolL(-1), as well as a remarkable long-time stability and a negligible sensitivity to interfering analytes, were also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie
1999-01-01
Much of the material science gained in microgravity research requires processing a sample in a high performance furnace. One such furnace currently being designed is the Quench Module Insert (QMI). The Principle Investigators, for whom the furnace is proposed, require high temperature gradients in their cylindrical samples to achieve the science objectives. One of the components critical to achieving high sample axial temperature gradients in the Quench Module Insert is a high performance cold zone to extract the heat from the sample. This cold zone employs a compliant, sliding thermal interface based on a Vel-Therm felt. This felt provides a conductive path between the Sample Cartridge Assembly (SCA) exterior surface and the interior surface of the water cooled chill block while allowing movement of the sample relative to the chill block. The Vel-Therm felt is composed of long polymer-based fibers affixed to a thin flexible substrate layer. The fibers are oriented perpendicular to this substrate giving the felt the appearance of a velvet fabric. The Vel-Therm felt heat extraction capability was quantified in earlier tests performed in an inert gas environment. The current activity, described in this paper, is intended to characterize the extraction capability of Vel-Therm felt in a vacuum environment similar to the QMI environment. This testing is necessary to quantify the thermal performance of the Vel-Therm felt and the sensitivity of that performance to key variables. The data derived from these tests will be incorporated into the current thermal models to improve the quality of the models and reduce uncertainty of the analytical results. In addition, the data will be used to help select the appropriate Vel-Therm felt and set proper operating limits as well as assess the performance range of the furnace. The objective of this test is to measure the heat extraction rate of the Vel-Therm felt as specified by the effective heat transfer coefficient. Therefore, the test setup was designed to force the bulk of the heat transfer through the area where the Vel-Therm felt was applied. A heat source, consisting of a ceramic heating element encased in a Copper (Cu) housing is mounted on four isolated support rods. A 6-layer molybdenum radiation shield is used to insulate against heat loss from the heater and prevent heat exchange between the hot and cold sides of the test apparatus. The Vel-Therm felt is affixed to the surface of the cold sink, a water-cooled Cu chill block. An adjustable plate supports and isolates the cold sink from above and is used to control the amount of the deflection of the Vel- Therm when in contact with the Cu heating element housing. The primary means of establishing the power being conducted through the felt is to measure the energy being transferred to the water passing through the chill block. Analysis was performed to support the assumption that the source and sink surfaces were approximately isothermal under the specific test conditions. As a check on the amount of power passing through the felt, the power supplied to the heater was also measured. Thermocouples were strategically located throughout the test apparatus for measurement purposes. A bell jar was lowered over the assembly to impose vacuum conditions. Currently, variables tested have been fiber compression and fiber type and surface temperatures (both the hot and cold side temperatures are hypothesized to be important to the performance of the Vel-Therm.) Selected runs were repeated to ensure consistency and repeatability. Results obtained thus far reveal that Vel-Therm performance is significantly degraded by fibers being exposed to high compression. It also shows that performance is somewhat negatively impacted by previous compression, thereby, raising the question of repeatability. In addition, early results show a significant dependence on temperature. A computer aided mathematical analysis of the test setup is ongoing. The results will be correlated to actual results. The correlation will examine such details as parasitic loses, conduction down the power leads and many other concerns.
Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing
2016-11-05
In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. Copyright © 2016. Published by Elsevier B.V.
Men's and women's experiences with HIV and stigma in Swaziland.
Shamos, Sara; Hartwig, Kari A; Zindela, Nomsa
2009-12-01
To explore how gender differentially affects the stigma experiences of people living with HIV (PLHIV) in Swaziland, the extent and dimensions of HIV-related felt and enacted stigma and social support were analyzed. Thirty-seven semistructured, face-to-face interviews were conducted with PLHIV in Swaziland between 2004 and 2006. Through the process of conceptual analysis, themes, including felt stigma, information management, enacted stigma, and social support, were explored, coded, and analyzed in the contexts of partner and familial relationships, and workplace and neighborhood settings. Findings revealed that there were high levels of felt stigma in all contexts, yet fewer than anticipated accounts of enacted stigma in family, work, and neighborhood contexts compared to their expressions of felt stigma. The amount and characteristics of felt and enacted stigma and social support differed based on gender, as women often experienced more felt and enacted stigma than men, and had less definite financial or emotional support.
Method for making thin carbon foam electrodes
Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.
1999-08-03
A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.
Ryan, Jason D; Mengistie, Desalegn Alemu; Gabrielsson, Roger; Lund, Anja; Müller, Christian
2017-03-15
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm -1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles
2017-01-01
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young’s modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm–1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric. PMID:28245105
Forster, Michael; Leder, Helmut; Ansorge, Ulrich
2013-04-01
According to the processing-fluency explanation of aesthetics, more fluently processed stimuli are preferred (R. Reber, N. Schwarz, & P. Winkielman, 2004, Processing fluency and aesthetic pleasure: Is beauty in the perceiver's processing experience? Personality and Social Psychology Review, Vol. 8, pp. 364-382.). In this view, the subjective feeling of ease of processing is considered important, but this has not been directly tested in perceptual processing. In two experiments, we therefore objectively manipulated fluency (ease of processing) with subliminal perceptual priming (Study 1) and variations in presentation durations (Study 2). We assessed the impact of objective fluency on feelings of fluency and liking, as well as their interdependence. In line with the processing-fluency account, we found that objectively more fluent images were indeed judged as more fluent and were also liked more. Moreover, differences in liking were even stronger when data were analyzed according to felt fluency. These findings demonstrate that perceptual fluency is not only explicitly felt, it can also be reported and is an important determinant of liking. PsycINFO Database Record (c) 2013 APA, all rights reserved.
40 CFR 443.41 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE AND PRETREATMENT STANDARDS FOR NEW SOURCES FOR THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.41 Specialized definitions... from the production of linoleum and printed asphalt felt floor coverings. (c) The term “process...
40 CFR 443.41 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE AND PRETREATMENT STANDARDS FOR NEW SOURCES FOR THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.41 Specialized definitions... from the production of linoleum and printed asphalt felt floor coverings. (c) The term “process...
40 CFR 443.41 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE AND PRETREATMENT STANDARDS FOR NEW SOURCES FOR THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.41 Specialized definitions... from the production of linoleum and printed asphalt felt floor coverings. (c) The term “process...
Fire blocking systems for aircraft seat cushions
NASA Technical Reports Server (NTRS)
Parker, J. A.; Kourtides, D. A. (Inventor)
1984-01-01
A configuration and method for reducing the flammability of bodies of organic materials that thermally decompose to give flammable gases comprises covering the body with a flexible matrix that catalytically cracks the flammable gases to less flammable species. Optionally, the matrix is covered with a gas impermeable outer layer. In a preferred embodiment, the invention takes the form of an aircraft seat in which the body is a poly(urethane) seat cushion, the matrix is an aramid fabric or felt and the outer layer is an aluminum film.
40 CFR 443.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PRETREATMENT STANDARDS FOR NEW SOURCES FOR THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.41 Specialized definitions. For the purpose of... linoleum and printed asphalt felt floor coverings. (c) The term “process wastewater pollutants” shall mean...
40 CFR 443.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PRETREATMENT STANDARDS FOR NEW SOURCES FOR THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.41 Specialized definitions. For the purpose of... linoleum and printed asphalt felt floor coverings. (c) The term “process wastewater pollutants” shall mean...
HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei
2017-11-01
In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.
Building consensus: Legitimate hope or seductive paradox?
Stephen F. McCool; Kathleen Guthrie; Jane Kapler Smith
2000-01-01
To understand how participants in a natural resource planning situation described the nature of consensus, we interviewed scientists, agency planners and managers, and public representatives in two planning processes on the Bitterroot National Forest in west-central Montana. While most interviewees felt the agency had included affected interests and felt that the...
Pd/RGO modified carbon felt cathode for electro-Fenton removing of EDTA-Ni.
Zhang, Zhen; Zhang, Junya; Ye, Xiaokun; Hu, Yongyou; Chen, Yuancai
Ethylenediaminetetraacetic acid (EDTA) forms stable complexes with toxic metals such as nickel due to its strong chelation. The electro-Fenton (EF) process using a cathode made from palladium (Pd), reduced graphene oxide (RGO) and carbon felt, fed with air, exhibited high activities and stability for the removal of 10 mg L(-1) EDTA-Ni solution. Pd/RGO catalyst was prepared by one-pot synthesis; the scanning electron microscopy and X-ray diffraction analysis indicated nanoparticles and RGO were well distributed on carbon felt, forming three dimensional architecture with both large macropores and a mesoporous structure. The cyclic voltammetric results showed that the presence of RGO in Pd/RGO/carbon felt significantly increased the current response of two-electron reduction of O2 (0.45 V). The key factors influencing the removal efficiency of EDTA-Ni, such as pH, current and Fe(2+) concentration, were investigated. Under the optimum conditions, the removal efficiency of EDTA-Ni reached 83.8% after 100 min EF treatment. Mechanism analysis indicated that the introduction of RGO in Pd/RGO/carbon felt significantly enhanced the electrocatalytic activities by inducing •OH in the EF process; direct H2O2 oxidation still accounted for a large amount of EDTA-Ni removal efficiency.
Cai, Shao-Bo; Huang, Zheng-Hua; Zhang, Xing-Qun; Cao, Zhang-Jun; Zhou, Mei-Hua; Hong, Feng
2011-01-01
A wool-degrading bacterium was isolated from decomposition wool fabrics in China. The strain, named 3096-4, showed excellent capability of removing cuticle layer of wool fibers, as demonstrated by removing cuticle layer completely within 48 h. According to the phenotypic characteristics and 16S rRNA profile, the isolate was classified as Pseudomonas. Bacteria growth and keratinase activity of the isolate were determined during cultivation on raw wool at different temperatures, initial pH, and rotation speed using orthogonal matrix method. Maximum growth and keratinase activity of the bacterium were observed under the condition including 30 °C, initial pH 7.6, and rotational speeds 160 rpm. The keratinase-containing crude enzyme prepared from 3096-4 was evaluated in the treatment of wool fabrics. The optimal condition of our enzymatic improvement of shrink resistance was the combination of 30 °C, initial pH 7.6, and rotation speeds 160 rpm. After the optimized treatment, the wool fabrics felting shrink was 4.1% at 6 h, and textile strength was not lost.
Huang, Shufeng; Wan, Zhenping; Zou, Shuiping
2018-03-20
A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC) composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC) and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al₂O₃ coating (SCSSFFC/Al₂O₃). The adhesive strength of SCSSFFC/Al₂O₃ is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al₂O₃ coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al₂O₃ is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al₂O₃ are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al₂O₃ yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.
Wallace, J Craig; Johnson, Paul D; Mathe, Kimberly; Paul, Jeff
2011-07-01
The authors proposed and tested a model in which data were collected from managers (n = 539) at 116 corporate-owned quick service restaurants to assess the structural and psychological empowerment process as moderated by shared-felt accountability on indices of performance from a managerial perspective. The authors found that empowering leadership climate positively relates to psychological empowerment climate. In turn, psychological empowerment climate relates to performance only under conditions of high-felt accountability; it does not relate to performance under conditions of low-felt accountability. Overall, the present results indicate that the quick-service restaurant managers, who feel more empowered, operate restaurants that perform better than managers who feel less empowered, but only when those empowered managers also feel a high sense of accountability.
Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun
2014-01-01
The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060
Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menke, D.
1990-12-31
CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of amore » new product from waste material, Minor process changes to reduce the frequency of breaks.« less
Effect of Surface Treatment on the Properties of Wool Fabric
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.
Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.
Development of Ceramic Fibers for Reinforcement in Composite Materials
NASA Technical Reports Server (NTRS)
Gates, L. E.; Lent, W. E.; Teague, W. T.
1961-01-01
Refinements of the vertical arc fiberizing apparatus resulted in its ability to fiberize very different refractory glasses having wide ranges of properties. Although the apparatus, was originally designed as a laboratory research tool for the evaluation of many compositions daily, up to one quarter pound of fibers of a single composition could be produced in an 8-hour day. Fibers up to six and a half feet long were produced with the apparatus. Studies were conducted of two methods of fiberizing refractory glasses requiring rapid freezing from the melt. The first method consisted of fiberizing droplets of molten glass passing through an annular nozzle. The second method consisted of reconstructing the annular nozzle in. the shape of a horseshoe to achieve a shorter delay in blasting a molten droplet from the tip of a rod. Both methods were judged feasible for producing fibers of glasses requiring rapid freezing. The first method would be more amenable to volume fiber production. Studies of induction heating for fiber formation did not lead to its designation as a very efficient heating method. Problems. remain to be solved, in the design of a suitable susceptor for a higher heating rate, in protecting the susceptor from oxidation with an inert gas, in contamination of the melt from a refractory crucible, and in the protective radiation shielding of the induction concentrator coil. It is not considered practical to continue studies of this heating method. In the course of this program 151 refractory glass compositions were evaluated for fiber, forming characteristics. Of the various types of materials studied, the following showed promise in producing acceptable refractory fibers: sIlica- spinel (magnesium aluminate), silica- spinel-zirconia, silica-zirconia, silica-zinc spinel, aluminum phosphate glasses, and fluoride glasses. Compositions which did not produce acceptable fibers were high zirconia materials, barium spinels, and calcium aluminates. Improvements in the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on eight composite materials indicated ablation rates generally equivalent to Fiberglas-Micarta No. 259-2. The composite reinforced with R-99 fibers had an average ablation rate of 0.008 inch per second and appears quite promising on the basis of these tests. Preliminary studies for processing fibers into yarn and fabric were conducted with R-99 fibers. The use of certain organic gums aided in 2 fabricating by hand several relatively strong yarns and a crude fabric swatch. This indicated the practicality of developing techniques for processing these fibers into yarn and fabric without significant damage to the fibers.
Design and fabrication of multispectral optics using expanded glass map
NASA Astrophysics Data System (ADS)
Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George
2015-06-01
As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.
ERIC Educational Resources Information Center
Wallace, J. Craig; Johnson, Paul D.; Mathe, Kimberly; Paul, Jeff
2011-01-01
The authors proposed and tested a model in which data were collected from managers (n = 539) at 116 corporate-owned quick service restaurants to assess the structural and psychological empowerment process as moderated by shared-felt accountability on indices of performance from a managerial perspective. The authors found that empowering leadership…
1987-01-26
production, animal raising and the processing of animal products. The changes in the regulator system going into effect in 1987 will increase...gigantic foodstuffs reserves of the European Economic Qammunity shrink, so the reduction in supports may not make its effect felt immediately. But... effect will not be felt until 1987 (10). By reason of energy policy, the potential for compensating these earnings losses is strictly limited. A
Life Test Results for Water Heat Pipes Operating at 200 °C to 300 °C
NASA Astrophysics Data System (ADS)
Rosenfeld, John H.; Gernert, Nelson J.
2008-01-01
For lunar or planetary bases to be viable, a robust electric generating system will be required for powering the habitat. Water heat pipes offer an attractive solution for lunar base heat rejection, and would serve as a qualification for them on other long duration missions. Successful operation near the upper end of water operating range is a requirement for the application. Results are reported for life tests on water heat pipes that were operated at various temperatures between 200 °C and 300 °C. Tests were conducted on twenty three gravity-assisted water heat pipes. Eleven titanium/water heat pipes and ten Monel/water heat pipes were tested at temperatures above 200 °C. Two cupronickel heat pipes were also assembled and tested. Titanium alloys tested included CP-2 titanium, as well as two beta-titanium alloys, namely 15-3 and Nitinol alloys. Some of the titanium alloy life tests used wicks fabricated from CP-2 titanium screen or porous felt. Monel alloys tested included 400 and K-500 alloys. Some of the Monel heat pipes contained copper/nickel wicks that were fabricated by brazing nickel-plated copper felt metal wicks. Although most of the envelope/material combinations exhibit favorable results at 200 °C, some of the combinations failed at higher temperatures. Causes of failure included stress-creep of envelopes and corrosion at axial or end cap welds. This information represents a significant advance in selection of materials for 200 °C to 300 °C water heat pipes. Life testing work is being continued.
Risk and Emotion Among Healthy Volunteers in Clinical Trials
Cottingham, Marci D.; Fisher, Jill A.
2017-01-01
Theorized as objective or constructed, risk is recognized as unequally distributed across social hierarchies. Yet the process by which social forces shape risk and risk emotions remains unknown. The pharmaceutical industry depends on healthy individuals to voluntarily test early-stage, investigational drugs in exchange for financial compensation. Emblematic of risk in late modernity, Phase I testing is a rich site for examining how class and race shape configurations of emotion and risk. Using interview data from 178 healthy trial participants, this article examines emotion and risk as mutually constituting processes linked to biographical context and social structure. Biographical events like economic insecurity and incarceration influence how risk is felt by providing comparative experiences of felt risk and felt benefits. Such events, in turn, are structured by class-based and racial inequalities, linking class and race positions to primary emotional experiences of risk. PMID:28867852
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved down selecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt. In FY13, more advanced testing and modeling of the down selected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
NASA Technical Reports Server (NTRS)
Beck, R.; Arnold, J.; Gasch, M.; Stackpoole, M.; Venkatapathy, E.
2014-01-01
This presentation will update the community on the development of conformal ablative TPS. As described at IPPW-10, in FY12, the CA-TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a conformal ablative TPS. This involved downselecting, manufacturing and testing two of the best candidate materials, demonstrating uniform infiltration of resins into baseline 2-cm thick carbon felt, selecting a primary conformal material formulation based on novel arc jet and basic material properties testing, developing and demonstrating instrumentation for felt-based materials and, based on the data, developing a low fidelity material response model so that the conformal ablator TPS thickness for missions could be established. In addition, the project began to develop Industry Partnerships. Since the nominal thickness of baseline carbon felts was only 2-cm, a partnership with a rayon felt developer was made in order to upgrade equipment, establish the processes required and attempt to manufacture 10-cm thick white goods. A partnership with a processing house was made to develop the methodology to carbonize large pieces of the white goods into 7.5-cm thick carbon felt.In FY13, more advanced testing and modeling of the downselected conformal material was performed. Material thermal properties tests and structural properties tests were performed. The first 3 and 4-point bend tests were performed on the conformal ablator as well as PICA for comparison and the conformal ablator had outstanding behavior compared to PICA. Arc jet testing was performed with instrumented samples of both the conformal ablator and standard PICA at heating rates ranging from 40 to 400 Wcm2 and shear as high as 600 Pa. The results from these tests showed a remarkable improvement in the thermal penetration through the conformal ablator when compared to PICAs response. The data from these tests were used to develop a mid-fidelity thermal response model. Additional arc jet testing in the same conditions on various seam designs were very successful in showing that the material could be joined with a minimum of adhesive and required no complicated gap and gap filler design for installation. In addition, the partnership with industry to manufacture thicker rayon felt was very successful. The vendor made a 2-m wide by 30-m long sample of 10-cm thick rayon felt. When carbonized, the resulting thickness was over 7.5-cm thick, nearly 4 times the thickest off-the-shelf carbon felt. In FY14, the project has initiated a partnership with another vendor to begin the scale-up manufacturing effort. This year, the vendor will duplicate the process and manufacture at the current scale for comparison with NASA-processed materials. Properties testing and arc jet testing will be performed on the vendor-processed materials. Planning for manufacturing large, 1-m x 1-m, panels will begin as well. In FY15, the vendor will then manufacture large panels and the project will build a 2-m x 2-m Manufacturing Demonstration Unit (MDU).
Ceramic fiber reinforced filter
Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.
1991-01-01
A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.
[Pre-verbality in focusing and the need for self check. An attempt at "focusing check"].
Masui, T; Ikemi, A; Murayama, S
1983-06-01
Though the Focusing process is not entirely non-verbal, in Focusing, careful attention is paid by the Focuser and the Listener to the pre-verbal experiential process. In other words, Focusing involves attending to the felt sense that is not easily expressed in words immediately. Hence, during the process of learning to Focus, the Focusing teacher attempts to communicate the experiences of Focusing to the student which are not easily done by words. Due to such difficulties, the Focusing student may (and quite frequently does) mistake the experiential process in Focusing with other processes. Often, the felt sense can be confused with other phenomena such as "autogenic discharge". Also the Focuser may not stay with the felt sense and drift into "free association" or frequently, certain processes in "meditation" can be confused with Focusing. Therefore, there is a need for a "check" by which the Focusing student can confirm the Focusing experience for himself. For the Focusing student, such a "check" serves not only to confirm the Focusing process, but also an aid to learning Focusing. We will report here a "Focusing Check" which we developed by translating Eugene Gendlin's "Focusing Check" and making several modifications in it so that it will be more understandable to the Japanese. Along with the "Focusing Check" we developed, the authors discuss the need for such a check.
Huang, Shufeng; Wan, Zhenping; Zou, Shuiping
2018-01-01
A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC) composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC) and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3). The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature. PMID:29558438
Poile, Christopher
2017-09-01
Research on power suggests asymmetric task dependence (sending work resources to a coworker and receiving little in return) should create a power imbalance and promote selfishness. In contrast, work design theory suggests asymmetry can lead to felt responsibility, but this link has not been tested and its theory remains underdeveloped. Drawing on self-determination theory (SDT), this article argues that work design characteristics can encourage the SDT internalization process-the transformation of external reasons for behavior into internal reasons. Two experiments demonstrate asymmetry encourages felt responsibility for the dependent's task, which helps explain the amount of help provided to the dependent. The author proposes felt responsibility indicates the extent to which an external task has been internalized as a self-directed motivation. This article clarifies how task dependence is different from power and develops an important and understudied aspect of SDT: how work design characteristics are transformed into internalized motivations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Yuan, Haoran; Dong, Ge; Li, Denian; Deng, Lifang; Cheng, Peng; Chen, Yong
2018-09-15
Anode design is highly significant for microbial fuel cells, since it simultaneously serves as the scaffold for electroactive microorganisms and as a medium for electron migration. In this study, a stiff 3D carbon foam with surface anchored nitrogen-containing carbon nanoparticles was facilely constructed via in-situ polyaniline coating of carbonized steamed cake prior to the carbonization process. The resultant product was determined to be an excellent freestanding anode that enabled the microbial fuel cell to deliver a maximum power density of up to 1307 mW/m 2 , which significantly outperformed its non-coated counterpart, the widely used commercial carbon felt. Further investigations revealed that the overall performance enhancement was associated with the open porosity, enlarged electroactive surface, increased biocompatibility, and decreased electric resistance of the anode scaffold. This promising anode material would offer a green and economical option for fabricating high-performance microbial fuel cell-based devices towards various ends. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of low cost/high temperature insulation, July 1974 - June 1975
NASA Technical Reports Server (NTRS)
Strauss, E. L.
1975-01-01
Six fiber products and six insulation blankets comprising silica, alumina, zirconia, mullite, and mixed ceramic systems were subjected to furnace exposures up to 500 hours at temperatures of 1000 to 1600 C and evaluated for chemical and dimensional stability and for changes in thermal conductivity. Alumina, zirconia, and mullite fibers were fabricated into reusable surface insulation (RSI) tile by water-felting and reimpregnation with ethyl silicate. Specimens were exposed to 25 thermal cycles at 1200 C and 1400 C and a pressure of 10 and 32 torr, respectively. Production costs for 930 sq m (10,000 sq ft) of blanket insulation and of alumina RSI tile were developed.
Fission fragment assisted reactor concept for space propulsion: Foil reactor
NASA Technical Reports Server (NTRS)
Wright, Steven A.
1991-01-01
The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.
Annual planning meetings: views and perceptions.
Bindal, Taruna; Wall, David; Goodyear, Helen
2014-12-01
In 2009, annual face to face planning meetings (APMs) were introduced as an optional meeting for all paediatric trainees. APMs are a formative assessment process whereby the trainee meets with a panel of consultants and sets the agenda for discussion. A questionnaire about APMs was given to all participating trainees and trainers in 2011. The response rate was 93 per cent (139/150) and 67 per cent (12/18) for trainees and trainers, respectively. All trainers had received panel member training. Ninety-one per cent of trainees (126/139) felt adequately prepared for the meeting. Issues discussed included career plans (93%), future training placements (73%), ePortfolio (61%) and previous training posts (61%). Trainees felt that the APM was a helpful formative assessment process (with a mean score of five on a six-point Likert scale: 1, strongly disagree; 6, strongly agree), and that panels were fair, supportive, communicated clearly, listened to concerns and focused on individual learning needs. Sixty-seven per cent (8/12) of trainers would have liked more information about the process beforehand. The main benefits of APMs were trainees feeling supported in their training and better informed regarding career options. APMs would be of value to all specialties to enable annual formative assessment to be undertaken at a different time to the summative assessment process. APMs facilitate reflection on learning needs, and the formulation of personal development plans and career goals for trainees. Trainees felt that the APM was a helpful formative assessment process. © 2014 John Wiley & Sons Ltd.
Henry, Jason T; Christiansen, Ellen; Garberich, Ross F; Handran, Chauncy B; Larson, David M; Unger, Barbara T; Henry, Timothy D
2014-03-01
Transfer for primary percutaneous coronary intervention (PCI) is superior to fibrinolysis if performed in a timely manner but frequently requires dislocation of patients and their families from their local community. Although patient satisfaction is increasingly viewed as an important quality indicator, there are no data on how emergent transfer for PCI affects patients with ST-segment-elevation myocardial infarction and their families. The Minneapolis Heart Institute's Level 1 Regional ST-Segment-Elevation Myocardial Infarction program is designed to facilitate emergent transfer for PCI in patients with ST-segment-elevation myocardial infarction from 31 rural and community hospitals. To determine the effect of emergent transfer, questionnaires were given to 152 patients and their families who survived to hospital discharge with a 65.8% response rate (mean age, 63.9 years; 29% women). Ninety-five percent of patients felt the reasons and process of transfer were well explained, and 97% felt transfer for care was necessary. Despite this, 15% of patients would have preferred to stay in their local hospital. The majority of the families felt the transfer process (88%) and family member's condition (94%) were well explained. Although 99% felt it was necessary for their family member to be transferred for specialized care, 11% of families still would have preferred that their family members remain at the local community hospital. Our results suggest that ST-segment-elevation myocardial infarction patients and families can be informed, even in time-critical situations, about the transfer process for PCI and understand the need for specialized care. Still, a significant minority would prefer to stay at their local hospital, despite acknowledging transfer for PCI provided optimal care.
