Science.gov

Sample records for female rat brain

  1. Effects of radiofrequency radiation exposure on blood-brain barrier permeability in male and female rats.

    PubMed

    Sirav, Bahriye; Seyhan, Nesrin

    2011-12-01

    During the last several decades, numerous studies have been performed aiming at the question of whether or not exposure to radiofrequency radiation (RFR) influences the permeability of the blood-brain barrier (BBB). The objective of this study was to investigate the effect of RFR on the permeability of BBB in male and female Wistar albino rats. Right brain, left brain, cerebellum, and total brain were analyzed separately in the study. Rats were exposed to 0.9 and 1.8 GHz continuous-wave (CW) RFR for 20 min (at SARs of 4.26 mW/kg and 1.46 mW/kg, respectively) while under anesthesia. Control rats were sham-exposed. Disruption of BBB integrity was detected spectrophotometrically using the Evans-blue dye, which has been used as a BBB tracer and is known to be bound to serum albumin. Right brain, left brain, cerebellum, and total brain were evaluated for BBB permeability. In female rats, no albumin extravasation was found in in the brain after RFR exposure. A significant increase in albumin was found in the brains of the RF-exposed male rats when compared to sham-exposed male brains. These results suggest that exposure to 0.9 and 1.8 GHz CW RFR at levels below the international limits can affect the vascular permeability in the brain of male rats. The possible risk of RFR exposure in humans is a major concern for the society. Thus, this topic should be investigated more thoroughly in the future.

  2. Brain activation by an olfactory stimulus paired with juvenile play in female rats.

    PubMed

    Paredes-Ramos, P; McCarthy, M M; Bowers, J M; Miquel, M; Manzo, J; Coria-Avila, G A

    2014-06-22

    We have previously shown that reward experienced during social play at juvenile age can be paired with artificial odors, and later in adulthood facilitate olfactory conditioned partner preferences (PP) in female rats. Herein, we examined the expression of FOS immunoreactivity (FOS-IR) following exposure to the odor paired with juvenile play (CS+). Starting at day P31 females received daily 30-min periods of social play with lemon-scented (paired group) or unscented females (unpaired group). At day P42, they were tested for play-PP with two juvenile males, one bearing the CS+ (lemon) and one bearing a novel odor (almond). Females were ovariectomized, hormone-primed and at day P55 tested for sexual-PP between two adult stud males scented with lemon or almond. In both tests, females from the paired group displayed conditioned PP (play or sexual) toward males bearing the CS+. In the present experiments females were exposed at day P59 to the CS+ during 60 min and their brains processed for FOS-IR. One group of female rats (Play+Sex) underwent play-PP and sexual-PP, whereas a second group of females (Play-only) underwent exclusively play-PP but not sexual-PP. Results showed that in the Play-only experiment exposure to the CS+ induced more FOS-IR in the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, and ventral tegmental area as compared to females from the unpaired group. In the Play+Sex experiment, more FOS-IR was observed in the piriform cortex, dorsal striatum, lateral septum, nucleus accumbens shell, bed nucleus of the stria terminalis and medial amygdala as compared to females from the unpaired group. Taken together, these results indicate mesocorticolimbic brain areas direct the expectation and/or choice of conditioned partners in female rats. In addition, transferring the meaning of play to sex preference requires different brain areas.

  3. New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions.

    PubMed

    Hirano, Misato; Rakwal, Randeep; Shibato, Junko; Agrawal, Ganesh Kumar; Jwa, Nam-Soo; Iwahashi, Hitoshi; Masuo, Yoshinori

    2006-08-31

    The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using pre-cast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, in-gel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

  4. Subcellular analysis of the accumulation of estrogen by the brain of male and female rats.

    PubMed

    Whalen, R E; Massicci, J

    1975-05-23

    Three experiments were preformed to provide additional information on the interaction of estrogen with subcellular components of the brain of male and female rats. In experiment 1 tritiated estradiol was administered to adult gonadectomized male and female rats which were then sacrificed 15,60 or 120 min later. Hypothalamic, cortical and pituitary samples were taken and were separated into nuclear and cytosol fractions. For the hypothalamic tissue from females nuclear concentration of radioactivity increased throughout the 2 h period while for males nuclear concentration rose during the first h and then declined. There was a significant sex difference in hypothalamic nuclear concentration of estrogen, male levels being lower. For both sexes cytosol levels progressively declined. For cortical tissue, nuclear radioactivity levels were low and relatively constant for both sexes, while cytosol levels fell during the 2 h period. Pituitary tissue showed a pattern in both nuclear and cytosol fractions which resembled the hypothalamic pattern although absolute levels were higher in the nuclear fraction. In experiment 2 male and female rats were administered labeled and unlabeled estradiol concurrently and were sacrificed 60 and 120 min later. Radioactivity levels were reduced in hypothalamic and pituitarynuclei, but not in cortical nuclei in comparison with animals not administered unlabeled hormone. In experiment 3 males and females were administered tritiated estradiol and were sacrificed 2 h later. The brain of each animal was split longitudinally. One half of each hypothalamic and cortical sample was subjected to nuclear separation while the other half was digested in tissue solubilizer before radioactivity counting. The former procedure showed a substantially greater nuclear concentration of radioactivity for hypothalamic tissue from females than from males. The whole tissue analysis showed only a slight sex difference for hypothalamic tissue. Sex differences were

  5. Chronic scream sound exposure alters memory and monoamine levels in female rat brain.

    PubMed

    Hu, Lili; Zhao, Xiaoge; Yang, Juan; Wang, Lumin; Yang, Yang; Song, Tusheng; Huang, Chen

    2014-10-01

    Chronic scream sound alters the cognitive performance of male rats and their brain monoamine levels, these stress-induced alterations are sexually dimorphic. To determine the effects of sound stress on female rats, we examined their serum corticosterone levels and their adrenal, splenic, and thymic weights, their cognitive performance and the levels of monoamine neurotransmitters and their metabolites in the brain. Adult female Sprague-Dawley rats, with and without exposure to scream sound (4h/day for 21 day) were tested for spatial learning and memory using a Morris water maze. Stress decreased serum corticosterone levels, as well as splenic and adrenal weight. It also impaired spatial memory but did not affect the learning ability. Monoamines and metabolites were measured in the prefrontal cortex (PFC), striatum, hypothalamus, and hippocampus. The dopamine (DA) levels in the PFC decreased but the homovanillic acid/DA ratio increased. The decreased DA and the increased 5-hydroxyindoleacetic acid (5-HIAA) levels were observed in the striatum. Only the 5-HIAA level increased in the hypothalamus. In the hippocampus, stress did not affect the levels of monoamines and metabolites. The results suggest that scream sound stress influences most physiologic parameters, memory, and the levels of monoamine neurotransmitter and their metabolites in female rats. Copyright © 2014. Published by Elsevier Inc.

  6. Differentiation in boron distribution in adult male and female rats' normal brain: a BNCT approach.

    PubMed

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Khojasteh, Nasrin Baghban

    2012-06-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection.

  7. Cocaine induces DNA damage in distinct brain areas of female rats under different hormonal conditions.

    PubMed

    de Souza, Marilise F; Gonçales, Tierre A; Steinmetz, Aline; Moura, Dinara J; Saffi, Jenifer; Gomez, Rosane; Barros, Helena M T

    2014-04-01

    We evaluated levels of neuronal DNA damage after acute or repeated cocaine treatment in different brain areas of female rats after ovariectomy or sham surgery. Rats in the control and acute groups were given saline i.p., whereas in the repeated group were given 15 mg/kg, i.p., cocaine for 8 days. After a 10 day washout period, the control group was given saline i.p., whereas rats in the acute and repeated groups were given a challenge dose of 15 mg/kg, i.p., cocaine. After behavioural assessment, rats were killed and the cerebellum, hippocampus, hypothalamus, prefrontal cortex and striatum were dissected for the Comet assay. Acute cocaine exposure induced DNA damage in all brain areas. This effect persisted after repeated administration, except in the hypothalamus, where repeated treatment did not cause increased DNA damage. Sexual hormones exhibited a neuroprotective effect, decreasing cocaine-induced DNA damage in cycling rats in all brain areas. © 2014 Wiley Publishing Asia Pty Ltd.

  8. Mode of GH administration and gene expression in the female rat brain.

    PubMed

    Walser, Marion; Schiöler, Linus; Oscarsson, Jan; Åberg, Maria A I; Wickelgren, Ruth; Svensson, Johan; Isgaard, Jörgen; Aberg, N David

    2017-03-08

    The endogenous secretion of growth hormone (GH) is sexually dimorphic in rats with females having a more even and males a more pulsatile secretion and low trough levels. The mode of GH administration, mimicking the sexually dimorphic secretion, has different systemic effects. In the brains of male rats, we have previously found that the mode of GH administration differently affects neuron haemoglobin beta (Hbb) expression whereas effects on other transcripts were moderate. The different modes of GH administration could have different effects on brain transcripts in female rats. Hypophysectomised female rats were given GH either as injections twice daily or as continuous infusion and GH-responsive transcripts were assessed by quantitative reverse transcription polymerase chain reaction in the hippocampus and parietal cortex (cortex). The different modes of GH-administration markedly increased Hbb and 5'-aminolevulinate synthase 2 (Alas2) in both brain regions. As other effects were relatively moderate, a mixed model analysis (MMA) was used to investigate general effects of the treatments. In the hippocampus, MMA showed that GH-infusion suppressed glia- and neuron-related transcript expression whereas GH-injections increased expression. In the cortex, GH-infusion instead increased neuron-related transcripts, whereas GH-injections had no significant effect. Interestingly, this contrasts to previous results from male rat cortex where GH-infusion generally decreased expression levels. In conclusion, the results indicate that there is a small but significant difference in response to mode of GH administration, in the hippocampus as compared to the cortex. For both modes of GH administration, there was a robust effect on Hbb and Alas2.

  9. Redox changes in the brains of reproductive female rats during aging.

    PubMed

    Heemann, Fernanda Maciel; da Silva, Ana Carolina Almeida; Salomon, Tiago Boeira; Putti, Jordana Salete; Engers, Vanessa Krüger; Hackenhaar, Fernanda Schäfer; Benfato, Mara Silveira

    2017-01-01

    Reproduction is a critical and demanding phase of an animal's life. In mammals, females usually invest much more in parental care than males, and lactation is the most energetically demanding period of a female's life. Here, we tested whether oxidative stress is a consequence of reproduction in the brains of female Wistar rats. We evaluated the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase; H2O2 consumption; protein carbonylation; NO2 & NO3 levels; and total glutathione, as well as sex hormone levels in brain tissue of animals at 3, 6, 12, and 24months of age. Animals were grouped according to reproductive experience: breeders or non-breeders. Most of the studied parameters showed a difference between non-breeders and breeders at 12 and 24months. At 24months of age, breeders showed higher superoxide dismutase activity, H2O2 consumption, glutathione peroxidase activity, and carbonyl levels than non-breeders. In 12-month-old non-breeders, we observed a higher level of H2O2 consumption and higher superoxide dismutase and glutathione peroxidase activities than breeders. By evaluating the correlation network, we found that there were a larger number of influential nodes and positive links in breeder animals than in non-breeders, indicating a greater number of redox changes in breeder animals. Here, we also demonstrated that the aging process caused higher oxidative damage and higher antioxidant defenses in the brains of breeder female rats at 24months, suggesting that the reproduction process is costly, at least for the female brain. This study shows that there is a strong potential for a link between the cost of reproduction and oxidative stress.

  10. Protective effects of 17β estradiol on altered age related neuronal parameters in female rat brain.

    PubMed

    Kumar, Pardeep; Kale, R K; McLean, P; Baquer, Najma Zaheer

    2011-09-08

    Biological aging is a fundamental process observed in almost all living beings. During aging the brain experiences structural, molecular, and functional alterations. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to investigate the anti-aging and protective potential of 17β estradiol (E2) treatment on activities of membrane linked ATPases (Na⁺K⁺ ATPase, Ca²⁺ATPase), antioxidant enzymes (superoxide dismutases, glutathione-S-transferases), intrasynaptosomal calcium levels, membrane fluidity and neurolipofuscin in the brain of aging female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of E2 (0.1 μg/g body weight for one month).The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes and an increase in neurolipofuscin, intrasynaptosomal calcium levels in brain of aging female rats. The present study showed that E2 treatment reversed the changes to near normal levels. E2 treatment appears to be beneficial in preventing some of the age related changes in the brain, an important anti-aging effect of the hormone. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Lose dose genistein inhibits glucocorticoid receptor and ischemic brain injury in female rats.

    PubMed

    Shi, Rengfei; Wang, Shunli; Qi, Xiang; Chen, Si; Chen, Peijie; Zhang, Quanguang

    2014-01-01

    Although acute bolus of genistein treatment has been shown to protect against neuronal damage in experimental brain injury animal models, chronic continuous low dose treatment of genistein on ischemic brain injury has not been well elucidated. In the present study, female rats were received either pure genistein (0.1mg/kg/day via osmotic minipumps) or placebo at the time of ovariectomy, and transient forebrain ischemia was induced 7days later. Results demonstrated that genistein treatment for 14days significantly improved ischemic neuronal survival in hippocampal CA1 region of ovariectomized rats. Glucocorticoid receptor (GR) is a member of the adrenal steroid hormone receptor, which is highly expressed in the rat hippocampus. Activation of the GR plays a critical role in the neuronal stress responses, including ischemic brain damage. This study therefore examined the potential mechanisms by which genistein regulates GR signaling, including the protein distribution and receptor activation in hippocampus following ischemic reperfusion (I/R). Results showed that GR expression in the ovariectomized rats was excessively increased both in neurons (I/R 6h) and activated microglial cells (I/R 7d) in hippocampal CA1 region. Genistein treatment significantly attenuated GR induction and the enhanced GR nuclear translocation and DNA-binding capacity. The effects of genistein on the GR levels was accompanied with decreased blood plasma levels of corticosterone (primary glucocorticoid in rodents) and coupled to an E3 ubiquitin ligase Mdm2 targeted proteasomal degradation of GR, because genistein treatment could enhance the GR-Mdm2 interaction and the ubiquitination level of GR protein. In addition, our results indicated that genistein markedly prevented the excessive activation of microglia in CA1 sector. These results demonstrate the neuroprotective action of chronic low dose genistein replacement against ischemic brain damage, and a potential mechanism associated with the

  12. Enriched environment increases myelinated fiber volume and length in brain white matter of 18-month female rats.

    PubMed

    Yang, Shu; Lu, Wei; Zhou, De-shan; Tang, Yong

    2015-04-23

    Cognition and memory decline with normal aging, which could be partly attributed to the degeneration of brain white matter. Previous studies demonstrated that exposure to an enriched environment (EE) could protect cognition and memory from aging. However, if or how EE might affect the brain white matter has not been thoroughly investigated. In the current study, 24 middle-aged (14-month-old) female Sprague -Dawley (SD) rats were randomly assigned to EE or standard environment (SE) for 4 months. At the end of the environment intervention, the Morris water maze tests were performed. Then, 5 rats were randomly selected from each group for stereological assessment of the brain white matter and its myelinated fibers. The results revealed that middle-aged rats living in EE displayed better spatial learning than SE controls. The white matter volume was 124.6 ± 7.8mm(3) in EE rats, which was significantly enlarged compared with 84.8 ± 3.4mm(3) in SE rats. Likewise, the myelinated fiber volume was markedly increased from 56.6 ± 1.7 mm(3) in SE rats to 87.2 ± 9.0mm(3) in EE rats; so was the myelinated fiber length from 83.5 ± 6.6 km in SE rats to 119.0 ± 10.0 km in EE rats. Our data suggested that EE could protect brain white matter and its myelinated fibers of female rats at middle age.

  13. Role of estrogen receptors and aromatase on brain protein synthesis rates in ovariectomized female rats fed genistein.

    PubMed

    Lyou, Sunok; Kawano, Susumu; Yamada, Takashi; Okuyama, Satoshi; Terashima, Takehiko; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2008-08-01

    We have reported that the dietary addition of genistein, a phytoestrogen found abundantly in soy products, stimulates brain protein synthesis rates of ovariectomized female rats. In the present study, we determine whether stimulation of brain protein synthesis rates in ovariectomized female rats by the dietary addition of genistein was conducted via estrogen receptors and aromatase-mediating actions. After ovariectomy, Wistar female rats were treated with genistein, the estrogen receptor antagonist ICI 182,780, and/or fadrozole a systemic aromatase inhibitor. In the cerebral cortex, the cerebellum and the hypothalamus, the fractional (Ks) rates of protein synthesis were increased by the dietary addition of genistein. These effects of genistein were inhibited by the administration of ICI 182,780 and fadrozole. However, the degrees to which ICI 182,780 and fadrozole inhibited the effects of genistein differed depending on the brain region. This result suggests that dietary genistein elevates the rate of protein synthesis in the brain of ovariectomized female rats. In addition, the estrogen receptors of the brain and the aromatase of the peripheral tissue and brain are, at least partly, related to the rate of brain protein synthesis caused by genistein.

  14. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    PubMed

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons.

    PubMed

    Yates, Nathanael J; Lydiard, Stephen; Fehily, Brooke; Weir, Gillian; Chin, Aaron; Bartlett, Carole A; Alderson, Jacqueline; Fitzgerald, Melinda

    2017-07-01

    Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1-4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three m

  16. Estrogen-dependent changes in estrogen receptor-β mRNA expression in middle-aged female rat brain.

    PubMed

    Yamaguchi, Naoko; Yuri, Kazunari

    2014-01-16

    During aging, estrogen production and circulating levels of estrogen are markedly decreased in females. Although several differences exist in the process of reproductive aging between women and female rats, the results of many studies suggest that the female rat, especially the middle-aged or aged ovariectomized female, is an important animal model of hormone loss in women. In target tissues including the brain, the actions of estrogen are mediated mainly via the alpha and beta subtypes of the estrogen receptor (ER-α and ER-β). Estrogen treatment is known to change the expression of ER-α mRNA and protein in specific regions of the brain in middle-aged female rodents. In contrast, we do not know if estrogen regulates the expression of ER-β in the brain at this stage of life. In the present study, we performed in situ hybridization on brain sections of ovariectomized and estrogen-treated middle-aged female rats to reveal the effects of estrogen on the expression of ER-β throughout the brain. Our results showed that estrogen treatment decreased the number of ER-β mRNA-positive cells in the mitral cell and external plexiform layers of the olfactory bulb, central amygdaloid nucleus, medial geniculate nucleus, posterior hypothalamic nucleus, suprachiasmatic nucleus, and reticular part of the substantia nigra. As compared to the results of previous studies of young females, our data revealed that the regions in which expression of ER-β mRNA expression is affected by estrogen differ in middle age. These results suggest that the effects of estrogen on ER-β expression change with age. © 2013 Published by Elsevier B.V.

  17. Cocaine alters dendritic spine density in cortical and subcortical brain regions of the postpartum and virgin female rat.

    PubMed

    Frankfurt, Maya; Salas-Ramirez, Kaliris; Friedman, Eitan; Luine, Victoria

    2011-09-01

    Cocaine use during pregnancy induces profound neural and behavioral deficits in both mother and offspring. The present study was designed to compare the effects of cocaine exposure on spine density of postpartum and virgin female rat brains. Timed, pregnant, primiparous rats were injected with either cocaine (30 mg/kg) or saline, once daily, from gestational day 8 to 20. Twenty-four hours after giving birth, dam brains were processed for Golgi-impregnation. Virgin females were also injected with the same dose of cocaine or saline for 12 days and sacrificed 24 h after the last injection for comparison. Pregnant rats had significantly greater spine density in the medial amygdala (MeA) and medial preoptic area (MPOA) and lower spine density in CA1 than virgin females independent of cocaine treatment. Cocaine significantly increased dendritic spine density on the apical branch of pyramidal cells in the prefrontal cortex (PFC, 15%), both apical (13%) and basal (14.8%) branches of CA1 and cells in the MeA (28%) of pregnant rats. In the MPOA, cocaine administration resulted in a decrease in dendritic spine density (14%) in pregnant rats. In virgin females, cocaine had fewer effects but did increase dendritic spine density on both branches of CA1 neurons and in the MeA. The present study is the first to demonstrate that spine density differs between pregnant and virgin females and that pregnancy makes the brain more vulnerable to cocaine, which has important clinical implications. Copyright © 2011 Wiley-Liss, Inc.

  18. Estradiol valerate and tibolone: effects upon brain oxidative stress and blood biochemistry during aging in female rats.

    PubMed

    de Aguiar, R B; Dickel, O E; Cunha, R W; Monserrat, J M; Barros, D M; Martinez, P E

    2008-10-01

    Estrogen compounds have been described as important brain protectors. This study investigated the effects of estradiol valerate (EV--0.3 mg/kg) and two concentrations of tibolone (TB1=0.5 mg/kg and TB2=1 mg/kg) on brain oxidative stress parameters and blood biochemistry in ovariectomized female rats, of three different age groups (young--2 months, adult--8 months, and old--20 months). In the brain cortex, young and old TB2-treated and old no-hormone-replacement (NR) females showed lower lipid hydroperoxide (LPO) levels compared to young Sham and adult TB1 animals (P<0.05). Also in the cortex, both tibolone doses produced higher (P<0.05) total antioxidant capacity (TOSC) levels compared to EV-treated adult females. Ovariectomized adult females (NR, EV, TB1 and TB2) showed lower (P<0.05) TOSC levels in the hippocampus compared to the Sham control. Reactive oxygen species (ROS) were higher (P<0.05) in old females compared to all younger ones. TB2-treated adults showed higher plasma glucose (P<0.05) levels compared to old animals. Regardless of age, TB2 treatment increased female (P<0.05) LDL levels compared to Sham and EV-treated animals. In old females, TB2 significantly increased HDL levels compared to Sham controls, and decreased triglyceride levels were shown in EV, TB1 and TB2 compared to Sham old females. The Atherogenic Index of Plasma was higher (P<0.05) in adult tibolone-treated females compared to both young and old TB2-treated females. These results suggest that the effects of gonad steroid on brain and blood physiology change significantly with aging, and that evaluating hormonal treatment types and doses could be the key factor in the potential use of a specific hormone therapy.

  19. Brain endogenous angiotensin II receptor type 2 (AT2-R) protects against DOCA/salt-induced hypertension in female rats.

    PubMed

    Dai, Shu-Yan; Peng, Wei; Zhang, Yu-Ping; Li, Jian-Dong; Shen, Ying; Sun, Xiao-Fei

    2015-03-08

    Recent studies demonstrate that there are sex differences in the expression of angiotensin receptor type 2 (AT2-R) in the kidney and that AT2-R plays an enhanced role in regulating blood pressure (BP) in females. Also, brain AT2-R activation has been reported to negatively modulate BP and sympathetic outflow. The present study investigated whether the central blockade of endogenous AT2-R augments deoxycorticosterone acetate (DOCA)/salt-induced hypertension in both male and female rats. All rats were subcutaneously infused with DOCA combined with 1% NaCl solution as the sole drinking fluid. BP and heart rate (HR) were recorded by telemetric transmitters. To determine the effect of central AT2-R on DOCA/salt-induced hypertension, male and female rats were intracerebroventricularly (icv) infused with AT2-R antagonist, PD123,319, during DOCA/salt treatment. Subsequently, the paraventricular nucleus (PVN) of the hypothalamus, a key cardiovascular regulatory region of the brain, was analyzed by quantitative real-time PCR and Western blot. DOCA/salt treatment elicited a greater increase in BP in male rats than that in females. Icv infusions of the AT2-R antagonist significantly augmented DOCA/salt pressor effects in females. However, this same treatment had no enhanced effect on DOCA/salt-induced increase in the BP in males. Real-time PCR and Western blot analysis of the female brain revealed that DOCA/salt treatment enhanced the mRNA and protein expression for both antihypertensive components including AT2-R, angiotensin-converting enzyme (ACE)-2, and interleukin (IL)-10 and hypertensive components including angiotensin receptor type 1 (AT1-R), ACE-1, tumor necrosis factor (TNF)-α, and IL-1β, but decreased mRNA expression of renin in the PVN. The central blockade of AT2-R reversed the changes in mRNA and protein expressions of ACE-2, IL-10, and renin, further increased the expressions of TNF-α and IL-1β, and kept higher the expressions of AT1-R, ACE-1, and AT2-R

  20. "Sex, drugs and the brain": the interaction between drugs of abuse and sexual behavior in the female rat.

    PubMed

    Guarraci, Fay A

    2010-06-01

    Preclinical and clinical research investigating female sexual motivation has lagged behind research on male sexual function. The present review summarizes recent advances in our understanding of the specific roles of various brain areas, as well as our understanding of the role of dopaminergic neurotransmission in sexual motivation of the female rat. A number of behavioral paradigms that can be used to thoroughly evaluate sexual behavior in the female rat are first discussed. Although traditional assessment of the reflexive, lordosis posture has been useful in understanding the neuroanatomical and neurochemical systems that contribute to copulatory behavior, the additional behavioral paradigms described in this review have helped us expand our understanding of appetitive and consumatory behavioral patterns that better assess sexual motivation - the equivalent of "desire" in humans. A summary of numerous lesion studies indicates that different areas of the brain, including forebrain and midbrain structures, work together to produce the complex repertoire of female sexual behavior. In addition, by investigating the effects of commonly addictive drugs, we are beginning to elucidate the role of dopaminergic neurotransmission in female sexual motivation. Consequently, research in this area may contribute to meaningful advances in the treatment of human female sexual dysfunction.

  1. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    PubMed

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (p<0.01). 1800MHz pulse modulated radio-frequency radiation exposure was found more effective on the male animals (p<0.01). For female groups; dye contents in the whole brains were 0.14±0.01mg% in the control, 0.24±0.03mg% in 900MHz exposed and 0.14±0.02mg% in 1800MHz exposed animals. No statistical variance found between the control and 1800MHz exposed animals (p>0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed

  2. Phase II antioxidant enzyme activities in brain of male and female ACI rats treated chronically with estradiol.

    PubMed

    Stakhiv, Timothy M; Mesia-Vela, Sonia; Kauffman, Frederick C

    2006-08-09

    Activities of Phase II antioxidant enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), UDP-glucuronosyltransferase (UGT), and phenol sulfotransferase 1A1 (SULT1A1) were measured in brain of August-Copenhagen Irish (ACI) rats exposed chronically to low doses of estradiol (E(2)). ACI rats were selected for study because this strain is highly responsive to treatment with low doses of E(2) as indexed by a high incidence of E(2)-induced mammary tumors compared to other strains. Rats were exposed chronically to 3 mg E(2) contained in cholesterol pellets implanted subcutaneously for 6 weeks. This treatment increased activities of all four enzymes in the striatum of male but not female ACI rats. Blood E(2) levels at time of sacrifice correlated closely with activities of striatal NQO1, GST, and SULT1A1, but not with striatal UGT. NQO1, GST, and SULT1A1 activities in other brain regions including the cortex, cerebellum, and hippocampus were less sensitive to chronic E(2) treatment. NQO1 was primarily localized in vascular elements and neurons and SULT1A1 primarily in neurons and neuropil of control and E(2)-treated rats. Collectively, these results suggest that enhanced expression of NQO1, GST, and SULT1A1 may contribute to the antioxidant effects of E(2) in the striatum, an area of the brain that may be particularly prone to oxidative stress because of its high content of catecholamines.

  3. Changes in brain volume in response to estradiol levels, amphetamine sensitization and haloperidol treatment in awake female rats.

    PubMed

    Madularu, Dan; Kulkarni, Praveen; Ferris, Craig F; Brake, Wayne G

    2015-08-27

    Estrogen has been shown to further ameliorate symptoms when administered in conjunction with antipsychotics in patients with schizophrenia. We have previously shown that chronic haloperidol (HAL) treatment reduces amphetamine (AMPH)-induced locomotor activity in AMPH-sensitized rats, but only when paired with high levels of the estrogen, 17-β estradiol. In addition, we reported estradiol-dependent responses to AMPH in AMPH-sensitized rats as measured by functional magnetic resonance imaging. It is thus clear that estradiol and antipsychotics both affect the rat brain, however the mechanism by which this occurs is unknown. The aim of the current study was to assess this interaction by investigating the effects of estradiol, AMPH and HAL on brain volume changes in awake female rats. Repeated exposure to AMPH resulted in an overall reduction in brain volume, regardless of hormonal status (i.e. no, low or high estradiol). Similarly, chronic HAL treatment further reduced brain volume compared to acute treatment. Hormonal status affected hippocampal volume with rats receiving low estradiol replacement showing larger volume; this difference was no longer significant after repeated exposure to AMPH. Finally, we found changes in volume in response to AMPH throughout hippocampal components (i.e. CA1-CA3 and dentate) as well as components of the mesocortical system. In conclusion, brain volume seems to be influenced by hormonal status, as well as exposure to AMPH and haloperidol treatment. These findings implicate areas where estradiol, amphetamine and antipsychotics may be producing volumetric changes in the brain, pointing the way to where future studies should focus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Neurobehavioral Phenotype of Blast Traumatic Brain Injury and Psychological Stress in Male and Female Rats

    DTIC Science & Technology

    2012-02-03

    The weight drop model (also called Marmarou’s weight drop model; Marmarou et al., 1994; Foda & Marmarou, 1994) is frequently used to model...locomotion depend on rat sex and housing condition. Nicotine & Tobacco Research, 1(2), 143-151. Foda , M.A., & Marmarou, A. (1994). A new model of diffuse...of traumatic brain injury. Georgian Med News, 140, 1306. Marmarou, A., Foda , M.A., van den Brink, W., Campbell, J., Kita, H., & Demetriadou

  5. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    PubMed Central

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K.; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% lower than those fed a control diet containing adequate α-linolenic acid. Decreased brain DHA produced a significant main effect of decreased density of ventral striatal D2-like receptors. Virgin females with decreased DHA also exhibited higher density of D1-like receptors in the caudate nucleus than virgin females with normal DHA. These receptor alterations are similar to those found in several rodent models of depression, and are consistent with the proposed hypodopaminergic basis for anhedonia and motivational deficits in depression. PMID:20670471

  6. Comparison of blood brain barrier permeability in normal and ovariectomized female rats that demonstrate right or left paw preference.

    PubMed

    Kutlu, N; Mutlu, F; Vural, K; Cezayirli, E

    2012-11-01

    We explored the relations among paw preference, cerebral asymmetry and asymmetrical disruption of blood-brain barrier (BBB) permeability in normal and ovariectomized female rats with known paw preference. A high dose of pentylenetetrazol was used to disrupt the BBB and induce acute hypertension. To determine the areas of macroscopic infarct, samples were stained with 2,3,5-triphenyltetrazolium chloride. Histological staining techniques were used to show the areas of infarct microscopically on paraffin sections. Sixty-two percent of the rats demonstrated right paw preference, 24% demonstrated left paw preference and 14% were ambidextrous. Areas of infarct, which indicated destruction of the BBB, were determined microscopically and macroscopically in rats that demonstrated right and left paw preference. We found a relation between permeability of the BBB and paw preference. There may be a relation between paw preference, cerebral asymmetry and asymmetrical destruction of the BBB in rats. Asymmetrical destruction of the BBB in experimental rats was similar to the control group, which had asymmetrically disrupted BBB with respect to paw preference. Like the control rats, asymmetrical areas of infarct consistent with cerebral asymmetry were observed in ovariectomized rats.

  7. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    PubMed

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Methamphetamine induces DNA damage in specific regions of the female rat brain.

    PubMed

    Johnson, Zane; Venters, Jace; Guarraci, Fay A; Zewail-Foote, Maha

    2015-06-01

    Methamphetamine (METH) is a highly addictive psychostimulant that has been shown to produce neurotoxicity. Methamphetamine increases the release of dopamine by reversing the direction of monoamine transporter proteins, leading to the formation of reactive oxygen species in the brain. In this study, we examined the effect of METH on DNA damage in vivo using the single cell gel electrophoresis assay (comet assay) under two different conditions. Rats treated with multiple doses of METH (10 mg/kg × 4) showed significant levels of DNA damage in the nucleus accumbens and striatum, both dopamine-rich areas. In contrast, a single dose of METH did not lead to significant levels of DNA damage in any of the dopamine-rich brain regions that were tested. Overall, the results of our study demonstrate that METH produces greater oxidative DNA damage in brain areas that receive greater dopamine innervation.

  9. Comparable impediment of cognitive function in female and male rats subsequent to daily administration of haloperidol after traumatic brain injury.

    PubMed

    Free, Kristin E; Greene, Anna M; Bondi, Corina O; Lajud, Naima; de la Tremblaye, Patricia B; Kline, Anthony E

    2017-10-01

    Antipsychotic drugs, such as haloperidol (HAL), are prescribed in the clinic to manage traumatic brain injury (TBI)-induced agitation. While preclinical studies have consistently shown that once-daily administration of HAL hinders functional recovery after TBI in male rats, its effects in females are unknown. Hence, the objective of this study was to directly compare neurobehavioral and histological outcomes in both sexes to determine whether the reported deleterious effects of HAL extend to females. Anesthetized adult female and male rats received either a controlled cortical impact (CCI) or sham injury and then were randomly assigned to a dosing regimen of HAL (0.5mg/kg, i.p.) or vehicle (VEH; 1mL/kg, i.p.) that was initiated 24h after injury and continued once daily for 19 consecutive days. Motor function was tested using established beam-balance/walk protocols on post-operative days 1-5 and acquisition of spatial learning was assessed with a well-validated Morris water maze task on days 14-19. Cortical lesion volume was quantified at 21days. No statistical differences were revealed between the HAL and VEH-treated sham groups and thus they were pooled for each sex. HAL only impaired motor recovery in males (p<0.05), but significantly diminished spatial learning in both sexes (p<0.05). Females, regardless of treatment, exhibited smaller cortical lesions vs VEH-treated males (p<0.05). Taken together, the data show that daily HAL does not prohibit motor recovery in females, but does negatively impact cognition. These task-dependent differential effects of HAL in female vs male rats may have clinical significance as they can direct therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

    PubMed Central

    Asiabanha, Majid; Rahnema, Amir; Mahmoodi, Mehdi; Hasanshahi, Gholamhosein; Hashemi, Mohammad; Khaksari, Mohammad

    2011-01-01

    It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and diabetic opium-addicted brain and liver cells were significantly higher than the both normal and diabetic rats. In addition, we found that apoptosis in brain cells of opium-addicted and diabetic opium-addicted male rats were significantly higher than opium-addicted and diabetic opium-addicted female, whereas apoptosis in liver cells of opium-addicted and diabetic opium-addicted female rats were significantly higher than opium-addicted and diabetic opium-addicted male. Overall, these results indicate that opium probably plays an important role in brain and liver cells apoptosis, therefore, leading neurotoxicity and hepatotoxicity. These findings also in away possibly means that male brain cells are more susceptible than female and interestingly liver of females are more sensitive than males in induction of apoptosis by opium. PMID:22359469

  11. Quantitative analysis of long-form aromatase mRNA in the male and female rat brain.

    PubMed

    Tabatadze, Nino; Sato, Satoru M; Woolley, Catherine S

    2014-01-01

    In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions.

  12. A High Soy Diet Enhances Neurotropin Receptor and Bcl-XL Gene Expression in the Brains of Ovariectomized Female Rats

    PubMed Central

    Lovekamp-Swan, Tara; Glendenning, Michele L.; Schreihofer, Derek A.

    2007-01-01

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen’s benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or two weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-XL. Immunohistochemistry confirmed increases in both TrkA and Bcl-XL. Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement. PMID:17582385

  13. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats.

    PubMed

    Lovekamp-Swan, Tara; Glendenning, Michele L; Schreihofer, Derek A

    2007-07-23

    Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen's benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or 2 weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-X(L). Immunohistochemistry confirmed increases in both TrkA and Bcl-X(L). Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement.

  14. Progesterone metabolism in the pineal, brain stem, thalamus and corpus callosum of the female rat.

    PubMed

    Hanukoglu, I; Karavolas, H J; Goy, R W

    1977-04-15

    Specific brain regions, namely, thalamus, tectum, tegmentum, cerebellum, medulla and pineal, from five proestrous rats were incubated for 30 min with [3H]progesterone. After reverse isotopic dilution analysis, the following metabolites were identified in all incubations by purification to constant specific activity, derivative formation and/or gas liquid chromatography trapping: [3H]5alpha-pregnane-3, 20-dione (10-20% of the starting substrate except pineal -- 0.7%), [3H]3alpha-hydroxy-5alpha-pregnan-20-one (1.6-3.8% except for pineal -- 0.5%) and [3H]20alpha-hydroxy-4-pregnen-3-one (0.05-0.11%). Preliminary results from the corpus collosum incubation indicated the presence of the same metabolites. Although some apparent constant specific activities were obtained for 20alpha-hydroxy-5alpha-pregnan-3-one and 5beta-pregnane-3, 20-dione, the low levels of 3H associated with these steroids did not permit a definitive identification. The results indicate the presence of at least delta1-steroid 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase activities with progesterone as substrate in the brain regions examined.

  15. Residual effects of focal brain ischaemia upon cannabinoid CB(1) receptor density and functionality in female rats.

    PubMed

    Rojo, Maria Luisa; Söderström, Ingegerd; Fowler, Christopher J

    2011-02-10

    Ischaemic insult results in short-term changes in cannabinoid-1 (CB(1)) receptor expression in the brain, but it is not known whether long-term changes occur, which could potentially mean a change in the intrinsic ability of the brain to withstand new ischaemic episodes. In this study, we have investigated the expression and functionality of CB(1) receptors in coronal brain slices obtained from ovariectomised female rats 46days after middle cerebral artery occlusion (MCAO). The animals were treated with either 17ß-oestradiol or placebo pellets 6h after MCAO and thereafter housed either in isolated or enriched environments. [(3)H]CP55,940 autoradiography indicated no significant effect of 17ß-oestradiol treatment or housing environment upon CB(1) receptor densities. There was, however, a modest but significant decrease in the CB(1) receptor density on the ipsilateral side relative to the contralateral side in the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus, thalamus and hypothalamus. CB(1) receptor functionality was assessed by measurement of basal and CP55,940-stimulated [(35)S]GTPγS autoradiography. In the frontal cortex, parietal cortex, CA1-CA3 regions of the hippocampus and dentate gyrus, a robust stimulation, blocked by the CB(1) receptor inverse agonist AM251, was seen. There were no significant changes in the response to CP55,940 with respect either to the 17ß-oestradiol treatment, housing environment or MCAO. Our results reveal that although there are modest long-term decreases in ipsilateral CB(1) receptor densities following MCAO in female rats, these decreases do not result in a functional CB(1) receptor deficit.