Ergonomic assessment of enhanced protection under body armour combat shirt neck collars.
Breeze, John; Granger, C J; Pearkes, T D; Clasper, J C
2014-03-01
Combat neck injury due to explosively propelled fragments is a significant cause of mortality and long-term morbidity in UK soldiers deployed on current operations. Reinforcing the collar of the existing under body armour combat shirt (UBACS) has been suggested as a potential method for reducing the incidence of combat neck injury. 20 soldiers serving in Afghanistan objectively compared three designs of enhanced protection UBACS (EP-UBACS) using 10 representative military tasks against a baseline of a standard UBACS. Each EP-UBACS design was trialled using three constituent materials: two layers of para-aramid felt, one layer of ultra high molecule weight polyethylene (UHMWPE) felt or two layers of a silk fabric. Subjective assessment of these nine configurations in terms of comfort, heat dissipation and overall acceptability were compared with the standard UBACS using a χ² test. All military tasks could be performed with all nine configurations of EP-UBACS. Although silk was the most comfortable material, it was not functionally practical in any of the three designs. Crossover collars incorporating UHMWPE or para-aramid were the only two of the nine configurations to demonstrate similar user acceptability to a standard UBACS. The EP-UBACS has the potential to provide neck protection without reducing performance incorporating materials analogous to either of the felts assessed in this study. The collar should provide stand-off from the skin to improve heat dissipation and comfort, which can be maximised by changing the current UBACS collar shape to one that crosses over at the front. Should a zip be desired, it should be moved to one side of the midline to reduce rubbing on the chin and be covered with ballistic protective material. Additional semi-circles of silk beneath the collar at the front and back would improve protection without affecting comfort.
Fabrication of composite films containing zirconia and cationic polyelectrolytes.
Pang, Xin; Zhitomirsky, Igor
2004-03-30
Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.
Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot
2011-01-01
Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801
Tethers as Debris: Simulating Impacts of Kevlar Tethers on Shuttle Tiles
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2004-01-01
In a previous paper I examined the effects of impacts of polymer tethers on aluminum plates using the SPHC hydrodynamic code. In this paper I apply tether models to a new target - models of Space Shuttle tiles developed during the STS 107 accident investigation. In this three-dimensional simulation, a short tether fragment strikes a single tile supported on an aluminum backing plate. A tile of the LI-900 material is modeled. Penetration and damage to the tile and the backwall are characterized for three normal impact velocities. The tether is modeled as a bundle of eight 1-mm strands, with the bundle having dimensions 2-mm x 4-mm x 20-cm. The bulk material properties used are those of Kevlar(TradeMark) 49, for which a Mie-Gruneisen multiphase equation of state (eos) is used. In addition, the strength model is applied in a linear sense, such that tensile loads along the strand length are supported, but there is no strength in the lateral directions. Tile models include the various layers making up the tile structure. The outermost layer is a relatively dense borosilicate glass, known as RCG, 0.5-mm thick. The RCG layer is present on the top and four sides of the tile. Below this coating is the bulk of the tile, 1.8- in thick, made of LI-900, a product consisting of rigidized fiberous silica with a density of 9 lWft3. Below the main insulating layer is a bottom layer of the same material that has been treated to increase its density by approximately 69% to improve its strength. This densified layer is bonded to a Strain Isolation Pad (SIP), modeled as a refractory felt fabric. The SIP is bonded to an aluminum 2024 wall 0.1-in thick. The tile and backwall materials use a Me-Gruneisen multiphase eos, with the exception of the SIP felt, which uses a fabric equation of state. Fabrics must be crushed to the full bulk material density before bulk material properties and a Mie-Gruneisen eos are applied. Tether fragment impact speeds of 3,7, and 10 km/s are simulated, with impact velocities normal to the tile face. Damage results are presented in tabular format.
NASA Flexible Screen Propellant Management Device (PMD) Demonstration With Cryogenic Liquid
NASA Technical Reports Server (NTRS)
Wollen, Mark; Bakke, Victor; Baker, James
2012-01-01
While evaluating various options for liquid methane and liquid oxygen propellant management for lunar missions, Innovative Engineering Solutions (IES) conceived the flexible screen device as a potential simple alternative to conventional propellant management devices (PMD). An apparatus was designed and fabricated to test flexible screen devices in liquid nitrogen. After resolution of a number of issues (discussed in detail in the paper), a fine mesh screen (325 by 2300 wires per inch) spring return assembly was successfully tested. No significant degradation in the screen bubble point was observed either due to the screen stretching process or due to cyclic fatigue during testing. An estimated 30 to 50 deflection cycles, and approximately 3 to 5 thermal cycles, were performed on the final screen specimen, prior to and between formally recorded testing. These cycles included some "abusive" pressure cycling, where gas or liquid was driven through the screen at rates that produced differential pressures across the screen of several times the bubble point pressure. No obvious performance degradation or other changes were observed over the duration of testing. In summary, it is felt by the author that these simple tests validated the feasibility of the flexible screen PMD concept for use with cryogenic propellants.
NASA Astrophysics Data System (ADS)
Bossu, R.; Etivant, C.; Roussel, F.; Mazet-Roux, G.; Steed, R.
2014-12-01
Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public. Wherever someone's own location is, they can be automatically informed when an earthquake has struck just by setting a magnitude threshold and an area of interest. No need to browse the internet: the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? A while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones of societal importance even when of small magnitude. LastQuake app and Twitter feed (QuakeBot) focuses on these earthquakes that matter for the public by collating different information threads covering tsunamigenic, damaging and felt earthquakes. Non-seismic detections and macroseismic questionnaires collected online are combined to identify felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the USGS, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. We will present the identification process of the felt earthquakes, the smartphone application and the 27 automatically generated tweets and how, by providing better public services, we collect more data from citizens.
Siouta, Eleni; Hellström Muhli, Ulla; Hedberg, Berith; Broström, Anders; Fossum, Bjöörn; Karlgren, Klas
2016-09-01
Insights in consultations across patient interactions with physicians and nurses are of vital importance for strengthening the patients' involvement in the treatment decision-making process. The experience of involvement and communication in decision-making from the patients' perspective has been sparsely explored. To examine how patients describe involvement in and communication about decision-making regarding treatment in consultations with nurses and physicians. Twenty-two patients with atrial fibrillation (AF), aged 37-90 years, were interviewed directly after their consultations with nurses and physicians in outpatient AF clinics in six Swedish hospitals. In consultations with nurses, the patients felt involved when obtaining clarifications about AF as a disease and its treatment and when preparing for and building up confidence in decision-making. In consultations with physicians, the patients felt involved when they could cooperate in decision-making, when acquiring knowledge, and when they felt that they were being understood. One shared category was found in consultations with both nurses and physicians, and the patients felt involved when they had a sense of trust and felt secure during and between consultations. Patients with AF stated that they would need to acquire knowledge and build up confidence and ability in order to be effectively involved in the decision-making about treatment. Despite not being actively involved in decision-making, patients felt involved through experiencing supportive and confirming communication. Attention must be given to the relationship with the patient to create the conditions for patient involvement in the consultation. This can be achieved through supportive communication attempting to create a feeling of clarity and building confidence. This will support involvement in decision-making concerning AF treatment and feelings of being understood and of trust in physicians and/or nurses. © 2015 Nordic College of Caring Science.
What's Wrong with Cookbooks? A Reply to Ault
ERIC Educational Resources Information Center
Monteyne, Kereen; Cracolice, Mark S.
2004-01-01
The work done in a chemistry laboratory is compared to cooking, as both processes use books for reference. It is felt that cooking and chemistry are complex processes and are creative endeavors that require skills beyond those developed by merely following the directions.
Fabrication Process for Cantilever Beam Micromechanical Switches
1993-08-01
Beam Design ................................................................... 13 B. Chemistry and Materials Used in Cantilever Beam Process...7 3. Photomask levels and composite...pp 410-413. 5 2. Cantilever Beam Fabrication Process The beam fabrication process incorporates four different photomasking levels with 62 processing
NASA Astrophysics Data System (ADS)
Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd
2017-12-01
In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.
Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Murthy, P. L. N.; Morel, M.
1990-01-01
A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Murthy, P. L. N.; Morel, M.
1990-01-01
A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.
Texting "boosts" felt security.
Otway, Lorna J; Carnelley, Katherine B; Rowe, Angela C
2014-01-01
Attachment security can be induced in laboratory settings (e.g., Rowe & Carnelley, 2003) and the beneficial effects of repeated security priming can last for a number of days (e.g., Carnelley & Rowe, 2007). The priming process, however, can be costly in terms of time. We explored the effectiveness of security priming via text message. Participants completed a visualisation task (a secure attachment experience or neutral experience) in the laboratory. On three consecutive days following the laboratory task, participants received (secure or neutral) text message visualisation tasks. Participants in the secure condition reported significantly higher felt security than those in the neutral condition, immediately after the laboratory prime, after the last text message prime and one day after the last text prime. These findings suggest that security priming via text messages is an innovative methodological advancement that effectively induces felt security, representing a potential direction forward for security priming research.
Culture, interpersonal perceptions, and happiness in social interactions.
Oishi, Shigehiro; Koo, Minkyung; Akimoto, Sharon
2008-03-01
The authors examined cultural differences in interpersonal processes associated with happiness felt in social interactions. In a false feedback experiment (Study 1a), they found that European Americans felt happier when their interaction partner perceived their personal self accurately, whereas Asian Americans felt happier when their interaction partner perceived their collective self accurately. In Study 1b, the authors further demonstrated that the results from Study 1a were not because of cultural differences in desirability of the traits used in Study 1a. In Studies 2 and 3, they used a 2-week event sampling method and replicated Study 1. Unlike Asian Americans, African Americans were not significantly different from European Americans in the predictors of happiness in social interactions. Together, this research shows that interpersonal affirmation of important aspects of the self leads to happiness and that cultural differences are likely to emerge from the emphasis placed on different aspects of the self.
NASA Astrophysics Data System (ADS)
Lee, Dong Kyu; Ahn, Chi Won; Jeon, Hwan-Jin
2017-08-01
Graphitic carbon fiber felt (GCFF) with a crystalline graphitic carbon structure was facilely prepared by a combination of electrospinning and graphitization (2800 °C heat treatment) and was used as an interlayer between the cathode and separator in Li-S batteries. This GCFF interlayer trapped the polysulfides on the cathode side and increased the utilization of sulfur by suppressing the shuttle phenomenon. Also, the GCFF was shown to be able to act as an upper current collector to reduce the charge-transfer resistance owing to the high crystallinity of the graphitic carbon fibers. The sulfur cathode with the GCFF interlayer showed a high specific initial discharge capacity of 1280.14 mAh g-1 and excellent cycling stability (1004.62 mAh g-1 after 100 cycles) at 0.2 C. Also, an image of the glass fiber (GF) separator on the anode side confirmed the presence of an SEI after 200 cycles, which apparently resulted from stable Li deposition on the Li metal because of the low or medium concentration of sulfur in the electrolyte solution. Our observations should contribute to elucidating the key features of complex three-dimensional carbon fabrics with crystalline graphitic structures that allow them, when inserted as interlayers, to markedly improve the performance of rechargeable batteries.
Improved low-cost, non-hazardous, all-iron cell for the developing world
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; Williams, Benjamin; Wang, Wu-Chieh Jerry; Weber, Adam Z.
2016-11-01
A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade after a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm-2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. We anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.
Development of electrodes for the NASA iron/chromium
NASA Technical Reports Server (NTRS)
Swette, L.; Jalan, V.
1984-01-01
This program was directed primarily to the development of the negative (Cr3+/Cr2+) electrode for the NASA chromous/ferric Redox battery. The investigation of the effects of substrate processing and gold/lead catalyzation parameters on electrochemical performance were continued. In addition, the effects of reactant cross-mixing, acidity level, and temperature were examined for both Redox couples. Finally, the performance of optimized electrodes was tested in system hardware (1/3 square foot single cell). The major findings are discussed: (1) The recommended processing temperature for the carbon felt, as a substrate for the negative electrode, is 1650 to 1750 C, (2) The recommended gold catalyzation procedure is essentially the published NASA procedure (NASA TM-82724, Nov. 1981) based on deposition from aqueous methanol solution, with the imposition of a few controls such as temperature (25 C) and precatalyzation pH of the felt (7), (3) Experimental observations of the gold catalyzation process and subsequent electron microscopy indicate that the gold is deposited from the colloidal state, induced by contact of the solution with the carbon felt, (4) Electrodeposited lead appears to be present as a thin uniform layer over the entire surface of the carbon fibers, rather than an discrete particles, and (5) Cross-mixing of reactants (Fe-2+ in negative electrode solution or Cr-3+ in the positive electrode solution) did not appear to produce significant interference at either electrode.
Optimizing The DSSC Fabrication Process Using Lean Six Sigma
NASA Astrophysics Data System (ADS)
Fauss, Brian
Alternative energy technologies must become more cost effective to achieve grid parity with fossil fuels. Dye sensitized solar cells (DSSCs) are an innovative third generation photovoltaic technology, which is demonstrating tremendous potential to become a revolutionary technology due to recent breakthroughs in cost of fabrication. The study here focused on quality improvement measures undertaken to improve fabrication of DSSCs and enhance process efficiency and effectiveness. Several quality improvement methods were implemented to optimize the seven step individual DSSC fabrication processes. Lean Manufacturing's 5S method successfully increased efficiency in all of the processes. Six Sigma's DMAIC methodology was used to identify and eliminate each of the root causes of defects in the critical titanium dioxide deposition process. These optimizations resulted with the following significant improvements in the production process: 1. fabrication time of the DSSCs was reduced by 54 %; 2. fabrication procedures were improved to the extent that all critical defects in the process were eliminated; 3. the quantity of functioning DSSCs fabricated was increased from 17 % to 90 %.
A Longitudinal Examination of Positive Parenting Following an Acceptance-Based Couple Intervention
Morrill, Melinda Ippolito; Hawrilenko, Matt; Córdova, James V.
2015-01-01
Positive parenting practices have been shown to be essential for healthy child development, and yet have also been found to be particularly challenging for parents to enact and maintain. This paper explores an innovative approach for increasing positive parenting by targeting specific positive emotional processes within marital relationships. Couple emotional acceptance is a powerful mechanism that has repeatedly been found to improve romantic relationships, but whether these effects extend to the larger family environment is less well understood. The current longitudinal study examined the role of improved levels of acceptance in mother’s and father’s positive parenting after a couple intervention. Participants included 244 parents (122 couples) in the Marriage Checkup (MC) study, a randomized, controlled, acceptance-based, intervention study. Data indicated that both women and men experienced significantly greater felt acceptance two-weeks after the MC intervention, treatment women demonstrated greater positive parenting two weeks after the intervention, and all treatment participants’ positive parenting was better maintained than control couple’s six months later. Importantly, although mothers’ positive parenting was not influenced by different levels of felt acceptance, changes in father’s positive parenting were positively associated with changes in felt acceptance. As men felt more accepted by their wives, their levels of positive parenting changed in kind, and this effect on positive parenting was found to be mediated by felt acceptance two weeks after the MC. Overall, findings supported the potential benefits of targeting couple acceptance to generate positive cascades throughout the larger family system. PMID:26551659
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Fabricating a hybrid imaging device
NASA Technical Reports Server (NTRS)
Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)
2003-01-01
A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.
ERIC Educational Resources Information Center
Scheela, Rochelle A.
1992-01-01
Conducted grounded theory study to explore incest offender perceptions of treatment to generate explanatory theory of sexual abuse treatment process. Findings from theoretical sampling of 20 adult male incest offenders revealed that offenders felt remodeling process occurred as they faced discovery of their abuse and went through treatment.…
Fabricating a hybrid imaging device having non-destructive sense nodes
NASA Technical Reports Server (NTRS)
Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)
2001-01-01
A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.
NASA Technical Reports Server (NTRS)
Forgsberg, K.
1979-01-01
The primary insulation system used to protect the space shuttle orbiter on reentry is an externally attached, rigidized, fibrous silica which has been machined into tiles. The tiles constitute the temperature reusable surface insulation system and are used on over 70 percent of the vehicle exterior surface where peak temperatures range from 400 to 1260 C. Cargon-carbon leading edges are used in areas where peak temperatures exceed 1650 C and a felt flexible insulation is used in regions below 400 C. Approximately 32,000 tiles are used in the HRST system and because of vehicle configuration, aerodynamic requirements, and weight considerations no two tiles are alike. Fabrication and quality control procedures are described.
Job Enlargement: A Multidimensional Process
ERIC Educational Resources Information Center
Donaldson, Lex
1975-01-01
An evaluation study into the effects of a job enlargement exercise indicates that the expected increases in satisfaction associated with greater work variety, novelty, and felt use of abilities were achieved. (Author/MLF)
Development of the Direct Fabrication Process for Plutonium Immobilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-07-10
The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.
NASA Technical Reports Server (NTRS)
1980-01-01
A quality assurance program was developed which included specifications for celion/LARC-160 polyimide materials and quality control of materials and processes. The effects of monomers and/or polymer variables and prepeg variables on the processibility of celion/LARC prepeg were included. Processes for fabricating laminates, honeycomb core panels, and chopped fiber moldings were developed. Specimens and conduct tests were fabricated to qualify the processes for fabrication of demonstration components.
The Impact of Flagging on the Admission Process.
ERIC Educational Resources Information Center
Cahalan-Laitusis, Cara; Mandinach, Ellen B.; Camara, Wayne J.
2003-01-01
Study explored issues surrounding flagging test scores taken under non-standard conditions and how the admission process could better serve students with disabilities. Respondents to survey felt current system was not adequately serving subgroups of students, believing some non-disabled students were manipulating the system to gain an advantage on…
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Method for Fabricating Composite Structures Using Continuous Press Forming
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.
Disc resonator gyroscope fabrication process requiring no bonding alignment
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor)
2010-01-01
A method of fabricating a resonant vibratory sensor, such as a disc resonator gyro. A silicon baseplate wafer for a disc resonator gyro is provided with one or more locating marks. The disc resonator gyro is fabricated by bonding a blank resonator wafer, such as an SOI wafer, to the fabricated baseplate, and fabricating the resonator structure according to a pattern based at least in part upon the location of the at least one locating mark of the fabricated baseplate. MEMS-based processing is used for the fabrication processing. In some embodiments, the locating mark is visualized using optical and/or infrared viewing methods. A disc resonator gyroscope manufactured according to these methods is described.
Low cost damage tolerant composite fabrication
NASA Technical Reports Server (NTRS)
Palmer, R. J.; Freeman, W. T.
1988-01-01
The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.
O'Connor, G; O'Keeffe, D; Darker, C; O'Shea, B
2017-08-01
A 'Preferred Drugs' initiative was introduced into Ireland in 2013. This identified a single recommended drug to be prescribed to patients requiring treatment from a particular class of drugs. This study investigates how patients on established proton pump inhibitor (PPI) therapy experienced the therapeutic switching of their medication to the 'preferred drug', and the extent to which they regarded it as an acceptable practice. The experiences of 61 patients on established proton pump inhibitor (PPI) therapy were sought before and after their drug was switched to the 'preferred drug'. Eighty per cent of patients were happy to switch medications. When asked for their opinions on medications in general, 71% felt doctors should prescribe the least expensive medication, 84% agreed that all licensed medications were safe while 67% felt their GP changing medication for cost reasons was safe. After 8 weeks, 20% of patients had switched back to their old PPI. When asked how they felt about their medication change, 74% felt happy or pleased. The majority of patients in our study were satisfied to have their medication switched. However, prescribers should be mindful that 1 in 5 patients encountered problems as a result of the switching process.
NASA Astrophysics Data System (ADS)
Chandwani, Nisha; Dave, Purvi; Jain, Vishal; Nema, Sudhir; Mukherjee, Subroto
2017-04-01
The present work investigates the effect of high frequency (2.5 MHz) Dielectric Barrier Discharge (DBD) in air on surface characteristics of Merino wool as a function of plasma exposure time (5s to 15s). The FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy Dispersive X-ray spectrum) and Derivative ATR-FTIR (Attenuated Total Reflection- Fourier Transform Infrared) Spectroscopy are used to study physio-chemical changes induced by plasma. These physio-chemical properties of fibers can be co-related with the felting behaviour of the wool fiber, which leads to shrinkage and pilling of garments while laundering. Felting occurs mainly because of presence of outermost hydrophobic cuticle layer having sharp scales. The FE-SEM analysis of wool fiber surface reveals that cuticle scales on wool fiber become blunt after plasma processing. The ATR-FTIR analysis along with second order derivative spectroscopy demonstrates the cleavage of di-sulphide bonds of cuticle and formation of sulphur-oxygen groups such as Cystine Sulphonate (-S-SO3-), cysteic acid (-SO3-), cystine monoxide(-SO-S-), cysteine di-oxide (-SO2-S-). A possible explanation about how the combined effect of morphological and chemical changes induced by plasma results in minimizing the felting of wool fibers is discussed.
Seo, Sunhee; Kim, Og Yeon; Shim, Soonmi
2014-06-01
The purpose of this study is to identify how level of information affected intention, using the Theory of Planned Behavior. The study was conducted survey in diverse community centers and shopping malls in Seoul, which yielded N = 209 datasets. To compare processed foods consumption behavior, we divided samples into two groups based on level of information about food additives (whether respondents felt that information on food additives was sufficient or not). We analyzed differences in attitudes toward food additives and toward purchasing processed foods, subjective norms, perceived behavioral control, and behavioral intentions to processed foods between sufficient information group and lack information group. The results confirmed that more than 78% of respondents thought information on food additives was insufficient. However, the group who felt information was sufficient had more positive attitudes about consuming processed foods and behavioral intentions than the group who thought information was inadequate. This study found people who consider that they have sufficient information on food additives tend to have more positive attitudes toward processed foods and intention to consume processed foods. This study suggests increasing needs for nutrition education on the appropriate use of processed foods. Designing useful nutrition education requires a good understanding of factors which influence on processed foods consumption.
Kim, Og Yeon; Shim, Soonmi
2014-01-01
BACKGROUND/OBJECTIVES The purpose of this study is to identify how level of information affected intention, using the Theory of Planned Behavior. SUBJECTS/METHODS The study was conducted survey in diverse community centers and shopping malls in Seoul, which yielded N = 209 datasets. To compare processed foods consumption behavior, we divided samples into two groups based on level of information about food additives (whether respondents felt that information on food additives was sufficient or not). We analyzed differences in attitudes toward food additives and toward purchasing processed foods, subjective norms, perceived behavioral control, and behavioral intentions to processed foods between sufficient information group and lack information group. RESULTS The results confirmed that more than 78% of respondents thought information on food additives was insufficient. However, the group who felt information was sufficient had more positive attitudes about consuming processed foods and behavioral intentions than the group who thought information was inadequate. This study found people who consider that they have sufficient information on food additives tend to have more positive attitudes toward processed foods and intention to consume processed foods. CONCLUSIONS This study suggests increasing needs for nutrition education on the appropriate use of processed foods. Designing useful nutrition education requires a good understanding of factors which influence on processed foods consumption. PMID:24944779
Traditional Felt in the Kazakhs Folk Art
ERIC Educational Resources Information Center
Zhukenova, Zhazira D.; Soltanbaeva, Gulnar S.; Izhanov, Baikonir
2016-01-01
This research investigates the history of culture of Turkic nations and analyzes the traditions of making felt products. The literary sources devoted to the semantic meaning of images on felt products is analyzed. Special attention is paid to the symbolic meaning of images on Kazakh felt products. The technology of felt manufacturing and the…
NASA Technical Reports Server (NTRS)
Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.
1981-01-01
The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.
NASA Astrophysics Data System (ADS)
Takada, Yoshihiro; Fukui, Matoko; Sai, Tsunehiro
2008-11-01
Recent progresses in the photoresists and photolithography for LCD industry applications have been primarily driven by the following two factors: advancement in the material performances (high resolution, high contrast ratio, low dielectric constant) for higher display quality, and cost reduction in the fabrication process. Along with crucial demand for cost competitiveness by improving production efficiency, environmental consciousness has been a major priority at fabrication process design to minimize the amount of waste produced. Having said the above, integration of two or more fabrication processes into a single process by using multi-tone mask technology has been the interest of research, due to its obvious advantage of reducing fabrication processes and cost. For example, multi-tone mask technology application has been widely employed on the TFT side to reduce the different types of photomasks being used. Similar trend has been employed on the CF side as well, where application of multi-tone mask technology is being investigated to integrate fabrication of multiple CF micro-components into a single process. In this presentation, we demonstrate a new approach of fabricating photospacer and peripheral CF components (MVA protrusion, sub-photospacers) in a single integrated process through multi-tone mask technology.
NASA Astrophysics Data System (ADS)
Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.
2017-02-01
In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.
Gender identity and adjustment in black, Hispanic, and white preadolescents.
Corby, Brooke C; Hodges, Ernest V E; Perry, David G
2007-01-01
The generality of S. K. Egan and D. G. Perry's (2001) model of gender identity and adjustment was evaluated by examining associations between gender identity (felt gender typicality, felt gender contentedness, and felt pressure for gender conformity) and social adjustment in 863 White, Black, and Hispanic 5th graders (mean age = 11.1 years). Relations between gender identity and adjustment varied across ethnic/racial groups, indicating that S. K. Egan and D. G. Perry's model requires amendment. It is suggested that the implications of gender identity for adjustment depend on the particular meanings that a child attaches to gender (e.g., the specific attributes the child regards as desirable for each sex); these meanings may vary across and within ethnic/racial groups. Cross-ethnic/racial investigation can aid theory building by pointing to constructs that are neglected in research with a single ethnic/racial group but that are crucial components of basic developmental processes. Copyright 2006 APA, all rights reserved.
Stepping through the Daylight Gate: Compassionate Spaces for Learning in Higher Education
ERIC Educational Resources Information Center
Haynes, Joanna; Macleod-Johnstone, Emma
2017-01-01
This paper is concerned with troubling emotions felt or aroused in all aspects of academic practice, including teaching, learning, research and relationships. It discusses the emergent processes of a research group whose multidisciplinary interests coalesce around discomfort, disturbance and difficulty in the processes of higher education. We talk…
Fabrication process for a gradient index x-ray lens
Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.
1995-01-17
A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.
U-10Mo Baseline Fuel Fabrication Process Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Lance R.; Arendt, Christina L.; Dye, Daniel F.
This document provides a description of the U.S. High Power Research Reactor (USHPRR) low-enriched uranium (LEU) fuel fabrication process. This document is intended to be used in conjunction with the baseline process flow diagram (PFD) presented in Appendix A. The baseline PFD is used to document the fabrication process, communicate gaps in technology or manufacturing capabilities, convey alternatives under consideration, and as the basis for a dynamic simulation model of the fabrication process. The simulation model allows for the assessment of production rates, costs, and manufacturing requirements (manpower, fabrication space, numbers and types of equipment, etc.) throughout the lifecycle ofmore » the USHPRR program. This document, along with the accompanying PFD, is updated regularly« less
Fabrication process for a gradient index x-ray lens
Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.
1995-01-01
A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.
Improved low-cost, non-hazardous, all-iron cell for the developing world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed
A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated in this paper. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade aftermore » a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm -2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US$0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. Finally, we anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.« less
Improved low-cost, non-hazardous, all-iron cell for the developing world
Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; ...
2016-09-28
A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated in this paper. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade aftermore » a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm -2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US$0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. Finally, we anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.« less
NASA Astrophysics Data System (ADS)
Hashemi Sanatgar, Razieh; Campagne, Christine; Nierstrasz, Vincent
2017-05-01
In this paper, 3D printing as a novel printing process was considered for deposition of polymers on synthetic fabrics to introduce more flexible, resource-efficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. Adhesion of polymer and nanocomposite layers which were 3D printed directly onto the textile fabrics using fused deposition modeling (FDM) technique was investigated. Different variables which may affect the adhesion properties including 3D printing process parameters, fabric type and filler type incorporated in polymer were considered. A rectangular shape according to the peeling standard was designed as 3D computer-aided design (CAD) to find out the effect of the different variables. The polymers were printed in different series of experimental design: nylon on polyamide 66 (PA66) fabrics, polylactic acid (PLA) on PA66 fabric, PLA on PLA fabric, and finally nanosize carbon black/PLA (CB/PLA) and multi-wall carbon nanotubes/PLA (CNT/PLA) nanocomposites on PLA fabrics. The adhesion forces were quantified using the innovative sample preparing method combining with the peeling standard method. Results showed that different variables of 3D printing process like extruder temperature, platform temperature and printing speed can have significant effect on adhesion force of polymers to fabrics while direct 3D printing. A model was proposed specifically for deposition of a commercial 3D printer Nylon filament on PA66 fabrics. In the following, among the printed polymers, PLA and its composites had high adhesion force to PLA fabrics.
Solar dynamic heat receiver technology
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.
Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements
NASA Technical Reports Server (NTRS)
Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.
1979-01-01
Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.
Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.
Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min
2017-08-29
Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain. We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates. Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.
On the line: worker democracy and the struggle over occupational health and safety.
Granzow, Kara; Theberge, Nancy
2009-01-01
In this article we present a qualitative analysis of worker involvement in a participatory project to improve occupational health and safety at a Canadian manufacturing site. Based on interviews with workers in the plant, we consider the manner and degree to which workers experienced meaningful participation in the intervention process and some of the main barriers to worker participation. Findings emphasize the importance of the social and political context in conditioning the dynamics of joint management labor ventures specifically in relation to health initiatives. Interviews revealed few instances in which workers felt included in the participatory initiative; most often they felt marginalized. In the absence of structural change in the plant, workers described the health initiative as seriously limited in its ability to render meaningful worker participation. These results extend beyond this analysis of a participatory workplace health initiative, offering insights into the dynamics of institutional participatory process, and into participatory research practice generally.
Topolinski, Sascha; Strack, Fritz
2009-09-01
In intuitions concerning semantic coherence participants are able to discriminate above chance whether a word triad has a common remote associate (coherent triad) or not (incoherent triad). These intuitions are driven by increased fluency in processing coherent triads compared to incoherent triads, which in turn triggers a brief and short positive affect. The present work investigates which of these internal cues, fluency or positive affect, is the actual cue underlying coherence intuitions. In Experiment 1, participants liked coherent word triads more than incoherent triads, but did not rate them as being more fluent in processing. In Experiment 2, participants could intuitively detect coherence when they misattributed fluency to an external source, but lost this intuitive ability when they misattributed affect. It is concluded that the coherence-induced fluency by itself is not consciously experienced and not used in the coherence intuitions, but the fluency-triggered affective consequences.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.; Morel, M.
1991-01-01
A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.
Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures
NASA Technical Reports Server (NTRS)
Hulcher, Anthony Bruce; Young, Greg
2005-01-01
A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.
NASA Astrophysics Data System (ADS)
Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Roussel, F.
2012-12-01
This paper presents an after the fact study of the Virginia earthquake of 2011 August 23 using only the traffic observed on the EMSC website within minutes of its occurrence. Although the EMSC real time information services remain poorly identified in the US, a traffic surge was observed immediately after the earthquake's occurrence. Such surges, known as flashcrowd and commonly observed on our website after felt events within the Euro-Med region are caused by eyewitnesses looking for information about the shaking they have just felt. EMSC developed an approach named flashsourcing to map the felt area, and in some circumstances, the regions affected by severe damage or network disruption. The felt area is mapped simply by locating the Internet Protocol (IP) addresses of the visitors to the website during these surges while the existence of network disruption is detected by the instantaneous loss at the time of earthquake's occurrence of existing Internet sessions originating from the impacted area. For the Virginia earthquake, which was felt at large distances, the effects of the waves propagation are clearly observed. We show that the visits to our website are triggered by the P waves arrival: the first visitors from a given locality reach our website 90s after their location was shaken by the P waves. From a processing point of view, eyewitnesses can then be considered as ground motion detectors. By doing so, the epicentral location is determined through a simple dedicated location algorithm within 2 min of the earthquake's occurrence and 30 km accuracy. The magnitude can be estimated in similar time frame by using existing empirical relationships between the surface of the felt area and the magnitude. Concerning the effects of the earthquake, we check whether one can discriminate localities affected by strong shaking from web traffic analysis. This is actually the case. Localities affected by strong level of shaking exhibit higher ratio of visitors to the number of inhabitants than localities having experienced weak ground motion. In other words, we observe higher proportion of visitors from localities where the earthquake was widely felt when compared to localities where it was scarcely felt. This opens the way to automatically map the relative level of shaking within minutes of an earthquake's occurrence. In conclusion, the study of the Virginia earthquake shows that eyewitnesses' visits to our website follow the arrival of the P waves at their location. This further demonstrates the real time public desire of information after felt earthquakes, a parameter which should be integrated in the definition of earthquake information services. It also reveals additional capabilities of the flashsourcing method. Earthquakes felt at large distances i.e. where the propagation time to the most distant eyewitnesses exceeds a couple of minutes, can be located and their magnitude estimated in a time frame comparable to the one of automatic seismic locations by real time seismic networks. It also provides very rapid indication on the effects of the earthquakes, by mapping the felt area, detecting the localities affected by network disruption and mapping the relative level of shaking. Such information are essential to improve situation awareness, constrain real time scenario and in in turn, contribute to improved earthquake response.
NASA Astrophysics Data System (ADS)
Yang, Kai; Zhong, Lei; Guan, Ruiteng; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong
2018-05-01
Lithium-sulfur (Li-S) batteries have remarkably high theoretical specific capacity as promising candidates for next-generation energy storage. However, the "polysulfides shuttle" effect hampers its commercial application. Here, we use a kind of rice paper as a raw material to get inorganic oxides doping carbon felt by the facile carbonization method, and then modified by a simple coating process using poly (fluorenyl ether ketone) and Super P slurry. The special structure of the carbon felt derived from rice paper and its modified layer endow the final electronic conductive interlayer with inherent polysulfides absorbents and ion Coulombic repulsion functions, respectively, which show synergistic effect for trapping polysulfides. As an interlayer of Li-S batteries, the obtained carbon felt/poly (fluorenyl ether ketone)& Super P (CFSS) interlayer shows excellent electrochemical performance in improving specific capacity and decreasing polarization. The batteries with CFSS interlayer exhibit a high capacity of 837 mA h g-1 at 2.0 C and a high initial capacity of 1073.4 mA h g-1 and good capacity retention of 824.5 mA h g-1 after 500 cycles at 0.5 C. CFSS interlayer also shows excellent anti-self-discharge performance. Therefore, the simple and economical CFSS interlayer can be considered as a promising component for high performance Li-S batteries.
Assessment of earthquake effects - contribution from online communication
NASA Astrophysics Data System (ADS)
D'Amico, Sebastiano; Agius, Matthew; Galea, Pauline
2014-05-01
The rapid increase of social media and online newspapers in the last years have given the opportunity to make a national investigation on macroseismic effects on the Maltese Islands based on felt earthquake reports. A magnitude 4.1 earthquake struck close to Malta on Sunday 24th April 2011 at 13:02 GMT. The earthquake was preceded and followed by a series of smaller magnitude quakes throughout the day, most of which were felt by the locals on the island. The continuous news media coverage during the day and the extensive sharing of the news item on social media resulted in a strong public response to fill in the 'Did you feel it?' online form on the website of the Seismic Monitoring and Research Unit (SMRU) at the University of Malta (http://seismic.research.um.edu.mt/). The results yield interesting information about the demographics of the island, and the different felt experiences possibly relating to geological settings and diverse structural and age-classified buildings. Based on this case study, the SMRU is in the process of developing a mobile phone application dedicated to share earthquake information to the local community. The application will automatically prompt users to fill in a simplified 'Did you feel it?' report to potentially felt earthquakes. Automatic location using Global Positioning Systems can be incorporated to provide a 'real time' intensity map that can be used by the Civil Protection Department.
2013-01-01
Figures iv Acknowledgments v 1. Introduction 1 2. Experimental 2 2.1 Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in
Simulation of materials processing: Fantasy or reality?
NASA Technical Reports Server (NTRS)
Jenkins, Thomas J.; Bright, Victor M.
1994-01-01
This experiment introduces students to the application of computer-aided design (CAD) and analysis of materials processing in the context of integrated circuit (IC) fabrication. The fabrication of modern IC's is a complex process which consists of several sequential steps. These steps involve the precise control of processing variables such as temperature, humidity, and ambient gas composition. In essence, the particular process employed during the fabrication becomes a 'recipe'. Due to economic and other considerations, CAD is becoming an indispensable part of the development of new recipes for IC fabrication. In particular, this experiment permits the students to explore the CAD of the thermal oxidation of silicon.
Design and fabrication of bismith-silicate photonic crystal fiber
NASA Astrophysics Data System (ADS)
Hasegawa, Tomoharu
2012-09-01
The process of design and fabrication of bismuth-silicate photonic crystal fiber (Bi-PCF) is reported. The Bi-PCF was fabricated by stack and draw method. This is the first trial of the fabrication of photonic crystal fiber made of bismuth-based glass with stack and draw method. The Bi-PCF structure was designed to reduce group-velocity-dispersion (GVD) in a plausible process. Thermal properties of the glass are investigated to establish the fabrication process. The applying pressure and pumping in fiber preform preparation were effectively utilized to control the air-hole diameter and arrangement. The fabricated Bi-PCF shows the well reduced GVD as the numerical calculation predicted. Fusion splicing between Bi-PCF and SMF-28 was also demonstrated.
Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A
2014-01-01
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.
Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S
2011-01-01
This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.
Fabrication of self-assembled photonic-crystal structures by centrifugation and spin coating
NASA Astrophysics Data System (ADS)
Xu, Yan; Schneider, Garrett J.; Wetzel, Eric D.; Prather, Dennis W.
2003-11-01
We have developed a simple, low-cost process for the fabrication of high-quality three-dimensional artificial-opal and inverse-opal photonic crystals. The process is based on the self-assembly of a template from a uniform suspension of polystyrene microspheres, which is sintered for added strength and subsequently back-filled with high-index material. The template formation is assisted by a combination of centrifugation and spin-annealing, which requires relatively short process times and inexpensive laboratory equipment. The process has been used to fabricate polycrystalline photonic crystals with photonic stop gaps in the mid-IR portion of the spectrum. Details of the fabrication process and fabricated samples will be presented. In addition, Fourier-transform IR reflection spectroscopy has been used to characterize the samples; the results are shown to be in excellent agreement with band structure diffraction calculations.
Bourne, Tom; Wynants, Laure; Peters, Mike; Van Audenhove, Chantal; Timmerman, Dirk; Van Calster, Ben; Jalmbrant, Maria
2015-01-01
Objectives The primary aim was to investigate the impact of complaints on doctors’ psychological welfare and health. The secondary aim was to assess whether doctors report exposure to a complaints process is associated with defensive medical practise. Design This was a cross-sectional anonymous survey study. Participants were stratified into recent/current, past, no complaints. Each group completed tailored versions of the survey. Participants 95 636 doctors were invited to participate. A total of 10 930(11.4%) responded, 7926 (8.3%) completed the full survey and were included in the complete analysis. Main outcome measures Anxiety and depression were assessed using the standardised Generalised Anxiety Disorder scale and Physical Health Questionnaire. Defensive practise was evaluated using a new measure. Single-item questions measured stress-related illnesses, complaints-related experience, attitudes towards complaints and views on improving complaints processes. Results 16.9% of doctors with current/recent complaints reported moderate/severe depression (relative risk (RR) 1.77 (95% CI 1.48 to 2.13) compared to doctors with no complaints (9.5%)). Fifteen per cent reported moderate/severe anxiety (RR=2.08 (95% CI 1.61 to 2.68) compared to doctors with no complaints (7.3%)). Distress increased with complaint severity, with highest levels after General Medical Council (GMC) referral (26.3% depression, 22.3% anxiety). Doctors with current/recent complaints were 2.08 (95% CI 1.61 to 2.68) times more likely to report thoughts of self-harm or suicidal ideation. Most doctors reported defensive practise: 82–89% hedging and 46–50% avoidance. Twenty per cent felt victimised after whistleblowing, 38% felt bullied, 27% spent over 1 month off work. Over 80% felt processes would improve with transparency, managerial competence, capacity to claim lost earnings and action against vexatious complainants. Conclusions Doctors with recent/current complaints have significant risks of moderate/severe depression, anxiety and suicidal ideation. Morbidity was greatest in cases involving the GMC. Most doctors reported practising defensively, including avoidance of procedures and high-risk patients. Many felt victimised as whistleblowers or reported bullying. Suggestions to improve complaints processes included transparency and managerial competence. PMID:25592686
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
NASA Technical Reports Server (NTRS)
Suarez, J.; Dastin, S.
1992-01-01
Innovative design concepts and cost effective fabrication processes were developed for damage tolerant primary structures that can perform at a design ultimate strain level of 6000 micro inch/inch. Attention focused on the use of textile high performance fiber reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials and/or processes methods is described: fabricated using IM7 angle interlock 0 to 90 deg woven preforms with + or - 45 deg plies stitched with Toray high strength graphite thread and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms using RTM and Tactix 123/H41 epoxy; and fabricated preforms using AS4(6K)/PEEK 150 g commingled angle interlock 0 to 90 deg woven preforms with + or - 45 deg commingled plies stitched using high strength graphite thread and processed by consolidation. Structural efficiency, processability, and acquisition cost are compared.
Silicon solar cell process. Development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1978-01-01
Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.
A novel fabrication method for suspended high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng
2005-11-01
Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).
Logan, Andrew; Yeow, John T W
2009-05-01
We report the fabrication and experimental testing of 1-D 23-element capacitive micromachined ultrasonic transducer (CMUT) arrays that have been fabricated using a novel wafer-bonding process whereby the membrane and the insulation layer are both silicon nitride. The membrane and cell cavities are deposited and patterned on separate wafers and fusion-bonded in a vacuum environment to create CMUT cells. A user-grown silicon-nitride membrane layer avoids the need for expensive silicon-on-insulator (SOI) wafers, reduces parasitic capacitance, and reduces dielectric charging. It allows more freedom in selecting the membrane thickness while also providing the benefits of wafer-bonding fabrication such as excellent fill factor, ease of vacuum sealing, and a simplified fabrication process when compared with the more standard sacrificial release process. The devices fabricated have a cell diameter of 22 microm, a membrane thickness of 400 nm, a gap depth of 150 nm, and an insulation thickness of 250 nm. The resonant frequency of the CMUT in air is 17 MHz and has an attenuation compensated center frequency of approximately 9 MHz in immersion with a -6 dB fractional bandwidth of 123%. This paper presents the fabrication process and some characterization results.
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao
2017-10-01
A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.
A qualitative evaluation of general practitioners’ views on protocol-driven eReferral in Scotland
2014-01-01
Background The ever increasing volume of referrals from primary care to specialist services is putting considerable pressure on resource-constrained health services while effective communication across fragmented services remains a substantial challenge. Previous studies have suggested that electronic referrals (eReferral) can bear important benefits for cross-organisational processes and patient care management. Methods We conducted 25 semi-structured interviews and 1 focus group with primary care providers to elucidate General Practitioners’ (GPs) perspectives on information management processes in the patient pathway in NHSScotland, 1 focus group with members of the Scottish Electronic Patient Record programme and one interview with a senior architect of the Scottish Care Information national eReferral System (SCI Gateway). Using Normalisation Process Theory, we performed a qualitative analysis to elucidate GPs’ perspectives on eReferral to identify the factors which they felt either facilitated or hindered referral processes. Results The majority of GPs interviewed felt that eReferral substantially streamlined communication processes, with the immediate transfer of referral documents and the availability of an electronic audit trail perceived as two substantial improvements over paper-based referrals. Most GPs felt that the SCI Gateway system was reasonably straightforward to use. Referral protocols and templates could be perceived as useful by some GPs while others considered them to be cumbersome at times. Conclusion Our study suggests that the deployment and adoption of eReferral across the NHS in Scotland has been achieved by a combination of factors: (i) a policy context – including national mandatory targets for eReferral – which all NHS health-boards were bound to operationalise through their Local Delivery Plans and also (ii) the fact that primary care doctors considered that the overall benefits brought by the deployment of eReferral throughout the patient pathway significantly outweigh any potential disbenefits. PMID:24712766
Study on Single-yarn Pullout Test of Ballistic Resistant Fabric under Different Preloads
NASA Astrophysics Data System (ADS)
Fang, Q. C.; Lei, Z. K.; Y Qin, F.; Li, W. K.; Bai, R. X.
2017-12-01
During bullet penetrating fabric, the pull-out force of yarn in fabric is related to the impact resistance of fabric when the yarn is pulled out from the fabric. The complex uncrimping and friction slip behavior occur during the yarn pullout process, which is critical to learn the impact resistance of fabric. Based on digital image correlation technique, the deformation behavior of Kevlar 49 fabric subjected to preload during the single-yarn pullout process was studied in this paper. The pullout force and displacement curve shows a straight rise and an oscillated decrease. In the linear rise stage, the yarn uncrimping causes a static friction effect. The maximum of the pullout force is not linearly increased with the preload. In the oscillating descending stage, the local descent of the pullout force indicates that the yarn end is gradually withdrawn from the fabric, and the local rise indicates that the yarn end moves to the next weft/warp interaction until the yarn is completely pulled out. The shear deformation of fabric corresponds to the single-yarn pullout process.
40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory. The...
40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt...
40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt...
40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory. The...
40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt...
Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Panda, Binayak; Shah, Sandeep
2005-01-01
Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.
Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique
NASA Astrophysics Data System (ADS)
Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.
2014-01-01
Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.
Ultrasonic imaging system for in-process fabric defect detection
Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.
1997-01-01
An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.
Buus, Niels
2011-01-01
This qualitative focuses on the personal experiences of partners to a spinal cord injured person. Using a Ricoeurian phenomenological-hermeneutic approach, we analysed seven partners’ narratives 1 and 2 years after their partner's injury. The study revealed how the injury was experienced from the partners’ perspective through the aftermath. In the acute phase after the injury, partners also felt harmed, and support was needed in relation to their own daily activities, eating, resting, and managing distress. During the institutionalized rehabilitation, partners felt torn between supporting the injured partner and the demanding tasks of everyday life outside the institution. After discharge, partners struggled for the injured partner to regain a well-functioning everyday life and for reestablishing life as a couple. The partner struggled to manage the overwhelming amount of everyday tasks. Some sought to reestablish their usual functions outside the family, whereas others focused on establishing a new life together. The partners experienced much distress and appreciated the support they got, but felt that they were mainly left to manage the difficult process on their own. PMID:22007262
Liu, Xiaocheng; Yang, Danxing; Zhou, Yaoyu; Zhang, Jiachao; Luo, Lin; Meng, Sijun; Chen, Song; Tan, Mengjiao; Li, Zhicheng; Tang, Lin
2017-09-01
The degradation of antibiotic levofloxacin was investigated by dimensionally stable anode as well as modified cathode using low-cost chemical reagents of hydrazine hydrate and ethanol for electro-Fenton in an undivided cell at pH 3.0 under room temperature. Comparison of unmodified and modified cathode was performed. The apparent rate constant of levofloxacin decay was found to be 0.2883 min -1 for graphite felt-10 with the best performance at 200 mA, which is lower than graphite felt at 400 mA. The optimum modified cathode showed a significant improvement of complete mineralization of levofloxacin, reaching a 92% TOC removal at 200 mA for 480 min higher than unmodified one at twice the current. Surface physicochemical properties and morphology were investigated by scanning electron microscope, contact angle and X-ray photoelectron spectroscopy. The electrochemical characterization of hydrogen evolution reaction was adopted to clarify a possible pathway for the higher mineralization of levofloxacin, indicating a potential pilot-scale study to the pollution with the similar structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design, fabrication and characterization of a poly-silicon PN junction
NASA Astrophysics Data System (ADS)
Tower, Jason D.
This thesis details the design, fabrication, and characterization of a PN junction formed from p-type mono-crystalline silicon and n-type poly-crystalline silicon. The primary product of this project was a library of standard operating procedures (SOPs) for the fabrication of such devices, laying the foundations for future work and the development of a class in fabrication processes. The fabricated PN junction was characterized; in particular its current-voltage relationship was measured and fit to models. This characterization was to determine whether or not the fabrication process could produce working PN junctions with acceptable operational parameters.
ITER Central Solenoid Module Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, John
The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first ITER module is in progress. The seven modules will be individually shipped to Cadarache, France upon their completion. This paper describes the processes and status of the fabrication of the CS Modules for ITER.« less
The role of interpersonal harm in distinguishing regret from guilt.
Zeelenberg, Marcel; Breugelmans, Seger M
2008-10-01
Regret and guilt are emotions that are produced by negative outcomes for which one is responsible. Both emotions have received ample attention in the psychological literature; however, it is still unclear to what extent regret and guilt represent distinct psychological processes. We examined the extent to which the distinction between interpersonal harm (negative outcomes for others) and intrapersonal harm (negative outcomes for self) is crucial in differentiating these two emotions. In a series of 3 studies we found that guilt is predominantly felt in situations of interpersonal harm, whereas regret is felt in both situations of interpersonal harm and intrapersonal harm. Moreover, the results show that in situations of interpersonal harm the phenomenology of regret shares many, but not all features with the phenomenology of guilt. We conclude that the emotion processes resulting from interpersonal and intrapersonal harm are clearly distinct, but that regret as an emotion label is applied to both types of processes whereas the emotion label guilt is primarily used to refer to experiences of interpersonal harm. Implications for emotion research are discussed. (c) 2008 APA, all rights reserved
ERIC Educational Resources Information Center
Goel, Vinod; Pirolli, Peter
The notion of generic design, while it has been around for 25 years, is not often articulated, especially within Newell and Simon's (1972) Information Processing Theory framework. Design is merely lumped in with other forms of problem solving activity. Intuitively it is felt that there should be a level of description of the phenomenon which…
Roh, Sung-Hee; Kim, Sun-Il
2012-05-01
A microbial fuel cell (MFC) is a device that converts chemical energy to electrical energy using the catalytic reaction of microorganisms. We investigated the performance of mediator-less MFC with carbon nanotubes (CNTs)/graphite felt composite electrodes. The addition of CNTs to a graphite felt electrode increases the specific surface area of the electrode and enhances the charge transfer capability so as to cause considerable improvement of the electrochemical activity for the anode reaction in a MFC. The performance of the MFC using CNTs/graphite felt electrode has been compared against a plain graphite felt electrode based MFC. A CNTs/graphite felt electrode showed as high as 15% increase in the power density (252 mW/m2) compared to graphite felt electrode (214 mW/m2). The CNTs/graphite felt anode therefore offers good prospects for application in MFCs.
Levels of Felt Stigma among a Group of People with HIV in Puerto Rico
Jiménez, Julio; Morales, Marangelie; Castro, Eida; Puig, Marieva; Vélez, Carmen N.; Santiago, Lydia; Zorrilla, Carmen
2016-01-01
Objective HIV felt stigma is a major problem needing to be addressed because of its association with poor treatment adherence, decreases in help-seeking behaviors, high-risk sexual conduct, emotional discomfort, and the reduction of well-being in people with HIV/AIDS (PWHA). The aim of this study was to identify the frequency of felt stigma among PWHA in Puerto Rico. Methods A cross-sectional study was conducted with 249 subjects (59% men, 41% women). Participants completed the Puerto Rico Comprehensive Center for HIV Disparities (PR-CCHD) Sociodemographic Questionnaire and the HIV Felt Sigma Scale. Results 80% of the subjects showed some level of felt stigma. Women showed significantly higher levels of HIV-related felt stigma than did men. Disclosure, negative self-image, and public attitude scores were also higher in women than in men. Sociodemographic variables such as age, marital status, employment status, income, and educational level showed significant associations with felt stigma and its dimensions. Conclusion Results of this study evidence the need to develop culturally sensitive intervention models to reduce the felt-stigma burden in PWHA. PMID:22783698
NASA Astrophysics Data System (ADS)
Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong
2015-12-01
Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.
Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong
2015-12-01
Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.
Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates
Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin
2012-01-01
Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well. PMID:23277871
Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin
2012-12-01
Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well.
NASA Astrophysics Data System (ADS)
Fathil, M. F. M.; Arshad, M. K. Md.; Hashim, U.; Ruslinda, A. R.; Gopinath, Subash C. B.; M. Nuzaihan M., N.; Ayub, R. M.; Adzhri, R.; Zaki, M.; Azman, A. H.