  16. Endorphin excess at weaning durably influences sexual activity, uterine estrogen receptor's binding capacity and brain serotonin level of female rats.

    PubMed

    Csaba, G; Knippel, B; Karabélyos, Cs; Inczefi-Gonda, A; Hantos, M; Tekes, K

    2004-01-01

    Perinatally, the first encounter between the maturing receptor and its target hormone results in hormonal imprinting, which adjusts the binding capacity of the receptor for life. In the presence of an excess of the target hormone or foreign molecules than can be bound by the receptor, faulty imprinting carries life-long consequences. In cytogenic organs, imprinting could also be provoked in other periods of life (late imprinting). Imprinting also durably influences the production of the imprinter and related hormones. In the present study, single beta-endorphin doses was given to three-week old female rats at 3 microg/animal, and the serotonin in five brain regions (frontal cortex, striatum, hippocampus, hypothalamus and brain stem) and uterine estrogen receptor content were determined, thymic glucocorticoid receptor binding capacity was measured, and sexual behavior was tested at five months of age. Brain serotonin levels highly significantly decreased, while sexual activity (Meyerson index and lordosis quotient) increased. At the same time, uterine estrogen receptor affinity decreased. There was no change in receptor binding capacity in the thymus. We will go on to discuss interrelations between the results. The experiments demonstrate that a non-perinatal treatment with a molecule acting at receptor level (late imprinting) can also lastingly influence various indexes in non-cytogenic organs. The results call attention to the possible long-lasting influence of an endorphin surge (caused, for example, by pain) on brain serotonin content and sexual behavior.

  17. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  18. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase.

    PubMed

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-12-01

    Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  19. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats.

    PubMed

    Valvassori, Samira S; Borges, Cenita P; Varela, Roger B; Bavaresco, Daniela V; Bianchini, Guilherme; Mariot, Edemilson; Arent, Camila O; Resende, Wilson R; Budni, Josiane; Quevedo, João

    2017-09-01

    Lithium (Li) is a mood-stabilizing drug used in the treatment of bipolar disorder (BD). Recently, preclinical studies have demonstrated the potential of tamoxifen (TMX) in the treatment of acute episodes of BD. However, the prolonged use of TMX for mood disorders treatment is controversial. In this study, we evaluated the effects of TMX or Li on cognitive behavior, as well as the levels of neurotrophic factors in the brain of male and female rats. Male and female Wistar rats received administrations of water (control group), TMX or Li via gavage for a period of 28days; the rats were then subjected to the open-field test (to evaluate spontaneous locomotion), and the novel object recognition and step-down inhibitory avoidance tests (to evaluate cognition). The levels of NGF, BDNF and GDNF were evaluated in the hippocampus and frontal cortex of the subject rats. No significant differences were observed in the open-field and inhibitory avoidance tests after drug administration in either the male or female rats. The administration of TMX, but not Li, decreased the recognition index of both the male and female rats in the object recognition test. The chronic administration of TMX decreased, whereas Li increased the levels of BDNF in the hippocampus of both the male and female rats. Tamoxifen decreased the levels of NGF in the hippocampus of female rats. In conclusion, it can be suggested that long-term treatments with TMX can lead to significant cognitive impairments by reducing the levels of neurotrophic factors in the brain of rats. Copyright © 2017. Published by Elsevier Inc.

  20. Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring.

    PubMed

    Zaidan, Hiba; Leshem, Micah; Gaisler-Salomon, Inna

    2013-11-01

    Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring. Behavioral changes in adulthood were also assessed. Adult female rats underwent chronic unpredictable stress. We extracted mature oocytes and brain regions from a subset of rats and mated the rest 2 weeks following the stress procedure. CRF1 expression was assessed using quantitative reverse-transcription polymerase chain reaction. Tests of anxiety and aversive learning were used to examine behavior of offspring in adulthood. We show that chronic unpredictable stress leads to an increase in CRF1 messenger RNA expression in frontal cortex and mature oocytes. Neonatal offspring of stressed female rats show an increase in brain CRF1 expression. In adulthood, offspring of stressed female rats show sex differences in both CRF1 messenger RNA expression and behavior. Moreover, CRF1 expression patterns in frontal cortex of female offspring depend upon both maternal and individual adverse experience. Our findings demonstrate that stress affects CRF1 expression in brain but also in ova, pointing to a possible mechanism of transgenerational transmission. In offspring, stress-induced changes are evident at birth and are thus unlikely to result from altered maternal nurturance. Finally, brain CRF1 expression in offspring depends upon gender and upon maternal and individual exposure to adverse environment. © 2013 Society of Biological Psychiatry.

  1. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    PubMed

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-07

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats.

    PubMed

    Bake, Shameena; Okoreeh, Andre K; Alaniz, Robert C; Sohrabji, Farida

    2016-01-01

    In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.

  3. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats

    PubMed Central

    Bake, Shameena; Okoreeh, Andre K.; Alaniz, Robert C.

    2016-01-01

    In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I–treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I–treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate–BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females. PMID:26556536

  4. Environmental Enrichment, Performance, and Brain Injury in Male and Female Rats

    DTIC Science & Technology

    2004-01-01

    19 x RATIONALE FOR DEPENDENT VARIABLES: MEASURES TO INDEX COGNITIVE PERFORMANCE...ED 30 Figure 30. Intact Females: Passive avoidance training and testing latencies Figure 31. Intact Females: Mean rank scores of passive...avoidance training latencies Figure 32. Intact Females: Mean rank scores of passive avoidance testing latencies Figure 33. All Intact Animals

  5. Estrogenic modulation of delta(9)-Tetrahydrocannabinol effects on nigrostriatal dopaminergic activity in the female rat brain.

    PubMed

    Bonnin, A; Ferández-Ruiz, J J; Martín, M; De Fonseca, F R; De Miguel, R; Ramos, J A

    1992-08-01

    In this work we studied the possible estrogenic modulation of the effects of delta(9)-tetrahydrocannabinol (THC) on nigrostriatal dopaminergic activity. Thus, we examined the effects of an acute dose of this cannabinoid: (i) during the three phases of the estrous cycle; (ii) after ovariectomy, chronic estrogen replacement, and/or tamoxifen (TMX)-induced blockade of cytosolic estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats, whose effects were measured early, with no time for genomic induction. THC increased the activity of tyrosine hydroxylase in the striatum of ovariectomized rats implanted with estradiol-filled Silastic capsules or ovariectomized rats. This effect: (i) depended on the presence of an intact estrogenic receptor mechanism, because it was prevented by pretreatment with TMX, and (ii) did not appear when THC was coadministered with estradiol, suggesting an inhibitory modulation of cannabinoid effect by the nongenomic mechanism of action of this steroid. The striatal content of l-3,4-dihydroxyphenylacetic acid and its ratio with dopamine content, which can be used as an index of neuronal activity, also increased following acute THC administration. However, this effect was seen only in ovariectomized rats without estrogen replacement. The administration of THC in combination with a single estradiol injection or to estradiol-implanted ovariectomized rats was ineffective for both parameters. All these effects appeared after ovariectomy with/without estrogen replacement. However, we did not observe any statistically significant effects when THC was administered to normal cycling rats during each phase of the estrous cycle. This observation might be related to the fact that the affinity of striatal cannabinoid receptors, which are the main candidates to mediate cannabinoid effects on this area, significantly increased after ovariectomy compared with that measured in normal cycling rats. In

  6. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    PubMed

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats.

  7. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats.

    PubMed

    Saadati, Hakimeh; Sheibani, Vahid; Esmaeili-Mahani, Saeed; Darvishzadeh-Mahani, Fatemeh; Mazhari, Shahrzad

    2014-11-01

    Previous studies indicated that brain-derived neurotrophic factor (BDNF) is the main candidate to mediate the beneficial effects of exercise on cognitive function in sleep deprived male rats. In addition, our previous findings demonstrate that female rats are more vulnerable to the deleterious effects of sleep deprivation on cognitive performance and synaptic plasticity. Therefore, the current study was designed to investigate the effects of treadmill exercise and/or sleep deprivation (SD) on the levels of BDNF mRNA and protein in the hippocampus of female rats. Intact and ovariectomized (OVX) female Wistar rats were used in the present experiment. The exercise protocol was four weeks treadmill running and sleep deprivation was accomplished using the multiple platform method. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis were used to evaluate the level of BDNF mRNA and protein in the rat hippocampus respectively. Our results showed that protein and mRNA expression of BDNF was significantly (p<0.05) decreased after 72 h SD in OVX rats in compared with other groups. Furthermore, sleep deprived OVX rats under exercise conditions had a significant (p<0.05) up-regulation of the BDNF protein and mRNA in the hippocampus. These findings suggest that regular exercise can exert a protective effect against hippocampus-related functions and impairments induced by sleep deprivation probably by inducing BDNF expression.

  8. Aluminium-induced imbalance in oxidant and antioxidant determinants in brain regions of female rats: protection by centrophenoxine.

    PubMed

    Nehru, Bimla; Bhalla, Punita

    2006-01-01

    The present study was carried out to investigate the potential of centrophenoxine in modulating aluminium-induced neurotoxicity. Female Sprague Dawley rats were administered aluminium chloride orally (40 mg/kg b.w./day) for a period of 8 weeks. At the end of respective treatment, various markers of oxidative stress were determined in four different regions of brain: cerebrum cerebellum, medulla oblongata, and hypothalamus. Lipid peroxidation assay was also carried out using standard techniques. Simultaneously, the centrophenoxine group (100 mg/kg b.w./day) for 6 weeks was also run long to understand the role in ameliorating oxidative damage. A significant decrease in the activities of superoxide dismutase and catalase was noticed in all the four regions, the most significant being in the hypothalamus (0.603 +/- .06) and cerebrum (0.038 +/- .01). Due to aluminium toxicity, peroxidation of lipids was also found to be elevated in cerebrum (0.424 +/- .03), cerebellum (0.341 +/- .03), hypothalamus (1.018 +/- .007), and medulla oblongata (0.304 +/- .05). However, posttreatment with centrophenoxine significantly elevated the superoxide and catalase activities in different regions. In addition, lipid peroxidation status of membranes was significantly reduced after centrophenoxine posttreatment to aluminium-exposed animals. Centrophenoxine has proved to be beneficial in combating the damage caused by aluminium toxicity. However, further research is needed to have a better understanding of the molecular basis of aluminium-induced oxidative damage. In addition, the different aspects of centrophenoxine need to be unmasked.

  9. Phencyclidine (PCP)-induced disruption in cognitive performance is gender-specific and associated with a reduction in brain-derived neurotrophic factor (BDNF) in specific regions of the female rat brain.

    PubMed

    Snigdha, Shikha; Neill, Joanna C; McLean, Samantha L; Shemar, Gaurav K; Cruise, Leonie; Shahid, Mohammed; Henry, Brian

    2011-03-01

    Phencyclidine (PCP), used to mimic certain aspects of schizophrenia, induces sexually dimorphic, cognitive deficits in rats. In this study, the effects of sub-chronic PCP on expression of brain-derived neurotrophic factor (BDNF), a neurotrophic factor implicated in the pathogenesis of schizophrenia, have been evaluated in male and female rats. Male and female hooded-Lister rats received vehicle or PCP (n=8 per group; 2 mg/kg i.p. twice daily for 7 days) and were tested in the attentional set shifting task prior to being sacrificed (6 weeks post-treatment). Levels of BDNF mRNA were measured in specific brain regions using in situ hybridisation. Male rats were less sensitive to PCP-induced deficits in the extra-dimensional shift stage of the attentional set shifting task compared to female rats. Quantitative analysis of brain regions demonstrated reduced BDNF levels in the medial prefrontal cortex (p<0.05), motor cortex (p<0.01), orbital cortex (p<0.01), olfactory bulb (p<0.05), retrosplenial cortex (p<0.001), frontal cortex (p<0.01), parietal cortex (p<0.01), CA1 (p<0.05) and polymorphic layer of dentate gyrus (p<0.05) of the hippocampus and the central (p<0.01), lateral (p<0.05) and basolateral (p<0.05) regions of the amygdaloid nucleus in female PCP-treated rats compared with controls. In contrast, BDNF was significantly reduced only in the orbital cortex and central amygdaloid region of male rats (p<0.05). Results suggest that blockade of NMDA receptors by sub-chronic PCP administration has a long-lasting down-regulatory effect on BDNF mRNA expression in the female rat brain which may underlie some of the behavioural deficits observed post PCP administration.

  10. Effect of treatment at weaning with the serotonin antagonist mianserin on the brain serotonin and cerebrospinal fluid nocistatin level of adult female rats: a case of late imprinting.

    PubMed

    Csaba, G; Knippel, Barbara; Karabélyos, Cs; Inczefi-Gonda, Agnes; Hantos, Mónika; Tóthfalusi, L; Tekes, Kornélia

    2004-07-09

    Four weeks old (weanling) female rats were treated with the tricyclic antidepressant and histamine/serotonin receptor blocker mianserin for studying its faulty hormonal imprinting effect. Measurements were done four months later. Brain serotonin levels significantly decreased in four regions (hippocampus, hypothalamus, striatum and brainstem), without any change in the cortex. Sexual activity of the treated and control rats was similar. Cerebrospinal fluid nocistatin level was one magnitude higher in the treated rats, than in the controls. The density of uterine estrogen receptors was significantly reduced, while binding capacity of glucocorticoid receptors of liver and thymus remained at control level. The results call attention to the possibility of 1. a broad spectrum imprinting at the time of weaning by a receptor level acting non-hormone molecule 2. imprinting of the brain in a non-neonatal period of life and 3. a very durable (lifelong?) effect of the late imprinting with an antidepressant.

  11. Preconception paternal stress in rats alters dendritic morphology and connectivity in the brain of developing male and female offspring.

    PubMed

    Harker, A; Raza, S; Williamson, K; Kolb, B; Gibb, R

    2015-09-10

    The goal of this research was to examine the effect of preconception paternal stress (PPS) on the subsequent neurodevelopment and behavior of male and female offspring. Prenatal (gestational) stress has been shown to alter brain morphology in the developing brain, and is presumed to be a factor in the development of some adult psychopathologies. Our hypothesis was that paternal stress in the preconception period could impact brain development in the offspring, leading to behavioral abnormalities later in life. The purpose of this study was to examine the effect of preconception paternal stress on developing male and female offspring brain morphology in five brain areas; medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), parietal cortex (Par1), hippocampus (CA1) and nucleus accumbens (NAc). Alterations in dendritic measures and spine density were observed in each brain area examined in paternal stress offspring. Our two main findings reveal; (1) PPS alters brain morphology and organization and these effects are different than the effects of stress observed at other ages; and, (2) the observed dendritic changes were sexually dimorphic. This study provides direct evidence that PPS modifies brain architecture in developing offspring, including dendritic length, cell complexity, and spine density. Alterations observed may contribute to the later development of psychopathologies and maladaptive behaviors in the offspring. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Effect of estrogens on base excision repair in brain and liver mitochondria of aged female rats.

    PubMed

    Leclère, R; Torregrosa-Muñumer, R; Kireev, R; García, C; Vara, E; Tresguerres, J A F; Gredilla, R

    2013-08-01

    Changes in the endocrine system have been suggested to act as signaling factors in the regulation of age-related events. Among the different hormones that have been linked to the aging process, estrogens have been widely investigated. They have been associated with inflammatory and oxidative processes and several investigations have established a relationship between the protective effects of estrogens and the mitochondrial function. Mitochondrial DNA is subjected to continuous oxidative attack by free radicals, and the base excision repair (BER) pathway is the main DNA repair route present in mitochondria. We have investigated the effect of estrogen levels on some of the key enzymes of BER in brain and liver mitochondria. In both tissues, depletion of estrogens led to an increased mitochondrial AP endonuclease (mtAPE1) activity, while restoration of estrogen levels by exogenous supplementation resulted in restitution of control APE1 activity only in liver. Moreover, in hepatic mitochondria, changes in estrogen levels affected the processing of oxidative lesions but not deaminations. Our results suggest that changes in mtAPE1 activity are related to specific translocation of the enzyme from the cytosol into the mitochondria probably due to oxidative stress changes as a consequence of changes in estrogen levels.

  13. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  14. Neonatal exposure to 17β-estradiol down-regulates the expression of synaptogenesis related genes in selected brain regions of adult female rats.

    PubMed

    Radhika, N S; Govindaraj, Vijayakumar; Sarangi, S K; Rao, A J

    2015-11-15

    Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17β-estradiol administration to neonatal female rats. Female Wistar rats which were administered 17β-estradiol on day 2 and 3 after birth were sacrificed 120days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-α was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat.

    PubMed

    Turtzo, L Christine; Budde, Matthew D; Dean, Dana D; Gold, Eric M; Lewis, Bobbi K; Janes, Lindsay; Lescher, Jacob; Coppola, Tiziana; Yarnell, Angela; Grunberg, Neil E; Frank, Joseph A

    2015-01-01

    Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.

  16. Modulation of gamma-irradiation and carbon tetrachloride induced oxidative stress in the brain of female rats by flaxseed oil.

    PubMed

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-08-01

    The activity of flaxseed oil (FSO) on gamma-irradiation (7Gy) and/or carbon tetrachloride (CCl4) induced acute neurotoxicity in rats' brain was investigated. The results revealed a significant decrease (p<0.05) in superoxide dismutase (SOD), catalase (CAT), glutathione-peroxidase (GSH-Px) activities, reduced glutathione (GSH) and manganese (Mn) contents. Further, a significant elevation (p<0.05) in malondialdehyde, nitric oxide (NO), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), transforming growth factor-beta-1 (TGF-β1), iron (Fe), calcium (Ca), copper (Cu) and magnesium (Mg) levels were observed. Furthermore, the relative ratio of xanthine oxidase (XO) and inducible nitric-oxide synthase (iNOS) gene expression levels were elevated in the brain tissues of γ-irradiated and CCl4 intoxicated animals. Those effects were augmented due to the effect of CCl4-induced toxicity in γ-irradiated rats. The treatment of FSO displayed significant amendment of the studied parameters in the brain tissues of γ-irradiated and CCl4 intoxicated animals. FSO has a neuroprotective effect against CCl4-induced brain injury in gamma-irradiated rats. This effect is interrelated to the ability of FSO to scavenges the free radicals, enhances the antioxidant enzymes activity, increases GSH contents, down-regulates the inflammatory responses, ameliorates the iron, calcium, copper, magnesium, manganese levels and inhibiting the gene expression level of XO and iNOS in the brain tissues of intoxicated animals. In conclusion, this study demonstrated that the potent antioxidant and anti-inflammatory activities of FSO have the ability to improve the antioxidant status, suppress the inflammatory responses, and regulate the trace elements in the brain tissues of γ-irradiated, CCl4, and their combined effect in intoxicated animals. Consequently, FSO exhibited neuroprotective activity on γ-irradiated, CCl4, and their combined effect induced brain injury in

  17. Electron-microscopic characteristics of neuroendocrine neurons in the amygdaloid body of the brain in male rats and female rats at different stages of the estral cycle.

    PubMed

    Akhmadeev, A V; Kalimullina, L B

    2008-01-01

    The ultrastructural features of neuroendocrine neurons in the dorsomedial nucleus (DMN) of the amygdaloid body of the brain - one of the major zones of sexual dimorphism - in 12 Wistar rats weighing 250-300 g were studied in three males and nine females at different stages of the estral cycle. On the basis of ultrastructural characteristics, analysis of the functional states of an average of 50 DMN neurons were studied in each animal. A morphofunctional classification reflecting hormone-dependent variations in neuron activity is proposed. DMN neurons were found to be in different structural-functional states, which could be classified as the states of rest, moderate activity, elevated activity, tension (maximal activity), decreased activity (types 1 and 2, depending on prior history), return to the initial state, and apoptosis. At the estrus stage, there was a predominance of neurons in the states of elevated activity (40% of all cells) and maximal activity (26%). At the metestrus stage, neurons in the state of decreased activity type 1 (with increased nuclear heterochromatin content) predominated (30% of cells), while 25% and 20% of cells were in the states of maximal activity and elevated activity respectively. In diestrus, neurons in the resting state, in moderate and elevated activity, in maximal activity, and in decreased activity type 1 were present in essentially identical proportions (18%, 21%, 18%, 20%, and 16% respectively). In males, 35% and 22% of neurons were in the states of elevated and maximal activity respectively. Neuron death was seen only in males.

  18. Effects of female sex hormones on expression of the Ang-(1-7)/Mas-R/nNOS pathways in rat brain.

    PubMed

    Cheng, Yuan; Li, Qiaoying; Zhang, Yidan; Wen, Quan; Zhao, Jianjun

    2015-11-01

    Female sex hormones are considered to reduce the risk of ischemic stroke. As a part of the renin-angiotensin system, angiotensin-(1-7) [Ang-(1-7)] has recently been reported to play a role in protecting neuronal tissues from ischemic stroke. Thus, we examined the effects of female sex hormones on the levels of Ang-(1-7) and its downstream pathways in the brain. Female rats were ovariectomized and 17β-estradiol (17β-EST), progesterone (PGR), or a combination of 17β-EST plus PGR were administered. Our data demonstrated that lack of female sex hormones significantly decreased the levels of Ang-(1-7) in the cerebral cortex and hippocampal CA1 area. Also, we observed a linear relationship between cortex levels of Ang-(1-7) and plasma brain natriuretic peptide levels (as an indicator for risk of ischemic stroke). We further showed that lack of female sex hormones decreased the expression of Ang-(1-7), Mas-receptor (Mas-R), and neuronal nitric oxide synthase (nNOS). Overall, our findings show for the first time that Ang-(1-7) and Mas-R/nNOS in the cortex are influenced by circulating 17β-EST and (or) PGR, whereas Ang-(1-7) and its pathways in the hippocampal CA1 area are primarily altered by 17β-EST. This suggests that female sex hormones play a role in regulating the expression of Ang-(1-7) and its pathways during ischemic brain injuries.

  19. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats

    PubMed Central

    Bruijnzeel, Adrie W.; Corrie, Lu W.; Rogers, Jessica A.; Yamada, Hidetaka

    2011-01-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure was used to assess the effects of insulin and leptin on the reward system. Elevations in brain reward thresholds are indicative of a decrease in brain reward function. The bilateral administration of leptin into the VTA (15–500 ng/side) or Arc (15–150 ng/side) decreased food intake for 72 h. The infusion of leptin into the VTA or Arc resulted in weight loss during the first 48 (VTA) or 24 h (Arc) after the infusions. The administration of insulin (0.005–5 mU/side) into the VTA or Arc decreased food intake for 24 h but did not affect body weights. The bilateral administration of low, but not high, doses of leptin (15 ng/side) or insulin (0.005 mU/side) into the VTA elevated brain reward thresholds. Neither insulin nor leptin in the Arc affected brain reward thresholds. These studies suggest that a small increase in leptin or insulin levels in the VTA leads to a decrease in brain reward function. A relatively large increase in insulin or leptin levels in the VTA or Arc decreases food intake. PMID:21255613

  20. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats

    PubMed Central

    Shults, Cody L.; Rao, Yathindar S.; Pak, Toni R.

    2016-01-01

    Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status. PMID:27487271

  1. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats.

    PubMed

    Pinceti, Elena; Shults, Cody L; Rao, Yathindar S; Pak, Toni R

    2016-01-01

    Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET) can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs) mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK). These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX) followed by an acute dose of 17β-estradiol (E2) administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks). Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status.

  2. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development.

    PubMed

    Carrillo, Beatriz; Collado, Paloma; Díaz, Francisca; Chowen, Julie A; Pérez-Izquierdo, Mª Ángeles; Pinos, Helena

    2017-07-11

    Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.

  3. Evaluating the potential role of pomegranate peel in aluminum-induced oxidative stress and histopathological alterations in brain of female rats.

    PubMed

    Abdel Moneim, Ahmed E

    2012-12-01

    Studies have shown that pomegranate, Punica granatum Linn. (Lythraceae), has remarkable biological and medicinal properties. However, the effects of pomegranate peel methanolic extract (PPME) on the aluminum-induced oxidative stress and histopathological change have not been reported yet. To determine the effect of PPME (200 mg/kg bwt) on the aluminum chloride (AlCl₃; 34 mg/kg bwt)-induced neurotoxicity, aluminum accumulation in brain and oxidant/antioxidant status were determined. The change of brain structure was investigated with hematoxylin and eosin, and anti-apoptosis effects of PPME were analyzed by immunohistochemistry. The present study showed an indication of carcinogenicity in the AlCl₃-treated group representing an increase in tissue tumor markers such as tumor necrosis factor-α and angiogenin and inflammation by inducing an increase in prostaglandin E2 and prostaglandin F2α. PPME protected brain through decreasing the aluminum accumulation and stimulating antioxidant activities and anti-apoptotic proteins namely Bcl-2. Therefore, these results indicated that pomegranate peel methanolic extract could inhibit aluminum-induced oxidative stress and histopathological alternations in brain of female rats, and these effects may be related to anti-apoptotic and antioxidants activities.

  4. Polychlorinated biphenyls impair blood-brain barrier integrity via disruption of tight junction proteins in cerebrum, cerebellum and hippocampus of female Wistar rats: neuropotential role of quercetin.

    PubMed

    Selvakumar, K; Prabha, R Lakshmi; Saranya, K; Bavithra, S; Krishnamoorthy, G; Arunakaran, J

    2013-07-01

    Polychlorinated biphenyls (PCBs) comprise a ubiquitous class of toxic substances associated with carcinogenic and tumor-promoting effects as well as neurotoxic properties. Reactive oxygen species, which is produced from PCBs, alters blood-brain barrier (BBB) integrity, which is paralleled by cytoskeletal rearrangements and redistribution and disappearance of tight junction proteins (TJPs) like claudin-5 and occludin. Quercetin, a potent antioxidant present in onion and other vegetables, appears to protect brain cells against oxidative stress, a tissue-damaging process associated with Alzheimer's and other neurodegenerative disorders. The aim of this study is to analyze the role of quercetin on oxidative stress markers and transcription of transmembrane and cytoplasmic accessory TJPs on cerebrum, cerebellum and hippocampus of female rats exposed to PCBs. Rats were divided into the following four groups. Group I: received only vehicle (corn oil) intraperitoneally (i.p.); group II: received Aroclor 1254 at a dose of 2 mg/kg body weight (bwt)/day (i.p); group III: received Aroclor 1254 (i.p.) and simultaneously quercetin 50 mg/kg bwt/day through gavage and group IV: received quercetin alone gavage. From the experiment, the levels of hydrogen peroxide, lipid peroxidation and thiobarbituric acid reactive substances were observed to increase significantly in cerebrum, cerebellum and hippocampus as 50%, 25% and 20%, respectively, after exposure to PCB, and the messenger RNA expression of TJP in rats exposed to PCBs is decreased and is retrieved to the normal level simultaneously in quercetin-treated rats. Hence, quercetin can be used as a preventive medicine to PCBs exposure and prevents neurodegenerative disorders.

  5. Neonatal exposure to estradiol-17β modulates tumour necrosis factor alpha and cyclooxygenase-2 expression in brain and also in ovaries of adult female rats.

    PubMed

    Shridharan, Radhika Nagamangalam; Krishnagiri, Harshini; Govindaraj, Vijayakumar; Sarangi, SitiKantha; Rao, Addicam Jagannadha

    2016-02-01

    The sexually dimorphic organization in perinatal rat brain is influenced by steroid hormones. Exposure to high levels of estrogen or endocrine-disrupting compounds during perinatal period may perturb this process, resulting in compromised reproductive physiology and behavior as observed in adult In our recent observation neonatal exposure of the female rats to estradiol-17β resulted in down-regulation of TNF-α, up-regulation of COX-2 and increase in SDN-POA size in pre-optic area in the adulthood. It is known that the control of reproductive performance in female involves a complex interplay of the hypothalamus, pituitary, and ovary. The present study was undertaken to understand the possible molecular mechanism involved in changes observed in the ovarian morphology and expression of selected genes in the ovary. Administration of estradiol-17β (100 μg) on day 2 and 3 after birth revealed up-regulation of ER-α, ER-β, COX-2 and down-regulation of TNF-α expression. Also the decrease in the ovarian weight, altered ovarian morphology and changes in the 2D protein profiles were also seen. This is apparently the first report documenting that neonatal estradiol exposure modulates TNF-α and COX-2 expression in the ovary as seen during adult stage. Our results permit us to suggest that cues originating from the modified brain structure due to neonatal exposure of estradiol-17β remodel the ovary at the molecular level in such a way that there is a disharmony in the reproductive function during adulthood and these changes are perennial and can lead to infertility and changes of reproductive behavior.

  6. Cerebrovascular dysfunction and blood-brain barrier permeability induced by oxidized LDL are prevented by apocynin and magnesium sulfate in female rats

    PubMed Central

    Schreurs, Malou P.H.; Cipolla, Marilyn J.

    2013-01-01

    Oxidized low-density lipoprotein (oxLDL) is elevated during several neurologic conditions that involve cerebral edema formation, including severe preeclampsia and eclampsia; however, our understanding of its effect on the cerebral vasculature is limited. We hypothesized that oxLDL induced blood-brain barrier (BBB) disruption and changes in cerebrovascular reactivity occurs through NADPH oxidase-derived superoxide. We also investigated the effect of MgSO4 on oxLDL-induced changes in the cerebral vasculature as this is commonly used in preventing cerebral edema formation. Posterior cerebral arteries (PCA) from female rats were perfused with 5μg/mL oxLDL in rat serum with or without 50μM apocynin or 16mM MgSO4 and BBB permeability and vascular reactivity were compared. oxLDL increased BBB permeability and decreased myogenic tone that were prevented by apocynin. oxLDL increased constriction to the nitric oxide synthase inhibitor L-NNA that was unaffected by apocynin. oxLDL enhanced dilation to the NO donor sodium nitroprusside that was prevented by apocynin. MgSO4 prevented oxLDL-induced BBB permeability without affecting oxLDL-induced changes in myogenic tone. Thus, oxLDL appears to cause BBB disruption and vascular tone dysregulation through NADPH oxidase-derived superoxide. These results highlight oxLDL and NADPH oxidase as potentially important therapeutic targets in neurologic conditions that involve elevated oxLDL. PMID:24084218

  7. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  8. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  9. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats

    PubMed Central

    Zabihi, Hoda; Hosseini, Mahmoud; Pourganji, Masoume; Oryan, Shahrbanoo; Soukhtanloo, Mohammad; Niazmand, Saeed

    2014-01-01

    Background: Regarding the modulatory effects of tamoxifen (TAM) on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX) and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1) Sham, (2) OVX, (3) Sham-tamoxifen (Sham-TAM) and (4) ovariectomized-tamoxifen (OVX-TAM). The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks). Results: In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01). The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01); however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q1) by the animals of OVX group was lower than that of Sham group (P < 0.01). Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q1) compared with OVX group (P < 0.01). In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05). The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01). In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05) and malondialdehyde concentration was lower (P < 0.01) than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage. PMID:25371876

  10. Differential effects of imipramine and CORT118335 (Glucocorticoid receptor modulator/mineralocorticoid receptor antagonist) on brain-endocrine stress responses and depression-like behavior in female rats.

    PubMed

    Nguyen, Elizabeth T; Caldwell, Jody L; Streicher, Joshua; Ghisays, Valentina; Balmer, Nikolaus J; Estrada, Christina M; Solomon, Matia B

    2017-09-01

    Depression is commonly associated with hypothalamic-pituitary adrenal (HPA) axis dysfunction that primarily manifests as aberrant glucocorticoid secretion. Glucocorticoids act on Type I mineralocorticoid (MR) and Type II glucocorticoid receptors (GR) to modulate mood and endocrine responses. Successful antidepressant treatment normalizes HPA axis function, in part due to modulatory effects on MR and GR in cortico-limbic structures. Although women are twice as likely to suffer from depression, little is known about how antidepressants modulate brain, endocrine, and behavioral stress responses in females. Here, we assessed the impact of CORT118335 (GR modulator/MR antagonist) and imipramine (tricyclic antidepressant) on neuroendocrine and behavioral responses to restraint or forced swim stress (FST) in female rats (n=10-12/group). Increased immobility CORT118335 in the FST is purported to reflect passive coping or depression-like behavior. CORT118335 dampened adrenocorticotropic hormone (ACTH) and corticosterone responses to the FST, but did not affect immobility. Imipramine suppressed ACTH, but had minimal effects on corticosterone responses to FST. Despite these marginal effects, imipramine decreased immobility, suggesting antidepressant efficacy. In an effort to link brain-endocrine responses with behavior, c-Fos was assessed in HPA axis and mood modulatory regions in response to the FST. CORT118335 upregulated c-Fos expression in the paraventricular nucleus of the hypothalamus. Imipramine decreased c-Fos in the basolateral amygdala and hippocampus (CA1 and CA3), but increased c-Fos in the central amygdala. These data suggest the antidepressant-like (e.g., active coping) properties of imipramine may be due to widespread effects on cortico-limbic circuits that regulate emotional and cognitive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 17β-estradiol and progesterone regulate expression of β-amyloid clearance factors in primary neuron cultures and female rat brain.

    PubMed

    Jayaraman, Anusha; Carroll, Jenna C; Morgan, Todd E; Lin, Sharon; Zhao, Liqin; Arimoto, Jason M; Murphy, M Paul; Beckett, Tina L; Finch, Caleb E; Brinton, Roberta Diaz; Pike, Christian J

    2012-11-01

    The accumulation of β-amyloid protein (Aβ) is a key risk factor in the development of Alzheimer's disease. The ovarian sex steroid hormones 17β-estradiol (E(2)) and progesterone (P(4)) have been shown to regulate Aβ accumulation, although the underlying mechanism(s) remain to be fully elucidated. In this study, we investigate the effects of E(2) and P(4) treatment on the expression levels of Aβ clearance factors including insulin-degrading enzyme, neprilysin, endothelin-converting enzyme 1 and 2, angiotensin-converting enzyme, and transthyretin, both in primary neuron cultures and female rat brains. Our results show that E(2) and P(4) affect the expression levels of several Aβ clearance factors in dose- and time-dependent manners. Most notably, expression of insulin-degrading enzyme is significantly increased by both hormones in cultured neurons and in vivo and is inversely associated with the soluble Aβ levels in vivo. These findings further define sex steroid hormone actions involved in regulation of Aβ, a relationship potentially important to therapeutic approaches aimed at reducing risk of Alzheimer's disease.

  12. BP101 Peptide Promotes Female Sexual Receptivity in the Rat.

    PubMed

    Andreev-Andrievskiy, Alexander; Lomonosov, Mikhail; Popova, Anfisa; Lagereva, Evgeniia; Clément, Pierre; Salimov, Ramiz; Golikov, Dmitriy

    2017-03-01

    Low sexual desire is a frequent sexual problem in women, with only one drug for the condition approved by the Food and Drug Administration. To evaluate the ability of a novel synthetic peptide, BP101, to facilitate sexual behavior after intranasal administration or infusion into certain brain areas in female rats. Bilaterally ovariectomized female rats, primed with a suboptimal combination of estradiol benzoate (EB) and progesterone, were used as a model of low sexual motivation. Sexual behavior was tested with stud male rats after acute (experiment 1) or long-term (experiment 2) intranasal administration of BP101 or peptide infusion into the olfactory bulb, medial preoptic area, ventromedial hypothalamic nucleus, or ventral tegmental area (experiment 3). Frequency of solicitations (SF), as an indicator of sexual motivation in female rats, and lordosis frequency and ratio, as measurements of female consummatory sexual behavior. Acute intranasal BP101 administration moderately increased SF, with the highest tested dose of 300 μg/kg causing an 80% increase. Female rats receiving BP101 75 or 300 μg/kg daily on days 6 to 16 of the peptide administration displayed twofold higher SF compared with the placebo-treated animals, an increase comparable to optimally hormone-primed female rats. Infusion of BP101 1 and 5 μg per rat into the medial preoptic area, but not into the olfactory bulb, ventromedial hypothalamic nucleus, or ventral tegmental area, increased SF in female rats supplemented with EB 10 or 20 μg. The effect was relatively more pronounced in female rats receiving EB 10 μg (≈300%) compared with EB 20 μg (≈50%) with direct brain infusions. BP101 displays a potent stimulatory effect on sexual motivation in the female rat, and the medial preoptic area seems to be the site of its action. BP101 is effective in female rats receiving different hormone supplementations, making the present data generalizable to pre- and postmenopausal women with hypoactive

  13. Expression of ecto-nucleoside triphosphate diphosphohydrolase3 (NTPDase3) in the female rat brain during postnatal development.

    PubMed

    Grković, Ivana; Bjelobaba, Ivana; Mitrović, Nataša; Lavrnja, Irena; Drakulić, Dunja; Martinović, Jelena; Stanojlović, Miloš; Horvat, Anica; Nedeljković, Nadežda

    2016-11-01

    Nucleoside triphosphate diphosphohydrolase3 (NTPDase3) is membrane-bound ecto-enzyme which hydrolyzes extracellular ATP, thus modulating the function of purinergic receptors and the pattern of purinergic signaling. Here we analyzed the developmental expression of NTPDase3 in female hypothalamus, cerebral cortex and hippocampal formation at different postnatal ages (PD7-PD90) by qRT-PCR and immunohistochemistry. In hypothalamus and hippocampus, a similar developmental profile was seen: NTPDase3 gene expression was stable during postnatal development and increased in adults. In the cortex, upregulation of NTPDase3 mRNA expression was seen at PD15 and further increase was evidenced in adults. Immunohistochemical analysis at PD7 revealed faint neuronal NTPDase3 localization in a dorsal hypothalamus. The immunoreactivity (ir) gradually increased in PD15 and PD20, in clusters of cells in the lateral, ventral and dorsomedial hypothalamus. Furthermore, in PD20 animals, NTPDase3-ir was detected on short fibers in the posterior hypothalamic area, while in PD30 the fibers appeared progressively longer and markedly varicose. In adults, the strongest NTPDase3-ir was observed in collections of cells in dorsomedial hypothalamic nucleus, dorsal and lateral hypothalamus and in several thalamic areas, whereas the varicose fibers traversed entire diencephalon, particularly paraventricular thalamic nucleus, ventromedial and dorsomedial hypothalamic nuclei, the arcuate nucleus and the prefornical part of the lateral hypothalamus. The presumably ascending NTPDase3-ir fibers were first observed in PD20; their density and the varicose appearance increased until the adulthood. Prominent enhancement of NTPDase3-ir in the hypothalamus coincides with age when animals acquire diurnal rhythms of sleeping and feeding, supporting the hypothesis that this enzyme may be involved in regulation of homeostatic functions.