2016-07-01
This paper presents the preparation method of photolithography chrome mask design used in fabrication process of double spiral interdigitated electrode with back gate biasing based biosensor. By learning the fabrication process flow of the biosensor, the chrome masks are designed through drawing using the AutoCAD software. The overall width and length of the device is optimized at 7.0 mm and 10.0 mm, respectively. Fabrication processes of the biosensor required three chrome masks, which included back gate opening, spiral IDE formation, and passivation area formation. The complete chrome masks design will be sent for chrome mask fabrication and for future use in biosensor fabrication.
Murray, S M; Augustinavicius, J; Kaysen, D; Rao, D; Murray, L K; Wachter, K; Annan, J; Falb, K; Bolton, P; Bass, J K
2018-01-01
Sexual violence is associated with a multitude of poor physical, emotional, and social outcomes. Despite reports of stigma by sexual violence survivors, limited evidence exists on effective strategies to reduce stigma, particularly in conflict-affected settings. We sought to assess the effect of group Cognitive Processing Therapy (CPT) on stigma and the extent to which stigma might moderate the effectiveness of CPT in treating mental health problems among survivors of sexual violence in the Democratic Republic of Congo. Data were drawn from 405 adult female survivors of sexual violence reporting mental distress and poor functioning in North and South Kivu. Women were recruited through organizations providing psychosocial support and then cluster randomized to group CPT or individual support. Women were assessed at baseline, the end of treatment, and again six months later. Assessors were masked to women's treatment assignment. Linear mixed-effect regression models were used to estimate (1) the effect of CPT on feelings of perceived and internalized (felt) stigma, and (2) whether felt stigma and discrimination (enacted stigma) moderated the effects of CPT on combined depression and anxiety symptoms, posttraumatic stress, and functional impairment. Participants receiving CPT experienced moderate reductions in felt stigma relative to those in individual support (Cohen's D = 0.44, p = value = 0.02) following the end of treatment, though this difference was no longer significant six-months later (Cohen's D = 0.45, p = value = 0.12). Neither felt nor enacted stigma significantly moderated the effect of CPT on mental health symptoms or functional impairment. Group cognitive-behavioral based therapies may be an effective stigma reduction tool for survivors of sexual violence. Experiences and perceptions of stigma did not hinder therapeutic effects of group psychotherapy on survivors' mental health. ClinicalTrials.gov NCT01385163.
Bianchi, Eleonora F; Bhattacharyya, Mimi R; Meakin, Richard
2016-01-01
Objective To explore the views of senior doctors on mental illness within the medical profession. Background There has been increasing interest on the issue of doctors’ mental health. However, there have been few qualitative studies on senior doctors’ general attitude towards mental illness within the medical profession. Setting Large North London teaching hospital. Participants 13 hospital consultants and senior academic general practitioners. Methods A qualitative study involving semi-structured interviews and reflective work. The outcome measures were the themes derived from the thematic framework approach to analysis. Results Four main themes were identified. (1) ‘Doctors’ attitudes to mental illness’—doctors felt that there remained a significant stigma attached to suffering from a mental illness within the profession. (2) ‘Barriers to seeking help’—doctors felt that there were numerous barriers to seeking help such as negative career implications, being perceived as weak, denial and fear of prejudice. (3) ‘Support’—doctors felt that the use of support depended on certainty concerning confidentiality, which for occupational health was not thought to be guaranteed. Confiding in colleagues was rare except among close friends. Supervision for all doctors was raised. (4) ‘General Medical Council (GMC) involvement’—doctors felt that uneasy referring colleagues to the GMC and the appraisal and revalidation process was thought not to be thorough enough in picking up doctors with a mental illness. Conclusions Owing to the small size of this study, the conclusions are limited; however, if the findings are confirmed by larger studies, they suggest that greater efforts are needed to destigmatise mental illness in the profession and improve support for doctors. Additional research should be carried out into doctors’ views on occupational health services in managing doctors with mental illness, the provision of supervision for all doctors and the effectiveness of the current appraisal and revalidation process at identifying doctors with a mental illness. PMID:27638497
Code of Federal Regulations, 2010 CFR
2010-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2011 CFR
2011-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2012 CFR
2012-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2014 CFR
2014-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2013 CFR
2013-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Combined micromechanical and fabrication process optimization for metal-matrix composites
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, Christos C.
1990-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
What Can the United States Learn from India to Counter Terrorism?
2004-03-01
military force with peaceful engagement. Yet creating that strategy was a long and difficult process fraught with numerous failures and tragedies...the Sikhs felt excluded from the political process and viewed the partition as particularly unjust.21 Over two million Sikhs were driven from...interpretations. On 13 April 1978, Bhindranwale led a procession of his followers in a protest against a rival group. The event turned violent and ended
40 CFR 763.165 - Manufacture and importation prohibitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Prohibition of the Manufacture, Importation, Processing, and Distribution in Commerce of Certain Asbestos-Containing Products; Labeling Requirements § 763.165 Manufacture... following asbestos-containing products, either for use in the United States or for export: flooring felt and...
Lessons Don't Have To Be Rocket Science!
ERIC Educational Resources Information Center
Morris, Andrew
2002-01-01
Describes an experimental program to teach adults who are curious about, but poorly educated in, science. Learning began with questions arising from that curiosity and discussion was encouraged by the teacher. Students felt empowered by the process and freely asked questions. (JOW)
Organizational Downsizing and Career Development.
ERIC Educational Resources Information Center
Bozionelos, Nikos
2001-01-01
A study of 123 "survivors" of corporate downsizing and 13 senior managers indicated that the organization lacked a coherent career development plan and the performance management/appraisal process was inadequate. Managers perceived lateral transfers as effective; some employees felt they undermined career progression. Employees thought…
The Decision Tree for Teaching Management of Uncertainty
ERIC Educational Resources Information Center
Knaggs, Sara J.; And Others
1974-01-01
A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)
Knowing through the Felt-Sense: A Gesture of Openness to the Other
ERIC Educational Resources Information Center
Watson, Jacqueline
2013-01-01
In the discussion of children's spirituality and education, David Hay and Brendan Hyde place emphasis on the felt-sense. Originally identified by the psychotherapist Eugene Gendlin, the felt-sense is a way of knowing that involves attentiveness to the body and body wisdom. Although emphasised by Hay and Hyde, the felt-sense does not feature…
NASA Astrophysics Data System (ADS)
Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John
2013-07-01
Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, A.J.; Zacher, A.H.; Gano, S.R.
1996-09-01
The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor,more » using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future.« less
Oscillating-flow regenerator test rig
NASA Technical Reports Server (NTRS)
Wood, J. G.; Gedeon, D. R.
1994-01-01
This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.
Deng, Xiaolong; Yu Nikiforov, Anton; Coenye, Tom; Cools, Pieter; Aziz, Gaelle; Morent, Rino; De Geyter, Nathalie; Leys, Christophe
2015-01-01
An antimicrobial nano-silver non-woven polyethylene terephthalate (PET) fabric has been prepared in a three step process. The fabrics were first pretreated by depositing a layer of organosilicon thin film using an atmospheric pressure plasma system, then silver nano-particles (AgNPs) were incorporated into the fabrics by a dipping-dry process, and finally the nano-particles were covered by a second organosilicon layer of 10-50 nm, which acts as a barrier layer. Different surface characterization techniques like SEM and XPS have been implemented to study the morphology and the chemical composition of the nano-silver fabrics. Based on these techniques, a uniform immobilization of AgNPs in the PET matrix has been observed. The antimicrobial activity of the treated fabrics has also been tested using P. aeruginosa, S. aureus and C. albicans. It reveals that the thickness of the barrier layer has a strong effect on the bacterial reduction of the fabrics. The durability and stability of the AgNPs on the fabrics has also been investigated in a washing process. By doing so, it is confirmed that the barrier layer can effectively prevent the release of AgNPs and that the thickness of the barrier layer is an important parameter to control the silver ions release. PMID:25951432
Fabrication Processes and Mechanical Behavior of CNT/Metal Nanocomposites
2013-12-01
process, were investigated and applied for fabrication of CNT/Cu and CNT/Ni nanocomposite powders. The spark plasma sintering process was applied... spark plasma sintering process to fabricate CNT/NiTi and CNT/Al-Cu nanocomposites. It is confirmed that the CNTs were homogeneously dispersed in NiTi...can be seen in Figure 1-1. The CNT/NiTi composite powders were consolidated by spark plasma sintering (SPS, Dr. Sinter Lab., Sumitomo). The CNT/NiTi
NASA Technical Reports Server (NTRS)
Suarez, J.; Dastin, S.
1992-01-01
Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) Program, Grumman is developing innovative design concepts and cost-effective fabrication processes for damage-tolerant primary structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. Attention has focused on the use of textile high-performance fiber-reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials/processes methods is described: 'Y' spars fabricated using IM7 angle interlock 0/90 deg woven preforms with +/- 45 deg plies stitched with Toray high-strength graphite thread and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RTM and Tactix 123/H41 epoxy; and 'Y' spars fabricated using AS4(6k)/PEEK 150-g commingled angle interlock 0/90 deg woven preforms with +/- 45 deg commingled plies stitched using high-strength graphite thread and processed by consolidation. A comparison of the structural efficiency, processability, and projected acquisition cost of these representative spars is presented.
Comparison of adsorption of Remazol Black B and Acidol Red on microporous activated carbon felt.
Donnaperna, L; Duclaux, L; Gadiou, R; Hirn, M-P; Merli, C; Pietrelli, L
2009-11-15
The adsorption of two anionic dyes, Remazol Black B (RB5) and Acidol Red 2BE-NW (AR42), onto a microporous activated carbon felt was investigated. The characterization of carbon surface chemistry by X-ray microanalysis, Boehm titrations, and pH-PZC measurements indicates that the surface oxygenated groups are mainly acidic. The rate of adsorption depends on the pH and the experimental data fit the intraparticle diffusion model. The pore size distribution obtained by DFT analysis shows that the mean pore size is close to 1nm, which indicates that a slow intraparticle diffusion process control the adsorption. The adsorption isotherms were measured for different pH values. The Khan and the Langmuir-Freundlich models lead to the best agreement with experimental data for RB5 and AR42, respectively. These isotherm simulations and the pH dependence of adsorption show that the adsorption capacity is mainly controlled by nondispersive electrostatic interactions for pH values below 4. The adsorption kinetics, the irreversibility of the process, and the influence of the pH indicate that the rate of adsorption in this microporous felt proceeds through two steps. The first one is fast and results from direct interaction of dye molecules with the external surface of the carbon material (which account for 10% of the whole surface area); in the second, slow step, the adsorption rate is controlled by the slow diffusion of dye molecules into the narrow micropores. The influence of temperature on the adsorption isotherms was studied and the thermodynamic parameters were obtained. They show that the process is spontaneous and exothermic.
Patients' views of the consent process for adult cardiac surgery: questionnaire survey.
Howlader, Mohammad H; Dhanji, Al-Rehan; Uppal, Rakesh; Magee, Patrick; Wood, Alan J; Anyanwu, Ani C
2004-12-01
Consent for surgical procedures has assumed increasing importance in surgical practice in recent days especially following the public inquiry into paediatric cardiac surgery deaths at Bristol in the UK. This study examines patient perceptions and recollections following surgical consent as currently practised in a UK cardiac unit. One hundred consecutive patients who underwent cardiac surgery in a London teaching hospital from January to February 2003 were studied. Patients completed questionnaires a day before their discharge from the hospital. The majority of patients (89/100) responded that the information given at consent had been adequate or more than adequate. The time spent on the consent process was thought to be adequate by 91 patients. Eleven patients felt the consent had been insensitive. Several patients (38/100) felt use of booklets in preference to verbal explanations would be less intimidating. For most patients (94/100) the operation and postoperative course met their expectations; although 12 patients experienced untold complications, only five felt that they should have been informed of the possibility of the complication. Although most patients were informed of the risk of death during consent, at time of discharge 43 had forgotten the figure that had been quoted. Regarding the influence of media and publicity, 19 patients said that media had influenced their expectations of the consent process, 59 would have liked to see hospital league tables while 26 would have liked to know the mortality figures for their surgeon prior to giving consent. Our study shows that patients undergoing cardiac surgery are largely satisfied with our improved consent procedures in the post-Bristol era. Use of booklets may be a useful adjunct to verbal consent as currently practised.
Olvera-Vargas, Hugo; Oturan, Nihal; Brillas, Enric; Buisson, Didier; Esposito, Giovanni; Oturan, Mehmet A
2014-12-01
Ranitidine (RNTD) is a widely prescribed histamine H2-receptor antagonist whose unambiguous presence in water sources appointed it as an emerging pollutant. Here, the degradation of 0.1 mM of this drug in aqueous medium was studied by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation with electrogenerated H2O2 and electro-Fenton using Pt/carbon-felt, BDD/carbon-felt and DSA-Ti/RuO2–IrO2/carbon-felt cells. The higher oxidation power of the electro-Fenton process using a BDD anode was demonstrated. The oxidative degradation of RNTD by the electrochemically generated OH radicals obeyed a pseudo-first order kinetics. The absolute rate constant for its hydroxylation reaction was 3.39 × 109 M−1 s−1 as determined by the competition kinetics method. Almost complete mineralization of the RNTN solution was reached by using a BDD anode in both anodic oxidation with electrogenerated H2O2 and electro-Fenton processes. Up to 11 cyclic intermediates with furan moiety were detected from the degradation of RNTD, which were afterwards oxidized to short-chain carboxylic acids before their mineralization to CO2 and inorganic ions such as NH4+, NO3− and SO42−. Based on identified products, a plausible reaction pathway was proposed for RNTD mineralization. Toxicity assessment by the Microtox® method revealed that some cyclic intermediates are more toxic than the parent molecule. Toxicity was quickly removed following the almost total mineralization of the treated solution. Overall results confirm the effectiveness of EAOPs for the efficient removal of RNTD and its oxidation by-products from water.
Process for the synthesis of nanophase dispersion-strengthened aluminum alloy
Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell
1998-12-15
A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.
Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.
Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko
2015-09-01
Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.
Guo, Kun; Donose, Bogdan C; Soeriyadi, Alexander H; Prévoteau, Antonin; Patil, Sunil A; Freguia, Stefano; Gooding, J Justin; Rabaey, Korneel
2014-06-17
Stainless steel (SS) can be an attractive material to create large electrodes for microbial bioelectrochemical systems (BESs), due to its low cost and high conductivity. However, poor biocompatibility limits its successful application today. Here we report a simple and effective method to make SS electrodes biocompatible by means of flame oxidation. Physicochemical characterization of electrode surface indicated that iron oxide nanoparticles (IONPs) were generated in situ on an SS felt surface by flame oxidation. IONPs-coating dramatically enhanced the biocompatibility of SS felt and consequently resulted in a robust electroactive biofilm formation at its surface in BESs. The maximum current densities reached at IONPs-coated SS felt electrodes were 16.5 times and 4.8 times higher than the untreated SS felts and carbon felts, respectively. Furthermore, the maximum current density achieved with the IONPs-coated SS felt (1.92 mA/cm(2), 27.42 mA/cm(3)) is one of the highest current densities reported thus far. These results demonstrate for the first time that flame oxidized SS felts could be a good alternative to carbon-based electrodes for achieving high current densities in BESs. Most importantly, high conductivity, excellent mechanical strength, strong chemical stability, large specific surface area, and comparatively low cost of flame oxidized SS felts offer exciting opportunities for scaling-up of the anodes for BESs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.
Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less
NASA Astrophysics Data System (ADS)
Liu, Yueming; Tian, Weijian; Zhang, Shaojun
2009-05-01
Soft and flexible grating sensing waveguides is urgently demanded in application of micro-bending sensing and surface distortion sensing in medical catheter and smart skin sensing unit etc. Based on Nano-imprint Lithography and micro-replication process, polymer grating waveguides with core size 4μm×20μm and pitch 0.75μm are fabricated successfully in this paper. This novel grating waveguides is soft and flexible enough for related application and with the bio-medical safe feature when used in human body catheter. Fabricated processes are presented including the fabrication of micro mould and UV-replication process, and relative skills are discussed also in this paper.
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
Tailored metal matrix composites for high-temperature performance
NASA Technical Reports Server (NTRS)
Morel, M. R.; Saravanos, D. A.; Chamis, C. C.
1992-01-01
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.
USDA-ARS?s Scientific Manuscript database
The traditional technology of producing cotton woven fabrics is comprised of about 20 mechanical and chemical processes that generally are costly, slow, inefficient, and environmentally somewhat unfriendly. A modern system, using fewer preparatory processes, of fabricating hydro-entangled cotton and...
Work-related sickness absence negotiations: GPs' qualitative perspectives
Money, Annemarie; Hussey, Louise; Thorley, Kevan; Turner, Susan; Agius, Raymond
2010-01-01
Background GPs can find their role as issuers of sickness certification problematic, particularly in trying to maintain a balance between certifying absence and preserving the doctor–patient relationship. Little research has been published on consultations in which sickness absence has been certified. Aim To explore negotiations between GPs and patients in sickness absence certification, including how occupational health training may affect this process. Method A qualitative study was undertaken with GPs trained in occupational health who also participate in a UKwide surveillance scheme studying work-related ill-health. Telephone interviews were conducted with 31 GPs who had reported cases with associated sickness absence. Results Work-related sickness absence and patients' requests for a ‘sick note’ vary by diagnosis. Some GPs felt their role as patient advocate was of utmost importance, and issue certificates on a patient’s request, whereas others offer more resistance through a greater understanding of issues surrounding work and health aquired through occupational health training. GPs felt that their training helped them to challenge beliefs about absence from work being beneficial to patients experiencing ill-health; they felt better equipped to consider patients’ fitness for work, and issued fewer certificates as a result of this. Conclusion Complex issues surround GPs' role in the sickness-certification process, particularly when determining the patient's ability to work while maintaining a healthy doctor–patient relationship. This study demonstrates the potential impact of occupational health training for GPs, particularly in light of changes to the medical statement introduced in 2010. PMID:20883621
Manterola Álvarez, David
2015-03-01
Academic performance is the mean objective of the teaching-learning process, but there are many other variables or factors outside the OB/GYN resident involved in this process, such as those related to the environment in which they operate, teachers, interaction with their peers, family, society, and many other factors contained individually, such as learning styles, motivation, study habits, personality traits, among others. Identify which are the main socio-economic and psycho-affective factors that influence on academic performance of residents in Obstetrics and Gynecology. Observational, cross-sectional quantitative, correlational and non-experimental study in Obstetrics and Gynecology residents of a public general hospital tertiary care. A type survey to obtain data and deepen personal and socioeconomic status of each resident instrument was designed. Females predominated with 15 cases and only 5 were male. Sixteen of medical residents claimed that having a good habit of sleep helps improve their academic performance and their performance in academic and healthcare activities. Fifteen felt that work much better with peers of the opposite sex. Ten felt that developing a type of self-directed learning contributes greatly to improve their performance and 19 felt that having a mentor during residency contributes to improve their academic performance. Fifteen reported being victim of abuse or discrimination from their peers. Sixteen claimed to have been very sad or depressed at some point during residency. Eight consumed alcohol and seven used tobacco to relax.
Work-related sickness absence negotiations: GPs' qualitative perspectives.
Money, Annemarie; Hussey, Louise; Thorley, Kevan; Turner, Susan; Agius, Raymond
2010-10-01
GPs can find their role as issuers of sickness certification problematic, particularly in trying to maintain a balance between certifying absence and preserving the doctor-patient relationship. Little research has been published on consultations in which sickness absence has been certified. To explore negotiations between GPs and patients in sickness absence certification, including how occupational health training may affect this process. A qualitative study was undertaken with GPs trained in occupational health who also participate in a UK wide surveillance scheme studying work-related ill-health. Telephone interviews were conducted with 31 GPs who had reported cases with associated sickness absence. Work-related sickness absence and patients' requests for a 'sick note' vary by diagnosis. Some GPs felt their role as patient advocate was of utmost importance, and issue certificates on a patient's request, whereas others offer more resistance through a greater understanding of issues surrounding work and health acquired through occupational health training. GPs felt that their training helped them to challenge beliefs about absence from work being beneficial to patients experiencing ill-health; they felt better equipped to consider patients' fitness for work, and issued fewer certificates as a result of this. Complex issues surround GPs' role in the sickness-certification process, particularly when determining the patient's ability to work while maintaining a healthy doctor-patient relationship. This study demonstrates the potential impact of occupational health training for GPs, particularly in light of changes to the medical statement introduced in 2010.
Hou, Meifang; Chu, Yaofei; Li, Xiang; Wang, Huijiao; Yao, Weikun; Yu, Gang; Murayama, Seiichi; Wang, Yujue
2016-12-05
This study compares the degradation of diethyl phthalate (DEP) by the electro-peroxone (E-peroxone) process with three different carbon-based cathodes, namely, carbon-polytetrafluorethylene (carbon-PTFE), carbon felt, and reticulated vitreous carbon (RVC). Results show that the three cathodes had different electrocatalytic activity for converting sparged O2 to H2O2, which increased in order of carbon felt, RVC, and carbon-PTFE. The in-situ generated H2O2 then reacts with sparged O3 to yield OH, which can in turn oxidize ozone-refractory DEP toward complete mineralization. In general, satisfactory total organic carbon removal yields (76.4-91.8%) could be obtained after 60min of the E-peroxone treatment with the three carbon-based cathodes, and the highest yield was obtained with the carbon-PTFE cathode due to its highest activity for H2O2 generation. In addition, the carbon-PTFE and carbon felt cathodes exhibited excellent stability over six cycles of the E-peroxone treatment of DEP solutions. Based on the intermediates (e.g., monoethyl phthalate, phthalic acid, phenolics, and carboxylic acids) identified by HPLC-UV, plausible reaction pathways were proposed for DEP mineralization by the E-peroxone process. The results of this study indicate that carbon-based cathodes generally have good electrocatalytic activity and stability for application in extended E-peroxone operations to effectively remove phthalates from water. Copyright © 2015 Elsevier B.V. All rights reserved.
Tian, Jiangnan; Olajuyin, Ayobami Matthew; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin
2016-06-01
The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.
Robotic Processing Of Rocket-Engine Nozzles
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Maslakowski, John E.; Gutow, David A.; Deily, David C.
1994-01-01
Automated manufacturing cell containing computer-controlled robotic processing system developed to implement some important related steps in fabrication of rocket-engine nozzles. Performs several tedious and repetitive fabrication, measurement, adjustment, and inspection processes and subprocesses now performed manually. Offers advantages of reduced processing time, greater consistency, excellent collection of data, objective inspections, greater productivity, and simplified fixturing. Also affords flexibility: by making suitable changes in hardware and software, possible to modify process and subprocesses. Flexibility makes work cell adaptable to fabrication of heat exchangers and other items structured similarly to rocket nozzles.
Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates
NASA Technical Reports Server (NTRS)
Cano, Robert J.; Jensen, Brian J.
2013-01-01
The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley
2016-01-01
A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.
Testing of qubit materials and fabrication using superconducting resonators
NASA Astrophysics Data System (ADS)
Kumar, Shwetank; Steffen, Matthias; Divincenzo, David; Keefe, George; Rothwell, Mary Beth; Farinelli, Matthew; Rozen, Jim; Milliken, Frank; Ketchen, Mark
2009-03-01
We will present the results of measurements made on superconducting resonators fabricated using different substrates and superconducting metals. Specifically, the quality factor of these resonators will be shown to be closely related to not only the purity of the substrates and metals used in the process but also to the details of the fabrication. We will demonstrate the change in quality factor of a bare resonator when subjected to the qubit process. Based on our measurements we propose that superconducting resonators may form a test bed for troubleshooting the fabrication process for minimizing the materials related dissipation in the qubits.
Student and Faculty Views on Process of Science Skills at a Large, Research-Intensive University
ERIC Educational Resources Information Center
Addis, Elizabeth A.; Powell-Coffman, Jo Anne
2018-01-01
The Association of American Colleges and Universities ranks multiple process of science (POS) skills among the top-10 skills employers seek in college graduates. As part of an effort to explore and align the emphasis on POS skills in our science departments, we sought three things: (a) to determine if faculty and students felt enough time was…
Batch fabrication process development for ferrite logic conductors
NASA Technical Reports Server (NTRS)
Heckler, C. H., Jr.; Bhiwandker, N. C.
1972-01-01
A process for fabricating ultrareliable magnetic ferrite logic circuits is described in which the conductors are formed by a combination of two batch type processes - photolithography and electroplating - and a mechanized writing process for completing conductors in the third dimension. Up to 4 turns, through an aperture 1 mm in diameter, are formed by the described process. The number of joints in the conductors is reduced by use of this process to only those which are required for input, output and power connections of a logic block. To demonstrate feasibility, 8-stage magnetic ring counter circuits have been fabricated.
NASA Astrophysics Data System (ADS)
Verma, Payal; Juneja, Sucheta; Savelyev, Dmitry A.; Khonina, Svetlana N.; Gopal, Ram
2016-04-01
This paper presents design and fabrication of a 1-DOF (degree-of-freedom) drive mode and 2-DOF sense mode micro-gyroscope. It is an inherently robust structure and offers a high sense frequency bandwidth. The proposed design utilizes resonance of the1-DOF drive mode oscillator and employs dynamic amplification concept in sense modes to increase the sensitivity while maintaining robustness. The 2-DOF in the sense direction renders the device immune to process imperfections and environmental effects. The design is simulated using FEA software (CoventorWare®). The device is designed considering process compatibility with SU-8 based UV-LIGA process, which is an economical fabrication technique. The complete fabrication process is presented along with SEM images of the fabricated device. The device has 9 µm thick Nickel as the key structural layer with an overall reduced key structure size of 2.2 mm by 2.1 mm.
Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite
NASA Astrophysics Data System (ADS)
Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.
2017-12-01
The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.
2017-06-01
ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for Armor and Structural...to the originator. ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for...Fabrication of High -Strength Lightweight Metals for Armor and Structural Applications: Large-Scale Equal Channel Angular Extrusion Processing of
Fabrication of Large YBCO Superconducting Disks
NASA Technical Reports Server (NTRS)
Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.
1999-01-01
We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.