  14. Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat.

    PubMed

    Lahouel, Asma; Kebieche, Mohamed; Lakroun, Zohra; Rouabhi, Rachid; Fetoui, Hamadi; Chtourou, Yassine; Djamila, Zama; Soulimani, Rachid

    2016-10-01

    Persistent organic pollutants (POPs) are long-lived organic compounds that are considered one of the major risks to ecosystem and human health. Recently, great concerns are raised about POPs mixtures and its potential toxicity even in low doses of daily human exposure. The brain is mostly targeted by these lipophilic compounds because of its important contain in lipids. So, it would be quite interesting to study the effects of exposure to these mixtures and evaluate their combined toxicity on brain cells. The present study was designed to characterize the cognitive and locomotors deficits and brain areas redox status in rat model. An orally chronic exposure to a representative mixture of POPs composed of endosulfan (2.6 μg/kg), chlorpyrifos (5.2 μg/kg), naphthalene (0.023 μg/kg) and benzopyrane (0.002 μg/kg); the same mixture with concentration multiplied by 10 and 100 was also tested. Exposed rats have shown a disturbance of memory and a decrease in learning ability concluded by Morris water maze and the open field tests results and anxiolytic behaviour in the test of light/dark box compared to control. Concerning brain redox homeostasis, exposed rats have shown an increased malondialdehyde (MDA) amount and an alteration in glutathione (GSH) levels in both the brain mitochondria and cytosolic fractions of the cerebellum, striatum and hippocampus. These effects were accompanied by a decrease in levels of cytosolic glutathione S-transferase (GST) and a highly significant increase in superoxide dismutase (SOD) and catalase (CAT) activities in both cytosolic and mitochondrial fractions. The current study suggests that environmental exposure to daily even low doses of POPs mixtures through diet induces oxidative stress status in the brain and especially in the mitochondria with important cognitive and locomotor behaviour variations in the rats.

  15. Methamphetamine enhances sexual behavior in female rats.

    PubMed

    Winland, Carissa; Haycox, Charles; Bolton, Jessica L; Jampana, Sumith; Oakley, Benjamin J; Ford, Brittany; Ornelas, Laura; Burbey, Alexandra; Marquette, Amber; Frohardt, Russell J; Guarraci, Fay A

    2011-06-01

    The present study evaluated the effects of methamphetamine (MA) on sexual behavior in female rats. In Experiment 1, ovariectomized, hormone-primed rats were injected with MA (1.0mg/kg, i.p.) or saline prior to a test for mate choice wherein females could mate with two males simultaneously. Female rats treated with saline returned to their preferred mate faster after receiving intromissions and visited their preferred mate at a higher rate than their non-preferred mate. In contrast, MA-treated female rats spent a similar amount of time with their preferred and non-preferred mate and failed to return to their preferred mate faster than to their non-preferred mate following intromissions. Two weeks later, the females received the same drug treatment but were tested for partner preference wherein females could spend time near a male or female stimulus rat. All subjects spent more time near the male stimulus than the female stimulus. However, the MA-treated rats visited the male stimulus more frequently and spent less time near the female stimulus than the saline-treated rats. Similar to Experiment 1, female rats in Experiment 2 were tested for mate choice and then two weeks later tested for partner preference; however, females received three daily injections of MA (1.0mg/kg, i.p.) or saline. Females treated chronically with MA returned to both males faster following intromissions than females treated with saline, independent of preference (i.e., preferred mate and non-preferred mate). Furthermore, MA-treated rats were more likely to leave either male (i.e., preferred or non-preferred mate) than saline-treated rats after receiving sexual stimulation. Although MA-treated subjects spent more time near the male stimulus than the female stimulus, they spent less time near either when compared to saline-treated subjects. The present results demonstrate that MA affects sexual behavior in female rats partly by increasing locomotion and partly by directly affecting sexual

  16. The effects of 17beta estradiol, 17alpha estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia.

    PubMed

    Ozacmak, V H; Sayan, H

    2009-01-01

    Neuroprotective effects of estrogens and progesterone have been widely studied in various experimental models. The present study was designed to compare possible neuroprotective effects of 17alpha-estradiol, 17beta-estradiol, and progesterone on oxidative stress in rats subjected to global cerebral ischemia. Global cerebral ischemia was induced in ovariectomized female rats by four vessel occlusion for 10 min. Following 72 h of reperfusion, levels of malondialdehyde (MDA, oxidative stress marker), and reduced glutathione (GSH, major endogenous antioxidant) were assessed in hippocampus, striatum and cortex of rats treated with either 17alpha-estradiol, 17beta-estradiol, progesterone or estradiol + progesterone beforehand. Steroid administration ameliorated ischemia-induced decrease in GSH and increase in MDA levels. Our data offers additional evidence that estrogens and progesterone or combination of two exert a remarkable neuroprotective effect reducing oxidative stress.

  17. Regulation of brain aromatase activity in rats

    SciTech Connect

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of /sup 3/H/sub 2/O formed during the conversion of (1 beta-/sup 3/H)androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats.

  18. Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats.

    PubMed

    Frye, C A; Koonce, C J; Walf, A A

    2014-09-01

    Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g., mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated reproduction and reproduction-related behaviors (e.g., affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the ventral tegmental area before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP, and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex, and plasma. Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain-derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF.

  19. Placentophagia in Weanling Female Laboratory Rats

    PubMed Central

    Harding, Kaitlyn M.; Lonstein, Joseph S.

    2014-01-01

    Placentophagia is common in parturient mammals and offers physiological and behavioral advantages for mothers. In natural environments, weanlings are often present during the birth of younger siblings, but it is unknown if weanling rats are placentophagic or prefer placenta over other substances. To examine this, primiparous rats were remated during the postpartum estrus and weanling females remained in the nest during their mother’s next parturition. Continuous observation revealed that 58% of weanlings were placentophagic. To determine if this placentophagia occurs away from parturient mothers, weanling females still living in their natal nest were offered placenta, liver, or cake frosting in a novel chamber. They ingested more placenta and liver than frosting. Thus, many weanling female laboratory rats are placentophagic during birth of younger siblings but do not selectively prefer placenta when tested outside their natal nest. Consequences of placentophagia by weanlings are unknown, but it may promote their alloparenting or postpartum mothering. PMID:24604548

  20. Hypergravity induced prolactin surge in female rats

    NASA Technical Reports Server (NTRS)

    Megory, E.; Oyama, J.

    1985-01-01

    Acute initial exposure to hypergravity (HG) was previously found to induce prolonged diestrous in rats, which was followed by return to normal estrous cycling upon more prolonged exposure to continuous HG. Bromergocryptine was found to prevent this prolonged diestrous. In this study it is found that in female rats 20 h of 3.14 G exposure (D-1 1200 h until D-2 0800 h) can induce prolactin surge at D-2 1600 h. Shorter exposure time (8 h), or exposure during a different part of the estrous cycle (19 h: from D-1 0700 h until D-2 0200 h) could not elicit this prolactin surge. Similar exposure of male rats of HG did not alter significantly their prolactin levels. It is possible that the hypothalamus of male and female rats responds differently to stimulation by HG.

  1. Hypergravity induced prolactin surge in female rats

    NASA Technical Reports Server (NTRS)

    Megory, E.; Oyama, J.

    1985-01-01

    Acute initial exposure to hypergravity (HG) was previously found to induce prolonged diestrous in rats, which was followed by return to normal estrous cycling upon more prolonged exposure to continuous HG. Bromergocryptine was found to prevent this prolonged diestrous. In this study it is found that in female rats 20 h of 3.14 G exposure (D-1 1200 h until D-2 0800 h) can induce prolactin surge at D-2 1600 h. Shorter exposure time (8 h), or exposure during a different part of the estrous cycle (19 h: from D-1 0700 h until D-2 0200 h) could not elicit this prolactin surge. Similar exposure of male rats of HG did not alter significantly their prolactin levels. It is possible that the hypothalamus of male and female rats responds differently to stimulation by HG.

  2. Female brain size and parental care in carnivores.

    PubMed Central

    Gittleman, J L

    1994-01-01

    Comparative studies indicate that species differences in mammalian brain size relate to body size, ecology, and life-history traits. Previous analyses failed to show intrasexual or behavioral patterns of brain size in mammals. Across the terrestrial Carnivora, I find to the contrary. Differences in female, but not male, brain size associate with a fundamental ecological and evolutionary characteristic of female behavior. Other factors equal, females that provide the sole parental care have larger brains than those of biparental or communal species. For females, more parental investment accompanies larger brains. Future comparative studies of mammalian brain size must recognize that some patterns arise independently in the two sexes. PMID:8202515

  3. Ivermectin reduces sexual behavior in female rats.

    PubMed

    Moreira, N; Bernardi, M M; Spinosa, H S

    2014-01-01

    Ivermectin (IVM) is an antiparasitic drug that is widely used in domestic animals. In mammals, IVM acts as a γ-aminobutyric acid (GABA) receptor agonist. This neurotransmitter plays an important role in the regulation of female sexual behavior. The present study investigated the effects of therapeutic (0.2 mg/kg) and high (1.0 mg/kg) IVM doses on female sexual behavior in physiological and pharmacological conditions. Female rats in estrus or treated with estradiol valerate to induce sexual behavior 24 h before the experiments were used. Ivermectin was administered 15 min before the sexual observations. The number of lordosis events in 10 mounts was recorded to calculate the lordosis quotient. The intensity of lordosis (0 [no lordosis], 1 [low lordosis], 2 [normal lordosis] and 3 [exaggerated lordosis]) was scored. In estrus and hormonal treated female rats, both IVM doses decreased the intensity of the lordosis reflex and the percentage of females that presented high levels of lordosis (exaggerated lordosis). However, the number of females that presented lordosis was unaltered. We conclude that in both hormonal conditions, 0.2mg/kg IVM treatment reduced female sexual behavior and the execution of the lordosis reflex. The present results may be useful for avoiding the side effects of this drug in veterinary practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats-Mediation via an Activation of Distinct Brain Nuclei.

    PubMed

    Scharner, Sophie; Prinz, Philip; Goebel-Stengel, Miriam; Kobelt, Peter; Hofmann, Tobias; Rose, Matthias; Stengel, Andreas

    2016-01-01

    Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n = 9), activity/ad libitum feeding (activity, AC, n = 9), no activity/restricted feeding (RF, n = 12) and activity/restricted feeding (activity-based anorexia, ABA, n = 11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24 h/day. From week two ABA and RF only had access to food from 9:00 to 10:30 a.m. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p > 0.05), after food restriction RF rats showed a body weight decrease: -13% vs. day eight (p < 0.001) and vs. AC (-22%, p < 0.001) and AL (-26%, p < 0.001) that gained body weight (+10% and +13%, respectively; p < 0.001). ABA showed an additional body weight loss (-9%) compared to RF (p < 0.001) reaching a body weight loss of -22% during the 2-week restricted feeding period (p < 0.001). Food intake was greatly reduced in RF (-38%) and ABA (-41%) compared to AL (p < 0.001). Interestingly, no difference in 1.5-h food intake microstructure was observed between RF and ABA (p > 0.05). Similarly, the daily physical activity was not different between AC and ABA (p > 0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of

  5. HIV-1 Proteins Accelerate HPA Axis Habituation in Female Rats

    PubMed Central

    Panagiotakopoulos, Leonidas; Kelly, Sean; Neigh, Gretchen N.

    2015-01-01

    Congenital infection by the Human Immunodeficiency Virus (HIV) has been shown to lead to multiple co-morbidities, and people living with HIV have a higher incidence of affective and anxiety disorders. A marked increase in mood disorders is evident during the sensitive phase of adolescence and this is further pronounced in females. Depression has been linked to dysfunction of the intracellular response system to corticosteroids at the level of the hippocampus (HC) and prefrontal cortex (PFC) with a notable role of the glucocorticoid receptor (GR) and its co-chaperones (FKBP5 and FKBP4). The current study examined the extent to which HIV protein expression in adolescent female rats altered the stress response at both the level of corticosterone output and molecular regulation of the glucocorticoid receptor in the brain. WT and HIV-1 genotype female rats were randomly allocated in control, acute stress and repeat stress groups. Corticosterone plasma levels and expression of GR, FKBP4, and FKBP5 in the HC and PFC were measured. The presence of HIV-1 proteins facilitate habituation of the corticosterone response to repeated stressors, such that HIV-1 TG rats habituated to repeated restraint and WT rats did not. This was reflected by interactions between stress exposure and HIV-1 protein expression at the level of GR co-chaperones. Although expression of the GR was similarly reduced after acute and repeat stress in both genotypes, expression of FKBP5 and FKBP4 was altered in a brain-region specific manner depending on the duration of the stress exposure and the presence or absence of HIV-1 proteins. Collectively, the data presented demonstrate that HIV-1 proteins accelerate habituation to repeated stressors and modify the influence of acute and repeat stressors on GR co-chaperones in a brain region-specific manner. PMID:25666308

  6. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  7. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  8. Abortifacient effect of metoclopramide in female albino rats.

    PubMed

    Shrestha, J M; Shrestha, R; Khanal, K

    2013-01-01

    Metoclopramide a dopamine receptor antagonist is commonly used to treat nausea and vomiting. Long term use can cause parkinsonism, galactorrhoea and gynaecomastia. As it is lipid soluble, it enters the brain, easily crosses the placental barrier and can affect the fetus. Hence, the present study is designed to assess the risk of metoclopramide in pregnant albino rats. To study the abortifacient effect of metoclopramide in pregnant albino rats. Eighteen pregnant rats were divided into three groups of six rats each. The abortifacient activities of metoclopramide were studied in the doses of 1 mg/kg and 3 mg/kg intramuscularly. The treatments were started on the 6th day of pregnancy and continued till the 15th day. Rats were laparotomised on 19th day of pregnancy for evaluation of abortifacient action. In both the horns of the uterus, number of implantation sites, resorption sites, dead and live fetuses were observed. The mean percentage of aborted fetus was 17.22 +/= 21.13 33.88 +/= 37.73 after 1mg/kg and 85.21 +/=18.93 after 3mg/kg of metoclopramide. The abortifacient effect of higher dose was significantly larger compared to both control group and low dose group, but there was no significant difference between the mean percentage of abortion in control group and the low dose group of metoclopramide. Metoclopramide at 3mg/kg intra muscular has abortifacient effects in female albino rats.

  9. Developmental changes in the hypothalamic mRNA expression levels of brain-derived neurotrophic factor and serum leptin levels: Their responses to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Yiliyasi, Maira; Kuwahara, Akira; Irahara, Minoru

    2016-11-01

    The actions and responses of hypothalamic appetite regulatory factors change markedly during the neonatal to pre-pubertal period in order to maintain appropriate metabolic and nutritional conditions. In this study, we examined the developmental changes in the hypothalamic mRNA levels of brain-derived neurotrophic factor (BDNF), which is a potent anorectic factor and the changes in the sensitivity of the hypothalamic expression of this factor to fasting during the neonatal to pre-pubertal period. Under fed conditions, hypothalamic BDNF mRNA expression decreased during development in both male and female rats. Similarly, the serum levels of leptin, which is a positive regulator of hypothalamic BDNF expression, also tended to fall during the developmental period. The serum leptin level and the hypothalamic BDNF mRNA level were found to be positively correlated in both sexes under the fed conditions. Hypothalamic BDNF mRNA expression was decreased by 24h fasting (separating the rats from their mothers) in the early neonatal period (postnatal day 10) in both males and females, but no such changes were seen at postnatal day 20. Twenty-four hours' fasting (food deprivation) did not affect hypothalamic BDNF mRNA expression in the pre-pubertal period (postnatal day 30). On the other hand, the rats' serum leptin levels were decreased by 24h fasting (separating the rats from their mothers at postnatal day 10 and 20, and food deprivation at postnatal day 30) throughout the early neonatal to pre-pubertal period. The correlation between serum leptin and hypothalamic BDNF mRNA levels was not significant under the fasted conditions. It can be speculated that leptin partially regulates hypothalamic BDNF mRNA levels, but only in fed conditions. Such changes in hypothalamic BDNF expression might play a role in maintaining appropriate metabolic and nutritional conditions and promoting normal physical development. In addition, because maternal separation induces a negative energy

  10. The rat brain hippocampus proteome.

    PubMed

    Fountoulakis, Michael; Tsangaris, George T; Maris, Antony; Lubec, Gert

    2005-05-05

    The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.

  11. A genetically female brain is required for a regular reproductive cycle in chicken brain chimeras.

    PubMed

    Maekawa, Fumihiko; Sakurai, Miyano; Yamashita, Yuki; Tanaka, Kohichi; Haraguchi, Shogo; Yamamoto, Kazutoshi; Tsutsui, Kazuyoshi; Yoshioka, Hidefumi; Murakami, Shizuko; Tadano, Ryo; Goto, Tatsuhiko; Shiraishi, Jun-ichi; Tomonari, Kohei; Oka, Takao; Ohara, Ken; Maeda, Teruo; Bungo, Takashi; Tsudzuki, Masaoki; Ohki-Hamazaki, Hiroko

    2013-01-01

    Sexual differentiation leads to structural and behavioural differences between males and females. Here we investigate the intrinsic sex identity of the brain by constructing chicken chimeras in which the brain primordium is switched between male and female identities before gonadal development. We find that the female chimeras with male brains display delayed sexual maturation and irregular oviposition cycles, although their behaviour, plasma concentrations of sex steroids and luteinizing hormone levels are normal. The male chimeras with female brains show phenotypes similar to typical cocks. In the perinatal period, oestrogen concentrations in the genetically male brain are higher than those in the genetically female brain. Our study demonstrates that male brain cells retain male sex identity and do not differentiate into female cells to drive the normal oestrous cycle, even when situated in the female hormonal milieu. This is clear evidence for a sex-specific feature that develops independent of gonadal steroids.

  12. Sex matters: repetitive mild traumatic brain injury in adolescent rats.

    PubMed

    Wright, David K; O'Brien, Terence J; Shultz, Sandy R; Mychasiuk, Richelle

    2017-09-01

    Whether sex differences contribute to the heterogeneity of mild traumatic brain injury (mTBI) and repeated mTBI (RmTBI) outcomes in adolescents is unknown. Therefore, this study examined changes in, and differences between, male and female rats following single mTBI and RmTBI. Rats were given a single mTBI, RmTBI (i.e., 3x), or sham injuries. Injuries were administered using a lateral impact model that mimics forces common in human mTBI. After the final injury, rats underwent extensive behavioral testing to examine cognition, motor function, and anxiety- and depressive-like behavior. Postmortem analyses investigated gene expression and structural changes in the brain. Many of the outcomes exhibited a sex-dependent response to RmTBI. While all rats given RmTBI had deficits in balance, motor coordination, locomotion, and anxiety-like behavior, only male rats given RmTBI had short-term working memory deficits, whereas only females given RmTBI had increased depressive-like behavior. Volumetric and diffusion weighted MRI analyses found that while RmTBI-induced atrophy of the prefrontal cortex was greater in female rats, only the male rats exhibited worse white matter integrity in the corpus callosum following RmTBI. Sex-dependent changes in brain expression of mRNA for glial fibrillary acidic protein, myelin basic protein, and tau protein were also observed following injury. These findings suggest that in adolescent mTBI, sex matters; and future studies incorporating both male and females are warranted to provide a greater understanding of injury prognosis and better inform clinical practice.

  13. The role of oxytocin and vasopressin in conditioned mate guarding behavior in the female rat.

    PubMed

    Holley, Amanda; Bellevue, Shannon; Vosberg, Daniel; Wenzel, Kerstin; Roorda, Sieger; Pfaus, James G

    2015-05-15

    We have shown previously that female rats given their first copulatory experiences with the same male rat display mate guarding behavior in the presence of that male provided a female competitor is also present. Females given access to the familiar male show more Fos induction within regions of the brain that contain oxytocin (OT) and vasopressin (AVP) cell bodies, notably the supraoptic (SON) and paraventricular nuclei (PVN) relative to females given sexual experience with different males. The present experiments examined whether the Fos induction we previously observed within the SON and PVN occurred within OT and/or AVP neurons, and whether exogenous administration of OT or AVP prior to female rats first sexual experience could potentiate the acquisition of mate guarding behavior. Female rats that display conditioned mate guarding had significantly more double-labeled Fos/OT neurons in both SON and PVN, and significantly more Fos/AVP neurons in the PVN. Peripheral administration of OT or AVP prior to their first sexual experience with the familiar male facilitated different aspects of mate guarding: OT augmented affiliative behaviors and presenting responses whereas AVP augmented interference behavior. These results indicate that female rats' first experiences with sexual reward when paired with the same male induce changes to bonding networks in the brain. Moreover peripheral administration of OT or AVP during their first sexual experience can augment different aspects of mate guarding behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Social isolation prevents exercise-induced proliferation of hippocampal progenitor cells in female rats.

    PubMed

    Leasure, J Leigh; Decker, Linda

    2009-10-01

    Social isolation negatively affects the behavior and health of laboratory rats. Recently, it has been found that social isolation retards exercise-induced neurogenesis in the hippocampal dentate gyrus (DG) of male rats (Stranahan et al. (2006) Nat Neurosci 9:526-533). Since male and female rats react differently to housing changes and exercise opportunities, we investigated whether social isolation would also suppress the exercise-dependent increase in proliferation of dentate gyrus progenitor cells in females. Accordingly, female rats were housed either alone (isolated) or in groups (social) with (exercise) or without (sedentary) the opportunity to run in an exercise wheel. Proliferating progenitor cells were labeled with bromodeoxyuridine (BrdU). As expected, exercise increased the number of BrdU+ cells in socially housed animals. However, isolation prevented this running-induced increase. Our results expand upon previous findings by showing that the female brain is also susceptible to the suppressive effect of social isolation on exercise-induced neurogenesis.

  15. Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats.

    PubMed

    Pyter, Leah M; El Mouatassim Bih, Sarah; Sattar, Husain; Prendergast, Brian J

    2014-03-13

    Cancer is associated with an increased prevalence of depression. Peripheral tumors induce inflammatory cytokine production in the brain and depressive-like behaviors. Mounting evidence indicates that cytokines are part of a pathway by which peripheral inflammation causes depression. Neuroinflammatory responses to immune challenges can be exacerbated (primed) by prior immunological activation associated with aging, early-life infection, and drug exposure. This experiment tested the hypothesis that peripheral tumors likewise induce neuroinflammatory sensitization or priming. Female rats with chemically-induced mammary carcinomas were injected with either saline or lipopolysaccharide (LPS, 250μg/kg; i.p.), and expression of mRNAs involved in the pathway linking inflammation and depression (interleukin-1beta [Il-1β], CD11b, IκBα, indolamine 2,3-deoxygenase [Ido]) was quantified by qPCR in the hippocampus, hypothalamus, and frontal cortex, 4 or 24h post-treatment. In the absence of LPS, hippocampal Il-1β and CD11b mRNA expression were elevated in tumor-bearing rats, whereas Ido expression was reduced. Moreover, in saline-treated rats basal hypothalamic Il-1β and CD11b expression were positively correlated with tumor weight; heavier tumors, in turn, were characterized by more inflammatory, necrotic, and granulation tissue. Tumors exacerbated CNS proinflammatory gene expression in response to LPS: CD11b was greater in hippocampus and frontal cortex of tumor-bearing relative to tumor-free rats, IκBα was greater in hippocampus, and Ido was greater in hypothalamus. Greater neuroinflammatory responses in tumor-bearing rats were accompanied by attenuated body weight gain post-LPS. The data indicate that neuroinflammatory pathways are potentiated, or primed, in tumor-bearing rats, which may exacerbate future negative behavioral consequences.

  16. Modified brain death model for rats.

    PubMed

    Zhang, Shuijun; Cao, Shengli; Wang, Tao; Yan, Bing; Lu, Yantao; Zhao, Yongfu

    2014-10-01

    Experimental animal models of brain death that mimic human conditions may be useful for investigating novel strategies that increase quality and quantity of organs for transplant. Brain death was induced by increasing intracranial pressure by inflating an intracranial placed balloon catheter. Brain death was confirmed by flatline electroencephalogram, physical signs of apnea, and absence of brain stem reflexes. Donor management was done after brain death. Intracranial pressure and physiologic variables were continually monitored during 9 hours' follow-up. Ninety percent of brain dead animals showed typical signs of brain death such as diabetes insipidus, hypertensive, and hypotensive periods. Donor care was performed for 9 hours after brain death, and the mean arterial pressure was maintained above 60 mm Hg. We conclude that the rat model of brain death can be performed in a standardized, reproducible, and successful way.

  17. Wistar-Kyoto Female Rats Are More Susceptible to Develop Sugar Binging: A Comparison with Wistar Rats

    PubMed Central

    Papacostas-Quintanilla, Helena; Ortiz-Ortega, Víctor Manuel; López-Rubalcava, Carolina

    2017-01-01

    The hedonic component of the feeding behavior involves the mesolimbic reward system and resembles addictions. Nowadays, the excessive consumption of sucrose is considered addictive. The Wistar-Kyoto (WKY) rat strain is prone to develop anxiety and addiction-like behavior; nevertheless, a lack of information regarding their vulnerability to develop sugar binging-like behavior (SBLB) and how it affects the reward system persist. Therefore, the first aim of the present study was to compare the different predisposition of two rat strains, Wistar (W) and WKY to develop the SBLB in female and male rats. Also, we studied if the SBLB-inducing protocol produces changes in anxiety-like behavior using the plus-maze test (PMT) and, analyzed serotonin (5-HT) and noradrenaline (NA) concentrations in brain areas related to anxiety and ingestive behavior (brain stem, hypothalamus, nucleus accumbens, and amygdala). Finally, we evaluated whether fluoxetine, a drug that has been effective in reducing the binge-eating frequency, body weight, and severity of binge eating disorder, could also block this behavior. Briefly, WKY and W female rats were exposed to 30% sucrose solution (2 h, 3 days/week for 4 weeks), and fed up ad libitum. PMT was performed between the last two test periods. Immediately after the last test where sucrose access was available, rats were decapitated and brain areas extracted for high-performance liquid chromatography analysis. The results showed that both W and WKY female and male rats developed the SBLB. WKY rats consumed more calories and ingested a bigger amount of sucrose solution than their W counterpart. This behavior was reversed by using fluoxetine, rats exposed to the SBLB-inducing protocol presented a rebound effect during the washout period. On female rats, the SBLB-inducing protocol induced changes in NA concentrations on WKY, but not on W rats. No changes were found in 5-HT levels. Finally, animals that developed SBLB showed increased anxiety

  18. Wistar-Kyoto Female Rats Are More Susceptible to Develop Sugar Binging: A Comparison with Wistar Rats.

    PubMed

    Papacostas-Quintanilla, Helena; Ortiz-Ortega, Víctor Manuel; López-Rubalcava, Carolina

    2017-01-01

    The hedonic component of the feeding behavior involves the mesolimbic reward system and resembles addictions. Nowadays, the excessive consumption of sucrose is considered addictive. The Wistar-Kyoto (WKY) rat strain is prone to develop anxiety and addiction-like behavior; nevertheless, a lack of information regarding their vulnerability to develop sugar binging-like behavior (SBLB) and how it affects the reward system persist. Therefore, the first aim of the present study was to compare the different predisposition of two rat strains, Wistar (W) and WKY to develop the SBLB in female and male rats. Also, we studied if the SBLB-inducing protocol produces changes in anxiety-like behavior using the plus-maze test (PMT) and, analyzed serotonin (5-HT) and noradrenaline (NA) concentrations in brain areas related to anxiety and ingestive behavior (brain stem, hypothalamus, nucleus accumbens, and amygdala). Finally, we evaluated whether fluoxetine, a drug that has been effective in reducing the binge-eating frequency, body weight, and severity of binge eating disorder, could also block this behavior. Briefly, WKY and W female rats were exposed to 30% sucrose solution (2 h, 3 days/week for 4 weeks), and fed up ad libitum. PMT was performed between the last two test periods. Immediately after the last test where sucrose access was available, rats were decapitated and brain areas extracted for high-performance liquid chromatography analysis. The results showed that both W and WKY female and male rats developed the SBLB. WKY rats consumed more calories and ingested a bigger amount of sucrose solution than their W counterpart. This behavior was reversed by using fluoxetine, rats exposed to the SBLB-inducing protocol presented a rebound effect during the washout period. On female rats, the SBLB-inducing protocol induced changes in NA concentrations on WKY, but not on W rats. No changes were found in 5-HT levels. Finally, animals that developed SBLB showed increased anxiety

  19. The role of the brain in female reproductive aging.

    PubMed

    Downs, Jodi L; Wise, Phyllis M

    2009-02-05

    In middle-aged women, follicular depletion is a critical factor mediating the menopausal transition; however, all levels of the hypothalamic-pituitary-gonadal (HPG) axis contribute to the age-related decline in reproductive function. To help elucidate the complex interactions between the ovary and brain during middle-age that lead to the onset of the menopause, we utilize animal models which share striking similarities in reproductive physiology. Our results show that during middle-age, prior to any overt irregularities in estrous cyclicity, the ability of 17beta-estradiol (E(2)) to modulate the cascade of neurochemical events required for preovulatory gonadotropin-releasing hormone (GnRH) release and a luteinizing hormone (LH) surge is diminished. Middle-aged female rats experience a delay in and an attenuation of LH release in response to E(2). Additionally, although we do not observe a decrease in GnRH neuron number until a very advanced age, E(2)-mediated GnRH neuronal activation declines during the earliest stages of age-related reproductive decline. Numerous hypothalamic neuropeptides and neurochemical stimulatory inputs (i.e., glutamate, norepinephrine (NE), and vasoactive intestinal peptide (VIP)) that drive the E(2)-mediated GnRH/LH surge appear to dampen with age or lack the precise temporal coordination required for a specific pattern of GnRH secretion, while inhibitory signals such as gamma-aminobutyric acid (GABA) and opioid peptides remain unchanged or elevated during the afternoon of proestrus. These changes, occurring at the level of the hypothalamus, lead to irregular estrous cycles and, ultimately, the cessation of reproductive function. Taken together, our studies indicate that the hypothalamus is an important contributor to age-related female reproductive decline.

  20. Social buffering ameliorates conditioned fear responses in female rats.

    PubMed

    Ishii, Akiko; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2016-05-01

    The stress experienced by an animal is ameliorated when the animal is exposed to distressing stimuli along with a conspecific animal(s). This is known as social buffering. Previously, we found that the presence of an unfamiliar male rat induced social buffering and ameliorated conditioned fear responses of a male rat subjected to an auditory conditioned stimulus (CS). However, because our knowledge of social buffering is highly biased towards findings in male subjects, analyses using female subjects are crucial for comprehensively understanding the social buffering phenomenon. In the present studies, we assessed social buffering of conditioned fear responses in female rats. We found that the estrus cycle did not affect the intensity of the rats' fear responses to the CS or their degree of vigilance due to the presence of a conspecific animal. Based on these findings, we then assessed whether social buffering ameliorated conditioned fear responses in female rats without taking into account their estrus cycles. When fear conditioned female rats were exposed to the CS without the presence of a conspecific, they exhibited behavioral responses, including freezing, and elevated corticosterone levels. By contrast, the presence of an unfamiliar female rat suppressed these responses. Based on these findings, we conclude that social buffering can ameliorate conditioned fear responses in female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Autoradiographic localization of relaxin binding sites in rat brain

    SciTech Connect

    Osheroff, P.L.; Phillips, H.S. )

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  2. Ovariectomy ameliorates dextromethorphan - induced memory impairment in young female rats

    PubMed Central

    Jahng, Jeong Won; Cho, Hee Jeong; Kim, Jae Goo; Kim, Nam Youl; Lee, Seoul; Lee, Yil Seob

    2006-01-01

    We have previously found that dextromethorphan (DM), over-the-counter cough suppressant, impairs memory retention in water maze task, when it is repeatedly administrated to adolescent female rats at high doses. In this study we examined first if ovariectomy ameliorates the DM-induced memory impairment in female rats, and then whether or not the DM effect is revived by estrogen replacement in ovariectomized female rats. Female rat pups received bilateral ovariectomy or sham operation on postnatal day (PND) 21, and then intraperitoneal DM (40 mg/kg) daily during PND 28–37. Rats were subjected to the Morris water maze task from PND 38, approximately 24 h after the last DM injection. In probe trial, goal quadrant dwell time was significantly reduced by DM in the sham operated group, however, the reduction by DM did not occur in the ovariectomy group. When 17β-estradiol was supplied to ovariectomized females during DM treatment, the goal quadrant dwell time was significantly decreased, compared to the vehicle control group. Furthermore, a major effect of estrogen replacement was found in the escape latency during the last 3 days of initial learning trials. These results suggest that ovariectomy may ameliorate the adverse effect of DM treatment on memory retention in young female rats, and that estrogen replacement may revive it, i.e. estrogen may take a major role in DM-induced memory impairment in female rats. PMID:16563229

  3. Leptin increases luteinizing hormone secretion of fasting female rats.

    PubMed

    Dagklis, T; Kouvelas, D; Kallaras, K; Papazisis, G; Petousis, S; Margioula-Siarkou, C; Skepastianos, P; Tarlatzis, B C

    2015-01-01

    To investigate whether leptin acts directly on the anterior hypophysis by influencing gonadotropin secretion in vivo. Cycling female rats were catheterised for frequent blood sampling and were either fasted or allowed free access to food. Stereotactic lesion of the medial preoptic area (MPOA) of the hypothalamus was performed in order to eliminate gonadotropin releasing hormone (GnRH) production. Leptin was administered at a dose of one mg/kg i.v. and blood samples were taken just before leptin administration and then after 30, 60, 90, 120, and 180 minutes. Plasma gonadotropin levels were determined. With completion of sampling, the brains were removed and the localisation of the lesions was verified histologically. Leptin at one mg/kg induced an increase in luteinizing hormone (LH) secretion in fasting rats, both in those with a lesion and those with intact medial preoptic area with a peak occurring 90 minutes after infusion. The augmenting effect was more prominent when the hypothalamus was intact. There was no effect in fed animals with or without lesion. Similarly, no effect was observed on follicle stimulating hormone (FSH) levels in any of the experimental groups. Leptin acts directly on the hypophysis enhancing LH but not FSH secretion. Nutritional state influences leptin's effect on the hypothalamus and the hypophysis.

  4. Female rats are more susceptible to central nervous system oxygen toxicity than male rats

    PubMed Central

    Held, Heather E.; Pilla, Raffaele; Ciarlone, Geoffrey E.; Landon, Carol S.; Dean, Jay B.

    2014-01-01

    Abstract Tonic–clonic seizures typify central nervous system oxygen toxicity (CNS‐OT) in humans and animals exposed to high levels of oxygen, as are encountered during scuba diving. We previously demonstrated that high doses of pseudoephedrine (PSE) decrease the latency to seizure (LS) for CNS‐OT in young male rats. This study investigated whether female rats respond similarly to PSE and hyperbaric oxygen (HBO). We implanted 60 virgin stock (VS) and 54 former breeder (FB) female rats with radio‐telemetry devices that measured brain electrical activity. One week later, rats were gavaged with saline or PSE in saline (40, 80, 120, 160, or 320 mg/kg) before diving to five atmospheres absolute in 100% oxygen. The time between reaching maximum pressure and exhibiting seizure was LS. Vaginal smears identified estrus cycle phase. PSE did not decrease LS for VS or FB, primarily because they exhibited low LS for all conditions tested. VS had shorter LS than males at 0, 40, and 80 mg/kg (−42, −49, and −57%, respectively). FB also had shorter LS than males at 0, 40, and 80 mg/kg (−60, −86, and −73%, respectively). FB were older than VS (286 ± 10 days vs. 128 ± 5 days) and weighed more than VS (299 ± 2.7 g vs. 272 ± 2.1 g). Males tested were younger (88 ± 2 days), heavier (340 ± 4.5 g), and gained more weight postoperatively (7.2 ± 1.6 g) than either VS (−0.4 ± 1.5 g) or FB (−1.6 ± 1.5 g); however, LS correlated poorly with age, body mass, change in body mass, and estrus cycle phase. We hypothesize that differences in sex hormones underlie females' higher susceptibility to CNS‐OT than males. PMID:24771690

  5. Restraint stress enhances alcohol intake in adolescent female rats but reduces alcohol intake in adolescent male and adult female rats.

    PubMed

    Wille-Bille, Aranza; Ferreyra, Ana; Sciangula, Martina; Chiner, Florencia; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2017-08-14

    Adolescents may be more sensitive to stress-induced alcohol drinking than adults, which would explain the higher prevalence of alcohol abuse and dependence in late adolescence than in adulthood. The present study analyzed the impact of restraint stress on the initiation of alcohol intake across 2 weeks of intermittent, two-bottle choice intake in male and female adolescent rats and adult female rats. Restraint stress significantly increased alcohol intake and preference in female adolescent rats but decreased alcohol intake and preference in male adolescent and female adult rats. The effects of restraint stress on alcohol intake were mitigated in adolescent females following administration of the κ opioid receptor antagonist norbinaltorphimine. Adolescent but not adult female rats that were subjected to restraint stress spent more time on the open arms of the elevated plus maze. Female adolescents exposed to stress also exhibited greater risk-taking behaviors in a concentric square field test compared with non-stressed controls. These results indicate age- and sex-related differences in the sensitivity to alcohol-stress interactions that may facilitate the initiation of alcohol use in female adolescents. The facilitatory effect of stress on alcohol intake was related to greater exploratory and risk-taking behaviors in young females after stress exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fos expression induced by cocaine-conditioned cues in male and female rats

    PubMed Central

    Zhou, Luyi; Pruitt, Carla; Shin, Christina B.; Garcia, Arturo D.; Zavala, Arturo R.; See, Ronald E.

    2013-01-01

    Previous studies have shown that female rats exhibit different patterns of drug seeking during multiple phases of cocaine addiction when compared with males. However, the underlying mechanisms for these sex differences remain largely unknown. Here, we used a cocaine self-administration/reinstatement model to examine neuronal activation, as determined by Fos expression, following cue-induced reinstatement of cocaine seeking in male and female rats. Fos expression revealed both similarities between sexes in some brain regions, as well as selective sexually dimorphic patterns. As compared to no cue control subjects, conditioned cues induced higher Fos expression in the Cg1 region of the anterior cingulate cortex, but lower expression in the nucleus accumbens in both males and females. Females exhibited higher Fos expression than males in multiple brain regions, including the agranular insular cortex, dorsal medial caudate-putamen, nucleus accumbens shell, ventral tegmental area, dorsal subiculum, and ventral CA1 and CA3 regions of the hippocampus. Notably, only Fos expression in the prelimbic cortex, nucleus accumbens shell, basolateral amygdala, and ventral subiculum correlated positively with lever responding in response to conditioned cues across males and females. These findings indicate that while sexually dimorphic Fos activation does occur, the relationship between cue-induced cocaine seeking and neuronal activation may be similar for males and females in key brain regions of the relapse circuit. PMID:23832598

  7. Fos expression induced by cocaine-conditioned cues in male and female rats.

    PubMed

    Zhou, Luyi; Pruitt, Carla; Shin, Christina B; Garcia, Arturo D; Zavala, Arturo R; See, Ronald E

    2014-09-01

    Previous studies have shown that female rats exhibit different patterns of drug seeking during multiple phases of cocaine addiction when compared with males. However, the underlying mechanisms for these sex differences remain largely unknown. Here, we used a cocaine self-administration/reinstatement model to examine neuronal activation, as determined by Fos expression, following cue-induced reinstatement of cocaine seeking in male and female rats. Fos expression revealed both similarities between sexes in some brain regions, as well as selective sexually dimorphic patterns. As compared to no cue control subjects, conditioned cues induced higher Fos expression in the Cg1 region of the anterior cingulate cortex, but lower expression in the nucleus accumbens in both males and females. Females exhibited higher Fos expression than males in multiple brain regions, including the agranular insular cortex, dorsal medial caudate-putamen, nucleus accumbens shell, ventral tegmental area, dorsal subiculum, and ventral CA1 and CA3 regions of the hippocampus. Notably, only Fos expression in the prelimbic cortex, nucleus accumbens shell, basolateral amygdala, and ventral subiculum correlated positively with lever responding in response to conditioned cues across males and females. These findings indicate that while sexually dimorphic Fos activation does occur, the relationship between cue-induced cocaine seeking and neuronal activation may be similar for males and females in key brain regions of the relapse circuit.

  8. "Sexy stimulants": the interaction between psychomotor stimulants and sexual behavior in the female brain.

    PubMed

    Guarraci, Fay A; Bolton, Jessica L

    2014-06-01

    Research indicates gender differences in sensitivity to psychomotor stimulants. Preclinical work investigating the interaction between drugs of abuse and sex-specific behaviors, such as sexual behavior, is critical to our understanding of such gender differences in humans. A number of behavioral paradigms can be used to model aspects of human sexual behavior in animal subjects. Although traditional assessment of the reflexive, lordosis posture of the female rat has been used to map the neuroanatomical and neurochemical systems that contribute to uniquely female copulatory behavior, the additional behavioral paradigms discussed in the current review have helped us expand our description of the appetitive and consummatory patterns of sexual behavior in the female rat. Measuring appetitive behavior is particularly important for assessing sexual motivation, the equivalent of "desire" in humans. By investigating the effects of commonly abused drugs on female sexual motivation, we are beginning to elucidate the role of dopaminergic neurotransmission, a neural system also known to be critical to the neurobiology of drug addiction, in female sexual motivation. A better understanding of the nexus of sex and drugs in the female brain will help advance our understanding of motivation in general and explain how psychomotor stimulants affect males and females differently. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Deformation-based brain morphometry in rats.

    PubMed

    Gaser, Christian; Schmidt, Silvio; Metzler, Martin; Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Jürgen R; Witte, Otto W

    2012-10-15

    Magnetic resonance imaging (MRI)-based morphometry provides in vivo evidence for macro-structural plasticity of the brain. Experiments on small animals using automated morphometric methods usually require expensive measurements with ultra-high field dedicated animal MRI systems. Here, we developed a novel deformation-based morphometry (DBM) tool for automated analyses of rat brain images measured on a 3-Tesla clinical whole body scanner with appropriate coils. A landmark-based transformation of our customized reference brain into the coordinates of the widely used rat brain atlas from Paxinos and Watson (Paxinos Atlas) guarantees the comparability of results to other studies. For cross-sectional data, we warped images onto the reference brain using the low-dimensional nonlinear registration implemented in the MATLAB software package SPM8. For the analysis of longitudinal data sets, we chose high-dimensional registrations of all images of one data set to the first baseline image which facilitate the identification of more subtle structural changes. Because all deformations were finally used to transform the data into the space of the Paxinos Atlas, Jacobian determinants could be used to estimate absolute local volumes of predefined regions-of-interest. Pilot experiments were performed to analyze brain structural changes due to aging or photothrombotically-induced cortical stroke. The results support the utility of DBM based on commonly available clinical whole-body scanners for highly sensitive morphometric studies on rats.

  10. 17β-estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas.

    PubMed

    Kiss, Agata; Delattre, Ana Márcia; Pereira, Sofia I R; Carolino, Ruither G; Szawka, Raphael E; Anselmo-Franci, Janete A; Zanata, Sílvio M; Ferraz, Anete C

    2012-02-01

    Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17β-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17β-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17β-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17β-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17β-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Conditioned mate-guarding behavior in the female rat.

    PubMed

    Holley, Amanda; Shalev, Shy; Bellevue, Shannon; Pfaus, James G

    2014-05-28

    Female and male rats are often described as having a promiscuous mating strategy, yet simple Pavlovian conditioning paradigms, in which a neutral odor or strain-related cues are paired with preferred sexual reward states during an animal's first sexual experiences, shift this strategy toward copulatory and mate preferences for partners bearing the familiar odor or strain cue. We examined whether female rats given exclusive rewarding copulation with one particular male would display mate-guarding behavior, a strong index of monogamous mating. Ovariectomized, hormone-primed female Long-Evans rats were given their first 10 paced sexual experiences at 4-day intervals with a particular unscented male of the same strain. A final test was conducted in an open field 4-days later in which the primed, partnered female was given access to the male partner and a fully-primed competitor female. In this situation, the partnered females mounted the competitor female repeatedly if she came near the vicinity of the male. This behavior prevented the male from copulating with the competitor, and was not displayed if partnered females could not pace the rate of copulatory behavior efficiently during the training trials, nor was it displayed by the competitor females. Fos expression was examined in both the partnered and competitor females after the final open field test. Partnered females had significantly higher expression within the supraoptic nucleus and nucleus accumbens shell compared to partnered females that did not develop this behavior or competitor females. These data show that females engaged in paced copulation with the same male display mate-guarding when exposed to that male and a competitor female. Increased activation of the SON and NAc may underlie this behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    PubMed Central

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  13. Long-term effects of in utero and lactational exposure to butyl paraben in female rats.

    PubMed

    Guerra, Marina Trevizan; Sanabria, Marciana; Cagliarani, Stephannie Vieira; Leite, Gabriel Adan Araújo; Borges, Cibele Dos Santos; De Grava Kempinas, Wilma

    2017-03-01

    Parabens are used as preservatives in cosmetic, pharmaceutical, and food industries, and are frequently detected as contaminants in human fluids and tissues. The endocrine disrupting effects of parabens in female rodents include uterotrophic response, steroidogenesis impairment, and ovarian disturbances. The objective of this study was to determine the effects of maternal butyl paraben (BP) exposure on female sexual development. Pregnant Wistar rats were treated subcutaneously with either corn oil or BP at doses of 10, 100, or 200 mg/kg, from gestational day (GD) 12 until GD 20 for female foetal gonad evaluation, and from GD 12 until the end of lactation to evaluate sexual parameters on the female offspring. Immature female rats were also used in the uterotrophic assay to evaluate the possible estrogenic action of parabens. Our results revealed that, in this experimental protocol, BP did not show estrogenic activity at the doses used and did not impair sexual development and fertility capacity in the female rats, but impaired sexual behavior. We conclude that brain sexual development may be more sensitive to BP effects and we speculate that doses higher than 100 mg/kg (the male lowest observed adverse effect level (LOAEL) for rodent reproductive parameters) would be necessary to promote damages in the female reproduction, regarding the same protocol of exposure. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 776-788, 2017.

  14. Conditioned partner preference in female rats for strain of male.

    PubMed

    Coria-Avila, Genaro A; Jones, Sherri L; Solomon, Carrie E; Gavrila, Alex M; Jordan, Gerald J; Pfaus, James G

    2006-07-30

    Female rats show conditioned place preference following paced copulation, and we have recently demonstrated that pairing almond odor with paced copulation induces a conditioned partner preference for almond-scented males. The present study examined whether cues of two different strains of male (albino and pigmented) induce a conditioned partner preference for the strain of male associated with paced copulation. Ovariectomized, hormone-primed Wistar (W) or Long-Evans (LE) female rats received 10 conditioning trials at 4-day intervals. In the Wistar-pacing group females copulated with W males in a chamber bisected by a 4-hole partition that only the female could pass through. Four days later, they copulated with LE males without the partition. The Long-Evans-pacing group received the opposite association. In the final preference test all females chose freely between two males tethered in opposite corners of an open field, one W and one LE. Regardless the strain of male, females displayed more solicitations toward the pacing-related male, and most of the females received their first ejaculation from that male. The preference was facilitated if the pacing-related male was of the same strain as the female. These results suggest that female rats have an unconditioned preference for males of the same strain, but this preference can be switched towards males of a different strain if that male is associated with the sexual reward induced by paced copulation.

  15. Laser scattering by transcranial rat brain illumination

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Suzuki, Luis C.; Ribeiro, Martha S.; Yoshimura, Elisabeth M.

    2012-06-01

    Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System (CNS), the study of light penetration through skull and distribution in the brain becomes extremely important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain, measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm) diode laser light and compare optical properties of brain structures. The head of the animal (Rattus Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus, cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue. This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a large number of diseases.

  16. Genetic influence on brain catecholamines: high brain norepinephrine in salt-sensitive rats

    SciTech Connect

    Iwai, J; Friedman, R; Tassinari, L

    1980-01-01

    Rats genetically sensitive to salt-induced hypertension evinced higher levels of plasma norepinephrine and epinephrine than rats genetically resistant to hypertension. The hypertension-sensitive rats showed higher hypothalamic norepinephrine and lower epinephrine than resistant rats. In response to a high salt diet, brain stem norepinephrine increased in sensitive rats while resistant rats exhibited a decrease on the same diet.

  17. Gonadal steroid action and brain sex differentiation in the rat.

    PubMed

    Sakuma, Y

    2009-03-01

    Gonadal steroids that establish sexually dimorphic characteristics of brain morphology and physiology act at a particular stage of ontogeny. Testosterone secreted by the testes during late gestational and neonatal periods causes significant brain sexual dimorphism in the rat. This results in both sex-specific behaviour and endocrinology in adults. Sexual differentiation may be due to neurogenesis, migration or survival. Each mechanism appears to be uniquely regulated in a site-specific manner. Thus, the volume of an aggregate of neurones in the rat medial preoptic area (POA), termed the sexually dimorphic nucleus of the POA (SDN-POA), is larger in males than in females. The anteroventral periventricular nucleus (AVPV) is packed with neurones containing oestrogen receptor (ER)beta in female rats but, in males, ERbeta-positive neurones scatter into the more lateral portion of the POA. POA neurones are born up to embryonic days 16-17 and not after parturition. Therefore, neurogenesis is unlikely to contribute to the larger SDN-POA in males. DNA microarray analysis for oestrogen-responsive genes and western blotting demonstrated site-specific regulation of apoptosis- and migration-related genes in the SDN-POA and AVPV.

  18. Experimental gastritis leads to anxiety- and depression-like behaviors in female but not male rats

    PubMed Central

    2013-01-01

    Human and animals studies support the idea that there is a gender-related co-morbidity of pain-related and inflammatory gastrointestinal (GI) diseases with psychological disorders. This co-morbidity is the evidence for the existence of GI-brain axis which consists of immune (cytokines), neural (vagus nerve) and neuroendocrine (HPA axis) pathways. Psychological stress causes disturbances in GI physiology, such as altered GI barrier function, changes in motility and secretion, development of visceral hypersensitivity, and dysfunction of inflammatory responses. Whether GI inflammation would exert impact on psychological behavior is not well established. We examined the effect of experimental gastritis on anxiety- and depression-like behaviors in male and female Sprague–Dawley rats, and evaluated potential mechanisms of action. Gastritis was induced by adding 0.1% (w/v) iodoacetamide (IAA) to the sterile drinking water for 7 days. Sucrose preference test assessed the depression-like behavior, open field test and elevated plus maze evaluated the anxiety-like behavior. IAA treatment induced gastric inflammation in rats of either gender. No behavioral abnormality or dysfunction of GI-brain axis was observed in male rats with IAA-induced gastritis. Anxiety- and depression-like behaviors were apparent and the HPA axis was hyperactive in female rats with IAA-induced gastritis. Our results show that gastric inflammation leads to anxiety- and depression-like behaviors in female but not male rats via the neuroendocrine (HPA axis) pathway, suggesting that the GI inflammation can impair normal brain function and induce changes in psychological behavior in a gender-related manner through the GI-to-brain signaling. PMID:24345032

  19. Sex-dependent changes in blood-brain barrier permeability and brain NA(+),K(+) ATPase activity in rats following acute water intoxication.

    PubMed

    Oztaş, B; Koçak, H; Oner, P; Küçük, M

    2000-12-01

    To understand the increased susceptibility of the development of serious complications to hypoosmotic hyponatremia in young females, we examined the resistance of blood brain barrier (BBB) permeability to water along with the synaptosomal Na(+),K(+)ATPase activity in both sexes of rats during acute water intoxication. Four groups of rats were used: Group I and II were normal female and male rats injected with only Evans-blue. Group III and IV were water intoxicated female and male rats respectively. BBB permeability in female rats was found to be increased following acute water intoxication. In contrast, synaptosomal Na(+),K(+)ATPase activities in both water intoxicated male and female rats were found significantly lower than those in control rats. But inhibition in enzyme activity in synaptosomes from water intoxicated female rats was more pronounced than those of corresponding male rats. Our results concluded that female sex steroids may be responsible for the highly significant decrease in synaptosomal Na(+),K(+)ATPase activity and increased BBB permeability in female rats following water intoxication.

  20. Regulation of sexual odor preference by sex steroids in the posterodorsal medial amygdala in female rats.

    PubMed

    Fujiwara, Masaya; Nitta, Asano; Chiba, Atsuhiko

    2016-06-01

    Our previous study in male rats demonstrated that bilateral administration of flutamide, an androgen receptor (AR) antagonist, into the posterodorsal medial amygdala (MePD) increased the time sniffing male odors to as high as that sniffing estrous odors, eliminating the preference for estrous odors over male odors. This made us speculate that under blockade of AR in the MePD, testosterone-derived estrogen acting on the same brain region arouses interest in male odors which is otherwise suppressed by concomitant action of androgen. In cyclic female rats, endogenous androgen has been thought to be involved in inhibitory regulation of estrogen-activated sexual behavior. Thus, in the present study, we investigated the possibility that in female rats the arousal of interest in male odors is also normally regulated by both estrogen and androgen acting on the MePD, as predicted by our previous study in male rats. Implantation of either the estrogen receptor blocker tamoxifen (TX) or a non-aromatizable androgen 5α-dihydrotestosterone (DHT) into the MePD of ovariectomized, estrogen-primed female rats eliminated preference for male odors over estrous odors by significantly decreasing the time sniffing male odors to as low as that sniffing estrous odors. The subsequent odor discrimination tests confirmed that the DHT and TX administration did not impair the ability to discriminate between male and estrous odors. These results suggest that in estrous female rats estrogen action in the MePD plays critical roles in the expression of the preference for male odors while androgen action in the same brain region interferes with the estrogen action. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of synbiotic-based Bifidobacterium animalis in female rats experimentally infected with Toxoplasma gondii.

    PubMed

    Ribeiro, Cláudia Mello; Costa, Veruska Maia; Gomes, Maria Isabel Franchi Vasconcelos; Golim, Marjorie Assis; Modolo, José Rafael; Langoni, Hélio

    2011-03-01

    The aim of this study was to assess the effects of a synbiotic composed of Bifidobacterium animalis and fructooligosaccharides on female rats infected with Toxoplasma gondii. Female Wistar rats, treated or not with dexamethasone, were daily supplemented with synbiotics for 21 days. After 15 days of supplementation, the rats were orally infected with 10(4)T. gondii bradyzoites. Blood samples were collected to measure the levels of IFN-γ, IL-10 and T. gondii antibodies. All synbiotic-supplemented rats survived until the end of the experiment; however, non-supplemented dexamethasone-treated rats died between the fifth and the eighth days after T. gondii infection. Dexamethasone-treated rats supplemented with synbiotics (P<0.05) were capable of synthesizing IFN-γ, and this immunological response was essential to ensure their survival. In addition, brain cysts were found in one rat not supplemented with synbiotics. Results suggest that the synbiotic composed of B. animalis and fructooligosaccharides may be beneficial to toxoplasmosis control.

  2. Neural mechanisms of female sexual behavior in the rat; comparison with male ejaculatory control.

    PubMed

    Veening, J G; Coolen, L M; Gerrits, P O

    2014-06-01

    The sequential organization of sexual behavior of the female rat is described, eventually leading to the lordotic posture, shown during mating. A complex set of signals: olfactory, cutaneous sensory as well as genitosensory, is guiding the female to this specific posture, eventually. Genitosensory signals converge in the lumbosacral levels of the spinal cord, from where they are dispersed to a series of supraspinal brain areas, in the brainstem, thalamus, hypothalamus and limbic system. The similarity with the neural activation patterns observed in the male rat is remarkable. In a number of brain areas, however: the midbrain periaqueductal gray, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) and the medial preoptic-lateral septum regions, specific male-female differences have been observed. Especially the VMHvl is an intriguing area, as it has been shown that the same neurons may be involved in 'opposite behavior' like aggression and the induction of lordosis. The motor mechanisms controlling the lordosis posture in the rat as well as in some other mammals are discussed, as well as some aspects of the reward mechanisms contributing to female sex. We conclude that we have collected a great amount of neurophysiological knowledge over the last 20 years, but that the unresolved questions are still numerous. In this field, there is still much to explore. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Central brain neurons expressing doublesex regulate female receptivity in Drosophila.

    PubMed

    Zhou, Chuan; Pan, Yufeng; Robinett, Carmen C; Meissner, Geoffrey W; Baker, Bruce S

    2014-07-02

    Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.

  4. Neonatal handling alters learning in adult male and female rats in a task-specific manner.

    PubMed

    Kosten, Therese A; Lee, Hongjoo J; Kim, Jeansok J

    2007-06-18

    We demonstrated that early life manipulations (neonatal isolation, neonatal handling, maternal separation) impaired fear conditioning in adult rats [Kosten, T.A., Miserendino, M.J.D., Bombace, J.C., Lee, H.J., Kim, J.J., 2005. Sex-selective effects of neonatal isolation on fear conditioning and foot shock sensitivity. Behav. Brain Res. 157, 235-244.; Kosten, T.A., Lee, H.J. and Kim, J.J., 2006. Early life stress impairs fear conditioning in adult male and female rats. Brain Res. 1087, 142-150.]. Although we found few effects on somatic responses to footshock, deficits in conditioned fear may reflect altered emotional reactivity to aversive stimuli not learning deficits. Here we test neonatal handling effects on learning and memory tasks that vary by aversive stimuli. Neonatal handling was chosen because it alters emotional reactivity in adult rats. Litters of Sprague-Dawley rats were assigned to neonatal handling (15-min separation from dam and nest on postnatal days 1-21) or control (nonseparated) conditions. Adult male and female rats with or without neonatal handling experience were compared on: (1) inhibitory avoidance that involves footshock; (2) a circular maze task that involves escape from bright light; and (3) object recognition that presumably does not involve aversive stimuli. Neonatal handling impaired inhibitory avoidance but enhanced object recognition. There were no differences in circular maze performance. In addition, sex differences emerged in both the inhibitory avoidance and object recognition tasks; female rats perform better in inhibitory avoidance and worse in object recognition compared to male rats. These data suggest that neonatal handling alters learning and memory in a task-specific manner that may reflect alterations in emotional reactivity or differential effects of the manipulation on unknown neurohormonal mechanisms.

  5. Perinatal aromatase activity in male and female rats: effect of prenatal alcohol exposure.

    PubMed

    McGivern, R F; Roselli, C E; Handa, R J

    1988-12-01

    Fetal alcohol exposure has been shown to produce long-term feminizing and demasculinizing effects on male rat behaviors which are organizationally dependent upon perinatal androgen levels. Such exposure has previously been shown to suppress the normal surge of testosterone during the critical prenatal period. Since defeminization of male rat behavior is dependent upon estrogen derived from the aromatization of testosterone in brain, brain aromatase activity was measured during the perinatal period in males and females exposed to alcohol beginning on Day 14 of gestation. Aromatase activity was measured in whole hypothalamus of fetuses from Day 16 through 20 of gestation and in the hypothalamic preoptic area and amygdala of animals 6-12 hr postparturition. Hypothalamic aromatase activity was elevated in fetal alcohol exposed males compared to controls on Days 18 and 19 of gestation and on postnatal Day 1. No effect of prenatal alcohol exposure was found in females. A sex effect in aromatase activity in the amygdala was evident on Day 1 when activity was found to be greater in males than females. Overall, these findings indicate that fetal alcohol exposure will elevate regional brain aromatase activity in males, but not females during the perinatal period of neurobehavioral sexual differentiation.

  6. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat.

    PubMed

    Jain, S; Shukla, S D; Sharma, K; Bhatnagar, M

    2001-09-01

    The neuroprotective effects of W. somnifera were studied on stressed adult female Swiss albino rats. Experimental rats were subjected to immobilization stress for 14 h and were treated with a root powder extract of W. somnifera available as Stresscom capsules (Dabur India Ltd). Control rats were maintained in completely, non stressed conditions. Thionin stained serial coronal sections (7 microm) of brain passing through the hippocampal region of stressed rats (E(1) group) demonstrated 85% degenerating cells (dark cells and pyknotic cells) in the CA(2) and CA(3) sub-areas. Treatment with W. somnifera root powder extract significantly reduced (80%) the number of degenerating cells in both the areas. The study thus demonstrates the antistress neuroprotective effects of W. somnifera. Copyright 2001 John Wiley & Sons, Ltd.

  7. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  8. Regional Volume Decreases in the Brain of Pax6 Heterozygous Mutant Rats: MRI Deformation-Based Morphometry

    PubMed Central

    Hiraoka, Kotaro; Sumiyoshi, Akira; Nonaka, Hiroi; Kikkawa, Takako; Kawashima, Ryuta; Osumi, Noriko

    2016-01-01

    Pax6 is a transcription factor that pleiotropically regulates various developmental processes in the central nervous system. In a previous study, we revealed that Pax6 heterozygous mutant (rSey2/+) adult rats exhibit abnormalities in social interaction. However, the brain malformations underlying the behavioral abnormality are unknown. To elucidate the brain malformations in rSey2/+ rats, we morphometrically analyzed brains of rSey2/+ and wild type rats using small-animal magnetic resonance imaging (MRI). Sixty 10-week-old rats underwent brain MRI (29 rSey2/+ rats and 31 wild type rats). SPM8 software was used for image preprocessing and statistical image analysis. Normalized maps of the Jacobian determinant, a parameter for the expansion and/or contraction of brain regions, were obtained for each rat. rSey2/+ rats showed significant volume decreases in various brain regions including the neocortex, corpus callosum, olfactory structures, hippocampal formation, diencephalon, and midbrain compared to wild type rats. Among brain regions, the anterior commissure showed significant interaction between genotype and sex, indicating the effect of genotype difference on the anterior commissure volume was more robust in females than in males. The rSey2/+ rats exhibited decreased volume in various gray and white matter regions of the brain, which may contribute to manifestation of abnormal social behaviors. PMID:27355350

  9. Seizures and reproductive function: insights from female rats with epilepsy

    PubMed Central

    Scharfman, Helen E.; Kim, Michelle; Hintz, Tana M.; MacLusky, Neil J.

    2009-01-01

    OBJECTIVE Chronic seizures in women can have adverse effects on reproductive function, such as polycystic ovarian syndrome (PCOS), but it has been difficult to dissociate the effects of epilepsy per se from the role of antiepileptic drugs (AEDs). To distinguish the effects of chronic seizures from AEDs, we used the laboratory rat, where an epileptic condition can be induced without concomitant AED treatment. METHODS Adult female rats were administered the chemoconvulsant pilocarpine to initiate status epilepticus (SE), which was decreased in severity by the anticonvulsant diazepam. These rats developed spontaneous seizures in the ensuing weeks, and are therefore termed “epileptic.” Controls were saline-treated rats, or animals that were injected with pilocarpine but did not develop SE. Ovarian cyclicity and weight gain were evaluated for 2-3 months. Serum hormone levels were assayed from trunk blood, collected at the time of death. Paraformaldehyde-fixed ovaries were evaluated quantitatively. RESULTS Rats that had pilocarpine-induced seizures had an increased incidence of acyclicity by the end of the study, even if SE did not occur. Ovarian cysts and weight gain were significantly greater in epileptic rats than controls, whether rats maintained cyclicity or not. Serum testosterone was elevated in epileptic rats, but estradiol, progesterone and prolactin were not. INTERPRETATIONS The results suggest that an epileptic condition in the rat leads to increased body weight, cystic ovaries and elevated testosterone levels. Although caution is required when comparing female rats to women, the data suggest that epilepsy per se may be sufficient to induce abnormalities in the control of the ovary. PMID:19107990

  10. The impact of serotonergic stimulation on reelin and glutamate decarboxylase gene expression in adult female rats.

    PubMed

    Lakatosova, S; Celec, P; Schmidtova, E; Kubranska, A; Durdiakova, J; Ostatnikova, D

    2011-01-01

    Reelin plays an important role in the regulation of synaptic plasticity in adulthood. Administration of 5-metoxytryptamine (5MT), an agonist of serotonin receptors, during natal and neonatal periods results in decreased reelin expression. In adulthood, reelin is expressed by GABAergic neurons. The purpose of this study was to reveal the effect of elevated serotonergic stimulation on the expression of reelin and glutamate decarboxylase (GAD1) in adulthood as well as on depressive behavior and spatial cognitive abilities in adult female rats. Rats were injected with 5MT. A forced swimming test was used for evaluation of the depressive behavior and Morris water maze test was used for evaluation of spatial cognition. Brains were used for measuring the expression of reelin and GAD1. We found a significant decrease in reelin expression in the cerebellum and prefrontal cortex of 5MT-treated rats. GAD1 expression was decreased in the cerebellum of 5MT-treated rats. 5MT-treated rats reached a lower immobility score in the forced swimming test. The Morris water maze test did not reveal any significant differences. We have shown that administration of serotonin receptor agonist resulted in a decreased RELN and GAD1 expression in the cerebellum of adult female rats. We propose that this phenomenon might be relevant in the pathogenesis of autism (Fig. 3, Ref. 38). Full Text in free PDF www.bmj.sk.

  11. Perinatal iron deficiency affects locomotor behavior and water maze performance in adult male and female rats.

    PubMed

    Bourque, Stephane L; Iqbal, Umar; Reynolds, James N; Adams, Michael A; Nakatsu, Kanji

    2008-05-01

    Iron deficiency during early growth and development adversely affects multiple facets of cognition and behavior in adult rats. The purpose of this study was to assess the nature of the learning and locomotor behavioral deficits observed in male and female rats in the absence of depressed brain iron levels at the time of testing. Adult female Wistar rats were fed either an iron-enriched diet (>225 mg/kg Fe) or an iron-restricted diet (3 mg/kg Fe) for 2 wk prior to and throughout gestation, and a nonpurified diet (270 mg/kg Fe) thereafter. Open-field (OF) and Morris water maze (MWM) testing began when the offspring reached early adulthood (12 wk). At birth, perinatal iron-deficient (PID) offspring had reduced (P < 0.001) hematocrits (-33%), liver iron stores (-83%), and brain iron concentrations (-38%) compared with controls. Although there were no differences in iron status in adults, the PID males and females exhibited reduced OF exploratory behavior, albeit only PID males had an aversion to the center of the apparatus (2.5 vs. 6.9% in controls, P < 0.001). Additionally, PID males required greater path lengths to reach the hidden platform in the MWM, had reduced spatial bias for the target quadrant, and had a tendency for greater thigmotactic behavior in the probe trials (16.5 vs. 13.0% in controls; P = 0.06). PID females had slower swim speeds in all testing phases (-6.2%; P < 0.001). These results suggest that PID has detrimental programming effects in both male and female rats, although the behaviors suggest different mechanisms may be involved in each sex.

  12. Rapid changes in brain aromatase activity in the female quail brain following expression of sexual behavior.

    PubMed

    de Bournonville, Catherine; Ball, Gregory F; Balthazart, Jacques; Cornil, Charlotte A

    2017-10-09

    In male quail, estrogens produced in the brain (neuroestrogens) exert a dual action on male sexual behavior: they increase sexual motivation within minutes via mechanisms activated at the membrane but facilitate sexual performance by slower, presumably nuclear-initiated, mechanisms. Recent work indicates that neuroestrogens are also implicated in the control of female sexual motivation despite the presence of high circulating concentrations of estrogens of ovarian origin. Interestingly aromatase activity (AA) in the male brain is regulated in time domains corresponding to the slow "genomic" and faster "non-genomic" modes of action of estrogens. Furthermore, rapid changes in brain AA are observed in males after sexual interactions with a female. In this study, we investigated whether similar rapid changes in brain AA are observed in females allowed to interact sexually with males. A significant decrease in AA was observed in the medial preoptic nucleus after interactions that lasted 2, 5 or 10 min but this decrease was no longer significant after 15 min of interaction. In the bed nucleus of the stria terminalis, a progressive decline of average AA was observed between 2 and 15 min but it never reached statistical significance. AA in this nucleus was however negatively correlated with the sexual receptivity of the female. These data indicate that sexual interactions affect brain AA in females as in males in an anatomically specific manner and suggest that rapid changes in brain estrogens production could also modulate female sexual behavior. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Estrogen Abolishes Latent Inhibition in Ovariectomized Female Rats

    ERIC Educational Resources Information Center

    Nofrey, Barbara S.; Ben-Shahar, Osnat M.; Brake, Wayne G.

    2008-01-01

    Estrogen is frequently prescribed as a method of birth control and as hormone replacement therapy for post-menopausal women with varied effects on cognition. Here the effects of estrogen on attention were examined using the latent inhibition (LI) behavioral paradigm. Ovariectomized (OVX) female rats were given either estrogen benzoate (EB, 10 or…

  14. Tumorigenic effects of dichloroacetic acid in female F344 rats

    EPA Science Inventory

    Introduction: Dichloroacetic acid (DCA) is a halogenated organic acid produced during oxidant disinfection of drinking water. Prior studies indicate that DCA may increase liver tumors in mice. Here we evaluated the hepatic tumorigenicity of DCA in female rats when given alone ...

  15. Estrogen Abolishes Latent Inhibition in Ovariectomized Female Rats

    ERIC Educational Resources Information Center

    Nofrey, Barbara S.; Ben-Shahar, Osnat M.; Brake, Wayne G.

    2008-01-01

    Estrogen is frequently prescribed as a method of birth control and as hormone replacement therapy for post-menopausal women with varied effects on cognition. Here the effects of estrogen on attention were examined using the latent inhibition (LI) behavioral paradigm. Ovariectomized (OVX) female rats were given either estrogen benzoate (EB, 10 or…

  16. Tumorigenic effects of dichloroacetic acid in female F344 rats

    EPA Science Inventory

    Introduction: Dichloroacetic acid (DCA) is a halogenated organic acid produced during oxidant disinfection of drinking water. Prior studies indicate that DCA may increase liver tumors in mice. Here we evaluated the hepatic tumorigenicity of DCA in female rats when given alone ...

  17. Elevation of brain allopregnanolone rather than 5-HT release by short term, low dose fluoxetine treatment prevents the estrous cycle-linked increase in stress sensitivity in female rats.

    PubMed

    Devall, Adam J; Santos, Julia M; Fry, Jonathan P; Honour, John W; Brandão, Marcus L; Lovick, Thelma A

    2015-01-01

    Withdrawal from long-term dosing with exogenous progesterone precipitates increased anxiety-linked changes in behavior in animal models due to the abrupt decrease in brain concentration of allopregnanolone (ALLO), a neuroactive metabolite of progesterone. We show that a withdrawal-like effect also occurs during the late diestrus phase (LD) of the natural ovarian cycle in rats, when plasma progesterone and ALLO are declining but estrogen secretion maintains a stable low level. This effect at LD was prevented by short-term treatment with low dose fluoxetine. During LD, but not at other stages of the estrous cycle, exposure to anxiogenic stress induced by whole body vibration at 4 Hz for 5 min evoked a significant decrease in tail flick latency (stress-induced hyperalgesia) and a decrease in the number of Fos-positive neurons present in the periaqueductal gray (PAG). The threshold to evoke fear-like behaviors in response to electrical stimulation of the dorsal PAG was lower in the LD phase, indicating an increase in the intrinsic excitability of the PAG circuitry. All these effects were blocked by short-term administration of fluoxetine (2 × 1.75 mg kg(-1) i.p.) during LD. This dosage increased the whole brain concentration of ALLO, as determined using gas chromatography-mass spectrometry, but was without effect on the extracellular concentration of 5-HT in the dorsal PAG, as measured by microdialysis. We suggest that fluoxetine-induced rise in brain ALLO concentration during LD offsets the sharp physiological decline, thus removing the trigger for the development of anxiogenic withdrawal effects.

  18. Antifertility activity of Artemisia vulgaris leaves on female Wistar rats.

    PubMed

    Shaik, Afsar; Kanhere, Rupesh S; Cuddapah, Rajaram; Nelson, Kumar S; Vara, Prasanth Reddy; Sibyala, Saisaran

    2014-03-01

    To evaluate the antifertility activity of Artemisia vulgaris leaves on female Wistar rats. The plant extract was tested for its effect on implant formation at two dose levels, 300 and 600 mg·kg⁻¹, respectively. The effective methanolic plant extract was further studied for estrogenic potency on ovariectomised immature female Wistar rats. The data presented in this study demonstrate the antifertility potential of Artemisia vulgaris methanolic leaf extract, which shows a strong and significant decrease in implant formation (100%), and a strong estrogenic effect resulting in a significant increase in uterine weight in immature ovariectomised rats. These observations suggest that the methanolic extract of Artemisia vulgaris leaves has strong anti-implantation activity and estrogenic activity. The methanolic plant extract of A. vulgaris has antifertility activity. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Reproductive experience modifies the effects of estradiol on learning and memory bias in female rats.

    PubMed

    Hussain, Dema; Hoehne, Alexandra; Woodside, Barbara; Brake, Wayne G

    2013-03-01

    Previous studies have shown that estrogen affects whether a hippocampus-mediated place (allocentric) or a striatum-mediated response (egocentric) memory system is employed by female rats when searching for a food reward in a maze. Because it has been suggested that reproductive experience alters some of the responses to E in the brain, two experiments were carried out to investigate whether reproductive experience would also alter the effect of E on place and response learning. In experiment 1, 152 ovariectomized nulliparous (n=77; no reproductive experience) and primiparous (n=74; having had and raised one litter of pups) Wistar rats were trained on an ambiguous t-maze task and tested for memory system bias. In experiment 2, 35 ovariectomized nulliparous (n=16) and primiparous (n=19) Wistar rats were trained on place and response plus-maze tasks. All rats were exposed to no, chronic low or chronic low with pulsatile high 17β-estradiol (E2) replacement. Congruent with previous findings, low E2 nulliparous rats showed predominant use of response memory and faster response learning, whereas high E2 nulliparous rats showed a trend towards predominant place memory use. Interestingly, the facilitatory effect of low E2 on response task learning and memory seen in nulliparous rats was not observed in low E2 primiparous rats in either experiment. In conclusion, E2 levels do dictate the rate at which female rats learn a response task and utilize response memory, but only in those with no reproductive experience. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice

    PubMed Central

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P.; Moayedi, Massieh; Davis, Karen D.; Sessle, Barry J.

    2017-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  1. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice.

    PubMed

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P; Moayedi, Massieh; Davis, Karen D; Sessle, Barry J

    2016-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  2. Reproductive disorders in female rats after prenatal exposure to betamethasone.

    PubMed

    Borges, Cibele S; Pacheco, Tainá L; Guerra, Marina T; Barros, Aline L; Silva, Patricia V; Missassi, Gabriela; da Silva, Katiussia Pinho; Anselmo-Franci, Janete A; Pupo, André S; Kempinas, Wilma De G

    2017-03-21

    Betamethasone is the drug of choice for antenatal treatment, promoting fetal lung maturation and decreasing mortality. Previous studies in rats reported male programming and alteration in sperm parameters and sexual behavior following intrauterine betamethasone exposure. The impact on the female reproductive development is not known. In this study, rat female offspring was assessed for sexual development, morphophysiology of the reproductive tract and fertility after maternal exposure to 0.1 mg kg(-1) of betamethasone or vehicle on gestational days 12, 13, 18 and 19. The treatment promoted reduction of litter weight on postnatal day 1, morphological masculinization in females, delay in the age of puberty onset, reduction in estrus number, increase in estrous cycle length and increase in luteinizing hormone serum levels and uterus weight. The females from the betamethasone group showed an increase of myometrial uterine area and decrease in endometrial uterine area. These animals also performed less lordosis during the sexual behavior test and showed impaired reproductive performance. The uterus showed higher contraction in the treated group as shown by a pharmacological assay. In conclusion, prenatal betamethasone exposure in rats promoted female masculinization, altered sexual development and reproductive parameters. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Immunochemical characterization of rat brain protein kinase

    SciTech Connect

    Huang, K.P.; Huang, F.L.

    1986-11-05

    Polyclonal antibodies against rat brain protein kinase C (the Ca/sup 2 +//phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca/sup 2 +/, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca/sup 2 +//phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of (/sup 3/H)phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca/sup 2 +/-independent/phospholipid-dependent phorbol ester-binding protein.