NASA Astrophysics Data System (ADS)
Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min
2018-04-01
An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.
Bismaleimide resins for flame resistant honeycomb sandwich panels
NASA Technical Reports Server (NTRS)
Stenzenberger, H. D.
1978-01-01
Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.
14 CFR 29.605 - Fabrication methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...
14 CFR 29.605 - Fabrication methods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...
14 CFR 29.605 - Fabrication methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...
14 CFR 29.605 - Fabrication methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...
14 CFR 29.605 - Fabrication methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...
SalanderMaps: A rapid overview about felt earthquakes through data mining of web-accesses
NASA Astrophysics Data System (ADS)
Kradolfer, Urs
2013-04-01
While seismological observatories detect and locate earthquakes based on measurements of the ground motion, they neither know a priori whether an earthquake has been felt by the public nor is it known, where it has been felt. Such information is usually gathered by evaluating feedback reported by the public through on-line forms on the web. However, after a felt earthquake in Switzerland, many people visit the webpages of the Swiss Seismological Service (SED) at the ETH Zurich and each such visit leaves traces in the logfiles on our web-servers. Data mining techniques, applied to these logfiles and mining publicly available data bases on the internet open possibilities to obtain previously unknown information about our virtual visitors. In order to provide precise information to authorities and the media, it would be desirable to rapidly know from which locations these web-accesses origin. The method 'Salander' (Seismic Activitiy Linked to Area codes - Nimble Detection of Earthquake Rumbles) will be introduced and it will be explained, how the IP-addresses (each computer or router directly connected to the internet has a unique IP-address; an example would be 129.132.53.5) of a sufficient amount of our virtual visitors were linked to their geographical area. This allows us to unprecedentedly quickly know whether and where an earthquake was felt in Switzerland. It will also be explained, why the method Salander is superior to commercial so-called geolocation products. The corresponding products of the Salander method, animated SalanderMaps, which are routinely generated after each earthquake with a magnitude of M>2 in Switzerland (http://www.seismo.ethz.ch/prod/salandermaps/, available after March 2013), demonstrate how the wavefield of earthquakes propagates through Switzerland and where it was felt. Often, such information is available within less than 60 seconds after origin time, and we always get a clear picture within already five minutes after origin time. Furthermore, the method allows to detect earthquakes solely on the analysis of accesses to our web-servers. Analyzing more than 170 million web-accesses since 2003, all seismic events within or near Switzerland with magnitudes M>4 and most felt events with magnitudes between 3 and 4 were detected. The current system is very robust, as we only had one false alarm while re-processing the web-access logfiles of the past almost 10 years. We anticipate that this method will produce even faster results in the future as the number of both commercial and private internet users is - according to the statistics of our logfiles - still increasing.
NASA Astrophysics Data System (ADS)
Little, C. L.; McBride, S.; Balfour, N.
2016-12-01
New Zealand's geohazard monitoring agency, GeoNet, recently implemented `Felt Rapid': earthquake felt reporting that is quick and simple. GeoNet locates 20,000 earthquakes each year with hundreds of those reported as being felt. Starting in the late 1800s, the New Zealand public has become adept at completing felt reports but feedback since the Canterbury Earthquake Sequence suggested that traditional felt reporting was not meeting researchers' or the public's needs. GeoNet required something rapid, adaptable and robust. The solution was Felt Rapid, a mobile app and website where respondents simply pick from 6 cartoon images - representing Modified Mercalli Intensity (MMI) 3-8 - that best aligned to what they felt. For the last decade, felt reporting has been conducted via the GeoNet website, with additional targeted surveys after damaging earthquakes. The vast majority of the submitted felt reports were for earthquakes too small to cause damage, as these are by far the most frequent. Reports from small events are of little interest to researchers who are only concerned with damaging, MMI6 and above. However, we found that when damaging earthquakes did occur, such as Christchurch's M6.3, they were only sparsely reported (3,776 reports). Understandably, sitting at a computer and completing a lengthy online form wasn't a priority for people after a devastating earthquake. With Felt Rapid, reporting has to be completed within an hour of an earthquake, the use of GeoNet's automatically compiled felt reporting maps had evolved; their main purpose is immediate assessment of an earthquake's impact on populations, and is used by Civil Defence agencies. Reports are immediately displayed on an interactive map via the website and mobile app. With over 250,000 users this provides rapid and robust information regarding the experienced shaking. When a damaging earthquake occurs and researchers want to collect important and rare damaging felt reports, a separate in-depth survey is commissioned targeted to areas that experienced the highest levels of shaking. These surveys will be distributed via a range of mediums including posted as well an online call for submissions. GeoNet maintains an engaged and trusting community via social media channels which makes these calls for submissions effective.
Bourne, Tom; Vanderhaegen, Joke; Vranken, Renilt; Wynants, Laure; De Cock, Bavo; Peters, Mike; Timmerman, Dirk; Van Calster, Ben; Jalmbrant, Maria; Van Audenhove, Chantal
2016-01-01
Objectives To examine doctors' experiences of complaints, including which aspects are most stressful. We also investigated how doctors felt complaints processes could be improved. Design and methods A qualitative study based on a cross-sectional survey of members of the British Medical Association (BMA). We asked the following: (1) Try to summarise as best as you can your experience of the complaints process and how it made you feel. (2) What were the most stressful aspects of the complaint? (3) What would you improve in the complaints system? Participants We sent the survey to 95 636 doctors, and received 10 930 (11.4%) responses. Of these, 6146 had a previous, recent or current complaint and 3417 (31.3%) of these respondents answered questions 1 and 2. We randomly selected 1000 answers for analysis, and included 100 using the saturation principle. Of this cohort, 93 responses for question 3 were available. Main results Doctors frequently reported feeling powerless, emotionally distressed, and experiencing negative feelings towards both those managing complaints and the complainants themselves. Many felt unsupported, fearful of the consequences and that the complaint was unfair. The most stressful aspects were the prolonged duration and unpredictability of procedures, managerial incompetence, poor communication and perceiving that processes are biased in favour of complainants. Many reported practising defensively or considering changing career after a complaint, and few found any positive outcomes from complaints investigations. Physicians suggested procedures should be more transparent, competently managed, time limited, and that there should be an open dialogue with complainants and policies for dealing with vexatious complaints. Some felt more support for doctors was needed. Conclusions Complaints seriously impact on doctors' psychological wellbeing, and are associated with defensive practise. This is not beneficial to patient care. To improve procedures, doctors propose they are simplified, time limited and more transparent. PMID:27377638
NASA Astrophysics Data System (ADS)
Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.
2017-12-01
9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.
14 CFR 27.605 - Fabrication methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...
14 CFR 25.605 - Fabrication methods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...
14 CFR 27.605 - Fabrication methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...
14 CFR 27.605 - Fabrication methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...
14 CFR 25.605 - Fabrication methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...
14 CFR 25.605 - Fabrication methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...
14 CFR 27.605 - Fabrication methods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...
14 CFR 25.605 - Fabrication methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...
14 CFR 27.605 - Fabrication methods.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...
14 CFR 25.605 - Fabrication methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, InTaek; Yun, Dong-Jin
2015-01-01
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133
Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Payne, L.
1977-01-01
Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin
2015-10-22
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.
Susarla, Srinivas M; Swanson, Edward W; Slezak, Sheri; Lifchez, Scott D; Redett, Richard J
2017-01-01
The purpose of this study was to assess applicant perceptions and costs associated with the interview process for plastic surgery residency positions. This was a cross-sectional survey of applicants to the integrated- and independent-track residencies at the authors' institution. All applicants who were interviewed were invited to complete a Web-based survey on costs and perceptions of various components of the interview process. Descriptive and bivariate statistics were computed to compare applicants to the two program tracks. Fifty-three applicants were interviewed for residency positions; 48 completed a survey (90.5 percent response rate). Thirty-four applicants were candidates for the integrated program; 16 applicants were candidates for the independent program. The program spent $2763 per applicant interviewed; 63 percent of applicants spent more than $5000 on the interview process. More than 70 percent of applicants missed more than 7 days of work to attend interviews. Independent applicants felt less strongly that interviews were critical to the selection process and placed less value on physically visiting the hospital and direct, in-person interaction. Applicants placed little value on program informational talks. Applicants who had experience with virtual interviews felt more positively about the format of a video interview relative to those who did not. The residency interview process is resource intensive for programs and applicants. Removing informational talks may improve the process. Making physical tours and in-person interviews optional are other alternatives that merit future study.
Process for fabrication of cermets
Landingham, Richard L [Livermore, CA
2011-02-01
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda
2005-01-01
Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.
Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.
Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo
2016-08-31
We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.
Determinants of felt stigma in epilepsy.
Aydemir, N; Kaya, B; Yıldız, G; Öztura, I; Baklan, B
2016-05-01
The present study aimed to determine the level of felt stigma, overprotection, concealment, and concerns related to epilepsy in different life domains by using culturally-specific scales for Turkish individuals with epilepsy. Also, it aimed to detect relations among the study variables and to determine the variables which predict felt stigma. For this purpose, felt stigma scale, overprotection scale, concealment of epilepsy scale, and concerns of epilepsy scale were administered to two hundred adult persons with epilepsy (PWE). The results showed that almost half of the participants reported felt stigma, overprotection, concealment of epilepsy, concerns related to future occupation, and concerns related to social life. Almost all the study variables show correlations with each other. Concealment of epilepsy, concerns related to social life, and concerns related to future occupation were found as the predictors of felt stigma. Copyright © 2016 Elsevier Inc. All rights reserved.
Fabrication of fiber supported ionic liquids and methods of use
Luebke, David R; Wickramanayake, Shan
2013-02-26
One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.
Design Architecture of field-effect transistor with back gate electrode for biosensor application
NASA Astrophysics Data System (ADS)
Fathil, M. F. M.; Arshad, M. K. Md.; Hashim, U.; Ruslinda, A. R.; Gopinath, Subash C. B.; M. Nuzaihan M., N.; Ayub, R. M.; Adzhri, R.; Zaki, M.; Azman, A. H.
2016-07-01
This paper presents the preparation method of photolithography chrome mask design used in fabrication process of field-effect transistor with back gate biasing based biosensor. Initially, the chrome masks are designed by studying the process flow of the biosensor fabrication, followed by drawing of the actual chrome mask using the AutoCAD software. The overall width and length of the device is optimized at 16 mm and 16 mm, respectively. Fabrication processes of the biosensor required five chrome masks, which included source and drain formation mask, the back gate area formation mask, electrode formation mask, front gate area formation mask, and passivation area formation mask. The complete chrome masks design will be sent for chrome mask fabrication and for future use in biosensor fabrication.
NASA Astrophysics Data System (ADS)
Yokoyama, Masafumi; Asakura, Yuji; Yokoyama, Haruki; Takenaka, Mitsuru; Takagi, Shinichi
2014-06-01
We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al2O3/GaSb MOS interface properties. The Al2O3/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (Dit) of ˜4.5 × 1013 cm-2 eV-1. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al2O3/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.
Scattering effects of machined optical surfaces
NASA Astrophysics Data System (ADS)
Thompson, Anita Kotha
1998-09-01
Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.
After the bombing: public scenarios and the construction of meaning.
Allen, J R
1999-04-01
In both our folk psychology and mental health practice, we adhere to the modernist view that a crisis is something that an individual has. A crisis is either something that happens to people or which people bring on themselves because of character pathology. On the other hand, postmodern theorists now draw our attention to how processes of interaction provide opportunities for certain characterizations to emerge and disipate. Both the conceptualization of an event as a crisis and the scenarios of how it is best understood arise within a community and emerge out of the communal construction of meaning. In this process in Oklahoma City, bystanders, politicians, pilgrims and news media played a role of great significance. Whether local or from afar, they became a community of observers who interacted with one another and looked to one another for verification as to what counted as a crisis and what behavior was appropriate. Lindy has observed that traumatized individuals are often surrounded quickly by a small network of trusted people who serve to buffer and protect them and who define what is helpful and what constitutes further trauma. Here, in Oklahoma, however, a wider public defined the event as a crisis, elaborated on it, and have gradually transformed it into almost mythic proportions, a process now exemplified in the construction of the Oklahoma City National Monument. However, they have also endorsed diverse other scenarios, not all of which have facilitated appropriate grieving, repair of life-disruption, or moving on. All, however, seem to have given a sense of meaning to the event. In this rich matrix, some survivors and their families have felt helped. Others have felt exploited. Still others have wanted to forget the whole thing and to avoid anything that reminded them of it. Of the would-be helpers, some felt unjustly rejected and unappreciated. Others felt appreciated, useful, and even enriched. However, a true legacy of the bombing may well be the metalogue it can precipitate and advance about the relationship between individuals and society, and especially the relationship between our individual life-stories and larger public scenarios, and the effects these scenarios have on the questions we can ask, what we can perceive and what solutions we can create.
Jansen, Natalie Anne; Saint Onge, Jarron M
2015-12-01
Infertility is a condition that affects nearly 30 percent of women aged 25-44 in the United States. Though past research has addressed the stigmatization of infertility, few have done so in the context of stigma management between fertile and infertile women. In order to assess evidence of felt and enacted stigma, we employed a thematic content analysis of felt and enacted stigma in an online infertility forum, Fertile Thoughts, to analyze 432 initial threads by women in various stages of the treatment-seeking process. We showed that infertile women are frequently stigmatized for their infertility or childlessness and coped through a variety of mechanisms including backstage joshing and social withdrawal. We also found that infertile women appeared to challenge and stigmatize pregnant women for perceived immoral behaviors or lower social status. We argue that while the effects of stigma power are frequently perceived and felt in relationships between infertile women and their fertile peers, the direction of the enacted stigma is related to social standing and feelings of fairness and reinforces perceived expressions of deserved motherhood in the United States. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn
NASA Astrophysics Data System (ADS)
Özkan, İ.; Duru Baykal, P.
2017-10-01
In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.
Improved Design of Optical MEMS Using the SUMMiT Fabrication Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M.A.; Comtois, J.H.; Barron, C.C.
This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.
New prospects in pretreatment of cotton fabrics using microwave heating.
Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K
2014-03-15
As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology
NASA Astrophysics Data System (ADS)
Towne, Silas; Viswanathan, Vish; Holbery, James; Rieke, Peter
Utilizing drop-on-demand technology, we have successfully fabricated hydrogen-air polymer electrolyte membrane fuel cells (PEMFC), demonstrated some of the processing advantages of this technology and have demonstrated that the performance is comparable to conventionally fabricated membrane electrode assemblies (MEAs). Commercial desktop inkjet printers were used to deposit the active catalyst electrode layer directly from print cartridges onto Nafion ® polymer membranes in the hydrogen form. The layers were well-adhered and withstood simple tape peel, bending and abrasion tests and did so without any post-deposition hot press step. The elimination of this processing step suggests that inkjet-based fabrication or similar processing technologies may provide a route to less expensive large-scale fabrication of PEMFCs. When tested in our experimental apparatus, open circuit voltages up to 0.87 V and power densities of up to 155 mW cm -2 were obtained with a catalyst loading of 0.20 mg Pt cm -2. A commercially available membrane under identical, albeit not optimized test conditions, showed about 7% greater power density. The objective of this work was to demonstrate some of the processing advantages of drop-on-demand technology for fabrication of MEAs. It remains to be determined if inkjet fabrication offers performance advantages or leads to more efficient utilization of expensive catalyst materials.
Singh, Avtar; Kaur, Amanjot; Patra, Arun Kumar; Mahajan, Ritu
2018-04-01
The objective of this research was to develop an appropriate, eco-friendly, cost-effective bioscouring methodology for removing natural impurities from cotton fabric. Maximum bioscouring was achieved using 5.0 IU xylanase and 4.0 IU pectinase with material to liquid ratio of 1:15 in a 50 mM buffer (glycine-NaOH buffer, 1.0 mM EDTA and 1% Tween-80, pH 8.5) with a treatment time of 60 min at 50 °C and an agitation speed of 60 rpm. The bioscoured cotton fabrics showed a gain of 1.17% in whiteness, 3.23% in brightness and a reduction of 4.18% in yellowness in comparison to fabric scoured with an alkaline scouring method. Further, after bleaching, the whiteness, brightness and tensile strength of the bioscoured fabrics were increased by 2.18, 2.33 and 11.74% along with a decrease of 4.61% in yellowness of bioscoured plus bleached fabrics in comparison to chemically scoured plus bleached fabrics. From the results, it is clear that bioscouring is more efficient, energy saving and an eco-friendly process and has the potential to replace the environment-damaging scouring process with the xylano-pectinolytic bioscouring process.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
3D MEMS in Standard Processes: Fabrication, Quality Assurance, and Novel Measurement Microstructures
NASA Technical Reports Server (NTRS)
Lin, Gisela; Lawton, Russell A.
2000-01-01
Three-dimensional MEMS microsystems that are commercially fabricated require minimal post-processing and are easily integrated with CMOS signal processing electronics. Measurements to evaluate the fabrication process (such as cross-sectional imaging and device performance characterization) provide much needed feedback in terms of reliability and quality assurance. MEMS technology is bringing a new class of microscale measurements to fruition. The relatively small size of MEMS microsystems offers the potential for higher fidelity recordings compared to macrosize counterparts, as illustrated in the measurement of muscle cell forces.
NASA Astrophysics Data System (ADS)
Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael
The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.
Feeling torn when everything seems right: semantic incongruence causes felt ambivalence.
Gebauer, Jochen E; Maio, Gregory R; Pakizeh, Ali
2013-06-01
The co-occurrence of positive and negative attributes of an attitude object typically accounts for less than a quarter of the variance in felt ambivalence toward these objects, rendering this evaluative incongruence insufficient for explaining felt ambivalence. The present research tested whether another type of incongruence, semantic incongruence, also causes felt ambivalence. Semantic incongruence arises from inconsistencies in the descriptive content of attitude objects' attributes (e.g., attributes that are not mutually supportive), independent of these attributes' valences. Experiment 1 manipulated evaluative and semantic incongruence using valence norms and semantic norms. Both of these norm-based manipulations independently predicted felt ambivalence, and, in Experiment 2, they even did so over and above self-based incongruence (i.e., participants' idiosyncratic perceptions of evaluative and semantic incongruence). Experiments 3a and 3b revealed that aversive dissonant feelings play a role in the effects of evaluative incongruence, but not semantic incongruence, on felt ambivalence.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.
Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun
2017-01-01
Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275
Composite Structures and Materials Research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.
2003-01-01
A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.
Composite Structures and Materials Research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.
2001-01-01
A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.
Yong, Xiao-Yu; Gu, Dong-Yan; Wu, Yuan-Dong; Yan, Zhi-Ying; Zhou, Jun; Wu, Xia-Yuan; Wei, Ping; Jia, Hong-Hua; Zheng, Tao; Yong, Yang-Chun
2017-02-15
The intensive use of triphenyltin chloride (TPTC) has caused serious environmental pollution. In this study, an effective method for TPTC degradation was proposed based on the Bio-Electron-Fenton process in microbial fuel cells (MFCs). The maximum voltage of the MFC with graphite felt as electrode was 278.47% higher than that of carbon cloth. The electricity generated by MFC can be used for in situ generation of H 2 O 2 to a maximum of 135.96μmolL -1 at the Fe@Fe 2 O 3(*) /graphite felt composite cathode, which further reacted with leached Fe 2+ to produce hydroxyl radicals. While 100μmolL -1 TPTC was added to the cathodic chamber, the degradation efficiency of TPTC reached 78.32±2.07%, with a rate of 0.775±0.021μmolL -1 h -1 . This Bio-Electron-Fenton driving TPTC degradation might involve in SnC bonds breaking and the main process is probably a stepwise dephenylation until the formation of inorganic tin and CO 2 . This study provides an energy saving and efficient approach for TPTC degradation. Copyright © 2016 Elsevier B.V. All rights reserved.
Leading change: a challenge for leaders in Nordic health care.
Fagerström, Lisbeth; Salmela, Susanne
2010-07-01
The aim of the present study was to describe personnel's attitudes to change processes between a regional hospital and the primary health care centre as well as investigate these results with regards to theories pertaining to change and leading change. Leadership has three crucial dimensions: focusing on personnel, results/key processes and the ethical base of activities. A survey was conducted in 2003 using a comprehensive questionnaire. The total sample consisted of the personnel (n = 899) at the two organizations (answering rate was 68.8%). The data were analysed descriptively. Approximately two-thirds of the respondents understood why the merger was occurring. Only one-third expressed that they had received sufficient information regarding the merger. In total 67% felt that the merger would create conflict while approximately one-fourth expressed uncertainty. Despite such negative responses, approximately two-thirds felt there were advantages to the merger. Significant differences were seen between the groups. In times of change personnel expect leaders to focus on dialogue with their personnel and to anchor the vision of the change process amongst the personnel. By identifying the 'prison of thought' and creating an atmosphere where reflection and discussion are valued the nurse leader can help prevent resistance to change.
Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.
Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A
2014-01-01
In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.
Sensing the Sentence: An Embodied Simulation Approach to Rhetorical Grammar
ERIC Educational Resources Information Center
Rule, Hannah J.
2017-01-01
This article applies the neuroscientific concept of embodied simulation--the process of understanding language through visual, motor, and spatial modalities of the body--to rhetorical grammar and sentence-style pedagogies. Embodied simulation invigorates rhetorical grammar instruction by attuning writers to the felt effects of written language,…
Women in Cross-Cultural Transitions.
ERIC Educational Resources Information Center
Bystydzienski, Jill M., Ed.; Resnik, Estelle P., Ed.
This series of 14 essays focuses on experiences of women who have made cross-cultural transitions. Cross-cultural transitions refer to moving across cultures, usually from one country to another or across subcultures within one society. The essays document what individual women perceived, how they felt when in the process of moving from one…
The Place of Education in Modernization Processes
ERIC Educational Resources Information Center
Benin, V. L.
2015-01-01
The article analyzes the latest steps taken by Russian authorities in reforming the system of education, and substantiates society's strongly felt need for the reforms to be liberated from bureaucratic dictatorship and secrecy. It demonstrates the close connection between the reform of education and the rapidly dropping quality of education,…
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Oravecz, Zita; Muth, Chelsea; Vandekerckhove, Joachim
2016-01-01
This pragmatic study examines love as a mode of communication. Our focus is on the receiver side: what makes an individual feel loved and how felt love is defined through daily interactions. Our aim is to explore everyday life scenarios in which people might experience love, and to consider people's converging and diverging judgments about which scenarios indicate felt love. We apply a cognitive psychometric approach to quantify a receiver's ability to detect, understand, and know that they are loved. Through crowd-sourcing, we surveyed lay participants about whether various scenarios were indicators of felt love. We thus quantify these responses to make inference about consensus judgments of felt love, measure individual levels of agreement with consensus, and assess individual response styles. More specifically, we (1) derive consensus judgments on felt love; (2) describe its characteristics in qualitative and quantitative terms, (3) explore individual differences in both (a) participant agreement with consensus, and (b) participant judgment when uncertain about shared knowledge, and (4) test whether individual differences can be meaningfully linked to explanatory variables. Results indicate that people converge towards a shared cognitive model of felt love. Conversely, respondents showed heterogeneity in knowledge of consensus, and in dealing with uncertainty. We found that, when facing uncertainty, female respondents and people in relationships more frequently judge scenarios as indicators of felt love. Moreover, respondents from smaller households tend to know more about consensus judgments of felt love, while respondents from larger households are more willing to guess when unsure of consensus.
Oravecz, Zita; Muth, Chelsea; Vandekerckhove, Joachim
2016-01-01
This pragmatic study examines love as a mode of communication. Our focus is on the receiver side: what makes an individual feel loved and how felt love is defined through daily interactions. Our aim is to explore everyday life scenarios in which people might experience love, and to consider people’s converging and diverging judgments about which scenarios indicate felt love. We apply a cognitive psychometric approach to quantify a receiver’s ability to detect, understand, and know that they are loved. Through crowd-sourcing, we surveyed lay participants about whether various scenarios were indicators of felt love. We thus quantify these responses to make inference about consensus judgments of felt love, measure individual levels of agreement with consensus, and assess individual response styles. More specifically, we (1) derive consensus judgments on felt love; (2) describe its characteristics in qualitative and quantitative terms, (3) explore individual differences in both (a) participant agreement with consensus, and (b) participant judgment when uncertain about shared knowledge, and (4) test whether individual differences can be meaningfully linked to explanatory variables. Results indicate that people converge towards a shared cognitive model of felt love. Conversely, respondents showed heterogeneity in knowledge of consensus, and in dealing with uncertainty. We found that, when facing uncertainty, female respondents and people in relationships more frequently judge scenarios as indicators of felt love. Moreover, respondents from smaller households tend to know more about consensus judgments of felt love, while respondents from larger households are more willing to guess when unsure of consensus. PMID:27035569
Stretchable electronics for wearable and high-current applications
NASA Astrophysics Data System (ADS)
Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.
2016-04-01
Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.
NASA Astrophysics Data System (ADS)
Chung, Daehan; Gray, Bonnie L.
2017-11-01
We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.
NASA Astrophysics Data System (ADS)
Choi, Jongchan; Lee, Kyeong-Hwan; Yang, Sung
2011-09-01
This note presents a simple fabrication process for patterning micro through-holes in a PDMS layer by a combination of the micromolding in capillaries (MIMIC) method and the surface treatment by atmospheric-pressure CH4/He RF plasma. The fabrication process is confirmed by forming micro through-holes with various shapes including circle, C-shape, open microfluidic channel and hemisphere. All micro through-holes of various shapes in a wide range of diameters and heights are well fabricated by the proposed method. Also, a 3D micromixer containing a PDMS micro through-hole layer formed by the proposed method is built and its performance is tested as another practical demonstration of the proposed fabrication method. Therefore, we believe that the proposed fabrication process will build a PDMS micro through-hole layer in a simple and easy way and will contribute to developing highly efficient multi-layered microfluidic systems, which may require PDMS micro through-hole layers.
Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk
2011-01-01
The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.