  4. Tickling in juvenile but not adult female rats conditions sexual partner preference.

    PubMed

    Paredes-Ramos, Pedro; Miquel, Marta; Manzo, Jorge; Pfaus, James G; López-Meraz, Maria Leonor; Coria-Avila, Genaro A

    2012-08-20

    Female rats display a conditioned partner preference for males that bear odors paired with different types of rewarding unconditioned stimuli (UCS). Here we examined whether tickling constitutes a rewarding UCS that supports the development of partner preferences. In Experiment 1, we tested the possibility that odors associated with a tickling UCS in prepubescent rats would induce a conditioned partner preference in adulthood. Two groups were formed with 31-day-old, single-housed females, tickled for 6 min daily for 10 days, by a hand that wore a scented glove (almond or lemon). At 47 days of age, females were ovariectomized (OVX), hormone-primed (EB+P), and tested for sexual partner preference with two scented stud males (one almond and one lemon). In each group, females displayed a sexual preference toward males bearing the odor paired with tickling, as observed with longer visits, more solicitations, hops & darts, and receiving more intromissions and ejaculations from the preferred male. In Experiment 2, we used 3-month old, OVX, hormone-primed rats conditioned every 4 days for 10 trials. In contrast to juvenile females, adult females failed to prefer males that bore the odor paired with tickling but instead preferred the novel male. These results suggest that tickling has opposite age-dependent effects in the conditioning of partner preference. Tickling in juvenile females appears to act as a rewarding UCS, whereas in adult females it may act as an aversive UCS. Further research is needed to understand brain mechanisms that might account for such differences. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Diphenyl diselenide supplemented diet reduces depressive-like behavior in hypothyroid female rats.

    PubMed

    Dias, Glaecir Roseni Mundstock; de Almeida, Tielle Moraes; Sudati, Jéssie Haigert; Dobrachinski, Fernando; Pavin, Sandra; Soares, Félix Alexandre Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice Vargas

    2014-01-30

    Hypothyroidism has been associated to psychiatric disorder development and tissue oxidative damage. In this study, we evaluated the effect of diphenyl diselenide supplementation on depressive-like behavior triggered by methimazole exposure in female rats. Additionally, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and non-protein thiol (NP-SH) levels were analyzed in cerebral cortex, hippocampus and striatum structures of rats. Monoamine oxidase (MAO) activity was evaluated in total brain. Firstly, female rats received methimazole (MTZ) 20mg/100ml in the drinking water for 30days and were evaluated in open-field and forced swimming tests (FST). In this set of experiments, the rats exposed to MTZ presented a depressive-like behavior, which was evidenced by a significant increase in the immobility time when compared to control group. Thereafter, MTZ-induced hypothyroid rats received either a standard or a diet containing 5ppm of diphenyl diselenide, and then they were evaluated monthly in open-field and FST tests during 3months. No alteration on the locomotor performance was observed among the groups. The depressive-like behavior of hypothyroid rats was blunted by diphenyl diselenide supplementation during all experimental periods. The levels of thyroid hormones remained low in MTZ exposed groups until the end of experimental period. The MTZ group had an increase in TBARS and ROS levels that were restored by diphenyl diselenide supplementation. NP-SH content of cerebral structures was not modified by MTZ exposure and/or diphenyl diselenide supplementation. Diphenyl diselenide supplementation restored the MAO B activity that was decreased in MTZ group. In summary, our results show that hypothyroidism induced by MTZ methimazole triggers a depressive-like behavior in female rats and that dietary diphenyl diselenide was able to reduce this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  7. Galantamine effects on memory, spatial cue utilization, and neurotrophic factors in aged female rats.

    PubMed

    French, K L; Bimonte-Nelson, H A; Granholm, A C

    2007-01-01

    Galantamine is an acetylcholine esterase inhibitor that has been approved for use in Alzheimer's disease. However, even though clinical studies indicate efficacy in attenuating some of the symptoms associated with the disease, there are a paucity of studies evaluating the effects of galantamine administration on cognitive performance and brain parameters in aged rats. Further, because all previous animal studies using galantamine have been performed in male rats, there is no information on how females respond to galantamine treatment. Therefore, we studied the effects of 0.3, 0.6, and 1.2 mg/kg/day galantamine in 20-month-old female rats in terms of performance on the working and reference memory water radial arm maze task. Galantamine did not influence maze performance. Furthermore, a probe trial procedure to determine extra-maze cue utilization while solving the water radial arm maze established that aged female rats utilized extramaze cues, and that they did not rely on a nonspatial chaining strategy to locate hidden platforms. Galantamine treatment had no effect on use of extramaze cues or chaining. In addition, there were no significant changes in neurotrophin levels in the frontal cortex, entorhinal cortex, hippocampus, or basal forebrain after galantamine administration. Therefore, the data reported here suggest that aged animals do utilize spatial strategies for solving a working memory task, but galantamine has no appreciable effects on this task, at least not at the doses tested.

  8. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats.

    PubMed

    Gaspar, Renato Simões; Benevides, Renata Ohana Alves; Fontelles, João Lucas de Lima; Vale, Caroline Castro; França, Lucas Martins; Barros, Paulo de Tarso Silva; Paes, Antonio Marcus de Andrade

    2016-05-01

    Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis. © 2016 Society for Endocrinology.

  9. Studies of aluminum in rat brain

    SciTech Connect

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  10. The effects of pregnancy, lactation, and primiparity on object-in-place memory of female rats.

    PubMed

    Cost, Katherine Tombeau; Lobell, Thomas D; Williams-Yee, Zari N; Henderson, Sherryl; Dohanich, Gary

    2014-01-01

    Maternal physiology and behavior change dramatically over the course of pregnancy to nurture the fetus and prepare for motherhood. Further, the experience of motherhood itself continues to influence brain functioning well after birth, shaping behavior to promote the survival of offspring. To meet these goals, cognitive abilities, such as spatial memory and navigation, may be enhanced to facilitate foraging behavior. Existing studies on pregnant and maternal rats demonstrate enhanced cognitive function in specific spatial domains. We adopted a novel object-in-place task to assess the ability of female rats to integrate information about specific objects in specific locations, a critical element of foraging behavior. Using a longitudinal design to study changes in spatial memory across pregnancy and motherhood, an advantage in the object-in-place memory of primiparous female rats compared to nulliparous females emerged during lactation not during pregnancy, and was maintained after weaning at 42 days postpartum. This enhancement was not dependent on the non-mnemonic variables of anxiety or neophobia. Parity did not affect the type of learning strategy used by females to locate a cued escape platform on a dual-solution water maze task. Results indicate that the enhancement of object-in-place memory, a cognitive function that facilitates foraging, emerged after pregnancy during the postpartum period of lactation and persisted for several weeks after weaning of offspring.

  11. [The expression of GFAP after brain concussion in rats].

    PubMed

    Zhang, Chun-Bing; Li, Yong-Hong

    2006-04-01

    To study the expression of GFAP and pathologic changes after rats brain concussion, so that to provide evidence on brain concussion for forensic identification. Forty-five SD rats were divided into 3, 6, 12, 24 h and 2, 4, 7, 10 d and normal control groups in terms of different wounding time after brain concussion model established, and the expression of GFAP after rats brain concussion were then observed by using SP immunohistochemical method. In normal control brain, low-level GFAP expressions could be observed. After six hours' brain concussion, GFAP positive cells increased obviously. The trend reached to the peak at 7d, partly declined at 10d, then decreased gradually. Brain concussion induced the expression of GFAP. The detection of GFAP could be useful for diagnosis of brain concussion on forensic pathology, and could be a reference index for timing of injury after brain concussion.

  12. Effects of sodium fluoride on reproductive function in female rats.

    PubMed

    Zhou, Yongjiang; Zhang, Hailing; He, Junlin; Chen, Xuemei; Ding, Yubing; Wang, Yingxiong; Liu, Xueqing

    2013-06-01

    The aim of this study was to investigate the effects of sodium fluoride (NaF) on female reproductive function and examine the morphology of the ovaries and uteri of rats exposed to NaF. Eighty female Sprague-Dawley (SD) rats were divided randomly into four groups of 20: one control group and three NaF treated groups. The three NaF treated groups received 100, 150, and 200 ppm, respectively, of NaF for 6 months via their drinking water, while the control group (GC) received distilled water. The levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), progesterone (P) and estradiol (E2) were measured using an enzyme-linked immunosorbent assay. Pathomorphological evaluation of the uteri and ovaries was conducted after staining with hematoxylin-eosin and immunohistochemistry. The rate of successful pregnancy in the NaF-treated groups declined in a dose-dependent manner. The concentration of reproductive hormones was significantly lower in the three NaF-treated groups, and the endometrium was damaged. The maturation of follicles was inhibited. In addition, the total number of follicles of all types was significantly lower in the NaF-treated groups. These results suggest that female reproductive function is inhibited by NaF and that exposure to NaF causes ovarian and uterine structural damage. NaF may thus significantly reduce the fertility of female rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The effect of exercise on carbohydrate preference in female rats.

    PubMed

    Keeley, R J; Zelinski, E L; Fehr, L; McDonald, R J

    2014-02-01

    Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats.

    PubMed

    O'Connor, Christine A; Cernak, Ibolja; Vink, Robert

    2003-06-01

    A number of experimental and clinical studies have demonstrated that functional outcome following traumatic brain injury differs between males and females. Some studies report that females have a better outcome than males following trauma while others report the opposite. In experimental studies, some of the contradictory results may be due to the different experimental conditions, including type of anesthesia and the outcome measures employed. In the present study we have used three different anesthetic protocols and four different outcome measures to determine how these parameters interact and affect functional outcome following traumatic brain injury in male and female rats. Diffuse traumatic brain injury was induced in adult male and female animals using the impact-acceleration brain injury model. Mortality in female animals was no different than males when using halothane anesthesia, slightly better than males when using isoflurane anesthesia, but significantly worse than males under pentobarbital anesthesia. Female animals always performed better than males on rotarod tests of motor outcome, with this effect being unrelated to anesthetic effects. Conversely, in cognitive tests using the Barnes Maze, only isoflurane-anesthetized females performed better than their male counterparts. Similarly, in an open field activity task, females always performed better than males after trauma, with isoflurane-anesthetized females also performing significantly better than the halothane-anesthetized female group after injury. Our results suggest that female animals do better than males after diffuse traumatic brain injury, although this observation is dependent upon the type of anesthesia and the functional task employed. Isoflurane is particularly protective in females, pentobarbital is deleterious to female outcome, while halothane anesthesia has the least influence on gender-related outcome.

  16. Black Cohosh Ameliorates Metabolic Disorders in Female Ovariectomized Rats.

    PubMed

    Sun, Yu; Yu, Qiuxiao; Shen, Qiyang; Bai, Wenpei; Kang, Jihong

    2016-06-01

    Estrogen deficiency is associated with metabolic derangements in menopausal women. Black cohosh has been widely used as an alternative therapy in the treatment of menopausal syndrome. However, its role in metabolism needs to be defined. The aim of the present study was to investigate the long-term effect of black cohosh on glucose and lipid metabolism in a rat model of post-menopause. Adult female Sprague-Dawley rats were sham operated (SHAM), ovariectomized (OVX), OVX with the treatment of estradiol valerate (OVX + E), or OVX with the treatment of isopropanolic black cohosh extract (OVX + iCR). Body weight, body composition, and blood glucose levels of the animals were monitored. The rats were then sacrificed after 3 months of the treatments. At the end of the experiment, OVX + iCR and OVX + E rats exhibited a significant decrease in body weight gain, body and abdominal fat mass, serum triglycerides levels, hepatic fat accumulation, and adipocyte hypertrophy compared with OVX rats. In addition, insulin resistance and glucose intolerance were improved in OVX + iCR but not in OVX + E rats. No hepatotoxicity was detected in OVX + iCR animals. Furthermore, western blot analysis suggested the increased lipolysis in adipose tissue of OVX + iCR and OVX + E rats. Data from in vitro experiments using cultured primary rat adipocytes also showed that black cohosh could affect lipolysis of adipocytes. In conclusion, the long-term treatment of black cohosh at a proper dosage ameliorated metabolic derangements in OVX rats. Thus, this drug is promising for the treatment of metabolic disorders in menopausal and post-menopausal women.

  17. Factors influencing fluoxetine-induced sexual dysfunction in female rats

    PubMed Central

    Adams, Sarah; Heckard, Danyeal; Hassell, James; Uphouse, Lynda

    2012-01-01

    Treatment with selective serotonin reuptake inhibitors, such as fluoxetine, produces sexual side effects with low sexual desire being the most prevalent effect in females. In few studies have preclinical models for such antidepressant-induced sexual dysfunction been fruitful. In the current manuscript, the effects of fluoxetine on multiple measures of female sexual motivation and sexual receptivity were examined. Ovariectomized, Fischer rats were primed with 10 μg estradiol benzoate and 500 μg progesterone. Partner preference, active investigation of the male, and measures of sexual behavior were examined after injection with 15 mg/kg fluoxetine. Factors (pretesting for sexual behavior, size of the test arena, non-contact time with a male) that differ among experiments designed to study antidepressant-induced female rat sexual dysfunction were studied. The male preference ratio was not affected by fluoxetine treatment but active investigation of the male was reduced; lordosis behavior was inhibited and pretesting for sexual receptivity amplified fluoxetine's inhibition; size of the testing arena or non-contact experience with the male had no effect. Regardless of test condition, when given the opportunity to escape from the male, fluoxetine-treated females displayed escape behavior. Measures of male preference and active investigation, but not lordosis behavior, appeared to be affected by fluoxetine's impact on activity. The collective data provided a behavioral profile of fluoxetine-induced sexual dysfunction. These findings reinforce the value of multiple measures when attempting to model antidepressant-induced female sexual dysfunction. PMID:22835821

  18. Chronic nicotine exposure inhibits estrogen-mediated synaptic functions in hippocampus of female rats.

    PubMed

    Raval, Ami P; Sick, Justin T; Gonzalez, Gabriel J; Defazio, R Anthony; Dong, Chuanhui; Sick, Thomas J

    2012-05-23

    Nicotine, the addictive agent in cigarettes, reduces circulating estradiol-17β (E₂) and inhibits E₂-mediated intracellular signaling in hippocampus of female rats. In hippocampus, E₂-signaling regulates synaptic plasticity by phosphorylation of the N-methyl-D-aspartic acid receptor subunit NR2B and cyclic-AMP response element binding protein (pCREB). Therefore, we hypothesized that chronic nicotine exposure induces synaptic dysfunction in hippocampus of female rats. Female rats were exposed to nicotine or saline for 16 days followed by electrophysiological analysis of hippocampus. Briefly, population measurements of excitatory post-synaptic field potentials (fEPSPs) were recorded from stratum radiatum of the CA1 hippocampal slice subfield. A strict software-controlled protocol was used which recorded 30 min of baseline data (stimulation rate of 1/min), a paired-pulse stimulation sequence followed by tetanic stimulation, and 1h of post-tetanus recording. EPSP amplitude and the initial EPSP slope were measured off-line. We then investigated by Western blot analysis the effects of nicotine on hippocampal estrogen receptor-beta (ER-β), NR2B and pCREB. The results demonstrated significantly decreased post-tetanic potentiation and paired-pulse facilitation at the 40, and 80 ms interval in nicotine-exposed rats compared to the saline group. Western blot analysis revealed that nicotine decreased protein levels of ER-β, NR2B, and pCREB. We also confirmed the role of E₂ in regulating NR2B and pCREB phosphorylation by performing Western blots in hippocapmal tissue obtained from E₂-treated ovariectomized rats. In conclusion, chronic nicotine exposure attenuates short-term synaptic plasticity, and the observed synaptic defects might be a consequence of loss of estradiol-17β-signaling. However, determining the exact molecular mechanisms of chronic nicotine exposure on synaptic plasticity specific to the female brain require further investigation. Copyright © 2012

  19. Clitoral anesthesia disrupts paced copulation in the female rat.

    PubMed

    Parada, M; Sparks, L M; Censi, S; Pfaus, J G

    2014-01-17

    Clitoral stimulation produced by sexual contact with a partner or during manual stimulation is associated with pleasure in humans, and produces conditioned place preference in rats. The present experiment investigated the effect of blocking genitosensory stimulation of the clitoris with lidocaine during copulation in female rats on a measure of female sexual motivation: pacing behavior. Sexually naïve, ovariectomized female rats were treated with 10μg estradiol benzoate 48h and 500μg progesterone 4h prior to a 30-min copulatory trial with a sexually vigorous stimulus male scheduled every 4days. A total of 10 copulatory sessions were divided into two phases of 5 trails each. In the first phase, females received an injection (0.05ml) of either 2% lidocaine, saline, or no injection to the clitoral sheath under isoflurane anesthesia immediately prior to the start of a copulatory session, and were then placed on one side of a paced mating chamber and allowed to copulate for 30min. In the second phase, females previously injected with lidocaine were switched to saline and vice versa, and the no injection group remained the same. Variables measured included overall time spent with the males, number of solicitations, contact-return latencies following male mounts, intromissions, and ejaculations; the frequency of entrances and exits from the male chamber, and frequency of mounts, intromissions, ejaculations. Sexual behavior was examined at session 1, session 5, and session 10. At test 5, females that received LID had a greater number of entrances/exits but spent significantly less time in the presence of the male during the copulatory bout than CNTL animals. These females also displayed a trend for longer contact return latencies s after ejaculations than VEH and CNTL groups. On session 10, females that received LID and subsequently switched to VEH treatment no longer differed from controls in entrance/exit numbers, time spent with males or ejaculation contact return

  20. Perinatal and chronic hypothyroidism impair behavioural development in male and female rats.

    PubMed

    van Wijk, N; Rijntjes, E; van de Heijning, B J M

    2008-11-01

    A lack of thyroid hormone, i.e. hypothyroidism, during early development results in multiple morphological and functional alterations in the developing brain. In the present study, behavioural effects of perinatal and chronic hypothyroidism were assessed during development in both male and female offspring of hypothyroid rats. To induce hypothyroidism, dams and offspring were fed an iodide-poor diet and drinking water with 0.75% sodium perchlorate; dams starting 2 weeks prior to mating and pups either until the day of killing (chronic hypothyroidism) or only until weaning (perinatal hypothyroidism) to test for reversibility of the effects observed. Neuromotor competence, locomotor activity and cognitive function were monitored in the offspring until postnatal day 71 and were compared with age-matched control rats. Early neuromotor competence, as assessed in the grip test and balance beam test, was impaired by both chronic and perinatal hypothyroidism. The open field test, assessing locomotor activity, revealed hyperactive locomotor behavioural patterns in chronic hypothyroid animals only. The Morris water maze test, used to assess cognitive performance, showed that chronic hypothyroidism affected spatial memory in a negative manner. In contrast, perinatal hypothyroidism was found to impair spatial memory in female rats only. In general, the effects of chronic hypothyroidism on development were more pronounced than the effects of perinatal hypothyroidism, suggesting the early effects of hypothyroidism on functional alterations of the developing brain to be partly reversible and to depend on developmental timing of the deficiency.

  1. Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring

    PubMed Central

    Gao, Xin; Sun, Lvhui; Zhang, Niya; Li, Chong; Zhang, Jiacai; Xiao, Zhuohui; Qi, Desheng

    2017-01-01

    Zearalenone (ZEN) is an oestrogenic mycotoxin commonly found in food and feed products and can affect reproduction and development in both humans and animals. This study aimed to determine the toxic effects of ZEN on maternal SD rats and the F1 female offspring. Sixty-four pregnant rats were divided into 4 groups and exposed to feed contaminated with ZEN (0, 5, 10, and 20 mg/kg feed) on gestational days (GDs) 0–21. Compared with the controls, the groups exposed to 10 and 20 mg/kg ZEN showed significantly decreased feed intake and body weight of pregnant rats and/or female offspring. Meanwhile, 20 mg/kg ZEN significantly decreased the birth weight and viability of F1 newborn rats. Moreover, 10 and 20 mg/kg ZEN diets increased follicle-stimulating hormone concentrations but decreased oestradiol in both maternal and F1 adult rats. In the F1 generation, ZEN caused no pathological changes in ovaries and uterus in weaned rats, but significant follicular atresia and a thinning uterine layer were found in F1 female adult rats in the 20 mg/kg ZEN group. These impairments concurred with the inhibited mRNA and protein levels of oestrogen receptor-alpha (Esr1) and 3β-hydroxysteroid dehydrogenase (HSD) in the adult uterus and/or ovaries. Furthermore, 10 and/or 20 mg/kg ZEN exposure significantly reduced Esr1, gonadotropin-releasing hormone receptor (GnRHr), and ATP binding cassette transporters b1 and c1 (ABCb1 and ABCc1) in the placenta and foetal and weaned F1 brains, and also produced a dose-dependent increase in 3β-HSD in the placenta. Additionally, 20 mg/kg ZEN significantly upregulated ABCc5 expression in the placenta and ovaries of weaned rats. These results suggested that prenatal ZEN exposure in rats affected maternal and foetal development and may lead to long-term reproductive impairment in F1 adult females. PMID:28067781

  2. Estrogen receptors mediate estradiol's effect on sensitization and CPP to cocaine in female rats: role of contextual cues.

    PubMed

    Segarra, Annabell C; Torres-Díaz, Yvonne M; Silva, Richard D; Puig-Ramos, Anabel; Menéndez-Delmestre, Raissa; Rivera-Bermúdez, José G; Amadeo, Waldo; Agosto-Rivera, José L

    2014-02-01

    Preclinical studies show that estradiol enhances sensitization to cocaine in females by mechanisms not fully understood. These studies consistently show that ovariectomized (OVX) rats exhibit little or no sensitization to cocaine compared to OVX rats administered estradiol. In this study we varied the dose of cocaine (10, 15, and 30mg/kg), the length of cocaine treatment (from 5 to 10days) and the context of cocaine injections to determine if these factors play a role on estradiol's effects on cocaine sensitization. Because OVX rats are hormonally compromised, they are not representative of the natural state of the animal, and thus the physiological context of these studies remains unclear. To address this issue, we blocked ERs in gonadally intact females by icv administration of the antiestrogen ICI-182,780. Varying the dose or length of exposure to cocaine does not alter estradiol's effect on cocaine sensitization. In contrast, a highly context-dependent sensitization protocol results in robust sensitization even in OVX rats. Interestingly, using this protocol, sensitization in OVX rats diminished with time, suggesting that estradiol is necessary for the maintenance of cocaine sensitization. Blocking brain ERs with ICI completely abolishes the development and expression of cocaine sensitization in gonadally intact female rats, even when tested in a highly context-dependent sensitization protocol. Given these findings, we propose that activation of brain ERs is required for the development and maintenance of sensitization and CPP. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Behavioural and neurotoxic effects of ayahuasca infusion (Banisteriopsis caapi and Psychotria viridis) in female Wistar rat.

    PubMed

    Pic-Taylor, Aline; da Motta, Luciana Gueiros; de Morais, Juliana Alves; Junior, Willian Melo; Santos, Alana de Fátima Andrade; Campos, Leandro Ambrósio; Mortari, Marcia Renata; von Zuben, Marcus Vinicius; Caldas, Eloisa Dutra

    2015-09-01

    Ayahuasca, a psychoactive beverage used by indigenous and religious groups, is generally prepared by the coction of Psychotria viridis and Banisteriopsis caapi plants containing N,N-dimethyltryptamine (DMT) and β-carboline alkaloids, respectively. To investigate the acute toxicity of ayahuasca, the infusion was administered by gavage to female Wistar rats at doses of 30X and 50X the dose taken during a religious ritual, and the animals observed for 14 days. Behavioural functions were investigated one hour after dosing at 15X and 30X using the open field, elevated plus maze, and forced swimming tests. Neuronal activation (c-fos marked neurons) and toxicity (Fluoro-Jade B and Nissl/Cresyl staining) were investigated in the dorsal raphe nuclei (DRN), amygdaloid nucleus, and hippocampal formation brain areas of rats treated with a 30X ayahuasca dose. The actual lethal oral dose in female Wistar rats could not be determined in this study, but was shown to be higher than the 50X (which corresponds to 15.1mg/kg bw DMT). The ayahuasca and fluoxetine treated groups showed a significant decrease in locomotion in the open field and elevated plus-maze tests compared to controls. In the forced swimming test, ayahuasca treated animals swam more than controls, a behaviour that was not significant in the fluoxetine group. Treated animals showed higher neuronal activation in all brain areas involved in serotoninergic neurotransmission. Although this led to some brain injury, no permanent damage was detected. These results suggest that ayahuasca has antidepressant properties in Wistar female at high doses, an effect that should be further investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reproductive aspects in female rats exposed prenatally to hydrocortisone.

    PubMed

    Piffer, R C; Pereira, O C M

    2004-10-01

    We investigated the effects of hydrocortisone during the prenatal period and its later repercussion on reproductive aspects of female rats. Pregnant rats were treated (s.c.) with hydrocortisone acetate, at 1.5 mg/day on the 17th, 18th, and 19th days of pregnancy. Although the present study was not intended to identify mechanisms of toxicity, the treatment with hydrocortisone in the last period of pregnancy presented no signs of toxicity. The efficacy of the hydrocortisone in reducing the adrenal wet mass and plasma corticosterone levels immediately after delivery in both the treated mothers and in respective pups at birth may indicate impairment of the hypothalamus-pituitary-adrenal axis. In addition, the treatment with hydrocortisone did not interfere in the development of the female descendants until puberty. However, it affected the estrous cycle and fertility. Probably, the prenatal exposure to corticosteroids had altered at least partially the hypothalamus-pituitary-gonadal axis, resulting in the damages observed in adult life. These results indicate that the use of the hydrocortisone at a dose that apparently does not endanger the neonate led to undesirable effects in the adult reproductive phase, resulting in later deleterious alteration of the reproductive physiology in female rats.

  5. Effects of genistein on gonadotropic cells in immature female rats.

    PubMed

    Medigović, Ivana; Manojlović-Stojanoski, Milica; Trifunović, Svetlana; Ristić, Nataša; Milošević, Verica; Zikić, Dragan; Nestorović, Nataša

    2012-05-01

    The effects of genistein on pituitary gonadotropic cells of immature female rats were examined and compared to actions of the synthetic estrogen, 17α-ethynylestradiol. Immature female rats received 50mg/kg/bw of genistein in dimethylsulfoxide (DMSO) subcutaneously (s.c.) daily for 3 days at 18, 19 and 20 days of age. A second group was injected with 1μg/kg of 17α-ethynylestradiol in olive oil in the same schedule. The genistein control group received DMSO only, while 17α-ethynylestradiol controls were given sterile olive oil only. Changes in cell number per mm(2), cell volume and volume density of follicle-stimulating (FSH) and luteinizing (LH) immunolabeled cells were evaluated by morphometry and stereology. Genistein induced significant increases in the number of FSH cells (by 21%) and LH cells (by 20%) per mm(2) compared to corresponding controls. Volumes of FSH and LH cells were significantly increased by 19.7% and 20% and their volume densities by 20% and 20.2%, respectively. Estradiol markedly affected gonadotropes in the same manner, but to a greater extent. It can be concluded that genistein acted as an estrogenic agonist in the pituitaries of immature female rats, and as such, stimulated gonadotropic cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Disposition of perfluorodecanoic acid in male and female rats

    SciTech Connect

    Vanden Heuvel, J.P.; Kuslikis, B.I.; Van Rafelghem, M.J.; Peterson, R.E. )

    1991-03-01

    The elimination, tissue distribution, and metabolism of (1-14C)PFDA were examined in male and female rats for 28 days after a single ip dose (9.4 mumol/kg, 5 mg/kg). A sex difference in the fecal elimination of perfluorodecanoic acid (PFDA) was observed with 51 and 24% of the administered 14C being recovered in the feces of male and female rats, respectively, by 28 days post-treatment. The cumulative excretion of PFDA-derived 14C in the urine in 28 days was less than 5% of the administered dose in both sexes. The sex-related difference in the rate of fecal elimination resulted in the observed difference in whole body elimination t1/2 of PFDA in males (t1/2 = 23 days) and females (t1/2 = 45 days). The liver contained the highest concentration of PFDA-derived 14C in both males and females, followed by the plasma and kidneys. The heart, fat pads, testes, and gastrocnemius muscle of males, and the ovaries of females contained much lower concentrations of PFDA. The reason for the high percentage of the ip dose of (1-14C)PFDA in the liver (53% males and 41% females, 2 hr post-treatment) was further examined using an in situ nonrecirculating liver perfusion technique. It was shown that approximately 25% of the (14C)PFDA in the perfusate was extracted by the liver in a single pass. The basis for the sex difference in fecal elimination of PFDA does not appear to be due to a sex difference in biliary excretion. In a 6-hr period, male and female rats with kidneys ligated eliminated essentially the same percentage dose of (14C)PFDA into bile. We had hypothesized that the persistence of PFDA in rats was due to formation of a PFDA-containing lipids. However, no evidence that PFDA is conjugated to form persistent hybrid lipids was obtained, nor were polar metabolites of PFDA detected in urine or bile.

  8. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    PubMed

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  9. Uterotrophic assay of percutaneous lavender oil in immature female rats.

    PubMed

    Politano, Valerie T; McGinty, Danielle; Lewis, Elise M; Hoberman, Alan M; Christian, Mildred S; Diener, Robert M; Api, Anne Marie

    2013-01-01

    The estrogenic potential of lavender oil was evaluated in a percutaneous uterotrophic bioassay in immature female rats. Four groups of 10 immature female rats each were randomly selected on postpartum day (PPD) 16. During the 3-day treatment period (PPDs 19-21), the immature rats were separated from the dams, caged in groups of 5 in a litter box for 6 hours, and administered the vehicle control article (corn oil) or lavender oil at 20 or 100 mg/kg per day. All dosages were administered as a 5 mL/kg volume in a Hilltop Chamber (25 mm diameter; absorbent material removed) placed on the shaved back of each immature rat, and secured with micropore tape and Vetrap. A positive control group was gavaged twice daily with 2.5 μg/kg per day of 17α-ethinyl estradiol. Daily observations included viability, clinical signs, body weights, and body weight gains. All rats were euthanized 24 hours after the third and final treatment, the uteri and ovaries were removed, and the paired ovaries and wet and blotted uterine weights were recorded. No unscheduled deaths occurred. No skin reactions were observed. Both dosages of lavender oil significantly reduced body weight gains after the third day of treatment, but terminal body weights and mean absolute and relative uterine weights did not differ significantly from vehicle control values. Positive controls showed significant increases in body weight and increased mean absolute and relative uterine weights as expected. Based on these data, lavender oil, at dosages of 20 or 100 mg/kg, was not active in the rat uterotrophic assay and gave no evidence of estrogenic activity.

  10. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  11. SEXUAL INTERACTIONS WITH UNFAMILIAR FEMALES REDUCE HIPPOCAMPAL NEUROGENESIS AMONG ADULT MALE RATS

    PubMed Central

    Spritzer, Mark D.; Curtis, Molly G.; DeLoach, Julia P.; Maher, Jack; Shulman, Leanne M.

    2016-01-01

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of BrdU (200 mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30 min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohisotchemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. There were no differences in the amount of sexual behavior (mounts, intromissions, ejaculations, or contact time) that the familiar and unfamiliar groups engaged in, indicating that the differences in neurogenesis were not due to the relative amounts of sexual activity. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect

  12. Reproductive experience increases prolactin responsiveness in the medial preoptic area and arcuate nucleus of female rats.

    PubMed

    Anderson, Greg M; Grattan, David R; van den Ancker, Willemijn; Bridges, Robert S

    2006-10-01

    The experience of pregnancy plus lactation produces long-term enhancements in maternal behavior as well as reduced secretion of prolactin, a key hormone for the initial establishment of maternal care. Given that prolactin acts centrally to induce maternal care as well as regulate its own secretion, we tested whether prolactin receptors in brain regions known to regulate behavioral and neuroendocrine processes were up-regulated and more responsive to prolactin in reproductively experienced females. Diestrous primiparous (8 wk after weaning) and age-matched virgin rats were treated with 250 microg ovine prolactin sc or vehicle and the brains collected 2 h later for measurement of mRNA for genes involved in prolactin signaling. Reproductively experienced rats had lower serum prolactin concentrations, compared with virgin rats, suggesting enhanced prolactin feedback on the arcuate neurons regulating prolactin secretion. In the medial preoptic area and arcuate nucleus (regions involved in regulating maternal behavior and prolactin secretion, respectively), the level of long-form prolactin receptor mRNA was higher in primiparous rats, and prolactin treatment induced a further increase in receptor expression in these animals. In the same regions, suppressors of cytokine signaling-1 and -3 mRNA levels were also markedly increased after prolactin treatment in reproductively experienced but not virgin rats. These results support the idea that reproductive experience increases central prolactin responsiveness. The induction of prolactin receptors and enhanced prolactin responsiveness as a result of pregnancy and lactation may help account for the retention of maternal behavior and shifts in prolactin secretion in reproductively experienced females.

  13. Reproductive parameters of female Wistar rats treated with methylphenidate during development.

    PubMed

    Montagnini, Bruno Garcia; Silveira, Kennia Moura; Pierone, Bruna Caroline; de Azevedo Camim, Nathália; Anselmo-Franci, Janete Aparecida; de Fátima Paccola Mesquita, Suzana; Kiss, Ana Carolina Inhasz; Gerardin, Daniela Cristina Ceccatto

    2016-12-01

    Methylphenidate (MPH), a psychoactive agent that acts mainly by blocking the uptake of dopamine, is the main drug used to treat Attention Deficit Hyperactivity Disorder in children and adolescents. During development, important changes in brain architecture and plasticity occur, these changes, sensitive to exposure to stimulant drugs, are important in the control of GnRH secretion, influencing the release of sex hormones throughout the ovarian cycle. This study investigated the effects of repeated treatment with MPH during development on reproductive parameters of adult female rats. Wistar rats received MPH 2.5mg/kg, MPH 5.0mg/kg, or tap water (gavage) from postnatal day (PND) 21 to PND 60. From PND 75, one subgroup of females was selected for evaluation of estrous cycle, estradiol levels, weight of sexual organs, and histomorphological analysis of ovary follicles and uterus. In another subgroup, the sexual and maternal behaviors were evaluated at PND 90 and on lactational day 5, respectively. No significant alterations were observed in the MPH groups. This study demonstrated that repeated administration of MPH during the period corresponding to childhood to early adulthood does not interfere in the reproductive function of female rats in adulthood.

  14. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    PubMed Central

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  15. Effect of ethanol intake during lactation on male and female pups' liver and brain metabolism during the suckling-weaning transition period.

    PubMed

    Oyama, L M; Oller Do Nascimento, C M

    2003-06-01

    In rats, a high degree of brain development and myelination occurs during the first 15 days after birth. Ethanol intake by lactating rats modified 12 day-old pups' brain development and metabolism. The aim of the present study was to evaluate the effect of maternal ethanol ingestion during lactation on prepubertal (24-day-old) pups' brain and liver metabolism. Lactating rats (4 male and 4 female litters) were divided into 2 groups: control--received control liquid diet, and ethanol--received liquid diet containing 4% of ethanol. On postnatal day 24, the pups were killed by decapitation. Liver and brain were utilized for measuring Adenosine Tri-phosphate-citrate lyase and malic enzymes activities. Brain slices were incubated in medium containing glucose to determine glucose consumption and oxidation, and lipid synthesis. The ethanol intake decreased male and female pups' body, brain and liver weight. Liver Adenosine Tri-phosphate-citrate lyase activity was decreased only in male pups of the ethanol group. The intake of ethanol solution by the dams increased glucose consumption and oxidation by the incubated female pups' brain slices and decreased glucose oxidation by the male pups' brain slices. It can be concluded that the effects of maternal ethanol intake on pups' development and metabolism are gender-related.

  16. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  17. Manganese alters rat brain amino acids levels

    PubMed Central

    Santos, Dinamene; Batoreu, M. Camila; Almeida, Isabel; Ramos, Ruben; Sidoryk-Wegrzynowicz, M.; Aschner, Michael; Marreilha dos Santos, A.P.

    2012-01-01

    Manganese (Mn) is an essential element and it acts as a cofactor for a number of enzymatic reactions, including those involved in amino acid, lipid, protein and carbohydrate metabolism. Excessive exposure to Mn can lead to poisoning, characterized by psychiatric disturbances and an extrapyramidal disorder. Mn-induced neuronal degeneration is associated with alterations in amino acids metabolism. In the present study, we analyzed whole rat brain amino acid content subsequent to 4 or 8 intraperitoneal (ip) injections, with 25 mg MnCl2/kg/day, at 48-hour (h) intervals. We noted a significant increase in glycine brain levels after 4 or 8 Mn injections (p<0.05 and p<0.01, respectively) and arginine also after 4 or 8 injections (p<0.001). Significant increases were also noted in brain proline (p<0.01), cysteine (p<0.05), phenylalanine (p<0.01) and tyrosine (p<0.01) levels after 8 Mn injections vs. the control group. These findings suggest that Mn-induced alterations in amino acid levels secondary to Mn affect the neurochemical milieu. PMID:22971893

  18. Estradiol and striatal dopamine receptor antagonism influence memory system bias in the female rat.

    PubMed

    Quinlan, Matthew G; Almey, Anne; Caissie, Meghen; LaChappelle, Ivonne; Radiotis, George; Brake, Wayne G

    2013-11-01

    Estradiol (E2) has been shown to influence learning and memory systems used by female rats to find a reward. Rats with high levels of E2 tend to use allocentric, or place, memory while rats with low levels of E2 use egocentric, or response, memory. It has been shown that systemic dopamine receptor antagonism interacts with E2 to affect which memory system is used. Here, dopamine antagonists were administered directly into either the dorsal striatum or nucleus accumbens to determine where in the brain this interaction takes place. Seventy-four young adult, female, Sprague-Dawley rats were trained and tested in a modified plus-maze. All rats were ovariectomized, received a subcutaneous low E2 implant, and were implanted with bilateral cannulae into either the dorsal striatum or the nucleus accumbens. Additionally, high E2 rats received daily injections of E2 in a sesame oil solution while low E2 rats received daily injections of vehicle. After reaching criterion levels of performance in a plus-maze task, rats were administered microinjections of either a dopamine D1 receptor (SCH 23390; 0.1 μg/ml and 0.01 μg/ml) or D2 receptor (raclopride; 2 μg/ml and 0.5 μg/ml) antagonist or a vehicle control (saline) in a counterbalanced manner. High E2 rats exhibited a trend towards a place memory bias while low E2 rats showed a response memory bias. Dorsal striatal administration of a D1, but not D2, dopamine receptor antagonist caused a switch in the memory system used by both high and low E rats. There was no significant effect of dopamine receptor antagonism in the nucleus accumbens group. Thus, E2 determined which memory system controlled behavior in a plus-maze task. Moreover, this effect was modulated by dopamine D1R antagonism in the dorsal but not ventral striatum suggesting that memory systems are, in part, mediated by E2 and dopamine in this region. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Behavioural response of sexually naïve and experienced male rats to the smell of 6-methyl-5-hepten-2-one and female rat faeces.