Fabrication of Mechanically Tunable and Bioactive Metal Scaffolds for Biomedical Applications
Jung, Hyun-Do; Lee, Hyun; Kim, Hyoun-Ee; Koh, Young-Hag; Song, Juha
2015-01-01
Biometal systems have been widely used for biomedical applications, in particular, as load-bearing materials. However, major challenges are high stiffness and low bioactivity of metals. In this study, we have developed a new method towards fabricating a new type of bioactive and mechanically reliable porous metal scaffolds-densified porous Ti scaffolds. The method consists of two fabrication processes, 1) the fabrication of porous Ti scaffolds by dynamic freeze casting, and 2) coating and densification of the porous scaffolds. The dynamic freeze casting method to fabricate porous Ti scaffolds allowed the densification of porous scaffolds by minimizing the chemical contamination and structural defects. The densification process is distinctive for three reasons. First, the densification process is simple, because it requires a control of only one parameter (degree of densification). Second, it is effective, as it achieves mechanical enhancement and sustainable release of biomolecules from porous scaffolds. Third, it has broad applications, as it is also applicable to the fabrication of functionally graded porous scaffolds by spatially varied strain during densification. PMID:26709604
Fabrication of tunable diffraction grating by imprint lithography with photoresist mold
NASA Astrophysics Data System (ADS)
Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya
2018-05-01
We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.
Automated Tow Placement Processing and Characterization of Composites
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
2004-01-01
The project had one of the initial objectives as automated tow placement (ATP), in which a robot was used to place a collimated band of pre-impregnated ribbons or a wide preconsolidated tape onto a tool surface. It was proposed to utilize the Automated Tow Placement machine that was already available and to fabricate carbon fiber reinforced PEEK (polyether-ether-ketone) matrix composites. After initial experiments with the fabrication of flat plates, composite cylinders were to be fabricated. Specimens from the fabricated parts were to be tested for mechanical characterization. A second objective was to conduct various types of tests for characterizing composite specimens cured by different fabrication processes.
EV space suit gloves (passive)
NASA Technical Reports Server (NTRS)
Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.
1975-01-01
A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.
NASA Technical Reports Server (NTRS)
1982-01-01
Fire hazard is greater in atmospheres containing a high percentage of oxygen under pressure. NASA intensified its fire safety research after a 1967 Apollo fire. A chemically treated fabric called Durette developed by Monsanto Company, which will not burn or produce noxious fumes, was selected as a material for Apollo astronaut garments. Monsanto sold production rights for this material to Fire Safe Products (FSP). Durette is now used for a wide range of applications such as: sheets, attendants' uniforms in hyperbaric chambers; crew's clothing, furniture and interior walls of diving chambers operated by the U.S. Navy and other oceanographic companies and research organizations. Pyrotect Safety Equipment, Minneapolis, MN produces Durette suits for auto racers, refuelers and crew chiefs from material supplied by FSP. FSP also manufactures Durette bags for filtering gases and dust from boilers, electric generators and similar systems. Durette bags are an alternative to other felted fiber capable of operating at high temperature that cost twice as much.
E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.
Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio
2018-06-05
In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
INDUSTRIE 4.0 - Automation in weft knitting technology
NASA Astrophysics Data System (ADS)
Simonis, K.; Gloy, Y.-S.; Gries, T.
2016-07-01
Industry 4.0 applies to the knitting industry. Regarding the knitting process retrofitting activities are executed mostly manually by an operator on the basis on the operator's experience. In doing so, the knitted fabric is not necessarily produced in the most efficient way regarding process speed and fabric quality aspects. The knitting division at ITA is concentrating on project activities regarding automation and Industry 4.0. ITA is working on analysing the correspondences of the knitting process parameters and their influence on the fabric quality. By using e.g. the augmented reality technology, the operator will be supported when setting up the knitting machine in case of product or pattern change - or in case of an intervention when production errors occur. Furthermore, the RFID-Technology offers great possibilities to ensure information flow between sub-processes of the fragmented textile process chain. ITA is using RFID-chips to save yarn production information and connect the information to the fabric producing machine control. In addition, ITA is currently working on integrating image processing systems into the large circular knitting machine in order to ensure online-quality measurement of the knitted fabrics. This will lead to a self-optimizing and selflearning knitting machine.
Route to one-step microstructure mold fabrication for PDMS microfluidic chip
NASA Astrophysics Data System (ADS)
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda
2018-04-01
The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao
2006-01-01
In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-08-11
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-01-01
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm2/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased. PMID:28788159
Phase 2 of the array automated assembly task for the low cost solar array project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.
1979-01-01
The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.
Fabrication of GRCop-84 Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Loewenthal, William; Ellis, David
2006-01-01
GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regenerative1y cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from pre-alloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.
Fabrication of GRCop-84 Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2005-01-01
GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regeneratively cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from prealloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2005-03-01
This work integrates multi-depth DRIE etching, trench-refilled molding, two poly-Si layers MUMPs and bulk releasing to improve the variety and performance of MEMS devices. In summary, the present fabrication process, named MOSBE II, has three merits. First, this process can monolithically fabricate and integrate poly-Si thin-film structures with different thicknesses and stiffnesses, such as the flexible spring and the stiff mirror plate. Second, multi-depth structures, such as vertical comb electrodes, are available from the DRIE processes. Third, a cavity under the micromachined device is provided by the bulk silicon etching process, so that a large out-of-plane motion is allowed. In application, an optical scanner driven by the self-aligned vertical comb actuator was demonstrated. The poly-Si micromachined components fabricated by MOSBE II can further integrate with the MUMPs devices to establish a more powerful MOEMS platform.
Ion traps fabricated in a CMOS foundry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, K. K.; Ram, R. J.; Eltony, A. M.
2014-07-28
We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size.more » This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.« less
Design for producing fiberglass fabric in a lunar environment
NASA Technical Reports Server (NTRS)
Benson, Rafer M.; Causby, Dana R.; Johnson, Michael C.; Storey, Mark A.; Tran, Dal T.; Zahr, Thomas A.
1992-01-01
The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy material, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the Earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and is included.
Design for producing fiberglass fabric in a lunar environment
NASA Technical Reports Server (NTRS)
Dorrity, J. Lewis; Patel, Suneer; Benson, Rafer M.; Johnson, Michael C.; Storey, Mark A.; Tran, Dai T.; Zahr, Thomas A.; Causby, Dana R.
1992-01-01
The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy materials, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and included in the following document.
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
NASA Technical Reports Server (NTRS)
Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)
2001-01-01
Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.
An infiltration/cure model for manufacture of fabric composites by the resin infusion process
NASA Technical Reports Server (NTRS)
Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.
1992-01-01
A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.
1991-01-01
plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Bunker, S.
1981-01-01
A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.
Schlitzkus, Lisa L; Schenarts, Paul J; Schenarts, Kimberly D
2013-01-01
Hosting a reception for prospective interns the evening before the interview has become a well-established expectation. It is thought that these initial impressions significantly influence the ranking process. Despite these well-held beliefs, there has been a paucity of studies exploring the preinterview reception. A survey tool was created and piloted to ensure validity. The survey was then administered to a fourth-year class of allopathic medical students immediately after interviews but before Match Day. A university, teaching hospital. Fourth-year allopathic medical students. The response rate was 100% (n = 69). Ninety-six percent of programs hosted an event. Although these events were minimally stressful (86%), the same percent felt that not attending would limit their knowledge of the program, and 66% felt that it would negatively affect their application. Forty percent believe this event to be extremely important to residency programs in selecting interns. Ninety-five percent are attended by residents only, and approximately half were at a casual restaurant. Most applicants (97%) never paid for their own meal, and 69% felt that if they did, it would leave a negative impression of the program. Candidates believe the preinterview reception is important in the selection process, that failing to attend would negatively affect their application, and provides insight about the program. Alcohol is often provided but rarely has a negative effect. Applicants prefer an informal setting with unfettered interactions with the residents. © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Rybczynski, Suzanne; Katz, Elana; Schultz, Scott; Salorio, Cynthia
2016-08-01
To examine factors that influence parents' decision to accept or decline complementary therapies on an inpatient rehabilitation unit. Parents of children aged 2-21 admitted for acute pediatric rehabilitation were provided a survey regarding their child's use of massage, energy therapy and acupuncture during admission. They were also asked about religious beliefs, education, perceived severity of injury and perceived response to the therapies. The study was conducted on the Inpatient Acute Pediatric Rehabilitation Unit at Kennedy Krieger Institute in Baltimore, Maryland, USA. Of those who completed the survey (n=38), 39% accepted massage services, 49% accepted energy therapy, and 16% accepted acupuncture for their child. Acceptance of massage services was significantly correlated with belonging to an organized religion (p<0.05). Participation in weekly religious services was associated with rejection of energy therapy (p<0.01). Prior parental experience with massage and acupuncture was associated with acceptance of these services for their child (p<0.01). Chronicity of condition and family education was not related to acceptance or rejection of services. Over 80% of parents felt massage and energy therapy helped the recovery process. In 63% of parents surveyed, acupuncture was felt to help the recovery process. Prior exposure to massage therapy and acupuncture was the most important factor in a parent accepting these services for their child. All three services were subjectively felt to have facilitated recovery. Future studies should assess subjective versus objective utility of these therapies in acute pediatric rehabilitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, Yi-Fang; Tsai, Meng-Li; Yen, Chen-Tung; Cheng, Chiung-Hsiang
2011-02-15
Heat-fusing is a common process for fabricating microwire tetrodes. However, it is time-consuming, and the high-temperature treatment can easily cause the insulation of the microwire to overheat leading to short circuits. We herein provide a simple, fast method to fabricate microwire tetrodes without the heat-fusion process. By increasing the twisting density, we were able to fabricate tetrodes with good rigidity and integrity. This kind of tetrode showed good recording quality, penetrated the brain surface easily, and remained intact after chronic implantation. This method requires only general laboratory tools and is relatively simple even for inexperienced workers. © 2010 Elsevier B.V. All rights reserved.
Aoyagi, Keiko; Santos, Carlos E; Updegraff, Kimberly A
2018-01-01
Gender identity felt pressure is negatively associated with adjustment indices, including self-esteem, among children and early adolescents, and both gender and ethnic-racial identity felt pressure are negatively associated with self-esteem among young adults. This study explored the longitudinal associations between gender identity and ethnic-racial identity felt pressure from family and peers to behave in either gender or race/ethnic-accordant ways, and self-esteem among a sample of 750 (49.2% female) African American (n = 194) and Latino/a youth (n = 556) (M = 12.10 years, SD = .97 years). For African Americans, the results revealed significant negative longitudinal associations between (a) ethnic-racial identity felt pressure from family at Time 1 and self-esteem at Time 2 and (b) ethnic-racial identity felt pressure from peers at Time 1 and self-esteem at Time 2, controlling for self-esteem at Time 1. These associations were not found among Latinos/as, nor were associations found between gender identity felt pressure from peers or family and self-esteem. The findings are discussed by drawing on the gender identity and ethnic-racial identity literatures.
Robust and durable superhydrophobic cotton fabrics for oil/water separation.
Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo
2013-08-14
By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.
Method of manufacturing lead electrodes for storage cells
Jonville, P.; Stoehr, H.; Beccu, K.D.
1975-09-23
A method of manufacturing electrodes for lead storage batteries is described. Molten lead or lead alloy is deposited on a felt of glass fibers by spraying in a molten state to fill the space between the fibers of the felt to form an electrically conductive zone defining electrode contacts. A mass of powdered lead-based material is introduced into the felt by filtration for subsequently producing an active electrode mass by at least one electrochemical transformation. The felt is then cut into individual electrodes. (auth)
NASA Technical Reports Server (NTRS)
1998-01-01
Conducted two meetings to review the project scope and develop concepts for self-sealing material compositions, Focus has been on developing concepts that would seal a penetration enough to allow the astronauts to re-enter the spacecraft within the window provided by the emergency air supply. Concepts discussed include: quilted fabrics containing a viscous flow material in the quilted cells which would seal the bladder breach when forced to flow by the internal suit pressure; a sealant impregnated felt liner which acts similar to above; and a "blousy" fibrous layer which would mechanically plug a rupture under pressure. Illustrations of the above concepts are included in the attached viewgraphs, which were used in a presentation. The most promising of these concepts will be made into prototypes for testing. ILC has developed a test fixture to test the scaling characteristics of various material layups by measuring real-time changes in pressure and make-up flow in a pressurized cylinder. Candidate viscous sealing compounds such as silicones and urethanes have been identified. These compounds will be coated on existing bladder cloth for initial tests. The most promising compounds will be integrated into the above material structures for final testing. Design and analysis of fabric weaves to improve cut and puncture resistance of the suit TMG layers is underway. Philadelphia Textile is developing a mathematical model to correlate yarn type and weave structure to cut and tear resistance. The computer mathematical modeling of the fabric failure mechanisms by Cornell University, as originally proposed, will be replaced with the above model and empirical testing methods, due to the loss of key Cornell personnel.
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
NASA Astrophysics Data System (ADS)
Muthukumaran, Packirisamy; Stiharu, Ion G.; Bhat, Rama B.
2003-10-01
This paper presents and applies the concept of micro-boundary conditioning to the design synthesis of microsystems in order to quantify the influence of inherent limitations of the fabrication process and the operating conditions on both static and dynamic behavior of microsystems. The predicted results on the static and dynamic behavior of a capacitive MEMS device, fabricated through MUMPs process, under the influence of the fabrication limitation and operating environment are presented along with the test results. The comparison between the predicted and experimental results shows a good agreement.
Fabrication of capsule assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1973-01-01
Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.
Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.
2011-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi
We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situmore » ALD process to avoid the high-temperature-induced degradations.« less
NASA Astrophysics Data System (ADS)
Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin
2018-04-01
Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.
Bianchi, Eleonora F; Bhattacharyya, Mimi R; Meakin, Richard
2016-09-16
To explore the views of senior doctors on mental illness within the medical profession. There has been increasing interest on the issue of doctors' mental health. However, there have been few qualitative studies on senior doctors' general attitude towards mental illness within the medical profession. Large North London teaching hospital. 13 hospital consultants and senior academic general practitioners. A qualitative study involving semi-structured interviews and reflective work. The outcome measures were the themes derived from the thematic framework approach to analysis. Four main themes were identified. (1) 'Doctors' attitudes to mental illness'-doctors felt that there remained a significant stigma attached to suffering from a mental illness within the profession. (2) 'Barriers to seeking help'-doctors felt that there were numerous barriers to seeking help such as negative career implications, being perceived as weak, denial and fear of prejudice. (3) 'Support'-doctors felt that the use of support depended on certainty concerning confidentiality, which for occupational health was not thought to be guaranteed. Confiding in colleagues was rare except among close friends. Supervision for all doctors was raised. (4) 'General Medical Council (GMC) involvement'-doctors felt that uneasy referring colleagues to the GMC and the appraisal and revalidation process was thought not to be thorough enough in picking up doctors with a mental illness. Owing to the small size of this study, the conclusions are limited; however, if the findings are confirmed by larger studies, they suggest that greater efforts are needed to destigmatise mental illness in the profession and improve support for doctors. Additional research should be carried out into doctors' views on occupational health services in managing doctors with mental illness, the provision of supervision for all doctors and the effectiveness of the current appraisal and revalidation process at identifying doctors with a mental illness. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
1989-11-01
other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training
Design for the automation of composite wind turbine blade manufacture
NASA Astrophysics Data System (ADS)
Polcari, M. J.; White, K. D.; Sherwood, J. A.
2016-10-01
The majority of large wind turbine blades are manufactured from textile-reinforced resin-infused composites using an open mold. The placement of the textile reinforcements in the mold is traditionally accomplished by a manual process where dozens of workers hand place each dry fabric in the mold. Depending on the level of skill and experience of each worker and the relative complexity of the mold geometry, local areas may exhibit out-of-plane wrinkling and in-plane waviness. Fabric imperfections such as these can adversely impact the strength and stiffness of the blade, thereby compromising its durability in service. In an effort to reduce the variabilities associated with a manual-labor process, an automated piecewise shifting method has been proposed for fabric placement. This automated layup method saves time on the preform process and reduces variability from blade to blade. In the current research the automated shifting layup method is investigated using a robust and easy-to-use finite element modelling approach. User-defined material models utilizing a mesoscopic unit-cell modeling approach are linked with Abaqus to capture the evolution of the fabric shear stiffness and changes in the fiber orientations during the fabric-placement process. The simulation approach is demonstrated for the geometry of the trailing edge of a typical wind turbine blade. The simulation considers the mechanical behavior of the fabric and reliably predicts fabric deformation and failure zones.
Mishra, Anu; Butola, Bhupendra Singh
2018-01-19
In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi
2018-01-01
Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.
A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.
Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus
2016-08-01
A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.
Toward large-area roll-to-roll printed nanophotonic sensors
NASA Astrophysics Data System (ADS)
Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav
2014-05-01
Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular imprint (MIP) functionalization methods were applied in the sensor demonstrators. In this paper, the process flow in fabricating large-area nanophotonic structures by the use of sheet-level and roll-to-roll UV- nanoimprinting is reported.
Electromagnetic microforging apparatus for low-cost fabrication of molds for microlens arrays
NASA Astrophysics Data System (ADS)
Pribošek, Jaka; Diaci, Janez
2015-06-01
This study addresses the problem of low-cost microlens fabrication and outlines the development of a novel microforging apparatus for microlens mold fabrication. The apparatus consists of an electromagnetic impact tool which strikes a piston with a hardened steel ball into a workpiece. The impact creates a spherical indentation which serves as a lens cavity. The microforging apparatus is controlled by a microprocessor control unit communicating with a personal computer and enables on-the-fly variation of electromagnetic excitation to control the microforging process. We studied the effects of process parameters on the diameter of the fabricated lens cavities inspected by a custom automatic image processing algorithm. Different microforging regimes are analyzed and discussed. The surface quality of fabricated cavities has been inspected by confocal microscopy and the influence of fill factor on sphericity error has been studied. The proposed microforging method enables the fabrication of molds with 100% fill factor, surface roughness as low as Ra 0.15 µm and sphericity error lower than 0.5 µm. The fabricated microlens arrays exhibit nearly diffraction-limited performance, offering a wide range of possible applications. We believe this study provides access to microoptical technology for smaller optical and computer vision laboratories.
Using rapid infrared forming to control interfaces in titanium-matrix composites
NASA Technical Reports Server (NTRS)
Warrier, Sunil G.; Lin, Ray Y.
1993-01-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung
2011-09-01
Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.
Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.
Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei
2015-02-01
In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.
In-process fault detection for textile fabric production: onloom imaging
NASA Astrophysics Data System (ADS)
Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til
2011-05-01
Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.
NASA Astrophysics Data System (ADS)
Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.
2017-03-01
The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.
Stereolithographic processing of ceramics: Photon diffusion in colloidal dispersion
NASA Astrophysics Data System (ADS)
Garg, Rajeev
The technique of ceramic stereolithography (CSL) has been developed for fabricating near net shape ceramic objects. In stereolithography, the three-dimensional computer design file of the object is sliced into thin layers. Each layer is physically fabricated by photocuring the surface of a liquid photo-polymerizable resin bath by raster scanning an ultra-violet laser across the surface of the resin. In CSL, the liquid resin is a high concentration colloidal dispersion in a solution of ultraviolet curable polymers. The ceramic green body fabricated by ceramic stereolithography technique is subjected to the post processing steps of drying, binder burnout and sintering to form a dense ceramic object. An aqueous alumina dispersion in photocuring polymers with particle volume fraction greater than 0.5 was formulated for CSL process. Low molecular weight solution polymers were found to be best suited for formulating ceramic resins due to their inherently low viscosity and favorable interactions with the ceramic dispersant. A hydroxyapatite ceramic resin was also developed for the use in the CSL technique. A model is developed to describe the photocuring process in concentrated ceramic dispersion. The curing profile in ceramic dispersion is governed by multiple scattering from the ceramic particles and absorption by the photocuring polymers. Diffusion theory of light transport is used to model the multiple scattering and absorption phenomena. It is found that diffusive transport adequately describes the phenomena of laser pulse propagation in highly concentrated colloidal dispersions. A model was developed to describe the absorption in highly concentrated ceramic dispersion. Various complex-shaped monolithic alumina and hydroxyapatite objects were fabricated by CSL and shown to possess uniform microstructure. The mechanical properties and sintering behavior of the parts fabricated by CSL are shown to be comparable to those fabricated by other ceramic processing technique. An application of CSL has been established for fabricating orthopedic implants. Orthopedic implants and biomedical devices of defined micro and macro architecture with controlled pore sizes and porosity were fabricated by CSL. The bone implants were also fabricated form in vivo scan of the bone. The structures were implanted in rats to understand the biocompatibility of CSL fabricated parts.
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...
2016-01-06
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
USDA-ARS?s Scientific Manuscript database
In commercial poultry production, hatcheries are a source of continual contamination. Sanitation in the hatchery is a constant process, where minimal beneficial results are seen if done correctly, but drastic negative impacts are felt when done improperly. A sanitation method that could continually ...
Systemic Integration and Macro Steering
ERIC Educational Resources Information Center
Bleiklie, Ivar
2007-01-01
The article deals with the development of national higher education systems and the emergence of macro steering in Europe and to some extent in the USA. It is based on the assumption that this process of integration of higher education systems through macro steering will increasingly be felt as a forceful influence on higher education. Integration…
On Analysis of Electrical Engineering Programme in GCC Countries
ERIC Educational Resources Information Center
Memon, Qurban A.
2007-01-01
Electrical engineering (EE) curricula in the Gulf Cooperation Council (GCC) region have gone through an evolutionary process, and are now approaching a maturity level. In order to address academic and local industrial needs in a unified way, a need has been felt to investigate EE curricula in a way that highlights theoretical understanding, design…
40 CFR Appendix A to Part 161 - Data Requirements for Registration: Use Pattern Index
Code of Federal Regulations, 2011 CFR
2011-07-01
..., felt, feathers, etc. Electrical supplies, cables, and equipment 13. Domestic and Human Use Human Body... Industrial Uses. 13. Domestic and Human Use. 14. Miscellaneous Indoor Uses. Specific use patterns—listed... stock (e.g., rabbit) Fish food (commercial) Fish food (pet) Birdseed Processed grain products for human...
40 CFR Appendix A to Part 161 - Data Requirements for Registration: Use Pattern Index
Code of Federal Regulations, 2010 CFR
2010-07-01
..., felt, feathers, etc. Electrical supplies, cables, and equipment 13. Domestic and Human Use Human Body... Industrial Uses. 13. Domestic and Human Use. 14. Miscellaneous Indoor Uses. Specific use patterns—listed... stock (e.g., rabbit) Fish food (commercial) Fish food (pet) Birdseed Processed grain products for human...
Community identities as visions for landscape change
William P. Stewart; Derek Liebert; Kevin W. Larkin
2004-01-01
Residents' felt senses of their community can play substantial roles in determining visions for landscape change. Community identities are often anchored in tangible environments and events of a community, and have the potential to serve as visions for landscape planning processes. Photo-elicitation is applied in this study to connect community-based meanings to...
ERIC Educational Resources Information Center
Wright, Douglas; Moles, Ollie
A preliminary review of early responses to a questionnaire sent to secondary school principals across the United States revealed that most administrators felt more rigorous due process procedures should be followed in discipline cases than those required by federal regulations and school policies. The principals also tended to believe that…
The Professors behind the MOOC Hype
ERIC Educational Resources Information Center
Kolowich, Steve
2013-01-01
The largest-ever survey of professors who have taught MOOCs, or massive open online courses, shows that the process is time-consuming, but, according to the instructors, often successful. Nearly half of the professors felt their online courses were as rigorous academically as the versions they taught in the classroom. The survey, conducted by "The…
Human Behavior Based Exploratory Model for Successful Implementation of Lean Enterprise in Industry
ERIC Educational Resources Information Center
Sawhney, Rupy; Chason, Stewart
2005-01-01
Currently available Lean tools such as Lean Assessments, Value Stream Mapping, and Process Flow Charting focus on system requirements and overlook human behavior. A need is felt for a tool that allows one to baseline personnel, determine personnel requirements and align system requirements with personnel requirements. Our exploratory model--The…
Engaging General Biology Students with Learning Contracts
ERIC Educational Resources Information Center
Litchfield, Brenda; Mata, Juan; Gray, Laura
2007-01-01
Students in a general biology class used a learning contract where they selected chapter-relevant activities they could complete through several formats: oral, written, or artistic. The majority of students felt they learned a lot with this method, the process was motivating, and that it should be used in future semesters. (Contains 6 figures.)
Judicious Discipline: A Constitutional Approach for Public High Schools.
ERIC Educational Resources Information Center
Grandmont, Richard P.
2003-01-01
Examines the practices in a large public high school where constitutional language and democratic citizenship education--judicious discipline--are introduced into the decision-making processes of the classroom. Data analysis suggests that a considerable number of students felt they possessed a high level of respect and responsibility as a result.…
Innovative layer-by-layer processing for flame retardant behavior of cotton fabric
USDA-ARS?s Scientific Manuscript database
Flame retardant behavior has been prepared by the layer-by layer assemblies of kaolin/casein with inorganic chemicals on cotton fabrics. Three different kinds of cotton fabrics (print cloth, mercerized print cloth, and mercerized twill fabric) were prepared with solutions of mixture of BPEI, urea, ...
Al transmon qubits on silicon-on-insulator for quantum device integration
NASA Astrophysics Data System (ADS)
Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar
2017-07-01
We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.
NASA Astrophysics Data System (ADS)
Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev
In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.
Method for double-sided processing of thin film transistors
Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang
2008-04-08
This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
Front and backside processed thin film electronic devices
Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang
2010-10-12
This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-09-01
A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample fabricated by an infiltration and growth process. In this study we report the successful fabrication of 14 YBCO samples, with diameters of up to 32 mm, by this novel technique with a success rate of greater than 92%.
NASA Astrophysics Data System (ADS)
Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill
2017-08-01
This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive manufacturing to fabricate piezoelectric PVDF-based devices for applications such as sensing and energy harvesting.
Wang, Jintao; Wang, Hongfei
2017-06-15
The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanoparticle Selective Laser Processing for a Flexible Display Fabrication
NASA Astrophysics Data System (ADS)
Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,
2010-05-01
To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.
Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien
2018-02-18
In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.
[Difficulty of young children of understanding emotion dissimulation].
Perron, Mélanie; Gosselin, Pierre
2009-12-01
The authors investigated the understanding of emotion dissimulation in school-age children. Sixty participants were read short stories in which a main character expressed an emotion or hid an emotion from other characters. The participants were asked to identify the emotion felt by the main characters and to indicate the facial expressions they would display. Then they were asked what emotions the main characters felt while they were displaying these expressions, and what the beliefs of the other story characters would be as to the emotion felt by the main characters. The results revealed that children from 5 to 6 years of age have a partial understanding of emotion dissimulation. They were accurate in finding the emotion felt by the main characters when questioned the first time. They were also accurate in choosing the expressions the main characters would display to hide their emotions. However, they were often inaccurate as to the felt emotions of the main characters when questioned the second time. Compared with 9- and 10-year-olds, the younger children had more difficulty understanding the simultaneous character of felt and displayed emotions. Five- and 6-year-olds were also less accurate than the older children when asked to indicate the beliefs of the other characters in stories where felt emotions were hidden. (c) 2009 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Linkohr, R.; Schladitz, H.
1982-08-01
Nickel oxide-electrode plaques for alkaline batteries have been developed by carbon vapor deposition plating fiber plaque substrates with nickel from nickelcarbonyo. Carbon felt proved to be a suitable substrate and large (22 x sq 15 sq cm) and thick 3 - 5 mm) plaques could be made from this material. Three metallization devices were constructed, one of which allowed continuous processing with carbonyl gas flowing through the felt; this improved evenness of nickel distribution. The physical properties of the plaques - structure, electric resistance, heat conduction, gas permeation - approximated by simple models and the corresponding calculations were compared with measurements. Nickel oxide electrodes were made from the plaques and were cycled in half-cell arrangements. The project goals concerning nickel sayings, capacity per unit area and current capability were reached.
A programmable nanoreplica molding for the fabrication of nanophotonic devices.
Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng
2016-03-01
The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.
Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.
Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II
2017-01-01
Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.
A programmable nanoreplica molding for the fabrication of nanophotonic devices
Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng
2016-01-01
The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
The effects of processing techniques on magnesium-based composite
NASA Astrophysics Data System (ADS)
Rodzi, Siti Nur Hazwani Mohamad; Zuhailawati, Hussain
2016-12-01
The aim of this study is to investigate the effect of processing techniques on the densification, hardness and compressive strength of Mg alloy and Mg-based composite for biomaterial application. The control sample (pure Mg) and Mg-based composite (Mg-Zn/HAp) were fabricated through mechanical alloying process using high energy planetary mill, whilst another Mg-Zn/HAp composite was fabricated through double step processing (the matrix Mg-Zn alloy was fabricated by planetary mill, subsequently HAp was dispersed by roll mill). As-milled powder was then consolidated by cold press into 10 mm diameter pellet under 400 MPa compaction pressure before being sintered at 300 °C for 1 hour under the flow of argon. The densification of the sintered pellets were then determined by Archimedes principle. Mechanical properties of the sintered pellets were characterized by microhardness and compression test. The results show that the density of the pellets was significantly increased by addition of HAp, but the most optimum density was observed when the sample was fabricated through double step processing (1.8046 g/cm3). Slight increment in hardness and ultimate compressive strength were observed for Mg-Zn/HAp composite that was fabricated through double step processing (58.09 HV, 132.19 MPa), as compared to Mg-Zn/HAp produced through single step processing (47.18 HV, 122.49 MPa).
Improved Method of Manufacturing SiC Devices
NASA Technical Reports Server (NTRS)
Okojie, Robert S.
2005-01-01
The phrase, "common-layered architecture for semiconductor silicon carbide" ("CLASSiC") denotes a method of batch fabrication of microelectromechanical and semiconductor devices from bulk silicon carbide. CLASSiC is the latest in a series of related methods developed in recent years in continuing efforts to standardize SiC-fabrication processes. CLASSiC encompasses both institutional and technological innovations that can be exploited separately or in combination to make the manufacture of SiC devices more economical. Examples of such devices are piezoresistive pressure sensors, strain gauges, vibration sensors, and turbulence-intensity sensors for use in harsh environments (e.g., high-temperature, high-pressure, corrosive atmospheres). The institutional innovation is to manufacture devices for different customers (individuals, companies, and/or other entities) simultaneously in the same batch. This innovation is based on utilization of the capability for fabrication, on the same substrate, of multiple SiC devices having different functionalities (see figure). Multiple customers can purchase shares of the area on the same substrate, each customer s share being apportioned according to the customer s production-volume requirement. This makes it possible for multiple customers to share costs in a common foundry, so that the capital equipment cost per customer in the inherently low-volume SiC-product market can be reduced significantly. One of the technological innovations is a five-mask process that is based on an established set of process design rules. The rules provide for standardization of the fabrication process, yet are flexible enough to enable multiple customers to lay out masks for their portions of the SiC substrate to provide for simultaneous batch fabrication of their various devices. In a related prior method, denoted multi-user fabrication in silicon carbide (MUSiC), the fabrication process is based largely on surface micromachining of poly SiC. However, in MUSiC one cannot exploit the superior sensing, thermomechanical, and electrical properties of single-crystal 6H-SiC or 4H-SiC. As a complement to MUSiC, the CLASSiC five-mask process can be utilized to fabricate multiple devices in bulk single-crystal SiC of any polytype. The five-mask process makes fabrication less complex because it eliminates the need for large-area deposition and removal of sacrificial material. Other innovations in CLASSiC pertain to selective etching of indium tin oxide and aluminum in connection with multilayer metallization. One major characteristic of bulk micromachined microelectromechanical devices is the presence of three-dimensional (3D) structures. Any 3D recesses that already exist at a given step in a fabrication process usually make it difficult to apply a planar coat of photoresist for metallization and other subsequent process steps. To overcome this difficulty, the CLASSiC process includes a reversal of part of the conventional flow: Metallization is performed before the recesses are etched.
A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives
NASA Astrophysics Data System (ADS)
Sameoto, D.; Menon, C.
2009-11-01
We present a low-cost, large-scale method of fabricating biomimetic dry adhesives. This process is useful because it uses all photosensitive polymers with minimum fabrication costs or complexity to produce molds for silicone-based dry adhesives. A thick-film lift-off process is used to define molds using AZ 9260 photoresist, with a slow acting, deep UV sensitive material, PMGI, used as both an adhesion promoter for the AZ 9260 photoresist and as an undercutting material to produce mushroom-shaped fibers. The benefits to this process are ease of fabrication, wide range of potential layer thicknesses, no special surface treatment requirements to demold silicone adhesives and easy stripping of the full mold if process failure does occur. Sylgard® 184 silicone is used to cast full sheets of biomimetic dry adhesives off 4" diameter wafers, and different fiber geometries are tested for normal adhesion properties. Additionally, failure modes of the adhesive during fabrication are noted and strategies for avoiding these failures are discussed. We use this fabrication method to produce different fiber geometries with varying cap diameters and test them for normal adhesion strengths. The results indicate that the cap diameters relative to post diameters for mushroom-shaped fibers dominate the adhesion properties.
Automatic measurement for dimensional changes of woven fabrics based on texture
NASA Astrophysics Data System (ADS)
Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei
2014-01-01
Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.
The website-based eaTracker® 'My Goals' feature: a qualitative evaluation.
Lieffers, Jessica Rl; Haresign, Helen; Mehling, Christine; Arocha, Jose F; Hanning, Rhona M
2017-04-01
In 2011, Dietitians of Canada added 'My Goals' to its website-based nutrition/activity tracking program (eaTracker®, http://www.eaTracker.ca/); this feature allows users to choose 'ready-made' or 'write-your-own' goals and to self-report progress. The purpose of the present study was to document experiences and perceptions of goal setting and My Goals, and report users' feedback on what is needed in future website-based goal setting/tracking tools. One-on-one semi-structured interviews were conducted with (i) My Goals users and (ii) dietitians providing a public information support service, EatRight Ontario (ERO). My Goals users from Ontario and Alberta, Canada were recruited via an eaTracker website pop-up box; ERO dietitians working in Ontario, Canada were recruited via ERO. My Goals users (n 23; age 19-70 years; 91 % female; n 5 from Alberta/n 18 from Ontario) and ERO dietitians (n 5). Dietitians and users felt goal setting for nutrition (and activity) behaviour change was both a beneficial and a challenging process. Dietitians were concerned about users setting poor-quality goals and users felt it was difficult to stick to their goals. Both users and dietitians were enthusiastic about the My Goals concept, but felt the current feature had limitations that affected use. Dietitians and users provided suggestions to improve My Goals (e.g. more prominent presence of My Goals in eaTracker; assistance with goal setting; automated personalized feedback). Dietitians and users shared similar perspectives on the My Goals feature and both felt goal use was challenging. Several suggestions were provided to enhance My Goals that are relevant to website-based goal setting/tracking tool design in general.
Physics of direct-contact ultrasonic cloth drying process
Peng, Chang; Ravi, Saitej; Patel, Viral K.; ...
2017-02-27
Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less
Physics of direct-contact ultrasonic cloth drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Chang; Ravi, Saitej; Patel, Viral K.
Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less
Sonsmann, F K; Strunk, M; Gediga, K; John, C; Schliemann, S; Seyfarth, F; Elsner, P; Diepgen, T L; Kutz, G; John, S M
2014-05-01
To date, there are no legally binding requirements concerning product testing in cosmetics. This leads to various manufacturer-specific test methods and absent transparent information on skin cleansing products. A standardized in vivo test procedure for assessment of cleansing efficacy and corresponding barrier impairment by the cleaning process is needed, especially in the occupational context where repeated hand washing procedures may be performed at short intervals. For the standardization of the cleansing procedure, an Automated Cleansing Device (ACiD) was designed and evaluated. Different smooth washing surfaces of the equipment for ACiD (incl. goat hair, felt, felt covered with nitrile caps) were evaluated regarding their skin compatibility. ACiD allows an automated, fully standardized skin washing procedure. Felt covered with nitrile as washing surface of the rotating washing units leads to a homogenous cleansing result and does not cause detectable skin irritation, neither clinically nor as assessed by skin bioengineering methods (transepidermal water loss, chromametry). Automated Cleansing Device may be useful for standardized evaluation of the cleansing effectiveness and parallel assessment of the corresponding irritancy potential of industrial skin cleansers. This will allow objectifying efficacy and safety of industrial skin cleansers, thus enabling market transparency and facilitating rational choice of products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Combined Effects of Daily Stressors and Major Life Events on Daily Subjective Ages.
Bellingtier, Jennifer A; Neupert, Shevaun D; Kotter-Grühn, Dana
2017-07-01
Stressors may be a contributing factor in determining how old an individual feels, looks, or would like to be. Currently, little research has been devoted to understanding the relationship between stressors and subjective age in older adults. We focus on the combined impact of major life-event stressors and daily stressors on multiple indicators of subjective age: felt age, ideal age, and look age. Furthermore, we examine the process by which daily stressors relate to subjective ages by testing whether positive affect, control, and negative affect mediate this relationship. Using a daily-diary design, the current study measured older adults' (60-96 years old) stressors, subjective ages, personal control, and affect. Felt, ideal, and look ages each demonstrated a unique pattern of interactions between daily stressors and major life-event stressors. Furthermore, our findings suggest that on the daily level, the relationship between stressors and felt age is mediated by negative affect but not by control and positive affect. Findings indicate the need to consider the broader contextual picture of stressors, as well as their differential impact on multiple indicators of subjective age. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Cullen, Andrew T.; Price, Aaron D.
2017-04-01
Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.
Using rapid infrared forming to control interfaces in titanium-matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrier, S.G.; Lin, R.Y.
1993-03-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), themore » interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques. 21 refs.« less
NASA Astrophysics Data System (ADS)
Przybylak, Marcin; Maciejewski, Hieronim; Dutkiewicz, Agnieszka
2016-11-01
The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.
Gu, Jianting; Han, Jie; Liu, Dan; Yu, Xiaoqin; Kang, Lixing; Qiu, Song; Jin, Hehua; Li, Hongbo; Li, Qingwen; Zhang, Jin
2016-09-01
For the large-area fabrication of thin-film transistors (TFTs), a new conjugated polymer poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] is developed to harvest ultrahigh-purity semiconducting single-walled carbon nanotubes. Combined with spectral and nanodevice characterization, the purity is estimated up to 99.9%. High density and uniform network formed by dip-coating process is liable to fabricate high-performance TFTs on a wafer-scale and the as-fabricated TFTs exhibit a high degree of uniformity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabricating Copper Nanotubes by Electrodeposition
NASA Technical Reports Server (NTRS)
Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel
2009-01-01
Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.
NASA Technical Reports Server (NTRS)
Exum, Daniel
1996-01-01
AMB-21 is a new polymer developed by Mr. Ray Vannucci, NASA, LeRC as a noncarcinogenic polyimide matrix which may be suitable for fabricating composite parts by the Resin Transfer Modeling (RTM) process. The polyimide for this project was prepared at the Center of Composite Materials Research at N.C. A&T State University because it is not currently an item of commerce. The RTM process is especially suitable for producing geometrically complex composite parts at a low cost. Because of the high melting point and very high viscosity at the time of processing, polyimides have not been extensively used in the RTM process. The process for preparing AMB-21 as well as the process for fabricating composite plates will be described. The basic fabrication process consists of injecting a solvent solution of AMP-21 into a carbon fiber preform, evaporating the solvent, imidizing the polyimide, and vacuum/compression modeling the impregnated preform. All the above molding steps are preformed in a specially designed RTM mold which will be described. The results of this process have been inconsistent. Where as some experiments have resulted in a reasonably sound panels, others have not. Further refinements of the process are required to establish a reliable process.
NASA Astrophysics Data System (ADS)
Schellenberger, Lauren Brownback
Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive instructor interaction and additional group processing sessions. This study offers a new perspective on the phenomenon of group processing and informs science educators and teacher educators on the effective implementation of this important component of small-group learning.
Fabrication of magnetic bubble memory overlay
NASA Technical Reports Server (NTRS)
1973-01-01
Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.
NASA Astrophysics Data System (ADS)
Wang, Chengpeng; Li, Fuguo; Liu, Juncheng
2018-04-01
The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.
Development of the weld-braze joining process
NASA Technical Reports Server (NTRS)
Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.
1973-01-01
A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.
Project delay analysis of HRSG
NASA Astrophysics Data System (ADS)
Silvianita; Novega, A. S.; Rosyid, D. M.; Suntoyo
2017-08-01
Completion of HRSG (Heat Recovery Steam Generator) fabrication project sometimes is not sufficient with the targeted time written on the contract. The delay on fabrication process can cause some disadvantages for fabricator, including forfeit payment, delay on HRSG construction process up until HRSG trials delay. In this paper, the author is using semi quantitative on HRSG pressure part fabrication delay with configuration plant 1 GT (Gas Turbine) + 1 HRSG + 1 STG (Steam Turbine Generator) using bow-tie analysis method. Bow-tie analysis method is a combination from FTA (Fault tree analysis) and ETA (Event tree analysis) to develop the risk matrix of HRSG. The result from FTA analysis is use as a threat for preventive measure. The result from ETA analysis is use as impact from fabrication delay.
Investigation of radiation keeping property of barite coated cloth via image processing method
NASA Astrophysics Data System (ADS)
Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.
2012-09-01
Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.
Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging
NASA Astrophysics Data System (ADS)
Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue
2018-05-01
Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.
Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5
NASA Technical Reports Server (NTRS)
Merlette, J. B.
1972-01-01
Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques.
Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T
2016-08-01
Currently no data comparing the denture base adaptation of CAD-CAM and conventional denture processing techniques have been reported. The purpose of this in vitro study was to compare the denture base adaptation of pack and press, pour, injection, and CAD-CAM techniques for fabricating dentures to determine which process produces the most accurate and reproducible adaptation. A definitive cast was duplicated to create 40 gypsum casts that were laser scanned before any fabrication procedures were initiated. A master denture was made using the CAD-CAM process and was then used to create a putty mold for the fabrication of 30 standardized wax festooned dentures, 10 for each of the conventional processing techniques (pack and press, pour, injection). Scan files from 10 casts were sent to Global Dental Science, LLC for fabrication of the CAD-CAM test specimens. After specimens for each of the 4 techniques had been fabricated, they were hydrated for 24 hours and the intaglio surface laser scanned. The scan file of each denture was superimposed on the scan file of the corresponding preprocessing cast using surface matching software. Measurements were made at 60 locations, providing evaluation of fit discrepancies at the following areas: apex of the denture border, 6 mm from the denture border, crest of the ridge, palate, and posterior palatal seal. The use of median and interquartile range was used to assess accuracy and reproducibility. The Levine and Kruskal-Wallis analysis of variance was used to evaluate differences between processing techniques at the 5 specified locations (α=.05). The ranking of results based on median and interquartile range determined that the accuracy and reproducibility of the CAD-CAM technique was more consistently localized around zero at 3 of the 5 locations. Therefore, the CAD-CAM technique showed the best combination of accuracy and reproducibility among the tested fabrication techniques. The pack and press technique was more accurate at 2 of the 5 locations; however, its interquartile range (reproducibility) was the greatest of the 4 tested processing techniques. The pour technique was the most reproducible at 2 of the 5 locations; however, its accuracy was the lowest of the tested techniques. The CAD-CAM fabrication process was the most accurate and reproducible denture fabrication technique when compared with pack and press, pour, and injection denture base processing techniques. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.
Park, Jeong Hun; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2014-06-01
One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes.
Optimized micromirror arrays for adaptive optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M. Adrian
This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Yi, Peiyun; Deng, Yujun; Shu, Yunyi; Peng, Linfa
2018-08-01
Roll-to-roll (R2R) hot embossing is regarded as a cost-effective replication technology to fabricate microstructures on polymer films. However, the characteristics of continuous and fast forming for the R2R hot embossing process limits material flow during the filling stage and results in significant springback during the demolding stage. To resolve this issue, this study proposed a novel R2R powder hot embossing process, which combines the merits of the continuous fabrication of R2R hot embossing and near-net-shape forming of powder sintering and also decreases the whole cycle of the fabrication from films to microstructures. First, the relation between the molten layer thickness and processing parameters was discussed and an analytical model was established to predict the feed of the polymeric powder during R2R powder hot embossing. Then, with the use of a micro-pyramid array mold, the impact of the process parameters including mold temperature, feeding speed and applied force on the geometrical dimension of the patterned microstructures was discussed. Last, based on the response surface analysis, a process window, in terms of the mold temperature of 132 °C –145 °C, feeding speed of 0.1–1.4 m min‑1 and applied force of 15–50 kgf was determined for the continuous fabrication of completely-filled micropyramid arrays with the R2R powder hot embossing process. This research demonstrated the feasibility and superiority of the proposed R2R powder hot embossing process in continuously fabricating micropatterned structures on polymeric films.
19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD ...
19. DETAIL OF INTERIOR WALL CONSTRUCTION, VIEW TOWARD SOUTH, THIRD BAY Showing asphalt felt applied to both sides of interior wall studs beneath wood cladding. Back-nailing of felt indicates sequence of felt and cladding installation. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY
Testing of felt-ceramic materials for combustor applications
NASA Technical Reports Server (NTRS)
Venkat, R. S.; Roffe, G.
1983-01-01
The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.
Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.
Guo, Kun; Soeriyadi, Alexander H; Feng, Huajun; Prévoteau, Antonin; Patil, Sunil A; Gooding, J Justin; Rabaey, Korneel
2015-11-01
This work reports a simple and scalable method to convert stainless steel (SS) felt into an effective anode for bioelectrochemical systems (BESs) by means of heat treatment. X-ray photoelectron spectroscopy and cyclic voltammetry elucidated that the heat treatment generated an iron oxide rich layer on the SS felt surface. The iron oxide layer dramatically enhanced the electroactive biofilm formation on SS felt surface in BESs. Consequently, the sustained current densities achieved on the treated electrodes (1 cm(2)) were around 1.5±0.13 mA/cm(2), which was seven times higher than the untreated electrodes (0.22±0.04 mA/cm(2)). To test the scalability of this material, the heat-treated SS felt was scaled up to 150 cm(2) and similar current density (1.5 mA/cm(2)) was achieved on the larger electrode. The low cost, straightforwardness of the treatment, high conductivity and high bioelectrocatalytic performance make heat-treated SS felt a scalable anodic material for BESs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sakaguchi, Masayuki; Takano, Tamaki
2016-08-02
Hemolysis related to a kinked prosthetic graft or inner felt strip is a very rare complication after aortic surgery. We describe herein a case of hemolytic anemia that developed due to aortic flap of the dissection and inversion of an inner felt strip that was applied at the proximal anastomosis of a replaced ascending aorta 10 years previously. A 74-year-old woman presented with consistent hemolytic anemia 10 years after replacement of the ascending aorta to treat Stanford type A acute aortic dissection. The cause of hemolysis was attributed to mechanical injury of red blood cells at a site of stenosis caused by aortic flap of the dissection and inversion of the felt strip used for the proximal anastomosis. Repeated resection of the strip and graft replacement of the ascending aorta resolved this problem. We considered that blood flow disrupted by a jet of blood at the site of the proximal inner felt strip was the cause of severe hemolysis, we describe rare hemolytic anemia at the site of aortic flap and inverted felt strip after replacement of the ascending aorta.
Bourne, Tom; Vanderhaegen, Joke; Vranken, Renilt; Wynants, Laure; De Cock, Bavo; Peters, Mike; Timmerman, Dirk; Van Calster, Ben; Jalmbrant, Maria; Van Audenhove, Chantal
2016-07-04
To examine doctors' experiences of complaints, including which aspects are most stressful. We also investigated how doctors felt complaints processes could be improved. A qualitative study based on a cross-sectional survey of members of the British Medical Association (BMA). We asked the following: (1) Try to summarise as best as you can your experience of the complaints process and how it made you feel. (2) What were the most stressful aspects of the complaint? (3) What would you improve in the complaints system? We sent the survey to 95 636 doctors, and received 10 930 (11.4%) responses. Of these, 6146 had a previous, recent or current complaint and 3417 (31.3%) of these respondents answered questions 1 and 2. We randomly selected 1000 answers for analysis, and included 100 using the saturation principle. Of this cohort, 93 responses for question 3 were available. Doctors frequently reported feeling powerless, emotionally distressed, and experiencing negative feelings towards both those managing complaints and the complainants themselves. Many felt unsupported, fearful of the consequences and that the complaint was unfair. The most stressful aspects were the prolonged duration and unpredictability of procedures, managerial incompetence, poor communication and perceiving that processes are biased in favour of complainants. Many reported practising defensively or considering changing career after a complaint, and few found any positive outcomes from complaints investigations. Physicians suggested procedures should be more transparent, competently managed, time limited, and that there should be an open dialogue with complainants and policies for dealing with vexatious complaints. Some felt more support for doctors was needed. Complaints seriously impact on doctors' psychological wellbeing, and are associated with defensive practise. This is not beneficial to patient care. To improve procedures, doctors propose they are simplified, time limited and more transparent. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.
Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz
2016-06-10
Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.
Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden
Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz
2016-01-01
Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420
Fabrication of tungsten wire reinforced nickel-base alloy composites
NASA Technical Reports Server (NTRS)
Brentnall, W. D.; Toth, I. J.
1974-01-01
Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.
Bonded polyimide fuel cell package
Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry
2010-06-08
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin
2016-03-05
Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance of resin transfer molded multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor cost savings are projected for the Saerbeck fabric as compared to uniweave fabric currently being used by Douglas in the NASA ACT wing development program.
Processing Science of Epoxy Resin Composites
1984-01-15
3 2.2 LAMINATE FABRICATION 30 2.2.1 Baseline Laminate Fabrication 30 2.2.2 Large Laminate Fabrication 36 2.3 DIFFUSIVITY AND SOLUBILITY...Thick Laminate 42 28 Baseline Cure Cycle With Specimen Advancement Levels 45 29 Composite Panel Fabrication 47 30 Composite Panel Fabrication 48 31...first change was the elimination of the different 1 resin formulations and concentration on the normal or baseline 5208/T300 prepreg as produced by
Gao, Bingbing; Liu, Hong; Gu, Zhongze
2014-12-23
We report a method for the bottom-up fabrication of paper-based capillary microchips by the blade coating of cellulose microfibers on a patterned surface. The fabrication process is similar to the paper-making process in which an aqueous suspension of cellulose microfibers is used as the starting material and is blade-coated onto a polypropylene substrate patterned using an inkjet printer. After water evaporation, the cellulose microfibers form a porous, hydrophilic, paperlike pattern that wicks aqueous solution by capillary action. This method enables simple, fast, inexpensive fabrication of paper-based capillary channels with both width and height down to about 10 μm. When this method is used, the capillary microfluidic chip for the colorimetric detection of glucose and total protein is fabricated, and the assay requires only 0.30 μL of sample, which is 240 times smaller than for paper devices fabricated using photolithography.
Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing
NASA Astrophysics Data System (ADS)
Liu, Shih-Jung; Huang, Yu-Chin; Yang, Sen-Yeu; Hsieh, Kuo-Huang
2010-07-01
This paper discusses an innovative and effective ultrasonic embossing process, which enables the rapid fabrication of surface-relief plastic diffusers. The metallic mold bearing the microstructures is fabricated using a tungsten carbide turning machine. A 1500-W ultrasonic vibrator with an output frequency of 20 kHz was used to replicate the microstructure onto 1-mm-thick PMMA plates in the experiments. During ultrasonic embossing, the ultrasonic energy is converted into heat through intermolecular friction at the master mold/plastic plate interface due to asperities to melt the thermoplastic at the interface and thereby to replicate the microstructure. Under the proper processing conditions, high-performance plastic diffusers have been successfully fabricated. The cycle time required to successfully fabricate a diffuser is less than 2 s. The experimental results suggest that ultrasonic embossing could provide an effective way of fabricating high-performance plastic diffusers with a high throughput.
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
Fabrication of lightweight Si/SiC LIDAR mirrors
NASA Technical Reports Server (NTRS)
Goela, Jitendra S.; Taylor, Raymond L.