    PubMed

    Nielsen, Birte L; Jerôme, Nathalie; Saint-Albin, Audrey; Rampin, Olivier; Maurin, Yves

    2013-08-15

    Sexually experienced male rats display penile erections when exposed to faeces from mammalian females in oestrus (Rampin et al., Behav Brain Res, 172:169, 2006), suggesting that specific odours indicate female receptiveness across species. However, it is unknown to what extent the sexual response observed results from an odorous conditioning acquired during sexual experience. We tested the behavioural response of male Brown Norway rats both when sexually naïve and experienced to four odours, including oestrous rat faeces and 6-methyl-5-hepten-2-one (methylheptenone; a molecule found in higher concentrations during oestrus in female rats, foxes and horses). Odour had a significant effect on the sexual response of the naïve rats, with oestrus faeces provoking significantly more erections than herb odour, and with methylheptenone and di-oestrus faeces being intermediate. This indicates that sexually naïve male rats have an unconditioned ability to detect oestrous mediated via odour. After gaining sexual experience, the response to methylheptenone, di- and oestrus faeces was significantly higher than that observed with herb odour. These results strongly suggest that methylheptenone is part of the odorous bouquet of oestrus and contributes to the olfactory determination of female receptiveness.

  20. [Expression of c-myc protein on rats' brains after brain concussion].

    PubMed

    Fang, Wei-Hua; Wang, Dong-Liang; Wang, Feng

    2006-10-15

    To study the changes of expression of c-myc protein on rats' brains after brain concussion. sixty rats were randomly divided into brain concussion groups and control group. The expression of c-myc protein was microscopically observed by immunohistochemical method. No expression of c-myc protein in control group were observed. However, positive expression of c-myc protein in some neurons was seen at 20 min after brain concussion, and reach to the peak at 8h after brain concussion and then decreased gradually. These findings suggest that the detection of c-myc protein could be an index of diagnosis of brain concussion.

  1. Cocaine differentially affects synaptic activity in memory and midbrain areas of female and male rats: an in vivo MEMRI study.

    PubMed

    Perez, Pablo D; Hall, Gabrielle; Zubcevic, Jasenka; Febo, Marcelo

    2017-02-24

    Manganese enhanced magnetic resonance imaging (MEMRI) has been previously used to determine the effect of acute cocaine on calcium-dependent synaptic activity in male rats. However, there have been no MEMRI studies examining sex differences in the functional neural circuits affected by repeated cocaine. In the present study, we used MEMRI to investigate the effects of repeated cocaine on brain activation in female and male rats. Adult female and male rats were scanned at 4.7 Tesla three days after final treatment with saline, a single cocaine injection (15 mg kg(-1), i.p. × 1 day) or repeated cocaine injections (15 mg kg(-1), i.p. × 10 days). A day before imaging rats were provided with an i.p. injection of manganese chloride (70 mg kg(-1)). Cocaine produced effects on MEMRI activity that were dependent on sex. In females, we observed that a single cocaine injection reduced MEMRI activity in hippocampal CA3, ventral tegmental area (VTA), and median Raphé, whereas repeated cocaine increased MEMRI activity in dentate gyrus and interpeduncular nucleus. In males, repeated cocaine reduced MEMRI activity in VTA. Overall, it appeared that female rats showed a general trend towards increase MEMRI activity with single cocaine and reduced activity with repeated exposure, while male rats showed a trend towards opposite effects. Our results provide evidence for sex differences in the in vivo neural response to cocaine, which involves primarily hippocampal, amygdala and midbrain areas.

  2. Physiological, biochemical and histological alterations induced by administration of imidacloprid in female albino rats.

    PubMed

    Vohra, Prerna; Khera, Kuldeep Singh; Sangha, Gurinder Kaur

    2014-03-01

    Imidacloprid, a neonicotinoid the newest class of major insecticide has outstanding potency and systemic action for crop protection against piercing and sucking insects pests and also highly effective for control of flea on cats and dogs. The effect of oral administration of two doses of imidacloprid 10 and 20mg/kg/day for 60 days on biochemical parameters, histopathology and protein profile of female albino rat was assessed. Average feed intake was significantly reduced (P<0.01) at 20mg/kg/day. Relative weight of heart and spleen decreased significantly (P<0.05) at higher dose level. Non significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), alkaline phosphatase (AKP) activity was observed in both the imidacloprid treated groups. There was significant decrease (P<0.01, P<0.05) in acetyl cholinesterase (AChE) activity in plasma and brain of both the imidacloprid treated groups. Microscopically, liver tissue of rats treated with higher dose of imidacloprid showed marked dilation and congestion of central vein and degeneration of hepatocytes. The exposure to imidacloprid produced histopathological changes that could be correlated with changes in the biochemical profile of female albino rats. The blood plasma proteins were examined by SDS PAGE. There was no diagnostic difference in the pattern of plasma protein profile of control and treated rats. Based on the present physiological, biochemical and histological studies it is evident that imidacloprid did not produce any significant effects at 10mg/kg/day dose but induced toxicological effects at 20mg/kg/day to female rats.

  3. Female-specific hypertension loci on rat chromosome 13

    PubMed Central

    Hoffman, Matthew J.; Flister, Michael J.; Nunez, Lizbeth; Xiao, Bing; Greene, Andrew S.; Jacob, Howard J.; Moreno, Carol

    2013-01-01

    A 3.7 Mb region of rat chromosome 13 (45.2–49.0 Mb) affects blood pressure (BP) in females only, indicating the presence of gender-specific BP loci in close proximity to the Renin locus. In the present study, we used a series of Dahl salt-sensitive/Mcwi (SS)-13 Brown Norway (BN) congenic rat strains to further resolve BP loci within this region. We identified 3 BP loci affecting female rats only, of which the 2 smaller loci (line9BP3 and line9BP4) were functionally characterized by sequence and expression analysis. Compared with SS, the presence of a 591 Kb region of BN chromosome 13 (line9BP3) significantly lowered BP by 21 mmHg on an 8% NaCl diet (153±7 vs 174±5 mmHg, P<0.001). Unexpectedly, the addition of 23 Kb of BN chromosome 13 (line9BP4) completely erased the female-specific BP protection on 8% NaCl diet, suggesting that BN hypertensive allele(s) reside in this region. The congenic interval of the protective line 9F strain contains 3 genes (Optc, Prelp, and Fmod) and the hypertensive line 9E contains 1 additional gene (Btg2). Sequence analysis of the 2 BP loci revealed a total of 282 intergenic variants, with no coding variants. Analysis of gene expression by RT-qPCR revealed strain- and gender-specific differences in Prelp, Fmod, and Btg2 expression, implicating these as novel candidate genes for female-specific hypertension. PMID:23817491

  4. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism.

    PubMed

    Eskelund, Amanda; Budac, David P; Sanchez, Connie; Elfving, Betina; Wegener, Gregers

    2016-08-04

    Clinical studies suggest a link between depression and dysfunctional tryptophan (TRP) metabolism. Even though depression is twice as prevalent in women as men, the impact of the estrous cycle on TRP metabolism is not well-understood. Here we investigated 13 kynurenine and serotonin metabolites in female Flinders Sensitive Line (FSL) rats, a genetic rat model of depression. FSL rats and controls (Flinders Resistant Line rats), 12-20weeks old, were subject to the forced swim test (FST), a commonly used measure of depression-like behavior. Open field was used to evaluate locomotor ability and agoraphobia. Subsequently, plasma and hemispheres were collected and analyzed for their content of TRP metabolites using liquid chromatography-tandem mass spectrometry. Vaginal saline lavages were obtained daily for ⩾2 cycles. To estimate the effects of sex and FST we included plasma from unhandled, naïve male FSL and FRL rats. Female FSL rats showed a depression-like phenotype with increased immobility in the FST, not confounded by anxiety. In the brain, 3-hydroxykynurenine was increased whereas anthranilate and 5-hydroxytryptophan were decreased. In plasma, anthranilate and quinolinate levels were lower in FSL rats compared to the control line, independent of sex and FST. The estrous cycle neither impacted behavior nor TRP metabolite levels in the FSL rat. In conclusion, the female FSL rat is an interesting preclinical model of depression with altered TRP metabolism, independent of the estrous cycle. The status of the pathway in brain was not reflected in the plasma, which may indicate that an inherent local, cerebral regulation of TRP metabolism occurs.

  5. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    PubMed Central

    Mann, Phyllis E.

    2014-01-01

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated. PMID:24961703

  6. Changes in brain lipid composition in thiamine deficient rats.

    PubMed

    Okazaki, M; Sakamoto, H; Ohtsuki, A; Oguchi, K

    1990-10-01

    Brain lipid composition was studied in thiamine deficient rats treated with thiamine antimetabolites (oxythiamine: OT, and pyrithiamine: PT) and thiamine deficient diet (TDD). After intraperitoneal injection of OT (40 mg/kg/day) or TDD feeding for 6 days, body weight gain decreased. However, the PT (500 micrograms/kg/day) treated rats or the pair fed control (PFC: TDD + thiamine of 5 mg/kg, i.p.) showed no decrease in body weight gain compared with the regular diet control (C). Brain lipid levels (total lipid, total cholesterol, triglyceride, phospholipid, sphingomyelin and cerebroside) were examined in four brain regions (cerebral cortex, subcortical structure, brain stem and cerebellum). Total lipid level increased in four regions in OT or TDD treated rats, but total lipid level in the cerebellum in PT treated rats decreased. Total cholesterol level increased in all treated rats, while the triglyceride level in the brain stem decreased dramatically in OT or TDD treated rats. Cerebroside levels of four regions in the PT, OT or TDD group remarkably decreased, and PFC rats showed a significant improvement of the decrease in cerebroside level. It is conceivable that these changes in brain lipid composition provided some clues for the histological and morphological changes of the brain as manifested by the myelin degradation in acute thiamine deficiency.

  7. Somatomotor and sensory urethral control of micturition in female rats

    PubMed Central

    Cruz, Yolanda; Pastelín, César; Balog, Brian M.; Zaszczurynski, Paul J.

    2014-01-01

    In rats, axons of external urethral sphincter (EUS) motoneurons travel through the anastomotic branch of the pudendal nerve (ABPD) and anastomotic branch of the lumbosacral trunk (ABLT) and converge in the motor branch of the sacral plexus (MBSP). The aim of the present study was to determine in female rats the contribution of these somatomotor pathways and urethral sensory innervation from the dorsal nerve of the clitoris on urinary continence and voiding. EUS electromyographic (EMG) activity during cystometry, leak point pressure (LPP), and voiding efficiency (VE) were assessed in anesthetized virgin Sprague-Dawley female rats before and after transection of the above nerve branches. Transection of the MBSP eliminated EUS EMG, decreased LPP by 50%, and significantly reduced bladder contraction duration, peak pressure, intercontraction interval, and VE. Transection of the ABPD or ABLT decreased EUS EMG discharge and LPP by 25% but did not affect VE. Transection of the dorsal nerve of the clitoris did not affect LPP but reduced contraction duration, peak pressure, intercontraction interval, and VE. We conclude that somatomotor control of micturition is provided by the MBSP with axons travelling through the ABPD and ABLT. Partial somatomotor urethral denervation induces mild urinary incontinence, whereas partial afferent denervation induces voiding dysfunction. ABPD and ABLT pathways could represent a safeguard ensuring innervation to the EUS in case of upper nerve damage. Detailed knowledge of neuroanatomy and functional innervation of the urethra will enable more accurate animal models of neural development, disease, and dysfunction in the future. PMID:25339694

  8. Somatomotor and sensory urethral control of micturition in female rats.

    PubMed

    Cruz, Yolanda; Pastelín, César; Balog, Brian M; Zaszczurynski, Paul J; Damaser, Margot S

    2014-12-01

    In rats, axons of external urethral sphincter (EUS) motoneurons travel through the anastomotic branch of the pudendal nerve (ABPD) and anastomotic branch of the lumbosacral trunk (ABLT) and converge in the motor branch of the sacral plexus (MBSP). The aim of the present study was to determine in female rats the contribution of these somatomotor pathways and urethral sensory innervation from the dorsal nerve of the clitoris on urinary continence and voiding. EUS electromyographic (EMG) activity during cystometry, leak point pressure (LPP), and voiding efficiency (VE) were assessed in anesthetized virgin Sprague-Dawley female rats before and after transection of the above nerve branches. Transection of the MBSP eliminated EUS EMG, decreased LPP by 50%, and significantly reduced bladder contraction duration, peak pressure, intercontraction interval, and VE. Transection of the ABPD or ABLT decreased EUS EMG discharge and LPP by 25% but did not affect VE. Transection of the dorsal nerve of the clitoris did not affect LPP but reduced contraction duration, peak pressure, intercontraction interval, and VE. We conclude that somatomotor control of micturition is provided by the MBSP with axons travelling through the ABPD and ABLT. Partial somatomotor urethral denervation induces mild urinary incontinence, whereas partial afferent denervation induces voiding dysfunction. ABPD and ABLT pathways could represent a safeguard ensuring innervation to the EUS in case of upper nerve damage. Detailed knowledge of neuroanatomy and functional innervation of the urethra will enable more accurate animal models of neural development, disease, and dysfunction in the future.

  9. Participation of locus coeruleus in breathing control in female rats.

    PubMed

    de Carvalho, Débora; Patrone, Luis Gustavo A; Marques, Danuzia A; Vicente, Mariane C; Szawka, Raphael E; Anselmo-Franci, Janete A; Bícego, Kênia C; Gargaglioni, Luciane H

    2017-07-04

    Several evidences indicate that the locus coeruleus (LC) is involved in central chemoreception responding to CO2/pH and displaying a high percentage of chemosensitive neurons (>80%). However, there are no studies about the LC-mediated hypercapnic ventilation performed in females. Therefore, we assessed the role of noradrenergic LC neurons in non-ovariectomized (NOVX), ovariectomized (OVX) and estradiol (E2)-treated ovariectomized (OVX+E2) rats in respiratory response to hypercapnia, using a 6-hydroxydopamine (6-OHDA) - lesion model. A reduction in the number of tyrosine hydroxylase (TH) immunoreactive neurons (51-90% in 3 animals of NOVX group, 20-42% of lesion in 5 animals of NOVX females, 61.3% for OVX and 62.6% for OVX+E2 group) was observed seven days after microinjection of 6-OHDA in the LC. The chemical lesion of the LC resulted in decreased respiratory frequency under normocapnic conditions in OVX and OVX+E2 group. Hypercapnia increased ventilation in all groups as consequence of increases in respiratory frequency (fR) and tidal volume (VT). Nevertheless, the hypercapnic ventilatory response was significantly decreased in 6-OHDA-NOVX>50% rats compared with SHAM-NOVX group and with females that had 20-42% of LC lesion. In OVX and OVX+E2 lesioned groups, no difference in CO2 ventilatory response was observed when compared to SHAM-OVX and SHAM-OVX+E2 groups, respectively. Neither basal body temperature (Tb) nor Tb reduction in response to hypercapnia were affected by E2 treatment, ovariectomy or LC lesion. Thus, our data show that LC noradrenergic neurons seem to exert an excitatory role on the hypercapnic ventilatory response in female rats, as evidenced by the results in NOVX animals with LC lesioned more than 50%; however, this modulation is not observed in OVX and OVX+E2 rats. In addition, LC noradrenergic neurons of OVX females seem to provide a tonic excitatory drive to maintain breathing frequency in normocapnia, and this response may not to be

  10. Hybridizable ribonucleic acid of rat brain

    PubMed Central

    Bondy, S. C.; Roberts, Sidney

    1968-01-01

    1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver. PMID:5683505

  11. Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats.

    PubMed

    Moyse, Emmanuel; Arseneault, Madeleine; Gaudreau, Pierrette; Ferland, Guylaine; Ramassamy, Charles

    2015-07-01

    The LOU/C (LOU) rat is an obesity resistant strain with higher longevity and healthspan than common rats. The management of oxidative stress being important to successful aging, we characterized this process in the aging LOU rat. Male/female LOU rats were euthanized at 4, 20, and 29 months. Macrodissected hippocampus, striatum, parietal cortex, cerebellum were assayed for tissue concentrations of glutathione (GSH), gamma-glutamyl-cysteine-synthetase (γ-GCS), total thiols, protein carbonyls, mRNAs of clusterin and the known protective enzymes thioredoxine-1 (TRX-1), glutaredoxine-1 (GLRX-1), superoxide dismutase-1 (SOD-1). Brain levels of GSH, γ-GCS, total thiols remained constant with age, except for GSH and γ-GCS which decreases in females. Clusterin, TRX-1, GLRX-1, SOD-1 mRNA levels were maintained or increased in the hippocampus with age. Age-dependency of the markers differed between sexes, with SOD-1 and TRX-1 decreases out of hippocampus in females. Since antioxidants were reported to decrease with age in the brain of Wistar rats, maintenance of GSH levels and of protective enzymes mRNA levels in the LOU rat brain could contribute to the preservation of cognitive functions in old age. Altogether, the successful aging of LOU rats may, at least in part, involve the conservation of functional antioxidant mechanisms in the brain, supporting the oxidative stress theory of aging.

  12. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats.

    PubMed

    Molenda-Figueira, Heather A; Williams, Casey A; Griffin, Andreana L; Rutledge, Eric M; Blaustein, Jeffrey D; Tetel, Marc J

    2006-09-01

    The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions.

  13. Bladder function in female rats: effects of aging and pregnancy.

    PubMed

    Wilfehrt, H M; Carson, C C; Marson, L

    In vivo anesthetized cystometrograms and in vitro bladder tissue strip responses were examined in three groups of female rats: young virgins (3 month), older virgins (8 month), and retired breeders (8-9 month). Significant age-related in vivo changes were observed including greater resting pressures, but smaller voided volumes, void durations and void-to-void intervals in older versus young virgin rats. There were significant age-related changes in the in vitro responses. Greater peak and steady state contractions to high K+-modified Krebs (80 mM) depolarization were observed in young animals compared to older animals. Plus, young virgins exhibited greater sensitivity but smaller maximal, normalized contractions to acetylcholine (ACh) than older virgins. Diminished responses to adenosine-5'-triphosphate (ATP) were detected in young versus older virgin rats. Pregnancy-related changes were compared between retired breeders and their age-matched controls, older virgin rats. In vivo voided volumes were greater in the retired breeders than in the older virgins. Smaller in vitro steady state contractions to high K+-modified Krebs depolarization and smaller normalized contractions to maximal concentrations of ACh were observed in the retired breeders than in the older virgins. Retired breeders exhibited diminished relaxation responses to norepinephrine compared to older virgins. ATP produced greater dose-dependent responses and greater maximal contractions in the retired breeders compared to the older virgins. In conclusion, age-related changes were present even prior to the onset of senescence, and multiple pregnancies altered bladder function.

  14. Cholesterol and Perhaps Estradiol Protect Against Corticosterone-Induced Hippocampal CA3 Dendritic Retraction in Gonadectomized Female and Male Rats

    PubMed Central

    Ortiz, J. Bryce; McLaughlin, Katie J.; Hamilton, Gillian F.; Baran, Sarah E.; Campbell, Alyssa N.; Conrad, Cheryl D.

    2013-01-01

    Chronic stress or glucocorticoid exposure simplifies hippocampal CA3 apical dendritic arbors in male rats. In contrast to males, chronic stress either reduces CA3 basal branching or exerts no observable morphological effects in gonadally intact female rats. Under conditions that females display stress-induced CA3 dendritic retraction, such as following ovariectomy, chronic exposure to 17β-estradiol or cholesterol can negate these changes. Whether glucocorticoids produce CA3 dendritic retraction in ovariectomized females and whether neuroprotection from 17β-estradiol or cholesterol is sex-specific remains unknown. The current study examined the effects of chronic glucocorticoid exposure, in conjunction with 17β-estradiol or cholesterol administration, on hippocampal CA3 dendritic complexity. Adult male and female Sprague-Dawley rats were gonadectomized and implanted with 25% 17β-estradiol in cholesterol, 100% cholesterol, or blank Silastic capsules. Rats were then assigned to either a 21-day corticosterone (CORT) drink (400µg/mL CORT, 2.4% ethanol in tap water) or tap water (Tap, 2.4% ethanol in tap water) treatment. Brains were processed for Golgi staining, and hippocampal CA3 dendritic architecture was quantified. Results showed 21-day CORT administration reduced hippocampal CA3 apical dendritic branch points, CA3 apical dendritic length, body weight gain, and adrenal weights compared to male and female control counterparts. Furthermore, male and female rats implanted with Silastic capsules containing cholesterol or 25% 17β-estradiol in cholesterol were protected from CORT-induced CA3 apical dendritic branch reduction. No effects were observed in the CA3 basal dendritic arbors. The present results demonstrate that CORT produces hippocampal CA3 dendritic retraction in gonadectomized male and female rats and that cholesterol and 25% 17β-estradiol in cholesterol prevent this dendritic simplification. PMID:23618757

  15. Cholesterol and perhaps estradiol protect against corticosterone-induced hippocampal CA3 dendritic retraction in gonadectomized female and male rats.

    PubMed

    Ortiz, J B; McLaughlin, K J; Hamilton, G F; Baran, S E; Campbell, A N; Conrad, C D

    2013-08-29

    Chronic stress or glucocorticoid exposure simplifies hippocampal Cornu Ammonis region 3 (CA3) apical dendritic arbors in male rats. In contrast to males, chronic stress either reduces CA3 basal branching or exerts no observable morphological effects in gonadally intact female rats. Under conditions that females display stress-induced CA3 dendritic retraction, such as that following ovariectomy, chronic exposure to 17β-estradiol or cholesterol can negate these changes. Whether glucocorticoids produce CA3 dendritic retraction in ovariectomized females and whether neuroprotection from 17β-estradiol or cholesterol is sex-specific remains unknown. The current study examined the effects of chronic glucocorticoid exposure, in conjunction with 17β-estradiol or cholesterol administration, on hippocampal CA3 dendritic complexity. Adult male and female Sprague-Dawley rats were gonadectomized and implanted with 25% 17β-estradiol in cholesterol, 100% cholesterol, or blank Silastic capsules. Rats were then assigned to either a 21-day corticosterone (CORT) drink (400μg/ml CORT, 2.4% ethanol in tap water) or tap water (Tap, 2.4% ethanol in tap water) treatment. Brains were processed for Golgi staining, and hippocampal CA3 dendritic architecture was quantified. Results showed 21-day CORT administration reduced hippocampal CA3 apical dendritic branch points, CA3 apical dendritic length, body weight gain, and adrenal weights compared to male and female control counterparts. Furthermore, male and female rats implanted with Silastic capsules containing cholesterol or 25% 17β-estradiol in cholesterol were protected from CORT-induced CA3 apical dendritic branch reduction. No effects were observed in the CA3 basal dendritic arbors. The present results demonstrate that CORT produces hippocampal CA3 dendritic retraction in gonadectomized male and female rats and that cholesterol and 25% 17β-estradiol in cholesterol prevent this dendritic simplification.

  16. Enhanced learning deficits in female rats following lifetime pb exposure combined with prenatal stress.

    PubMed

    Cory-Slechta, Deborah A; Stern, Sander; Weston, Doug; Allen, Joshua L; Liu, Sue

    2010-10-01

    Pb (lead) exposure and stress are co-occurring risk factors (particularly in low socioeconomic communities) that also act on common biological substrates and produce common adverse outcomes, including cognitive impairments. This study sought to determine whether lifetime Pb exposure combined with prenatal stress would enhance the cognitive deficits independently associated with each of these risk factors and to explore associated mechanisms of any observed impairments. Learning was evaluated using a multiple schedule of repeated learning and performance in female rats subjected to lifetime Pb exposure (0 or 50 ppm Pb in drinking water beginning in dams 2 months prior to breeding; blood Pb levels ∼10 μg/dl), to prenatal restraint stress on gestational days 16 and 17, or to both. Blood Pb, corticosterone levels, brain monoamines, and hippocampal nerve growth factor levels were also measured. Sequence-specific learning deficits produced by Pb, particularly the number of responses to correctly learn response sequences, were further enhanced by stress, whereas performance measures were unimpaired. Statistical analyses indicated significant relationships among corticosterone levels, frontal cortex dopamine (DA), nucleus accumbens dopamine turnover, and total responses required to learn sequences. This study demonstrates that Pb and stress can act together to produce selective and highly condition-dependent deficits in learning in female rats that may be related to glucocorticoid-mediated interactions with mesocorticolimbic regions of brain. These findings also underscore the critical need to evaluate toxicants in the context of other risk factors pertinent to human diseases and disorders.

  17. Diet-induced obesity alters memory consolidation in female rats.

    PubMed

    Zanini, P; Arbo, B D; Niches, G; Czarnabay, D; Benetti, F; Ribeiro, M F; Cecconello, A L

    2017-10-15

    Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Female Reproductive Hormones Alter Sleep Architecture in Ovariectomized Rats

    PubMed Central

    Deurveilher, Samüel; Rusak, Benjamin; Semba, Kazue

    2011-01-01

    Study Objectives: Treating ovariectomized rats with physiological levels of estradiol and/or progesterone affects aspects of both baseline (24 h) sleep and recovery (18 h) sleep after 6 h of sleep deprivation. We have extended the analysis of these effects by examining several additional parameters of sleep architecture using the same data set as in our previous study (Deurveilher et al. SLEEP 2009;32(7):865-877). Design: Sleep in ovariectomized rats implanted with oil, 17 β-estradiol and/or progesterone capsules was recorded using EEG and EMG before, during, and after 6 h of sleep deprivation during the light phase of a 12/12 h light/dark cycle. Measurements and Results: During the baseline dark, but not light, phase, treatments with estradiol alone or combined with progesterone decreased the mean duration of non-rapid eye movement sleep (NREMS) episodes and the number of REMS episodes, while also increasing brief awakenings, consistent with the previously reported lower baseline NREMS and REMS amounts. Following sleep deprivation, the hormonal treatments caused a larger percentage increase from baseline in the mean durations of NREMS and REMS episodes, and a larger percentage decrease in brief awakenings, consistent with the previously reported larger increase in recovery REMS amount. There were no hormonal effects on NREMS and REMS EEG power values, other than on recovery NREMS delta power, as previously reported. Conclusions: Physiological levels of estradiol and/or progesterone in female rats modulate sleep architecture differently at baseline and after acute sleep loss, fragmenting baseline sleep while consolidating recovery sleep. These hormones also play a role in the diurnal pattern of NREMS maintenance. Citation: Deurveilher S; Rusak B; Semba K. Female reproductive hormones alter sleep architecture in ovariectomized rats. SLEEP 2011;34(4):519-530. PMID:21461331

  19. Depressive behavior induced by social isolation of predisposed female rats.

    PubMed

    Zanier-Gomes, Patrícia Helena; de Abreu Silva, Tomaz Eugênio; Zanetti, Guilherme Cia; Benati, Évelyn Raquel; Pinheiro, Nanci Mendes; Murta, Beatriz Martins Tavares; Crema, Virgínia Oliveira

    2015-11-01

    Depression is a mood disorder that is more prevalent in women and has been closely associated with chronic stress. Many models of depression have been suggested that consider different forms of stress. In fact, stress is present in the life of every human being, but only a few develop depression. Accordingly, it seems wrong to consider all stressed animals to be depressed, emphasizing the importance of predisposition for this mood disorder. Based on this finding, we evaluated a predisposition to depressive behavior of female rats on the forced swim test (FST), and the more immobile the animal was during the FST, the more predisposed to depression it was considered to be. Then, animals were subjected to the stress of social isolation for 21 days and were re-evaluated by the FST. The Predisposed/Isolated rats presented higher immobility times. Once all the rats had prior experience in the FST, we calculated an Index of Increase by Isolation, confirming the previous results. Based on this result, we considered the Predisposed/Isolated group as presenting depressive behavior ('Depressed') and the Nonpredisposed/Nonisolated group as the control group ('Nondepressed'). The animals were distributed into 4 new groups: Nondepressed/Vehicle, Nondepressed/Amitriptyline, Depressed/Vehicle, Depressed/Amitriptyline. After 21 days of treatment, only the Depressed/Vehicle group differed from the other 3 groups, demonstrating the efficacy of amitriptyline in treating the depressive behavior of the Depressed animals, validating the model. This study shows that conducting an FST prior to any manipulation can predict predisposition to depressive behavior in female rats and that the social isolation of predisposed animals for 21 days is effective in inducing depressive behavior. This behavior can be considered real depressive behavior because it takes into account predisposition, chronic mild stress, and the prevalent gender.

  20. Prior access to a sweet is more protective against cocaine self-administration in female rats than in male rats.

    PubMed

    Cason, Angie M; Grigson, Patricia S

    2013-03-15

    It is well established that female rats are more sensitive than male rats to the reinforcing effects of cocaine (Lynch, 2008 [42] for review). We hypothesized that greater preference for cocaine would support greater avoidance of a cocaine-paired taste cue in female vs. male rats. Moreover, at least in male rats, greater avoidance of the taste cue is associated with greater cocaine self-administration (Grigson and Twining, 2002 [3]). Thus, we anticipated that female rats would not only demonstrate greater avoidance of the drug-paired taste cue, but greater drug-taking as well. We tested these hypotheses by examining avoidance of a saccharin cue in male and female rats following several pairings with self-administered saline or cocaine (0.16, 0.33, or 0.66 mg/infusion). Contrary to expectations, the results showed that female rats exhibited less avoidance of the cocaine-associated saccharin cue than male rats and self-administered less, rather than more, cocaine, Thus, while female rats reportedly take more drug than male rats when the drug is presented in the absence of an alternative reward, they take less drug than male rats when the opportunity to self-administer cocaine is preceded by access to a palatable sweet. Females, then, may not simply be more sensitive to the rewarding properties of drug, but also to the reinforcing properties of natural rewards and this increase in sensitivity to sweets may serve to protect against drug-taking behavior.

  1. Prior access to a sweet is more protective against cocaine self-administration in female rats than male rats

    PubMed Central

    Cason, Angie M.; Grigson, Patricia S.

    2013-01-01

    It is well established that female rats are more sensitive than male rats to the reinforcing effects of cocaine (Lynch, 2008 for review). We hypothesized that greater preference for cocaine would support greater avoidance of a cocaine-paired taste cue in female vs. male rats. Moreover, at least in male rats, greater avoidance of the taste cue is associated with greater cocaine self-administration (Grigson & Twining, 2002). Thus, we anticipated that female rats would not only demonstrate greater avoidance of the drug-paired taste cue, but greater drug-taking as well. We tested these hypotheses by examining avoidance of a saccharin cue in male and female rats following several pairings with self-administered saline or cocaine (0.16, 0.33, or 0.66 mg/infusion). Contrary to expectations, the results showed that female rats exhibited less avoidance of the cocaine-associated saccharin cue than male rats and self-administered less, rather than more, cocaine, Thus, while female rats reportedly take more drug than male rats when the drug is presented in the absence of an alternative reward, they take less drug than male rats when the opportunity to self-administer cocaine is preceded by access to a palatable sweet. Females, then, may not simply be more sensitive to the rewarding properties of drug, but also to the reinforcing properties of natural rewards and this increase in sensitivity to sweets may serve to protect against drug-taking behavior. PMID:23474135

  2. Cholinotoxic effects of aluminum in rat brain.

    PubMed

    Gulya, K; Rakonczay, Z; Kása, P

    1990-03-01

    The in vivo and in vitro effects of Al on the cholinergic system of rat brain were studied. The amount of Al accumulated after the chronic, intraperitoneal administration of aluminium gluconate (Al-G) or AlCl3, both at a dose of 1 mg/ml/100 g of body weight, increased in the frontal and parietal cortices, the hippocampus, and the striatum. Significantly decreased choline acetyltransferase activities after chronic Al treatment were measured in the parietal cortex, the hippocampus, and the striatum, but not in the frontal cortex. The acetylcholinesterase activity was not changed significantly in any brain area investigated. Both Al-G and AlCl3 administrations resulted in a general decrease (to 40-70% of the control values) in the specific l-[3H]nicotine binding, involving all brain areas studied. The specific (-)-[3H]quinuclidinyl benzilate binding was reduced (to 40-60% of the control values) only after 25 days of Al treatment. Al-G and AlCl3 were equivalent in eliciting these reductions in vitro studies revealed different alterations of the cholinergic system in response to Al treatment. No changes were observed either in choline acetyltransferase activity or in cholinergic receptor bindings. Both Al-G and Al2(SO4)3 treatments, however, exhibited a biphasic effect on the acetylcholinesterase activity. At low Al concentrations (10(-8)-10(-6) M), the activity was slightly increased, whereas at higher concentrations (10(-6)-10(-4) M), it was inhibited by a maximum of 25% as compared to the controls. Thus, these cholinotoxic effects are probably due not to a direct interaction between the metal and the cholinergic marker proteins, but rather to a manifestation and consequence of its neurodegenerative effects.

  3. Brain adaptation to acute hyponatremia in young rats.

    PubMed

    Silver, S M; Schroeder, B M; Bernstein, P; Sterns, R H

    1999-06-01

    Brain swelling after acute hyponatremia in prepubescent rats, in contrast to adults, has recently been associated with an increase in brain sodium and a high mortality that could be prevented by preadministration of testosterone. To reexamine the effect of acute hyponatremia in young brain, we measured brain water and solute content in prepubescent rats after induction of hyponatremia over 4 h with water and arginine vasopressin. An 18% decrease in plasma sodium was associated with a 13% increase in brain water and a decrease in brain sodium and glutamate contents. No animals died. To assess the effect of sex hormones on brain adaptation, prepubescent rats were pretreated with estrogen or testosterone before acute hyponatremia. Brain sodium and potassium contents were significantly reduced in comparison to normonatremia in testosterone-pretreated but not estrogen-pretreated animals. However, there was no difference between estrogen-pretreated and testosterone-pretreated groups in mortality or in brain contents of water, electrolytes, or major organic osmolytes. In conclusion, we found that brain adaptation to acute hyponatremia in prepubescent rats is similar to that observed in adults.

  4. Brain Injury After Intracerebral Hemorrhage in Spontaneously Hypertensive Rats

    PubMed Central

    Wu, Gang; Bao, Xuhui; Xi, Guohua; Keep, Richard; Thompson, B. Gregory; Hua, Ya

    2011-01-01

    Object Hypertension is the main cause of spontaneous intracerebral hemorrhages (ICH), but the effects of hypertension on ICH-induced brain injury have not been well studied. In this study, we examined ICH-induced brain injury in spontaneously hypertensive rats (SHR). Methods This two-part study was performed on 12 weeks old male SHR and Wistar Kyoto (WKY) rats. First, rats received an intracaudate injection of 0.3 units collagenase and hematoma sizes were determined at 24 hours. Second, rats were injected with 100-μL autologous whole blood into the right basal ganglia. Brain edema, neuronal death, ferritin expression, microglia activation, and neurological deficits were examined. Results Hematoma sizes were the same in SHR and WKY rats 24 hours after collagenase injection. SHR had greater neuronal death and neurological deficits after blood injection. ICH also resulted in higher brain ferritin levels and stronger activation of microglia in SHR. However, perihematomal brain edema was same in the SHR and WKY rats. Conclusion Moderate chronic hypertension resulted in more severe ICH-induced neuronal death and neurological deficits, but did not exaggerate hematoma enlargement and perihematomal brain edema in the rat ICH models. PMID:21294617

  5. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    PubMed Central

    2011-01-01

    Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7) rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury. PMID:21933448

  6. Intracerebroventricular Oxytocin Self-Administration in Female Rats.

    PubMed

    Donhoffner, M E; Goings, S P; Atabaki, K; Wood, R I

    2016-10-01

    Oxytocin (OT) is a neuromodulator that facilitates pair-bonding, maternal care and social approach. OT is considered to promote these social behaviours by enhancing the salience and reinforcing effects of relevant social stimuli. There is the additional possibility that OT per se may be rewarding. To test this, we investigated whether female rats would voluntarily self-administer OT. Female Long-Evans rats were ovariectomised and then received an oestrogen implant and an i.c.v. cannula. Rats were tested in an operant chamber with active and inactive levers. They were initially tested for 4 h/day on a fixed-ratio 5 schedule for self-administration of artificial cerebral spinal fluid (aCSF) for 5 days, followed by aCSF, or OT, at 1 or 10 ng/μl for another 5 days. Rats self-administering aCSF made 36.2 ± 6.2 active lever responses/4 h versus 14.9 ± 3.4 inactive responses. Responses for 1 ng/μl OT were similar. However, rats self-administering 10 ng/μl OT made significantly more active lever responses (67.8 ± 12.0 per 4 h), and received 121.4 ± 21.0 ng OT/4 h. To determine whether reduced anxiety contributes to the reinforcing effects of OT, rats received an infusion of aCSF or OT at 0.3 or 3.0 μg immediately before testing on the elevated plus maze. There was no effect of OT on anxiety as reflected by percentage time spent on the open arms, as well as no effect of OT on locomotion as measured either by the number of closed arm entries or the number of total arm entries. These results suggest that OT may be rewarding, and that this is not a result of the anxiolytic effects of OT.