1991-01-01
A new, chemical vapor deposition (CVD) process was developed for fabricating lightweight, polycrystalline silicon/silicon-carbide (Si/SiC) mirrors. The process involves three CVD steps: (1) to produce the mirror faceplate; (2) to form the lightweight backstructure, which is deposited integral to the faceplate; and (3) to deposit a layer of optical-grade material, e.g., Si, onto the front surface of the faceplate. The mirror figure and finish are fabricated into the faceplate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
Wiggins, Helen; Hartley, Anna; Clarke, Emily; Foley, Elizabeth; Nandwani, Rak; Carlin, Elizabeth; Waters, Laura; Ahmed, Nadia
2018-01-01
In April 2013, local authorities gained responsibility for commissioning sexual health services in England. With many services going out to tender and resultant change in services or service provider, there is anecdotal evidence that this has impacted on the education, training and morale of genitourinary medicine (GUM) trainees. The aim of this study was to evaluate the impact of tendering on GUM trainees. An electronic survey designed by the British Association for Sexual Health and HIV Trainees' Collaborative for Audit, Research and Quality Improvement Projects (T-CARQ) was distributed to GUM trainees and newly appointed consultants. Eighty-two individuals responded (74% GUM trainees, 25% newly appointed consultants, 1% locum appointed for service). Sixty-three per cent (45/72) had experience of training within a service which was being tendered. Of these, 59% (24/41) felt their training was not considered during the tendering process and 20% (8/41) felt that it was. Forty-four per cent (18/41) felt adequately supported. Thirty per cent (12/40) reported active participation in the tendering process. On a scale of 0 (no impact) to 5 (major impact), the median score for impact of tendering on training was 2. The positive/negative impact of tendering on different training elements was rated: other than management experience the overall impact on all parameters was negative, namely morale, senior support and education. In conclusion, this survey describes the variable impact of service tendering on GUM training. Our recommendations for maintaining training standards despite tendering include actively involving trainees and education partners, inclusion of specialist GUM training in service specifications, development of guidance for commissioners and services for the management of GUM training within tendering.
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong
2018-01-01
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759
NASA Technical Reports Server (NTRS)
Benzie, M. A.
1998-01-01
The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.
Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems
NASA Astrophysics Data System (ADS)
Dilip, J. J. S.; Janaki Ram, G. D.
2014-01-01
Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.
The response of fabric variations to simple shear and migration recrystallization
Kennedy, Joseph H.; Pettit, Erin C.
2015-06-01
The observable microstructures in ice are the result of many dynamic and competing processes. These processes are influenced by climate variables in the firn. Layers deposited in different climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may 'remember' these past climate regimes. In this paper, we model the evolution of fabric variations below the firn–ice transition and show that the addition of shear to compressive-stress regimes preserves the modeled fabric variations longer than compression-only regimes, because shear drives a positive feedback between crystal rotation and deformation. Even without shear, the modeled icemore » retains memory of the fabric variation for ~200 ka in typical polar ice-sheet conditions. Our model shows that temperature affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution profile when comparing results straddling the thermal-activation-energy threshold (~–10°C). Even at high temperatures, migration recrystallization does not eliminate the modeled fabric's memory under most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled fabric's memory more quickly than low levels of nearest-neighbor interactions. Finally, our model predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of conditions found in polar ice sheets.« less
Recognising Fathers: A National Survey of Fathers Who Have Children with Learning Disabilities
ERIC Educational Resources Information Center
Towers, Christine
2009-01-01
The "Recognising Fathers" research began in 2005 in response to hearing from mothers and fathers that fathers often felt marginalised in the process of arranging care and support for their children with learning disabilities. At the same time it was apparent that national family policy was indicating a growing recognition of the…
Carbon nanotube-containing structures, methods of making, and processes using same
Wang, Yong [Richland, WA; Chin, Ya-Huei [Richland, WA; Gao, Yufei [Blue Bell, PA; Aardahl, Christopher L [Richland, WA; Stewart, Terri L [Richland, WA
2006-03-14
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
Carbon Nanotube-Containing Structures, Methods Of Making, And Processes Using Same
Wang, Yong; Chin, Ya-Huei; Gao, Yufei; Aardahl, Christopher L.; Stewart, Terri L.
2004-11-30
Carbon nanotube structures are disclosed in which nanotubes are disposed over a porous support such as a foam, felt, mesh, or membrane. Techniques of making these structures are also disclosed. In some of these techniques, a support is pretreated with a templated surfactant composition to assist with the formation of a nanotube layer.
iPads in the Classroom: What Do Teachers Think?
ERIC Educational Resources Information Center
Ferguson, Janet M.; Oigara, James N.
2017-01-01
In education, new technologies are used to improve the process of teaching and learning. This study examined middle school teachers' perceptions regarding the use of iPads for instruction. The participants, 53 middle school teachers in Western New York, responded to an online survey, asking them questions about how they felt about the 1:1 iPad…
Jonestown in the Shadow of Maslow's Pyramid.
ERIC Educational Resources Information Center
Easley, Edgar M.; Wigglesworth, David C.
1979-01-01
Reviews Maslow's hierarchy of needs in the light of the Jonestown tragedy. Maintains that members of the People's Temple felt frustrated in attaining the lower levels in the world of reality, and so moved outside the pyramid in search of the top, self-actualization. In the process, their primary needs were met. Journal availability: see SO 507…
Teacher Agency within the Context of Formative Teacher Assessment: An In-Depth Analysis
ERIC Educational Resources Information Center
Verberg, Christel P. M.; Tigelaar, Dineke E. H.; van Veen, Klaas; Verloop, Nico
2016-01-01
Teachers' agency has an effect on their own learning process at the workplace. In this study we explored the extent to which teachers participating in a formative teacher assessment procedure developed a sense of agency. We investigated not only whether teachers participating in a such an assessment procedure experienced agency and thus felt in…
Aloneness and the Complicated Selves of Donald M. Murray
ERIC Educational Resources Information Center
Stewart, Thomas J.
2011-01-01
This article examines Donald M. Murray's ideas about what he considered the essential solitude of all writing and what happens within that solitude. Murray, a pioneer of the process and modern expressivism movements in composition, identified a number of forces that he felt were at work within his mind whenever he wrote; this complicated aloneness…
"It's Like Having a Metal Detector at the Door": A Conversation with Students about Voice.
ERIC Educational Resources Information Center
Garcia, Florencia; And Others
1995-01-01
Presents a dialogue among three student coresearchers who participated in a longitudinal research project about their motivation to learn. The dialogue highlights what it meant to them to have a voice, what was involved in having a voice, how to improve the process, and how they felt about being coresearchers. (SM)
ERIC Educational Resources Information Center
Oliver, James D., III
2008-01-01
This paper describes the process taken for a future action research project "the relationship of the general and special education teachers in an inclusive setting". The author observed that general education teachers made attempts to exclude students from "their classroom" who they felt "don't belong". For inclusion…
ERIC Educational Resources Information Center
Kosnick, Clare
2000-01-01
Followed up six graduates from a teacher education program with an action research focus, following them through their first teaching year. Respondents felt action research was a process that helped them acquire skills, attitudes, and knowledge for teaching, especially in language arts. The study reveals lack of transference of skills learned…
Lithographic fabrication of nanoapertures
Fleming, James G.
2003-01-01
A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.
Fabrication of large area woodpile structure in polymer
NASA Astrophysics Data System (ADS)
Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.
2009-02-01
A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.
NASA Astrophysics Data System (ADS)
Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.
2018-05-01
We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.
Computer Aided Design of Computer Generated Holograms for electron beam fabrication
NASA Technical Reports Server (NTRS)
Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid
1989-01-01
Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.
Consolidation of graphite thermoplastic textile preforms for primary aircraft structure
NASA Technical Reports Server (NTRS)
Suarez, J.; Mahon, J.
1991-01-01
The use of innovative cost effective material forms and processes is being considered for fabrication of future primary aircraft structures. Processes that have been identified as meeting these goals are textile preforms that use resin transfer molding (RTM) and consolidation forming. The Novel Composites for Wing and Fuselage Applications (NCWFA) program has as its objective the integration of innovative design concepts with cost effective fabrication processes to develop damage-tolerant structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. In this on-going effort, design trade studies were conducted to arrive at advanced wing designs that integrate new material forms with innovative structural concepts and cost effective fabrication methods. The focus has been on minimizing part count (mechanical fasteners, clips, number of stiffeners, etc.), by using cost effective textile reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin transfer molding processing, and thermoplastic forming concepts. The fabrication of representative Y spars by consolidation methods will be described. The Y spars were fabricated using AS4 (6K)/PEEK 150g commingled angle interlock 0/90-degree woven preforms with +45-degree commingled plies stitched using high strength Toray carbon thread and processed by autoclave consolidation.
Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process
NASA Astrophysics Data System (ADS)
Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun
2017-12-01
An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.
Gender Identity and Adjustment in Black, Hispanic, and White Preadolescents
ERIC Educational Resources Information Center
Corby, Brooke C.; Hodges, Ernest V. E.; Perry, David G.
2007-01-01
The generality of S. K. Egan and D. G. Perry's (2001) model of gender identity and adjustment was evaluated by examining associations between gender identity (felt gender typicality, felt gender contentedness, and felt pressure for gender conformity) and social adjustment in 863 White, Black, and Hispanic 5th graders (mean age = 11.1 years).…
ERIC Educational Resources Information Center
Long, Andrew F.; Kneafsey, Rosie; Ryan, Julia; Berry, Judith
2002-01-01
Responses from 137 nurses indicated that 64% felt their education had not prepared them for work in rehabilitation; only one-fourth of recent graduates felt prepared; 71% had participated in continuing education, but many felt they learned from experience or from others. Better education would enhance confidence, promote professional equality, and…
Fabrication of Superconducting Detectors for Studying the Universe
NASA Technical Reports Server (NTRS)
Brown, Ari-David
2012-01-01
Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.
Fabrication of cast particle-reinforced metals via pressure infiltration
NASA Technical Reports Server (NTRS)
Klier, E. M.; Mortensen, A.; Cornie, J. A.; Flemings, M. C.
1991-01-01
A new casting process for fabrication of particle-reinforced metals is presented whereby a composite of particulate reinforcing phase in metal is first produced by pressure infiltration. This composite is then diluted in additional molten metal to obtain the desired reinforcement volume fraction and metal composition. This process produces a pore-free as-cast particulate metal-matrix composite. This process is demonstrated for fabrication of magnesium-matrix composites containing SiC reinforcements of average diameter 30, 10 and 3 microns. It is compared with the compocasting process, which was investigated as well for similar SiC particles in Mg-10 wt pct Al, and resulted in unacceptable levels of porosity in the as-cast composite.
Fabrication of thorium bearing carbide fuels
Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.
1981-01-01
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, J.L.; Sigmon, T.W.
1995-10-10
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, James L.; Sigmon, Thomas W.
1995-01-01
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.
Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain
2017-01-01
Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao
2014-08-01
Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.
Fabrication of Microfiber Patterns with Ivy Shoot-Like Geometries Using Improved Electrospinning
Jeong, Young Hun; Lee, Jongwan
2016-01-01
Fibers and fibrous structures are used extensively in various fields due to their many advantages. Microfibers, as well as nanofibers, are considered to be some of the most valuable forms of advanced materials. Accordingly, various methods for fabricating microfibers have been developed. Electrospinning is a useful fabrication method for continuous polymeric nano- and microfibers with attractive merits. However, this technique has limitations in its ability to control the geometry of fibrous structures. Herein, advanced electrospinning with direct-writing functionality was used to fabricate microfiber patterns with ivy shoot-like geometries after experimentally investigating the effects of the process conditions on the fiber formation. The surface properties of the fibers were also modified by introducing nanoscale pores through the use of higher levels of humidity during the fabrication process. PMID:28773390
Fabrication of Microfiber Patterns with Ivy Shoot-Like Geometries Using Improved Electrospinning.
Jeong, Young Hun; Lee, Jongwan
2016-04-01
Fibers and fibrous structures are used extensively in various fields due to their many advantages. Microfibers, as well as nanofibers, are considered to be some of the most valuable forms of advanced materials. Accordingly, various methods for fabricating microfibers have been developed. Electrospinning is a useful fabrication method for continuous polymeric nano- and microfibers with attractive merits. However, this technique has limitations in its ability to control the geometry of fibrous structures. Herein, advanced electrospinning with direct-writing functionality was used to fabricate microfiber patterns with ivy shoot-like geometries after experimentally investigating the effects of the process conditions on the fiber formation. The surface properties of the fibers were also modified by introducing nanoscale pores through the use of higher levels of humidity during the fabrication process.
Optical device fabrication using femtosecond laser processing with glass-hologram
NASA Astrophysics Data System (ADS)
Suzuki, Jun'ichi; Arima, Yasunori; Tanaka, Shuhei
2011-03-01
Using femtosecond laser processing with glass-hologram, fabrication of 1cm-long straight waveguide and X-coupler is reported in this paper. We design and fabricate 4-level glass-hologram which generates 1cm-long straight line intensity. We fabricate 1cm-long waveguides inside fused silica at one shot exposure with the glass-hologram. We investigate the waveguide performance of near field pattern and propagation loss at wavelength of 1550nm. The near field pattern is almost circular shape. The propagation loss at 1550nm is estimated to be < 1.0 dB/cm. As an example of an optical device consisting of straight waveguides, we fabricate X-coupler or 2x2 coupler using straight line waveguides, and observe the output power ratio depending on crossing angle.
Investigation of radiation keeping property of barite coated cloth via image processing method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilincarslan, S.; Akkurt, I.; Molla, T.
Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. Themore » results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.« less
NASA Astrophysics Data System (ADS)
Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.; Frobert, L.
2015-12-01
Many seismic events are only picked up by seismometers but the only earthquakes that really interest the public (and the authorities) are those which are felt by the population. It is not a magnitude issue only; even a small magnitude earthquake, if widely felt can create a public desire for information. In LastQuake, felt events are automatically discriminated through the reactions of the population on the Internet. It uses three different and complementary methods. Twitter Earthquake detection, initially developed by the USGS, detects surges in the number of tweets containing the word "earthquake" in different languages. Flashsourcing, developed by EMSC, detects traffic surges caused by eyewitnesses on its website - one of the top global earthquake information websites. Both detections happen typically within 2 minutes of an event's occurrence. Finally, an earthquake is also confirmed as being felt when at least 3 independent felt reports (questionnaires) are collected. LastQuake automatically merges seismic data, direct (crowdsourced) and indirect eyewitnesses' contributions, damage scenarios and tsunami alerts to provide information on felt earthquakes and their effects in a time ranging from a few tens of seconds to 90 minutes. It is based on visual communication to erase language hurdles, for instance, it crowdsources felt reports through simple cartoons as well as geo-located pics. It was massively adopted in Nepal within hours of the Gorkha earthquake and collected thousands of felt reports and more than 100 informative pics. LastQuake is also a seismic risk reduction tools thanks to its very rapid information. When such information does not exist, people tend to call emergency services, crowds emerge and rumors spread. In its next release, LastQuake will also have "do/don't do" cartoons popping up after an earthquake to encourage appropriate behavior.
Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper
NASA Astrophysics Data System (ADS)
Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin
2017-12-01
LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.
NASA Technical Reports Server (NTRS)
Thacher, E. F.
1972-01-01
Six subscale Intermold cylinder assemblies with a total of twelve different concepts for transition to AGCarb were fabricated. Three of the cylinder assemblies were made by helically winding the hoop fibers and three were of orthogonal configuration. The fabrication process is summarized and details of each manufacturing method are given. The objectives of the test program were to: (1) demonstrate the fabricability of the Intermold 3 subscale flanges, (2) produce an integral transition from Intermold 3 to AGCarb material, (3) define a workable manufacturing process, and (4) identify a best suited inspection method. The objectives were met and the results are described.
NASA Astrophysics Data System (ADS)
Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong
2004-10-01
This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.
A Recipe for Soft Fluidic Elastomer Robots
Marchese, Andrew D.; Katzschmann, Robert K.
2015-01-01
Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913
A Recipe for Soft Fluidic Elastomer Robots.
Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela
2015-03-01
This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.
Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting
NASA Astrophysics Data System (ADS)
Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi
2016-07-01
We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.
NASA Astrophysics Data System (ADS)
Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.
2012-01-01
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.
Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.
Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien
2017-09-28
Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.
NASA Astrophysics Data System (ADS)
Park, Jong Ho; Park, Jung Jin; Park, O. Ok; Jin, Chang-Soo; Yang, Jung Hoon
2016-04-01
Because of the rise in renewable energy use, the redox flow battery (RFB) has attracted extensive attention as an energy storage system. Thus, many studies have focused on improving the performance of the felt electrodes used in RFBs. However, existing analysis cells are unsuitable for characterizing felt electrodes because of their complex 3-dimensional structure. Analysis is also greatly affected by the measurement conditions, viz. compression ratio, contact area, and contact strength between the felt and current collector. To address the growing need for practical analytical apparatus, we report a new analysis cell for accurate electrochemical characterization of felt electrodes under various conditions, and compare it with previous ones. In this cell, the measurement conditions can be exhaustively controlled with a compression supporter. The cell showed excellent reproducibility in cyclic voltammetry analysis and the results agreed well with actual RFB charge-discharge performance.
2009-01-01
This study examined felt obligation to help others in two domains (close others and society) as protective factors against losses in psychological well-being following functional decline. Lagged-dependent regression models were estimated using data from 849 respondents aged 35–74 years and without any functional limitations at baseline in the 1995–2005 National Survey of Midlife in the United States. Greater felt obligation to help close others protected against declining self-acceptance in the face of more severe functional decline, and greater felt obligation to help society protected against declining personal growth and self-acceptance. Greater felt obligation to help close others and society protected against increasing depressive symptoms at younger ages in adulthood. Findings suggest the importance for additional research on how aspects of altruism can promote psychological adaptation to declining functional health in middle and later life. PMID:19825942
Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt
NASA Astrophysics Data System (ADS)
Kailiang, Zhu; Jianqiao, Fu
2017-11-01
The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.
Fabrication of thorium bearing carbide fuels
Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.
A smartphone application for earthquakes that matter!
NASA Astrophysics Data System (ADS)
Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert
2014-05-01
Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected level of shaking intensity with empirical models of fatality losses calibrated on past earthquakes in each country. Non-seismic detections and macroseismic questionnaires collected online are combined to identify as many as possible of the felt earthquakes regardless their magnitude. Non seismic detections include Twitter earthquake detections, developed by the US Geological Survey, where the number of tweets containing the keyword "earthquake" is monitored in real time and flashsourcing, developed by the EMSC, which detect traffic surges on its rapid earthquake information website caused by the natural convergence of eyewitnesses who rush to the Internet to investigate the cause of the shaking that they have just felt. All together, we estimate that the number of detected felt earthquakes is around 1 000 per year, compared with the 35 000 earthquakes annually reported by the EMSC! Felt events are already the subject of the web page "Latest significant earthquakes" on EMSC website (http://www.emsc-csem.org/Earthquake/significant_earthquakes.php) and of a dedicated Twitter service @LastQuake. We will present the identification process of the earthquakes that matter, the smartphone application itself (to be released in May) and its future evolutions.
Is Primary-Process Cognition a Feature of Hypnosis?
Finn, Michael T; Goldman, Jared I; Lyon, Gyrid B; Nash, Michael R
2017-01-01
The division of cognition into primary and secondary processes is an important part of contemporary psychoanalytic metapsychology. Whereas primary processes are most characteristic of unconscious thought and loose associations, secondary processes generally govern conscious thought and logical reasoning. It has been theorized that an induction into hypnosis is accompanied by a predomination of primary-process cognition over secondary-process cognition. The authors hypothesized that highly hypnotizable individuals would demonstrate more primary-process cognition as measured by a recently developed cognitive-perceptual task. This hypothesis was not supported. In fact, low hypnotizable participants demonstrated higher levels of primary-process cognition. Exploratory analyses suggested a more specific effect: felt connectedness to the hypnotist seemed to promote secondary-process cognition among low hypnotizable participants.
Lorenzen, C L; Martin, A M; Griffin, D B; Dockerty, T R; Walter, J P; Johnson, H K; Savell, J W
1997-01-01
Lamb carcasses (n = 94) from five packing plants, selected to vary in weight class and fat thickness, were used to determine retail yield and labor requirements of wholesale lamb fabrication. Carcasses were allotted randomly according to weight class to be fabricated as whole carcasses (n = 20), three-piece boxes (n = 22), or subprimals (n = 52). Processing times (seconds) were recorded and wholesale and retail weights (kilograms) were obtained to calculate retail yield. Subprimals were fabricated into bone-in retail cuts or boneless or semi-boneless retail cuts. Retail yield for subprimal lamb legs decreased from 85.3 +/- .6% for bone-in to 68.0 +/- .7% for a completely boneless retail product. Correspondingly, processing times increased from 126.1 +/- 5.4 s to 542.0 +/- 19.2 s for bone-in and boneless legs, respectively. For all subprimals, retail yield percentage tended to decrease and total processing time increase as cuts were fabricated to boneless or semi-boneless end points compared with a bone-in end point. Percentage retail yield did not differ (P > .05) among whole carcass, three-piece box, and subprimal marketing methods. Total processing time was shorter for subprimals (P < .05) than for the other two marketing methods.
Ou, Yanghao; Chen, Jinbo; Lu, Pengbo; Cheng, Fan; Lin, Meiyan; Su, Lingfeng; Li, Jun; Liu, Detao
2017-07-31
Biodegradable highly nanostructured paper has received great interest in past years due to its excellent optical properties which facilitate its wide applications in green flexible electronics and devices. However, energy and/or time-consuming procedure during the process of fabricating most nanostructured transparent paper are presently the main obstacle to their scalable production. In this work, we demonstrated a novel nanostructured paper with dually high transparency (∼91%) and high haze (∼89%) that was directly fabricated from original paper with rapid ILs-polishing processes. The whole fabricating time only requires 10 min. Compared to the previously reported nanopaper made of the isolated cellulose nanofibers by pure mechanical and/or chemical approaches, this work presented herein is devoted to use green ILs to polish directly the micrometer-sized fibrous paper into the nanostructured paper. This new method brings a rapid fabrication of transparent nanostructured paper while also retaining dual intriguing properties both in optical transmittance and haze. This work is capable of fabricating next-generation flexible and highly transparent and haze paper by a high-speed roll-to-roll manufacturing process with a much lower cost.
Heater Validation for the NEXT-C Hollow Cathodes
NASA Technical Reports Server (NTRS)
Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.
2017-01-01
Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.
Bonded polyimide fuel cell package and method thereof
Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry
2005-11-01
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
Code of Federal Regulations, 2011 CFR
2011-04-01
... together of all components (including thread, decorative embellishments, buttons, zippers, or similar...,” when used with reference to yarns, means that all of the production processes, starting with the... country, and, when used with reference to fabric(s), means that all of the production processes, starting...
Code of Federal Regulations, 2013 CFR
2013-04-01
... together of all components (including thread, decorative embellishments, buttons, zippers, or similar...,” when used with reference to yarns, means that all of the production processes, starting with the... country, and, when used with reference to fabric(s), means that all of the production processes, starting...
Code of Federal Regulations, 2010 CFR
2010-04-01
... together of all components (including thread, decorative embellishments, buttons, zippers, or similar...,” when used with reference to yarns, means that all of the production processes, starting with the... country, and, when used with reference to fabric(s), means that all of the production processes, starting...
Method of preparation of bonded polyimide fuel cell package
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA; Graff, Robert T [Modesto, CA; Bettencourt, Kerry [Dublin, CA
2011-04-26
Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.
Scale-up of an ultrasound-enhanced bioscouring process
USDA-ARS?s Scientific Manuscript database
Using previously determined optimized reaction conditions, an ultrasound-enhanced bioscouring process was scaled to ten gallon capacity and a system of rollers was added which allowed for continuous fabric feed and equipment operation. UV-Vis photospectroscopic data from bioscoured fabric samples co...
Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Suplinskas G. DiBona; W. Grant
2001-10-29
Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation
Pre-Nursing Students Perceptions of Traditional and Inquiry Based Chemistry Laboratories
NASA Astrophysics Data System (ADS)
Rogers, Jessica
This paper describes a process that attempted to meet the needs of undergraduate students in a pre-nursing chemistry class. The laboratory was taught in traditional verification style and students were surveyed to assess their perceptions of the educational goals of the laboratory. A literature review resulted in an inquiry based method and analysis of the needs of nurses resulted in more application based activities. This new inquiry format was implemented the next semester, the students were surveyed at the end of the semester and results were compared to the previous method. Student and instructor response to the change in format was positive. Students in the traditional format placed goals concerning technique above critical thinking and felt the lab was easy to understand and carry out. Students in the inquiry based lab felt they learned more critical thinking skills and enjoyed the independence of designing experiments and answering their own questions.
Self-esteem and the quest for felt security: how perceived regard regulates attachment processes.
Murray, S L; Holmes, J G; Griffin, D W
2000-03-01
The authors proposed that personal feelings of self-esteem foster the level of confidence in a partner's regard critical for satisfying attachments. Dating and married couples described themselves, their partners, how they thought their partners saw them, and how they wanted their partners to see them on a variety of interpersonal qualities. The results revealed that low self-esteem individuals dramatically underestimated how positively their partners saw them. Such unwarranted and unwanted insecurities were associated with less generous perceptions of partners and lower relationship well-being. The converse was true for high self-esteem individuals. A longitudinal examination of the dating couples revealed that the vulnerabilities of lows were only exacerbated over time. A dependency regulation model is proposed, wherein felt security in a partner's perceived regard is suggested as a prime mechanism linking self-esteem to relational well-being.
Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo
2014-03-01
A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica
NASA Astrophysics Data System (ADS)
Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin
2017-02-01
Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.
Resin/graphite fiber composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.
1974-01-01
Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.
Fabricating micro-instruments in surface-micromachined polycrystalline silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comtois, J.H.; Michalicek, M.A.; Barron, C.C.
1997-04-01
Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less
Study of scratch drive actuator force characteristics
NASA Astrophysics Data System (ADS)
Li, Lijie; Brown, J. Gordon; Uttamchandani, Deepak
2002-11-01
Microactuators are one of the key components in MEMS technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the force characteristics of SDAs fabricated using the JDSU Microsystems MUMPs process. One-, two-, three- and four-plate SDAs connected to box-springs have been designed and fabricated for these experiments using MUMPs run 44. The spring constant for the box-springs has been calculated by FEM using ANSYS software. The product of the spring constant and spring extension is used to measure the forces produced by these SDAs. It is estimated that the forces produced exceed 250 μN from a one-plate SDA and 850 μN from a four-plate SDA.
VPS GRCop-84 Liner Development Efforts
NASA Technical Reports Server (NTRS)
Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim
2003-01-01
For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.