  7. N-acetylcysteine attenuates nicotine-induced kindling in female periadolescent rats.

    PubMed

    Okamura, Adriana Mary Nunes Costa; Gomes, Patrícia Xavier L; de Oliveira, Gersilene V; de Araújo, Fernanda Yvelize R; Tomaz, Viviane S; Chaves Filho, Adriano José Maia; de Sousa, Francisca Cléa F; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macêdo, Danielle

    2016-06-03

    Kindling is a form of behavioral sensitization that is related to the progression of several neuropsychiatric disorders such as bipolar disorder. We recently demonstrated that female periadolescent rats are more vulnerable to nicotine (NIC)-induced kindling than their male counterparts. Furthermore, we evidenced that decreases in brain antioxidative defenses may contribute to this gender difference. Here we aimed to determine the preventive effects of the antioxidant N-acetyl cysteine (NAC) against NIC-kindling in female periadolescent rats. To do this female Wistar rats at postnatal day 30 received repeated injections of NIC 2mg/kg, i.p. every weekday for up to 19 days. NAC90, 180 or 270 mg/kg, i.p. was administered 30 min before NIC. The levels of glutathione (GSH), superoxide dismutase (SOD) activity, lipid peroxidation (LP) and nitrite were determined in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The development of kindling occurred at a median time of 16.5 days with 87.5% of NIC animals presenting stage 5 seizures in the last day of drug administration. NAC270 prevented the occurrence of kindling. NIC-kindled animals presented decreased levels of GSH and increased LP in the PFC, HC and ST, while SOD activity was decreased in the ST. NAC180 or 270 prevented the alterations in GSH induced by NIC, but only NAC270 prevented the alterations in LP. Nitrite levels increased in the ST of NAC270 pretreated NIC-kindled animals. Taken together we demonstrated that NAC presents anti-kindling effects in female animals partially through the restoration of oxidative alterations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Aluminium toxicity in the rat liver and brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ishikawa, A.; Kobayashi, K.; Ogawa, Y.; Ishii, K.

    1993-04-01

    To investigate the etiology of Alzheimer's disease, we examined the brain and liver tissue uptake of aluminium 5-75 days after aluminium injection into healthy rats. Ten days after the last injection, Al was detected in the brain and the brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Al was also demonstrated in the liver and the liver cell nuclei by PIXE analysis and electron energy loss spectrometry (EELS). The morphological changes of the rat brain examined 75 days after the injection were similar to those which have been reportedly observed in the brain of patients with Alzheimer's disease. These results support the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium in the brain, as well as in the nuclei of brain cells.

  9. 26Al uptake and accumulation in the rat brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Imamura, M.; Matsuzaki, H.; Hayashi, K.; Masuda, A.; Kumazawa, H.; Ohashi, H.; Kobayashi, K.

    1997-03-01

    To investigate the cause of Alzheimer's disease (senile dementia), 26Al incorporation in the rat brain was studied by accelerator mass spectrometry (AMS). When 26Al was injected into healthy rats, a considerable amount of 26Al entered the brain (cerebrum) through the blood-brain barrier 5 days after a single injection, and the brain 26Al level remained almost constant from 5 to 270 days. On the other hand, the level of 26Al in the blood decreased remarkably 75 days after injection. Approximately 89% of the 26Al taken in by the brain cell nuclei bound to chromatin. This study supports the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium (Al) in the brain, and brain cell nuclei.

  10. Different effects of vitamin D hormone treatment on depression-like behavior in the adult ovariectomized female rats.

    PubMed

    Fedotova, Julia; Dudnichenko, Tatyana; Kruzliak, Peter; Puchavskaya, Zhanna

    2016-12-01

    Vitamine D (VD) has important functions in the human brain and may play a role in affective-related disorders. VD receptors are expressed in multiple brain regions associated with depressive disorders. The aim of the preclinical study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0mg/kg/day,s.c., once daily, for 14days) on the depression-like behavior and corticosterone levels in the blood samples following ovariectomy in female rats. Cholecalciferol was administered to the ovariectomized (OVX) rats and OVX rats treated with 17β-estradiol (17β-E2, 0.5μg/rat,s.c., once daily, for 14days). Depression-like behavior and spontaneous locomotor activity were assessed in the forced swimming test (FST) and the open field test (OFT), respectively. The corticosterone levels in the blood serum before and after FST were measured in all experimental groups. Treatment with cholecalciferol in high dose (5.0mg/kg/day,s.c.) significantly decreased the immobility time of OVX rats in the FST. Co-administration of cholecalciferol in high dose with 17β-E2 exerted a markedly synergistic antidepressant-like effect in the OVX rats on the same model of depression-like behavior testing. Cholecalciferol in high dose (5.0mg/kg/day,s.c.) administered alone or together with 17β-E2 significantly enhanced frequency of grooming for the OVX rats in the OFT. Moreover, cholecalciferol in high dose administered alone or together with 17β-E2 significantly decreased the elevated corticosterone levels in the blood serum of OVX rats following the FST. These results indicate that Cholecalciferol in high dose has a marked antidepressant-like effect in the adult female rats with low levels of estrogen.

  11. Expression of retinoic acid receptors and retinoid X receptors in normal and vitamin A deficient adult rat brain.

    PubMed

    Arfaoui, Asma; Lobo, María V T; Boulbaroud, Samira; Ouichou, Ali; Mesfioui, Abdelhalim; Arenas, María I

    2013-03-01

    The importance of retinoic acid and retinoid X receptors (RARs and RXRs) in the metabolism and functioning of the nervous tissue is well documented, but few data are available about the differences on their distribution in males and females, as well as about the possible changes in a vitamin A deficient state (VAD). Therefore, the aim of this study has been to use immunohistochemistry to determine the cellular localization of RARs (α, β, γ) and RXR (α, β, γ) in brain areas in the normal and vitamin A deficient rat, in both males and females. RARα and β isotypes were detected in practically all the male brain areas whereas immunostaining was weak or absent in the female brain except RARα. RXRγ was absent in the female brain, while it was observed in some regions in the male. RXRβ and γ were the most abundant receptors in both sexes, but RXRα were hardly detected in female brain, but were detected more frequently in male. With a vitamin A-free diet, RARs expression was increased in males, but not in females. In the male brain of VAD rats, RXRα expression was increased in some zones and diminished in others. RXRβ and γ expression was decreased in the male brain, but increased or was not modified in those areas of the female brain in which it was observed. These findings indicate that the brain management of retinoic acid differs between males and females, also leading to differences in their response to VAD diet in terms of receptor expression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Transcranial Optical Imaging of Cold-Injured Brain in Rat

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-06-01

    We performed a transcranial optical imaging of a cold-injured brain in a rat. The rat skull was illuminated with a 633 nm HeNe laser, and the distribution of reflected light intensity was imaged with a cooled charge-coupled device (CCD) camera. An increase in reflected light intensity was observed in the injured area. The analysis of brain tissues perfused with India ink suggested that a reduced blood flow rate in the area of injury enhances reflection.

  13. Aging and sex influence the permeability of the blood-brain barrier in the rat

    SciTech Connect

    Saija, A.; Princi, P.; D'Amico, N.; De Pasquale, R.; Costa, G.

    1990-01-01

    The aim of the present study was to investigate the existence of aging- and sex-related alterations in the permeability of the blood-brain barrier (BBB) in the rat, by calculating a unidirectional blood-to-brain transfer constant (Ki) for the circulating tracer ({sup 14}C)-{alpha}-aminoisobutyric acid. The authors observed that: (a) the permeability of the BBB significantly increased within the frontal and temporo-parietal cortex, hypothalamus and cerebellum in 28-30 week old rats, in comparison with younger animals; (b) in several brain areas of female intact rats higher Ki values (even though not significantly different) were calculated at oestrus than at proestrus; (c) in 1-week ovariectomized rats there was a marked increase of Ki values at the level of the frontal, temporo-parietal and occipital cortex, cerebellum and brain-stem. One can speculate that aging and sex-related alterations in thee permeability of the BBB reflect respectively changes in brain neurochemical system activity and in plasma steroid hormone levels.

  14. Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague-Dawley rats.

    PubMed

    Peckham, Elizabeth M; Traynor, John R

    2006-03-01

    Male rats are more sensitive to the antinociceptive effects of morphine than female rats. This difference is seen across several rat strains using a variety of nociceptive stimuli. However, the literature in regard to sex differences in antinociceptive responses to mu-opioids other than morphine is less consistent. The present study was designed to examine whether there is a structure-activity rationale that determines which mu-opioids will show a differential antinociceptive response between male and female rats. A series of morphinans closely related in structure to morphine, namely, codeine, heroin, hydrocodone, hydromorphone, oxymorphone, and oxycodone, were examined for their antinociceptive activity in male and female Sprague-Dawley rats and compared with the structurally unrelated mu-opioid agonists methadone and fentanyl. Antinociception was measured by the warm-water tail-withdrawal assay. The results show that morphine is more potent in males compared with females > hydromorphone = hydrocodone = oxymorphone, but there was no observable sex difference in the antinociceptive potency of codeine, heroin, oxycodone, methadone, or fentanyl. The potency to stimulate guanosine 5'-O-(3-[35 S]thio)triphosphate ([35S]GTPgammaS) binding and binding affinity of the various morphinans was compared in rat glioma C6 cells expressing the rat mu-opioid receptor; relative efficacy was also compared by stimulation of [35S]GTPgammaS binding in slices of rat brain thalamus. The presence of a sex difference in antinociceptive responsiveness was not related to drug potency, efficacy, or affinity. Consequently, it is likely that differential metabolism of the opioid, possibly by glucuronidation, determines the presence or absence of a sex difference.

  15. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    SciTech Connect

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-03-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of (/sup 3/H)-antagonist as well as of the labeled natural neurotransmitter, (/sup 3/H)-acetylcholine (( /sup 3/H)-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of (/sup 3/H)-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity (/sup 3/H)-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with (/sup 3/H)-antagonist represent a loss of low-affinity agonist binding sites. In contrast, (/sup 3/H)-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms.

  16. Hypobaric Hypoxia Induces Depression-like Behavior in Female Sprague-Dawley Rats, but not in Males

    PubMed Central

    Bogdanova, Olena V.; Olson, Paul R.; Sung, Young-Hoon; D'Anci, Kristen E.; Renshaw, Perry F.

    2015-01-01

    Abstract Kanekar, Shami, Olena V. Bogdanova, Paul R. Olson, Young-Hoon Sung, Kristen E. D'Anci, and Perry F. Renshaw. Hypobaric hypoxia induces depression-like behavior in female Sprague-Dawley rats, but not males. High Alt Med Biol 16:52–60, 2015—Rates of depression and suicide are higher in people living at altitude, and in those with chronic hypoxic disorders like asthma, chronic obstructive pulmonary disorder (COPD), and smoking. Living at altitude exposes people to hypobaric hypoxia, which can lower rat brain serotonin levels, and impair brain bioenergetics in both humans and rats. We therefore examined the effect of hypobaric hypoxia on depression-like behavior in rats. After a week of housing at simulated altitudes of 20,000 ft, 10,000 ft, or sea level, or at local conditions of 4500 ft (Salt Lake City, UT), Sprague Dawley rats were tested for depression-like behavior in the forced swim test (FST). Time spent swimming, climbing, or immobile, and latency to immobility were measured. Female rats housed at altitude display more depression-like behavior in the FST, with significantly more immobility, less swimming, and lower latency to immobility than those at sea level. In contrast, males in all four altitude groups were similar in their FST behavior. Locomotor behavior in the open field test did not change with altitude, thus validating immobility in the FST as depression-like behavior. Hypobaric hypoxia exposure therefore induces depression-like behavior in female rats, but not in males. PMID:25803141

  17. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    PubMed

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex

  18. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain

    PubMed Central

    Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.

    2010-01-01

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837

  19. Neuronal activation by stimuli that predict sexual reward in female rats.

    PubMed

    Coria-Avila, G A; Pfaus, J G

    2007-09-07

    Conditioned stimuli (CSs) associated with paced copulation induce a conditioned partner preference for males bearing the CS. Here we examined the activation of Fos immunoreactivity (Fos-IR) following exposure to a CS previously paired with either paced or nonpaced copulation. Ovariectomized, hormone-primed rats received 10 sequential conditioning trials at 4-day intervals. In experiment 1, females in the odor-paired group learned to associate an almond odor on a male with paced copulation and an unscented male with nonpaced copulation. In the odor-unpaired group, females received the opposite association. In experiment 2, females associated two different strains of male, Long-Evans or Wistar, with paced or nonpaced copulation, respectively. A preference test indicated that females in both experiments developed a conditioned preference for the pacing-related males, as indicated by significantly more solicitations toward the male and a preference to copulate with the pacing-related male. Subsequently, females were exposed to the CS (odor or strain) alone for 1 h prior to kill and preparation of their brains for immunocytochemistry. In both experiments, the CS associated with paced copulation produced significantly more Fos-IR in the piriform cortex, medial preoptic area, and ventral tegmental area, relative to the same odor or strain cues associated with nonpaced copulation. These findings provide evidence that the state associated with paced copulation can be conditioned to environmental stimuli such as neutral odors or strain cues, which earn an incentive value via classical conditioning. The significance of the brain areas activated is discussed with regard to their role in sexual and other motivated behaviors.

  20. Pancreatic functions in high salt fed female rats

    PubMed Central

    Lasheen, Noha N

    2015-01-01

    Salt consumption has been increased worldwide and the association of high salt diets with enhanced inflammation and target organ damage was reported. Little data were available about the effect of high salt diet on exocrine function of pancreas, while the relation between high salt intake and insulin sensitivity was controversial. This study was designed to investigate the effect of high salt diet on exocrine and endocrine pancreatic functions, and to elucidate the possible underlying mechanism(s). Twenty adult female Wistar rats were randomly divided into two groups; control group; fed standard rodent diet containing 0.3% NaCl, and high salt fed group; fed 8% NaCl for 8 weeks. On the day of sacrifice, rats were anesthized by i.p. pentobarbitone (40 μg/kg B.W.). Nasoanal length was measured and fasting blood glucose was determined from rat tail. Blood samples were obtained from abdominal aorta for determination of plasma sodium, potassium, amylase, lipase, aldosterone, insulin, transforming growth factor-β (TGF-β1), and interleukin 6 (IL6). Pancreata of both groups were histologically studied. Compared to control group, 8-week high salt fed group showed: significant elevation in body weight, body mass index, Lee index, plasma sodium, TGF-β1 and IL6, however, plasma aldosterone, amylase, lipase, and insulin levels were significantly decreased. A nonsignificant increase in plasma potassium and nonsignificant changes in fasting blood glucose and HOMA-IR were detected between groups. Pancreatic fibrosis was observed in test group. High salt diet for 8 weeks caused pancreatic fibrosis evidenced by decline of both exocrine and endocrine functions of pancreas in Wistar rats. PMID:26216433

  1. Neuroplasticity Changes of Rat Brain by Musical Stimuli during Fetal Period

    PubMed Central

    Sheikhi, Siamak; Saboory, Ehsan

    2015-01-01

    Objective Fetal development of the central nervous system is an important and sensitive stage which is affected by many external and internal stimuli. This study aimed to investigate effect of musical stimuli on fetal rat brain. Materials and Methods In this experimental study, twelve female Wistar rats were selected and evenly assigned to control and musical groups. The females were mated with a male rat of the same genotype. Musical group was exposed to classic music with 60 dB power for 90 minutes twice per day from 2nd to 20th day of gestation. The control rats were handled similar to the musical group, but were not exposed to music. Before parturition, all the dams were anesthetized, and their blood samples were obtained and used for corticosterone (COS) measurement. They were transcardially perfused by electron microscope (EM) fixative agent. The fetal brains were extracted intact and used for slice preparation. Horizontal slices were made for electron microscope preparation, and images were taken and analyzed in terms of cell density and morphological changes. Results EM observation indicated significant morphological difference in cellular and intercellular spaces between the two groups. Music-treated fetuses had significantly higher cell density in parietal cortex and music-treated dams had lower COS level. Conclusion It was concluded that prenatal music would have a great impact on neuroplasticity of fetal rat brain, at least indirectly. Although the rat fetuses cannot hear until birth, music-induced reduction in COS blood level of dams might be the reason for neuroplasticity of fetal brain. PMID:25685735

  2. Repeated interactions with females elevate metabolic capacity in the limbic system of male rats.

    PubMed

    Sakata, Jon T; Gonzalez-Lima, F; Gupta, Ajay; Crews, David

    2002-05-17

    The effect of heterosexual social experience on brain metabolic capacity was investigated by measuring the activity of cytochrome oxidase, a rate-limiting enzyme in oxidative metabolism. Male Sprague-Dawley rats were kept naïve or allowed to copulate with receptive females three (3 F males) or 16 times (16 F males). Throughout the vomeronasal system and other limbic areas, 16 F males had elevated metabolic capacity relative to naïve and 3 F males, whereas no significant differences in brain metabolism were found between 3 F and naïve males. Behavioral differences were also found between 3 F and 16 F males. In a second experiment, we assessed differences in brain metabolism between sexually active and inactive males given only one opportunity to copulate and found no significant difference in neural metabolism between these males. This suggests that the differences found in the first experiment were primarily driven by differences in repeated experience rather than by sexual performance between 16 F and 3 F males. We speculate that these changes in brain metabolic capacity could be related to immediate early gene expression during copulation and could underlie the long-term behavioral changes accompanying heterosexual social experience.

  3. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  4. Peripheral growth hormone induces cell proliferation in the intact adult rat brain.

    PubMed

    David Aberg, N; Lind, Johan; Isgaard, Jörgen; Georg Kuhn, H

    2010-06-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) increase cell genesis in several regions of the brains of GH-IGF-I-deficient hypophysectomized rats. However, it is not known to what degree GH treatment stimulates adult cell genesis in pituitary-intact rodents. We investigated the effect of peripheral administration of bovine growth hormone (bGH) on cellular proliferation in various regions of the brains of normal adult female rats. To monitor cell division, bromodeoxyuridine (BrdU) was administered daily for 5 days. We studied the two areas of ongoing neurogenesis, the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, as well as the corpus callosum, striatum, and the parietal and piriform cortices. After bGH treatment, the numbers of BrdU-positive cells increased 2.0- to 2.5-fold in all the brain regions, with the exception of the SVZ, in which there was no increase in the numbers of BrdU-positive cells. The present study shows for the first time that peripheral bGH administration increases the generation of new brain cells in normal adult female rats. Thus, bGH may stimulate cellular proliferation not only under GH-deficiency, but also under physiologic conditions. These findings have important implications for GH treatment strategies for patients who have normal or near-normal circulating levels of GH or IGF-I. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels.

    PubMed

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J; Kier, Ann B; Schroeder, Friedhelm

    2016-09-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).

  6. Actin purification from a gel of rat brain extracts.

    PubMed

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  7. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats

    SciTech Connect

    Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V.

    2011-09-01

    Carvacrol is the major constituent of essential oils from aromatic plants. It showed antimicrobial, anticancer and antioxidant properties. Although it was approved for food use and included in the chemical flavorings list, no indication on its safety has been estimated. Since the use of plant extracts is relatively high among women, aim of this study was to evaluate carvacrol effects on female physiology and endocrine profiles by using female rats in proestrus and diestrus phases. Serotonin and metabolite tissue content in prefrontal cortex and nucleus accumbens, after carvacrol administration (0.15 and 0.45 g/kg p.o.), was measured. Drug effects in behavioral tests for alterations in motor activity, depression, anxiety-related behaviors and endocrine alterations were also investigated. While in proestrus carvacrol reduced serotonin and metabolite levels in both brain areas, no effects were observed in diestrus phase. Only in proestrus phase, carvacrol induced a depressive-like behavior in forced swimming test, without accompanying changes in ambulation. The improvement of performance in FST after subchronic treatment with fluoxetine (20 mg/kg) suggested a specific involvement of serotonergic system. No differences were found across the groups with regard to self-grooming behavior. Moreover, in proestrus phase, carvacrol reduced only estradiol levels without binding hypothalamic estradiol receptors. Our study showed an estrous-stage specific effect of carvacrol on depressive behaviors and endocrine parameters, involving serotonergic system. Given the wide carvacrol use not only as feed additive, but also as cosmetic essence and herbal remedy, our results suggest that an accurate investigation on the effects of its chronic exposure is warranted. - Highlights: > Carvacrol induced a depressive-like phenotype in rats, depending on ovarian cyclicity. > Carvacrol selectively reduced serotonin content in female rats in proestrus phase. > Carvacrol reduced serotonin levels

  8. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.

    PubMed

    Zuena, Anna Rita; Mairesse, Jerome; Casolini, Paola; Cinque, Carlo; Alemà, Giovanni Sebastiano; Morley-Fletcher, Sara; Chiodi, Valentina; Spagnoli, Luigi Giusto; Gradini, Roberto; Catalani, Assia; Nicoletti, Ferdinando; Maccari, Stefania

    2008-05-14

    Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats") showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.

  9. Increased Number of Neurons in the Cervical Spinal Cord of Aged Female Rats

    PubMed Central

    Portiansky, Enrique L.; Nishida, Fabian; Barbeito, Claudio G.; Gimeno, Eduardo J.; Goya, Rodolfo G.

    2011-01-01

    In the brain, specific signaling pathways localized in highly organized regions called niches allow the persistence of a pool of stem and progenitor cells that generate new neurons in adulthood. Much less is known about the spinal cord where a sustained adult neurogenesis is not observed. Moreover, there is scarce information concerning cell proliferation in the adult mammalian spinal cord and virtually none in aging animals or humans. We performed a comparative morphometric and immunofluorescence study of the entire cervical region (C1-C8) in young (5 mo.) and aged (30 mo.) female rats. Serum prolactin (PRL), a neurogenic hormone, was also measured. Gross anatomy showed a significant age-related increase in size of all of the cervical segments. Morphometric analysis of cresyl violet stained segments also showed a significant increase in the area occupied by the gray matter of some cervical segments of aged rats. The most interesting finding was that both the total area occupied by neurons and the number of neurons increased significantly with age, the latter increase ranging from 16% (C6) to 34% (C2). Taking the total number of cervical neurons the age-related increase ranged from 19% (C6) to 51% (C3), C3 being the segment that grew most in length in the aged animals. Some bromodeoxyuridine positive-neuron specific enolase negative (BrdU+-NSE−) cells were observed and, occasionally, double positive (BrdU+-NSE+) cells were detected in some cervical segments of both young and aged rats groups. As expected, serum PRL increased markedly with age. We propose that in the cervical spinal cord of female rats, both maturation of pre-existing neuroblasts and/or possible neurogenesis occur during the entire life span, in a process in which PRL may play a role. PMID:21799890

  10. A simple method to induce focal brain hypothermia in rats.

    PubMed

    Clark, Darren L; Colbourne, Frederick

    2007-01-01

    Hypothermia reduces cell death and promotes recovery in models of cerebral ischemia, intracerebral hemorrhage and trauma. Clinical studies report significant benefit for treating cardiac arrest and studies are investigating hypothermia for stroke and related conditions. Both local (head) and generalized hypothermia have been used. However, selective brain cooling has fewer side effects than systemic cooling. In this study, we developed a method to induce local (hemispheric) brain hypothermia in rats. The method involves using a small metal coil implanted between the Temporalis muscle and adjacent skull. This coil is then cooled by flushing it with cold water. In our first experiment, we tested whether this method induces focal brain hypothermia in anesthetized rats. Brain temperature was assessed in the ipsilateral cortex and striatum, and contralateral striatum, while body temperature was kept normothermic. Focal, ipsilateral cooling was successfully produced, while the other locations remained normothermic. In the second experiment, we implanted the coil, and brain and body temperature telemetry probes. The coil was connected via overhead swivel to a cold-water source. Brain hypothermia was produced for 24 h, while body temperature remained normothermic. A third experiment measured brain and body temperature along with heart rate and blood pressure. Brain cooling was produced for 24 h without significant alterations in pressure, heart rate or body temperature. In summary, our simple method allows for focal brain hypothermia to be safely induced in anesthetized or conscious rats, and is, therefore, ideally suited to stroke and trauma studies.

  11. Effects of photoradiation therapy on normal rat brain

    SciTech Connect

    Cheng, M.K.; McKean, J.; Boisvert, D.; Tulip, J.; Mielke, B.W.

    1984-12-01

    Laser photoradiation of the brain via an optical fiber positioned 5 mm above a burr hole was performed after the injection of hematoporphyrin derivative (HpD) in 33 normal rats and 6 rats with an intracerebral glioma. Normal rats received HpD, 5 or 10 mg/kg of body weight, followed by laser exposure at various doses or were exposed to a fixed laser dose after the administration of HpD, 2.5 to 20 mg/kg. One control group received neither HpD nor laser energy, and another was exposed to laser energy only. The 6 rats bearing an intracranial 9L glioma were treated with HpD, 5 mg/kg, followed by laser exposure at various high doses. The temperature in the cortex or tumor was measured with a probe during laser exposure. The rats were killed 72 hours after photoradiation, and the extent of necrosis of cerebral tissue was measured microscopically. In the normal rats, the extent of brain damage correlated with increases in the dose of both the laser and the HpD. In all 6 glioma-bearing rats, the high laser doses produced some focal necrosis in the tumors but also damaged adjacent normal brain tissue. The authors conclude that damage to normal brain tissue may be a significant complication of high dose photoradiation therapy for intracranial tumors.

  12. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    PubMed

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-07

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species. © 2015 The Authors.

  13. Estradiol modulates effort-based decision making in female rats.

    PubMed

    Uban, Kristina A; Rummel, Julia; Floresco, Stan B; Galea, Liisa A M

    2012-01-01

    Disorders of the dopamine system, such as schizophrenia or stimulant addiction, are associated with impairments in different forms of cost/benefit decision making. The neural circuitry (ie amygdala, prefrontal cortex, nucleus accumbens) underlying these functions receives dopamine input, which is thought to have a central role in mediating cost/benefit decisions. Estradiol modulates dopamine activity, and estrogen receptors (ERs) are found within this neurocircuitry, suggesting that decision making may be influenced by estradiol. The present study examined the contribution of estradiol and selective ERα and β agonists on cost/benefit decision making in adult female Long-Evans rats. An effort-discounting task was utilized, where rats could either emit a single response on a low-reward lever to receive two pellets, or make 2, 5, 10, or 20 responses on a high-reward lever to obtain four pellets. Ovariectomy increased the choice on the high-reward lever, whereas replacement with high (10 μg), but not low (0.3 μg), levels of estradiol benzoate reduced the choice on the high-reward lever. Interestingly, both an ERα agonist (propyl-pyrazole triol (PPT)) and an ERβ agonist (diarylpropionitrile (DPN)) increased choice on the high-reward lever when administered independently, but when these two agonists were combined, a decrease in choice for the high-reward lever was observed. The effects of estradiol, PPT, and DPN were more pronounced 24 h post-administration, suggesting that these effects may be genomic in nature. Together, these results demonstrate that estradiol modulates cost/benefit decision making in females, whereby concomitant activation of ERα and β receptors shifts the decision criteria and reduces preference for larger, yet more costly rewards.

  14. Induction of oxidative stress in rat brain by acrylonitrile (ACN).

    PubMed

    Jiang, J; Xu, Y; Klaunig, J E

    1998-12-01

    Chronic treatment with acrylonitrile (ACN) has been shown to produce a dose-related increase in glial cell tumors (astrocytomas) in rats. The mechanism(s) for ACN-induced carcinogenicity remains unclear. While ACN has been reported to induce DNA damage in a number of short-term systems, evidence for a genotoxic mechanism of tumor induction is the brain is not strong. Other toxic mechanisms appear to participate in the induction of tumor or induce the astrocytomas solely. In particular, nongenotoxic mechanisms of carcinogen induction have been implicated in this ACN-induced carcinogenic effect in the rat brain. One major pathway of ACN metabolism is through glutathione (GSH) conjugation. Extensive utilization and depletion of GSH, an important intracellular antioxidant, by ACN may lead to cellular oxidative stress. The present study examined the ability of ACN to induce oxidative stress in male Sprague-Dawley rats. Rats were administered ACN at concentrations of 0, 5, 10, 100, or 200 ppm in the drinking water and sampled after 14, 28, or 90 days of continuous treatment. Oxidative DNA damage indicated by the presence of 8-hydroxy-2'-deoxyguanosine (OH8dG) and lipid peroxidation indicated by the presence of malondialdehyde (MDA), a lipid peroxidation product, in rat brains and livers were examined. The levels of reactive oxygen species (ROS) were also determined in different rat tissues. Both the levels of nonenzymatic antioxidants (GSH, vitamin E) and the activities of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase) in rat brains and livers were measured. Increased levels of OH8dG, MDA, and ROS were found in the brains of ACN-treated rats. Decreased levels of GSH and activities of catalase and SOD were also observed in the brains of ACN-treated rats compared to the control group. Interestingly, there were no changes of these indicators of oxidative stress in the livers of ACN-treated rats. Rat liver is not a target for ACN

  15. Brain size affects female but not male survival under predation threat.

    PubMed

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas

    2015-07-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. © 2015 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  17. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats.

    PubMed

    Patterson, Kelsey C; Hawkins, Virginia E; Arps, Kara M; Mulkey, Daniel K; Olsen, Michelle L

    2016-08-01

    Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2(ZFN/y)) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2(ZFN/+)) displayed a more protracted disease course. Brain weights of Mecp2(ZFN/y) and Mecp2(ZFN/+ )rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2(ZFN/y) rats, whereas Mecp2(ZFN/+ )rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research.

  18. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats

    PubMed Central

    Patterson, Kelsey C.; Hawkins, Virginia E.; Arps, Kara M.; Mulkey, Daniel K.; Olsen, Michelle L.

    2016-01-01

    Since the identification of MECP2 as the causative gene in the majority of Rett Syndrome (RTT) cases, transgenic mouse models have played a critical role in our understanding of this disease. The use of additional mammalian RTT models offers the promise of further elucidating critical early mechanisms of disease as well as providing new avenues for translational studies. We have identified significant abnormalities in growth as well as motor and behavioural function in a novel zinc-finger nuclease model of RTT utilizing both male and female rats throughout development. Male rats lacking MeCP2 (Mecp2ZFN/y) were noticeably symptomatic as early as postnatal day 21, with most dying by postnatal day 55, while females lacking one copy of Mecp2 (Mecp2ZFN/+) displayed a more protracted disease course. Brain weights of Mecp2ZFN/y and Mecp2ZFN/+ rats were significantly reduced by postnatal day 14 and 21, respectively. Early motor and breathing abnormalities were apparent in Mecp2ZFN/y rats, whereas Mecp2ZFN/+ rats displayed functional irregularities later in development. The large size of this species will provide profound advantages in the identification of early disease mechanisms and the development of appropriately timed therapeutics. The current study establishes a foundational basis for the continued utilization of this rat model in future RTT research. PMID:27329765

  19. Early handling effect on female rat spatial and non-spatial learning and memory.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cutaneously applied 4-hydroxytamoxifen is not carcinogenic in female rats.

    PubMed

    Sauvez, F; Drouin, D S; Attia, M; Bertheux, H; Forster, R

    1999-05-01

    Tamoxifen is widely used to treat oestrogen-dependent carcinoma of the breast. Previous long-term studies have shown that oral administration of tamoxifen induces hepatoproliferative lesions and hepatocellular tumours in rats. 4-hydroxytamoxifen is an active metabolite of tamoxifen undergoing clinical evaluation for the treatment of various non-malignant breast diseases by topical application. In the present study, 4-hydroxytamoxifen was administered daily by cutaneous application for 101 weeks to groups of 50 female Sprague-Dawley rats at 20, 140 or 1000 microg/kg/day. The product was applied with no occlusive bandage and oral ingestion was avoided by application of an Elizabethan collar for 6 h after administration. Treatment with 4-hydroxytamoxifen was clinically well tolerated and induced changes such as decreased food consumption and body weight gain, uterine and ovarian atrophy, mucification of vaginal epithelium and reduced mammary development, all of which were attributed to its pharmacological action. Mortality was significantly lower in the treated animals. The number of animals with palpable masses was similarly reduced. The incidence of mammary tumours and hypophyseal tumours was markedly lower in 4-hydroxytamoxifen-treated animals. The incidence of chronic tubulo-interstitial nephropathies, a common cause of mortality, was also lowered. There was no evidence of a carcinogenic action of 4-hydroxytamoxifen on the liver, genital organs or skin. Plasma levels of 4-hydroxytamoxifen were stable over the duration of the study and were proportional to the administered dose, exceeding clinical plasma levels by 60-fold at the high dose-level. In conclusion, 4-hydroxytamoxifen is not carcinogenic in the rat and reduces the incidence of spontaneous mammary and hypophyseal tumours.

  1. Mechanism of the neuroleptic-induced obesity in female rats.

    PubMed

    Baptista, T; Contreras, Q; Teneud, L; Albornoz, M A; Acosta, A; Páez, X; de Quijada, M; LaCruz, A; Hernández, L

    1998-01-01

    1. Obesity is an undesirable side effect of neuroleptics which affects 50% approximately of patients under a program of chronic administration. 2. An animal model of neuroleptic-induced obesity and hyperphagia has been developed in female rats treated chronically with sulpiride (20 mg/Kg/ip. for 21 days). However, it is unknown whether or not the hyperphagia is essential for the development of this type of obesity. 3. Sulpiride or vehicle was administered in two experimental conditions: in the first one, food was available in an amount which was three times the previous individual daily food intake; in the second one, the daily food provision was maintained at the individual daily average before starting the treatments. This way hyperphagia was prevented in half of the groups. Besides the body weight gain measurement in all the groups, the serum levels of estradiol, prolactin, glucose and lipids were assessed in the groups with unrestricted food intake. 4. Food restriction prevented the sulpiride-induced weight gain, even though the rats displayed a permanent diestrus which suggests an hyperprolactinemia-induced impairment in the balance of the reproductive hormones that may promote weight gain. However, the basal levels of estradiol were not affected by sulpiride. 5. The high density cholesterol was significantly increased by sulpiride, and the serum glucose levels were significantly decreased, however these changes were only detected during the first week of treatment. 6. The decrease in the serum glucose levels may be an early consequence of hyperinsulinemia. 7. Neuroleptic-induced obesity in rats appears to mimic energy intake, endocrine status and carbohydrate metabolism in humans under chronic neuroleptic administration. However, these rodents did not display the typical changes in blood lipids observed in human obesity.

  2. Platonin preserves blood-brain barrier integrity in septic rats.

    PubMed

    Yeh, Chia-Tse; Kao, Ming-Chang; Chen, Cay-Huyen; Huang, Chun-Jen

    2015-03-01

    Platonin possesses potent anti-inflammatory and antioxidative capacities. Because systemic inflammation and oxidative stress are crucial in mediating sepsis-induced blood-brain barrier (BBB) integrity loss, this study elucidated the effects of platonin on preserving BBB integrity in septic rats. A total of 72 adult male rats (200-250 g) were randomized to receive cecal ligation and puncture (CLP), CLP plus platonin, sham operation, or sham operation plus platonin (n = 18 in each group). Systemic inflammation and oxidation levels and BBB integrity in the surviving rats were determined after 24-hour monitoring. Plasma levels of interleukin-6 (IL-6) and malondialdehyde (MDA)-markers of systemic inflammation and oxidation-and the grading of Evans blue staining of the brains, BBB permeability to Evans blue dye, and brain edema levels-markers of BBB integrity-in rats that received CLP were significantly higher than rats that received sham operation (all p < 0.001). By contrast, the plasma levels of IL-6 (p < 0.001) and MDA (p < 0.001), and the grading of Evans blue staining (p = 0.015), BBB permeability to Evans blue dye (p = 0.043), and brain edema levels (p = 0.034) in rats that received CLP plus platonin were significantly lower than rats that received CLP. Experimental data further revealed that the concentration of tight junction protein claudin-5, a major structural component of BBB, in rats that received CLP was significantly lower than rats that received CLP plus platonin (p = 0.023). Platonin could attenuate sepsis-induced BBB integrity loss in rats. Copyright © 2015. Published by Elsevier B.V.

  3. Perinatal exposure to xenoestrogens affects pain in adult female rats.

    PubMed

    Ceccarelli, Ilaria; Fiorenzani, Paolo; Della Seta, Daniele; Massafra, Cosimo; Cinci, Giuliano; Bocci, Anna; Aloisi, Anna Maria

    2009-01-01

    Estrogens have a variety of effects in addition to their action on reproductive structures, including permanent effects on the Central Nervous System (CNS). Therefore environmental chemicals with estrogenic activity (xenoestrogens) can potentially affect a number of CNS functions. In the present experiment, female rats receiving ethynylestradiol (EE) or methoxychlor (MXC) via the mothers during pregnancy (pre) or lactation (post) were tested in comparison with females born from mothers treated with OIL. The Object Recognition, Plantar and Formalin tests were carried out to evaluate the effects of these compounds on integrated functions such as memory and pain. Testosterone and estradiol plasma levels were determined by RIA. The results of the Object Recognition and Plantar tests did not differ among groups. However the groups differed in the Formalin test since flexing duration was higher in the EE- and MXC-pre groups than in the EE- and MXC-post and OIL groups. Estradiol plasma levels were higher in EE-pre than in the other groups. These results confirm the possibility that estrogen-like compounds (EE and MXC) can affect complex neural processes like pain when taken during critical stages of CNS development.

  4. Effects of Extended Exposure to the Antibacterial Triclosan in the the Adult Female Rat

    EPA Science Inventory

    Triclosan (TCS), an antibacterial, has been shown to have endocrine disrupting activity in the rat. We reported previously that TCS advanced puberty in the female rat in the female pubertal assay and potentiated the estrogenic effect of ethinyl estradiol (EE) on uterine growth i...

  5. Effects of Extended Exposure to the Antibacterial Triclosan in the the Adult Female Rat

    EPA Science Inventory

    Triclosan (TCS), an antibacterial, has been shown to have endocrine disrupting activity in the rat. We reported previously that TCS advanced puberty in the female rat in the female pubertal assay and potentiated the estrogenic effect of ethinyl estradiol (EE) on uterine growth i...

  6. Transport of 3-hydroxybutyrate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Stevenson, J.H.; Couto, R.; Caprio, F.J. )

    1990-02-26

    Studies by a number of investigators have shown that 3-hydroxybutyrate is a preferred energy substrate for brain during early development. Since recent studies by the authors group suggest that the utilization of oxidizable substrates by brain may be regulated in part by transport across the plasma membrane, the authors investigated the transport of ({sup 3}H) D- and L-3-hydroxybutyrate and 3-hydroxy-(3-{sup 14}C) butyrate by primary cultures of rat brain astrocytes. The data is consistent with the hypothesis that 3-hydroxybutyrate is taken up into cultured rat brain astrocytes by both diffusion and a carrier mediated transport system, and further support the concept that transport at the cellular level contributes to the regulation of substrate utilization by brain cells.

  7. Protective effects of antioxidants on acrylonitrile-induced oxidative stress in female F344 rats.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Zhou, Shaoyu; Klaunig, James E

    2016-12-01

    The induction of oxidative stress and damage appears to be involved in acrylonitrile induction of brain astrocytomas in rat. The present study examined the effects of dietary antioxidant supplementation on acrylonitrile-induced oxidative stress and oxidative damage in rats in vivo. To assess the effects of antioxidants on biomarkers of acrylonitrile-induced oxidative stress, female F344 rats were provided with diets containing vitamin E (0.05%), green tea polyphenols (GTP, 0.4%), N-acetyl cysteine (NAC, 0.3%), sodium selenite (0.1mg/kg), and taurine (10g/kg) for 7 days, and then co-administered with 0 and 100 ppm acrylonitrile in drinking water for 28 days. Significant increase in oxidative DNA damage in brain, evidenced by elevated 8OHdG levels, was seen in acrylonitrile-exposed rats. Supplementation with vitamin E, GTP, and NAC reduced acrylonitrile-induced oxidative DNA damage in brain while no protective effects were seen with the selenium or taurine supplementation. Acrylonitrile increased oxidative DNA damage, measured by the fpg-modified alkaline Comet assay in rat WBCs, which was reduced by supplementation of Vitamin E, GTP, NAC, selenium, and taurine. In addition to stimulation of oxidative DNA damage, acrylonitrile triggered induction of pro-inflammatory cytokines Tnfα, Il-1β, and Ccl2, and the growth stimulatory cyclin D1 and cyclin D2 genes, which were effectively down-regulated with antioxidant treatment. Antioxidant treatment also was able to stimulate the pro-apoptotic genes Bad, Bax, and FasL and DNA repair genes Xrcc6 and Gadd45α. The results of this study support the involvement of oxidative stress in the development of acrylonitrile-induced astrocytomas and suggest that antioxidants block acrylonitrile-mediated damage through mechanisms that may involve in the suppression of inflammatory responses, inhibition of cell proliferation and stimulation of apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1808-1818, 2016. © 2015 Wiley

  8. Lack of estradiol modulation of sleep deprivation-induced c-Fos in the rat brain.

    PubMed

    Mashoodh, Rahia; Stamp, Jennifer A; Wilkinson, Michael; Rusak, Benjamin; Semba, Kazue

    2008-11-28

    Women recover from sleep deprivation more efficiently than men, but the mechanism for this difference is unknown. Effects of estrogen on sleep suggest that it could play a role, but the brain targets on which estrogen may act to have this effect have not been identified. Sleep deprivation increases levels of the immediate-early gene protein c-Fos in selected brain regions, but it is unknown whether estrogen modulates this response. We investigated the influence of different levels of exogenous estradiol on the c-Fos response to sleep deprivation in ovariectomized female rats. Female rats were treated with low or high levels of estradiol (mimicking diestrous and proestrous levels, respectively) delivered via subcutaneous silastic tubes. Control ovariectomized females and sham-operated males were implanted with tubes filled with cholesterol. One week after surgery, half of the rats underwent a 3 h period of sleep deprivation during the light phase in a motorized Wahmann activity wheel that rotated constantly at a slow speed, while half were confined to fixed wheels. Immediately after sleep deprivation, animals were killed and their brains processed to detect c-Fos using immunohistochemistry. Sleep deprivation increased the number of c-Fos positive cells in a number of brain areas, including the caudate putamen, medial preoptic area, perifornical hypothalamus, and anterior paraventricular thalamic nucleus. Other areas, including the suprachiasmatic nucleus, posterior paraventricular hypothalamic nucleus, posterior paraventricular thalamic nucleus, arcuate nucleus, and central amygdala, did not respond to 3 h sleep deprivation with a significant increase in c-Fos levels. Levels of c-Fos induced in the selected brain regions by sleep deprivation were not modulated by estrogen levels, nor by sex.

  9. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  10. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-01

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects. We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model. Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males. PMID:26678032

  11. Comparative hepatic and renal toxicity of cadmium in male and female rats.

    PubMed

    Gubrelay, Udita; Mehta, Ashish; Singh, Maninder; Flora, S J S

    2004-01-01

    Rats (male and female) were exposed to 0.5 mg/kg and 1 mg/kg cadmium as cadmium chloride for 3 days and subsequently sacrificed for cadmium concentration and other biochemical variables indicative of hepatic and renal damage. The absorption of cadmium was supported by biochemical changes, which were significantly higher in females than in males. This could be due to higher rate of intestinal absorption of cadmium in females than males. Male and female rats both showed relatively higher cadmium concentration in kidneys than in liver. Female rats also showed the similar trend in tissue metal levels as compared to male rats. However, hepatic and renal histopathological observations showed that female rats suffered from severe hepatic injury like hydropic degeneration of hepatocytes, granulation, bile duct proliferation etc. In comparison to female rats, male rats did not show much remarkable changes. Renal damage was more prominent in female than male in the form of renal tubular damage; most of the tubular nuclei were pyknotic, congestion of the boundary of cortex and medulla etc. The results suggested that females were comparatively more vulnerable to the toxic effects of cadmium than males.

  12. Effect of carnosine on rats under experimental brain ischemia.

    PubMed

    Gallant, S; Kukley, M; Stvolinsky, S; Bulygina, E; Boldyrev, A

    2000-06-01

    The effect of dietary carnosine on the behavioral and biochemical characteristics of rats under experimental ischemia was studied. Carnosine was shown to improve the animals orientation and learning in "Open Field" and "T-Maze" tests, and this effect was accompanied with an increase in glutamate binding to N-methyl-D-aspartate (NMDA) receptors in brain synaptosomes. Long-term brain ischemia induced by both sides' occlusion of common carotid arteries resulted in 55% mortality of experimental rats, and those who survived were characterized by partial suppression of orientation in T-maze. In the group of rats treated with carnosine, mortality after ischemic attack was decreased (from 55% to 17%) and most of the learning parameters were kept at the pre-ischemic level. Monoamine oxidase B (MAO B) activity in brain of the carnosine treated rats was not changed by ischemia significantly (compared to that of ischemic untreated rats) but NMDA binding to brain synaptosomal membranes being increased by ischemic attack was significantly suppressed and reached the level characteristic of normal brain. The suggestion was made that carnosine possesses a dual effect on NMDA receptors resulting in increase in their amount after long-term treatment but decrease the capacity to bind NMDA after ischemic attack.

  13. Non-signalling energy use in the developing rat brain.

    PubMed

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N; Attwell, David

    2017-03-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain.

  14. Non-signalling energy use in the developing rat brain

    PubMed Central

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N

    2016-01-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699

  15. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers

  16. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism.

    PubMed

    Vega, C C; Reyes-Castro, L A; Bautista, C J; Larrea, F; Nathanielsz, P W; Zambrano, E

    2015-04-01

    Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx in part prevents these outcomes. F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day 90 of life through pregnancy beginning day 120) providing four groups (n=8/group)--(i) controls, (ii) obese, (iii) exercised controls and (iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially increases glucose, insulin, cholesterol and oxidative stress. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 offspring weights were similar at birth. At PND 36, MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls, exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. MEx before and during pregnancy has beneficial effects on the maternal and offspring metabolism and endocrine function occurring with no weight change in mothers and offspring indicating the importance

  17. SEROTONIN BINDING TO PREPARATIONS FROM RAT BRAIN,

    DTIC Science & Technology

    BRAIN , SEROTONIN, SEROTONIN, OXIDOREDUCTASES, LYSERGIC ACIDS, RESERPINE, CHLORPROMAZINE, ACETYLCHOLINE, FATTY ACIDS, NOREPINEPHRINE, LEARNING, PERMEABILITY, MITOCHONDRIA, MORPHOLOGY(BIOLOGY), DRUGS, PHYSIOLOGY.

  18. Impact of maternal cigarette smoke exposure on brain and kidney health outcomes in female offspring.

    PubMed

    Chan, Yik L; Saad, Sonia; Al-Odat, Ibrahim; Zaky, Amgad A; Oliver, Brian; Pollock, Carol; Li, Weihong; Jones, Nicole M; Chen, Hui

    2016-12-01

    Increased oxidative stress in the brain can lead to increased sympathetic tone that may further induce kidney dysfunction. Previously we have shown that maternal cigarette smoke exposure (SE) leads to significantly increased oxidative stress and inflammation in both brain and kidney, as well as reduced brain and kidney mitochondrial activity. This is closely associated with significant kidney underdevelopment and abnormal function in adulthood in the male offspring. This study aimed to investigate the impact of maternal SE on brain and kidney health in the female offspring. In this study, the mouse dams were exposed to two cigarettes, twice daily for 6 weeks prior to gestation, during pregnancy and lactation. Brains and kidneys from the female offspring were collected at 20 days (P20) and 13 weeks (W13) and were subject to further analysis. We found that mRNA expression of brain inflammatory markers interleukin-1 receptor and Toll-like receptor 4 were significantly increased in the SE offspring at both P20 and W13. Their brain mitochondrial activity markers were however increased at W13 with increased antioxidant activity. Kidney development and function in the female SE offspring were not different from the control offspring. We concluded that although brain inflammatory markers were upregulated in the SE female offspring, they were protected from some of the indicators of brain oxidative stress, such as endogenous antioxidant and mitochondrial dysfunction, as well as abnormal kidney development and function in adulthood. © 2016 John Wiley & Sons Australia, Ltd.

  19. Does repetitive Ritalin injection produce long-term effects on SD female adolescent rats?

    PubMed

    Lee, Min J; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Swann, Alan C; Dafny, Nachum

    2009-09-01

    Methylphenidate (MPD), or Ritalin, is a psychostimulant that is prescribed for an extended period of time to children and adolescents with attention deficit hyperactivity disorder. Adolescence is a time of critical brain maturation and development, and the drug exposure during this time could lead to lasting changes in the brain that endure into the adulthood. Circadian rhythms are 24 h rhythms of physiological processes that are synchronized by the master-clock, the suprachiasmatic nucleus, to keep the body stable in a changing environment. The aim of present study is to observe the effect of repeated MPD exposure on the locomotor diurnal rhythm activity patterns of female adolescent Sprague-Dawley (SD) rats using the open field assay. 31 female adolescent SD rats were divided into four groups: control, 0.6 mg/kg, 2.5 mg/kg, and 10 mg/kg MPD group. On experimental day 1, all groups were given an injection of saline. On experimental days 2-7, animals were injected once a day with either saline, 0.6 mg/kg, 2.5 mg/kg, or 10 mg/kg MPD, and experimental days 8-10 were the washout period. A re-challenge injection was given to each animal on experimental day 11 with the similar dose as the experimental days 2-7. The locomotor movements were counted by the computerized animal activity monitoring system. The data were analyzed statistically to find out whether the diurnal rhythm activity patterns were altered. The obtained data showed that repeated administrations of 2.5 mg/kg and 10 mg/kg MPD were able to change the locomotor diurnal rhythm patterns, which suggests that these MPD doses exerts long-term effects.

  20. Trans fat intake across gestation and lactation increases morphine preference in females but not in male rats: Behavioral and biochemical parameters.

    PubMed

    Roversi, Karine; Pase, Camila Simonetti; Roversi, Katiane; Vey, Luciana Taschetto; Dias, Verônica Tironi; Metz, Vinícia Garzella; Burger, Marilise Escobar

    2016-10-05

    The abuse of morphine has risen considerably in recent years, mainly due to the increase of its prescription in clinical medicine. Also, increased consumption of processed foods, rich in trans fatty acids (TFA), has caused concerns about human health. Thus, the aim of our study was to determine whether trans fat consumption in the perinatal period may affect preference for morphine in adolescent female and male rats. Dams were orally supplemented with water (C-control) or hydrogenated vegetable fat (HVF-rich in TFA) during gestation and lactation periods. On post-natal day 43, pups were exposed to morphine (4mg/kg i.p., for 4 days) and assessed in the conditioned place preference paradigm. Anxiety-like symptoms were assessed, and oxidative status of the brain was estimated by reactive species (RS) generation. Female rats with HVF supplementation showed increased morphine preference and less anxiety-like symptoms. Additionally, both male and female rats from HVF-supplementation showed increased RS generation in the ventral tegmental area, whose level was similar in morphine-conditioned female rats. RS generation was increased in the hippocampus of morphine-conditioned female rats, regardless of the supplementation of their dams. We may infer that gender is a predictive factor to opioid preference, since adolescent female rats showed more susceptibility to addiction than males. Furthermore, trans fat consumption across the perinatal period is able to modify parameters of opioid preference in female rats, possibly due to TFA incorporation in phospholipid membranes, modifying the endogenous opioid system and the oxidative status in brain areas related to drug addiction.

  1. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  2. Brain perfusion in acute and chronic hyperglycemia in rats

    SciTech Connect

    Kikano, G.E.; LaManna, J.C.; Harik, S.I. )

    1989-08-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose.

  3. Proinflammatory cytokines in injured rat brain following perinatal asphyxia.

    PubMed

    Maślińska, Danuta; Laure-Kamionowska, Milena; Kaliszek, Agnieszka; Makarewicz, Dorota

    2002-01-01

    In contrast to astrogliosis, which is common to injuries of the adult CNS, in the developing brain this process is minimal. Reasons postulated for this include the relative immaturity of the immune system and the consequent insufficient production of cytokines to evoke astrogliosis. To explore this hypothesis, the study was undertaken to detect the presence of some proinflammatory cytokines in the injured rat brain following perinatal asphyxia (ischaemia/hypoxia). The localisation of TNF-alpha, IL-15, IL-17 and IL-17 receptors was visualised by means of immunohistochemistry. In numerous neurones of the rat brain, the IL-17 appeared to be constitutively expressed. In the early period of inflammation the IL-15 was produced mainly by the blood cells penetrating the injured brain but later it was synthesised also by reactive astrocytes surrounding brain cysts and forming dense astrogliosis around necrotic brain regions. The direct effect on astrogliosis of other estimated cytokines seems to be negligible. All the results lead to the conclusion that from all cytokines identified in the injured immature rat brain the IL-15 plays the most important role during inflammatory response and participates in the gliosis of reactive astrocytes.

  4. Thermal imaging of brain tumors in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Thompson, Reid C.; Kateb, Babak; Sorokoumov, Oleg; Grundfest, Warren S.; Black, Keith L.

    2002-05-01

    We have explored the capability of thermal imaging for the detection of brain tumors in a rat glioma mode. Fourteen Wistar rats were injected stereotactically with 100,000 C6 glioma cells. Approximately one and two weeks post implantation, the rats underwent bilateral craniotomy and the exposed brain surface was imaged with a short wave thermal camera. Thermal images were obtained at both low (approximately 28.7 degree(s)C) and high (approximately 38 degree(s)C) core temperatures. Temperature gradients between the tumor site and the contralateral normal brain were calculated. Overall, the tumors appeared cooler than normal brain, for both high and low core temperatures. Average temperature difference between tumor and normal brain were maximal in more advanced tumors (two weeks) and at higher core temperatures. At one week (N equals 6), the average temperature gradient between tumor and normal sites was 0.1 degree(s)C and 0.2 degree(s)C at low and high core temperatures respectively (P(greater than)0.05). At two weeks (N equals 8), the average temperature gradient was 0.3 degree(s)C and 0.7 degree(s)C at low and high core temperatures respectively (P<0.05). We conclude that thermal imaging can detect temperature differences between tumor and normal brain tissue in this model, particularly in more advanced tumors. Thermal imaging may provide a novel means to identify brain tumors intraoperatively.

  5. Neuropeptide Y receptors in rat brain: autoradiographic localization

    SciTech Connect

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system.

  6. Effects of perinatal diet and prenatal stress on the behavioural profile of aged male and female rats.

    PubMed

    Bengoetxea, Xabier; Paternain, Laura; Martisova, Eva; Milagro, Fermin I; Martínez, J Alfredo; Campión, Javier; Ramírez, María J

    2017-03-01

    The present work studies whether chronic prenatal stress (PS) influences the long-term sex-dependent neuropsychological status of offspring and the effects of an early dietary intervention in the dam. In addition, dams were fed with either a high-fat sugar diet (HFSD) or methyl donor supplemented diet (MDSD). PS procedure did not affect body weight of the offspring. MDSD induced decreases in body weight both in male and female offspring (1 month) that were still present in aged rats. HFSD induced an increase in body weight both in male and female offspring that did not persist in aged rats. In the Porsolt forced swimming test, only young males showed increases in immobility time that were reversed by MDSD. In old female rats (20 months), PS-induced cognitive impairment in both the novel object recognition test (NORT) and in the Morris water maze that was reversed by MDSD, whereas in old males, cognitive impairments and reversion by MDSD was evident only in the Morris water maze. HFSD induced cognitive impairment in both control and PS old rats, but there was no additive effect of PS and HFSD. It is proposed here that the diversity of symptoms following PS could arise from programming effects in early brain development and that these effects could be modified by dietary intake of the dam.

  7. Acute and chronic psychostimulant treatment modulates the diurnal rhythm activity pattern of WKY female adolescent rats.

    PubMed

    Jones, Cathleen G; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Dafny, Nachum

    2014-05-01

    The psychostimulants considered the gold standard in the treatment of attention deficit hyperactivity disorder, one of the most common childhood disorders, are also finding their way into the hands of healthy young adults as brain augmentation to improve cognitive performance. The possible long-term effects of psychostimulant exposure in adolescence are considered controversial, and thus, the objective of this study was to investigate whether the chronic exposure to the psychostimulant amphetamine affects the behavioral diurnal rhythm activity patterns of female adolescent Wistar-Kyoto (WKY) rat. The hypothesis of this study is that change in diurnal rhythm activity pattern is an indicator for the long-term effect of the treatment. Twenty-four rats were divided into two groups, control (N = 12) and experimental (N = 12), and kept in a 12:12-h light/dark cycle in an open-field cage. After 5-7 days of acclimation, 11 days of consecutive non-stop behavioral recordings began. On experimental day 1 (ED1), all groups were given an injection of saline. On ED2 to ED7, the experimental group was injected with 0.6 mg/kg amphetamine followed by 3 days of washout from ED8 to ED10, and amphetamine re-challenge on ED11 similar to ED2. The locomotor movements were counted by the computerized animal activity monitoring system, and the cosinor statistical test analysis was used to fit a 24-h curve of the control recording to the activity pattern after treatment. The horizontal activity, total distance, number of stereotypy, vertical activity, and stereotypical movements were analyzed to find out whether the diurnal rhythm activity patterns were altered. Data obtained using these locomotor indices of diurnal rhythm activity pattern suggest that amphetamine treatment significantly modulates the locomotor diurnal rhythm activity pattern of female WKY adolescent rats.

  8. Prenatal Restraint Stress Generates Two Distinct Behavioral and Neurochemical Profiles in Male and Female Rats

    PubMed Central

    Casolini, Paola; Cinque, Carlo; Alemà, Giovanni Sebastiano; Morley-Fletcher, Sara; Chiodi, Valentina; Spagnoli, Luigi Giusto; Gradini, Roberto; Catalani, Assia; Nicoletti, Ferdinando; Maccari, Stefania

    2008-01-01

    Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS (“PRS rats”) showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females. PMID:18478112

  9. Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats.

    PubMed

    Barbarich-Marsteller, Nicole C; Fornal, Casimir A; Takase, Luiz F; Bocarsly, Miriam E; Arner, Candice; Walsh, B Timothy; Hoebel, Bartley G; Jacobs, Barry L

    2013-01-01

    Activity-based anorexia (ABA) is an animal model of anorexia nervosa that mimics core features of the clinical psychiatric disorder, including severe food restriction, weight loss, and hyperactivity. The ABA model is currently being used to study starvation-induced changes in the brain. Here, we examined hippocampal cell proliferation in animals with ABA (or the appropriate control conditions). Adolescent female Sprague-Dawley rats were assigned to 4 groups: control (24h/day food access), food-restricted (1h/day food access), exercise (24h/day food and wheel access), and ABA (1h/day food access, 24h/day wheel access). After 3 days of ABA, 5-bromo-2'-deoxyuridine (BrdU; 200mg/kg, i.p.) was injected and the rats were perfused 2h later. Brains were removed and subsequently processed for BrdU and Ki67 immunohistochemistry. The acute induction of ABA reduced cell proliferation in the dentate gyrus. This effect was significant in the hilus region of the dentate gyrus, but not in the subgranular zone, where adult neurogenesis occurs. Marked decreases in cell proliferation were also observed in the surrounding dorsal hippocampus and in the corpus callosum. These results indicate a primary effect on gliogenesis rather than neurogenesis following 3 days of ABA. For each brain region studied (except SGZ), there was a strong positive correlation between the level of cell proliferation and body weight/food intake. Future studies should examine whether these changes are maintained following long-term weight restoration and whether alterations in neurogenesis occur following longer exposures to ABA. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The effects of early-life stress on dopamine system function in adolescent female rats.

    PubMed

    Majcher-Maślanka, Iwona; Solarz, Anna; Wędzony, Krzysztof; Chocyk, Agnieszka

    2017-04-01

    During adolescence, many neural systems, including the dopamine system, undergo essential remodeling and maturation. It is well known that early-life stress (ELS) increases the risk for many psychopathologies during adolescence and adulthood. It is hypothesized that ELS interferes with the maturation of the dopamine system. There is a sex bias in the prevalence of stress-related mental disorders. Information regarding the effects of ELS on brain functioning in females is very limited. In the current study, maternal separation (MS) procedures were carried out to study the effects of ELS on dopamine system functioning in adolescent female rats. Our study showed that MS increased the density of tyrosine hydroxylase immunoreactive fibers in the prelimbic cortex (PLC) and nucleus accumbens (Acb). These changes were accompanied by a decrease in the level of D5 receptor mRNA and an increase in D2 receptor mRNA expression in the PLC of MS females. Conversely, D1 and D5 receptor mRNA levels were augmented in the caudate putamen (CPu), while the expression of the D3 dopamine receptor transcript was reduced in MS females. Additionally, in the Acb, MS elicited a decrease in D2 receptor mRNA expression. At the behavioral level, MS increased apomorphine-induced locomotion; however, it did not change locomotor responses to selective D1/D5 receptor agonist and attenuated D2/D3 receptor agonist-triggered locomotion. Moreover, MS decreased D1/D5 receptor agonist-induced grooming behavior. These results indicate that ELS disrupts dopamine receptor function in the PLC and basal ganglia during adolescence in females and may predispose them to psychopathologies during adolescence and adulthood.

  11. Effects of pudendal nerve injury in the female rat.

    PubMed

    Kerns, J M; Damaser, M S; Kane, J M; Sakamoto, K; Benson, J T; Shott, S; Brubaker, L

    2000-01-01

    To test a neurogenic hypothesis for external urethral sphincter (EUS) dysfunction associated with urinary incontinence, the proximal pudendal nerve was crushed in anesthetized retired breeder female rats (n = 5) and compared with a sham lesion group (n = 4). Outcome measures included concentric needle electromyograms (EMGs) from the target EUS, voiding patterns during a 2-hour dark period, and micturition data over a 24-hour period. Fast Blue (FB) was introduced to the crush site at the time of injury and Diamidino Yellow (DY) to the EUS at the time the rats were killed (3 months post-operative), when histological analysis of the nerve and urethra was also performed. EMG records indicated the EUS motor units undergo typical denervation changes followed by regeneration and recovery. Voiding patterns from the crush group show a significant increase of small urine marks in the front third of the cage. At 1-2 weeks post-op, the frequency of voids was significantly increased in the crush group compared to pre-op and late post-op time periods. The mean volume voided in the light phase at the early post-op time was significantly increased in the sham group. Light and electron microscopic patterns seen in nerve and muscle suggest the regenerating motor units maintain a structural integrity. Motoneurons in the lower lumbar cord were labeled with either DY (14. 5 +/- 6.8), FB (31.7 +/- 23.7), or both (35.0 +/- 17.5) tracers, indicating approximately 54% of the crushed pudendal neurons regenerated to the EUS. In conclusion, several measures suggest this reversible crush lesion induces mild urinary incontinence. This animal model is promising for further development of hypotheses regarding neural injury, the pathogenesis of incontinence, and strategies aimed at prevention and treatment. Neurourol. Urodynam. 19:53-69, 2000. Copyright 2000 Wiley-Liss, Inc.

  12. Follicle Development of Xenotransplanted Sheep Ovarian Tissue into Male and Female Immunodeficient Rats

    PubMed Central

    Tahaei, Leila Sadat; Eimani, Hussein; Hajmusa, Ghazaleh; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Shahverdi, Abdolhossein; Eftekhari-Yazdi, Poopak

    2015-01-01

    Background This study aimed to assess follicle survival after xenotransplantation of sheep ovarian tissue into male and female immunodeficient rats. We evaluated the effects of gonadotropin treatment on follicular development in the transplanted tissue. Materials and Methods In this experimental study, sheep ovarian cortical strips were transplanted into the neck back muscles of 8 male and 8 female immunodeficient, castrated rats. Fourteen days after surgery, each rat was treated with human menopausal gonadotropin (hMG) for 9 weeks. One day after the last injection, ovarian tissues were removed and fixed for histology assessment. Histology analyses were performed before and after grafting. Estradiol (E2) levels were measured before and after gonadectomy, and at the end of the experiment. The control group consisted of 7 male and 7 female noncastrated/non-grafted rats and the sham group comprised 7 male and 7 female castrated/ non-grafted rats for comparison of serum E2 concentrations. Results The percentage of primordial follicles decreased after transplantation in male (25.97%) and female (24.14%) rats compared to the control group (ovarian tissue nongrafted; 37.51%). Preantral follicles increased in the male (19.5%) and female (19.49%) transplanted rats compared to the control group (11.4%). Differences in antral follicles between male (0.06 ± 0.0%) and female (0.06 ± 0.0%) rats were not noticeable compared to control (1.25 ± 0.0%) rats. We observed a significantly higher percent of mean E2 secretion in grafted males compared to grafted females (P˂0.05). Conclusion Despite significant differences in E2 secretion between xenografted male and female rats, we observed no statistical differences in terms of follicular development. PMID:26644859

  13. Follicle Development of Xenotransplanted Sheep Ovarian Tissue into Male and Female Immunodeficient Rats.

    PubMed

    Tahaei, Leila Sadat; Eimani, Hussein; Hajmusa, Ghazaleh; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Shahverdi, Abdolhossein; Eftekhari-Yazdi, Poopak

    2015-01-01

    This study aimed to assess follicle survival after xenotransplantation of sheep ovarian tissue into male and female immunodeficient rats. We evaluated the effects of gonadotropin treatment on follicular development in the transplanted tissue. In this experimental study, sheep ovarian cortical strips were transplanted into the neck back muscles of 8 male and 8 female immunodeficient, castrated rats. Fourteen days after surgery, each rat was treated with human menopausal gonadotropin (hMG) for 9 weeks. One day after the last injection, ovarian tissues were removed and fixed for histology assessment. Histology analyses were performed before and after grafting. Estradiol (E2) levels were measured before and after gonadectomy, and at the end of the experiment. The control group consisted of 7 male and 7 female noncastrated/non-grafted rats and the sham group comprised 7 male and 7 female castrated/ non-grafted rats for comparison of serum E2 concentrations. The percentage of primordial follicles decreased after transplantation in male (25.97%) and female (24.14%) rats compared to the control group (ovarian tissue nongrafted; 37.51%). Preantral follicles increased in the male (19.5%) and female (19.49%) transplanted rats compared to the control group (11.4%). Differences in antral follicles between male (0.06 ± 0.0%) and female (0.06 ± 0.0%) rats were not noticeable compared to control (1.25 ± 0.0%) rats. We observed a significantly higher percent of mean E2 secretion in grafted males compared to grafted females (P˂0.05). Despite significant differences in E2 secretion between xenografted male and female rats, we observed no statistical differences in terms of follicular development.

  14. Anti-oxidative effects produced by environmental enrichment in the hippocampus and cerebral cortex of male and female rats.

    PubMed

    Mármol, Frederic; Rodríguez, Clara A; Sánchez, Juan; Chamizo, Victoria D

    2015-07-10

    Both physical and intellectual activity may reduce the incidence of neurodegenerative disorders. There is evidence that environmental enrichment (EE) can induce profound behavioral, neurochemical and neuroanatomical changes, thus producing lasting improvements in memory and learning tasks. In this study we evaluated the anti-oxidative effects produced by EE in the hippocampus and the cerebral cortex of male and female rats. The animals had been reared in either EE or control conditions. The parameters studied were: thiobarbituric acid reactive substances (TBARS), protein oxidation, total radical antioxidant parameter, catalase, superoxide dismutase and superoxide anion activity. The results showed that our EE protocol reduced markers of oxidative stress in the hippocampus and in the cerebral cortex. Overall, the measures taken in the two cerebral regions revealed that EE rats showed higher values for antioxidant measures and lower values for oxidative stress parameters than control animals. More importantly, a consistent sex difference was found, indicating that in female rats the hippocampus and cerebral cortex are plastic brain regions receptive to external stimulation such as EE. Although EE males have higher levels for antioxidant capacity, catalase and SOD, it is likely that females do not need to activate all the antioxidant defenses since they have a greater capacity to assimilate external stimuli. This is suggested by the similarity of protein oxidation and TBARS levels in hippocampus in both sexes, and the even lower levels of protein oxidation and superoxide anion activity in the cerebral cortex in EE females.

  15. Fetal female rats are masculinized by male littermates located caudally in the uterus.

    PubMed

    Meisel, R L; Ward, I L

    1981-07-10

    Female rats are masculinized in utero by male littermates sharing the same uterine horn. Increased anogenital distances in neonatal females and mounting behavior in adult females are related to the presence of males on the caudal side of the females in the uterine horn. Contrary to current beliefs, interamniotic diffusion may not be responsible for the exchange of masculinizing agents among fetuses. Since uterine blood flow in the rat is from the direction of the cervix toward the ovary, masculinizing hormones secreted by fetal males may be carried via the uterine vasculature to female littermates located further downstream.

  16. Neonatal handling reduces the number of cells in the medial preoptic area of female rats.

    PubMed

    Camozzato, Tatiane S C; Winkelmann-Duarte, Elisa C; Padilha, Camila B; Miguel, Sandro P R; Bonzanini, Laisa; Anselmo-Franci, Janete A; Fernandes, Marilda C; Lucion, Aldo B

    2009-01-09

    Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2'-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure "lesioned" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain.

  17. Hydrophilic solute transport across the rat blood-brain barrier

    SciTech Connect

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.

  18. Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice.

    PubMed

    Salais-López, Hugo; Lanuza, Enrique; Agustín-Pavón, Carmen; Martínez-García, Fernando

    2017-03-01

    Prolactin is fundamental for the expression of maternal behaviour. In virgin female rats, prolactin administered upon steroid hormone priming accelerates the onset of maternal care. By contrast, the role of prolactin in mice maternal behaviour remains unclear. This study aims at characterizing central prolactin activity patterns in female mice and their variation through pregnancy and lactation. This was revealed by immunoreactivity of phosphorylated (active) signal transducer and activator of transcription 5 (pSTAT5-ir), a key molecule in the signalling cascade of prolactin receptors. We also evaluated non-hypophyseal lactogenic activity during pregnancy by administering bromocriptine, which suppresses hypophyseal prolactin release. Late-pregnant and lactating females showed significantly increased pSTAT5-ir resulting in a widespread pattern of immunostaining with minor variations between pregnant and lactating animals, which comprises nuclei of the sociosexual and maternal brain, including telencephalic (septum, nucleus of the stria terminalis, and amygdala), hypothalamic (preoptic, paraventricular, supraoptic, and ventromedial), and midbrain (periaqueductal grey) regions. During late pregnancy, this pattern was not affected by the administration of bromocriptine, suggesting it to be elicited mostly by non-hypophyseal lactogenic agents, likely placental lactogens. Virgin females displayed, instead, a variable pattern of pSTAT5-ir restricted to a subset of the brain nuclei labelled in pregnant and lactating mice. A hormonal substitution experiment confirmed that estradiol and progesterone contribute to the variability found in virgin females. Our results reflect how the shaping of the maternal brain takes place prior to parturition and suggest that lactogenic agents are important candidates in the development of maternal behaviours already during pregnancy.

  19. Spectral and lifetime domain measurements of rat brain tumors.

    PubMed

    Haidar, D Abi; Leh, B; Zanello, M; Siebert, R

    2015-04-01

    During glioblastoma surgery, delineation of the brain tumor margins is difficult because the infiltrated and normal tissues have the same visual appearance. We use a fiber-optical fluorescence probe for spectroscopic and time domain measurements to assist surgeon in differentiating the healthy and the infiltrated tissues. First study was performed on rats that were previously injected with tumorous cells. Measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumor brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analyzed. The study aimed at defining an optical index that can act as an indicator for discriminating healthy from tumorous tissue.

  20. In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison.

    PubMed

    Figini, Matteo; Zucca, Ileana; Aquino, Domenico; Pennacchio, Paolo; Nava, Simone; Di Marzio, Alessandro; Preti, Maria Giulia; Baselli, Guseppe; Spreafico, Roberto; Frassoni, Carolina

    2015-04-01

    Diffusion tensor imaging (DTI) is a magnetic resonance modality that permits to characterize the orientation and integrity of white matter (WM). DTI-based tractography techniques, allowing the virtual reconstruction of WM tract pathways, have found wide application in preclinical neurological research. Recently, anatomically detailed rat brain atlases including DTI data were constructed from ex vivo DTI images, but tractographic atlases of normal rats in vivo are still lacking. We propose here a probabilistic tractographic atlas of the main WM tracts in the healthy rat brain based on in vivo DTI acquisition. Our study was carried out on 10 adult female Sprague-Dawley rats using a 7T preclinical scanner. The MRI protocol permitted a reliable reconstruction of the main rat brain bundles: corpus callosum, cingulum, external capsule, internal capsule, anterior commissure, optic tract. The reconstructed fibers were compared with histological data, proving the viability of in vivo DTI tractography in the rat brain with the proposed acquisition and processing protocol. All the data were registered to a rat brain template in the coordinate system of the commonly used atlas by Paxinos and Watson; then the individual tracts were binarized and averaged, obtaining a probabilistic atlas in Paxinos-Watson space of the main rat brain WM bundles. With respect to the recent high-resolution MRI atlases, the resulting tractographic atlas, available online, provides complementary information about the average anatomical position of the considered WM tracts and their variability between normal animals. Furthermore, reference values for the main DTI-derived parameters, mean diffusivity and fractional anisotropy, were provided. Both these results can be used as references in preclinical studies on pathological rat models involving potential alterations of WM. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats.

    PubMed

    Tang, Shiyu; Xu, Su; Lu, Xin; Gullapalli, Rao P; McKenna, Mary C; Waddell, Jaylyn

    2016-01-01

    Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.

  2. Intermittent fasting combined with supplementation with Ayurvedic herbs reduces anxiety in middle aged female rats by anti-inflammatory pathways.

    PubMed

    Singh, Harpal; Kaur, Taranjeet; Manchanda, Shaffi; Kaur, Gurcharan

    2017-08-01

    Intermittent fasting-dietary restriction (IF-DR) is an increasingly popular intervention to promote healthy aging and delay age associated decline in brain functions. Also, the use of herbal interventions is gaining attention due to their non-pharmacological approach to treat several abnormalities and promote general health with least side effects. The present study was aimed to investigate the synergistic effects of IF-DR regimen with herbal supplementation on anxiety-like behavior and neuroinflammation in middle aged female rats. We used dried leaf powder of Withania somnifera and dried stem powder of Tinospora cordifolia for our study. The rats were divided into three groups: (1) Control group fed ad libitum (AL); (2) rats deprived of food for full day and fed ad libitum on every alternate day (IF-DR); and (3) IF-DR and herbal extract (DRH) group in which rats were fed ad libitum with herbal extract supplemented diet, every alternate day. Post regimen, the rats were tested for anxiety-like behavior and further used for study of key inflammatory molecules (NFκB, Iba1, TNFα, IL-1β, IL-6) and glial marker (GFAP) in hippocampus and piriform cortex regions of brain. The study was further extended to explore the effect of DRH regimen on stress response protein (HSP70) and calcium dependent regulators of synaptic plasticity (CaMKIIα, Calcineurin). Our data demonstrated that DRH regimen reduced anxiety-like behavior in middle age female rats and associated neuroinflammation by ameliorating key inflammatory cytokines and modulated stress response. The present data may provide scientific validation for anxiolytic and anti-inflammatory potential of herbal intervention combined with short term IF-DR regimen.

  3. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females

    PubMed Central

    Aranha, Márcia M.; Herrmann, Dennis; Cachitas, Hugo; Neto-Silva, Ricardo M.; Dias, Sophie; Vasconcelos, Maria Luísa

    2017-01-01

    Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour. PMID:28401905

  4. Sex Differences in Functional Brain Activation during Noxious Visceral Stimulation in Rats

    PubMed Central

    Bradesi, Sylvie; Labus, Jennifer S.; Maarek, Jean-Michel I.; Lee, Kevin; Winchester, Wendy J.; Mayer, Emeran A.; Holschneider, Daniel P.

    2009-01-01

    Studies in healthy human subjects and patients with irritable bowel syndrome suggest sex differences in cerebral nociceptive processing. Here we examine sex differences in functional brain activation in the rat during colorectal distention (CRD), a preclinical model of acute visceral pain. [14C]-iodoantipyrine was injected intravenously in awake, nonrestrained female rats during 60-mmHg or 0-mmHg CRD while electromyographic abdominal activity (EMG) and pain behavior were recorded. Regional cerebral blood flow related tissue radioactivity was analyzed by statistical parametric mapping from autoradiographic images of 3-dimensionally reconstructed brains. Sex differences were addressed by comparing current data with our previously published data collected from male rats. While sex differences in EMG and pain scores were modest, significant differences were noted in functional brain activation. Females showed widespread changes in limbic (amygdala, hypothalamus) and paralimbic structures (ventral striatum, nucleus accumbens, raphe), while males demonstrated broad cortical changes. Sex differences were apparent in the homeostatic afferent network (parabrachial nucleus, thalamus, insular and dorsal anterior cingulate cortices), in an emotional-arousal network (amygdala, locus coeruleus complex), and in cortical areas modulating these networks (prefrontal cortex). Greater activation of the ventromedial prefrontal cortex and broader limbic/paralimbic changes in females suggest greater engagement of affective mechanisms during visceral pain. Greater cortical activation in males is consistent with the concept of greater cortical inhibitory effects on limbic structures in males, which may relate to differences in attentional and cognitive attribution to visceral stimuli. These findings show remarkable similarities to reported sex differences in brain responses to visceral stimuli in humans. PMID:19560270

  5. [DYNAMICS OF GLUTAMINE SYNTHASE ACTIVITY IN RAT BRAIN IN PRENATAL HYPOXIA MODEL].

    PubMed

    Khairova, V R; Safarov, M I

    2015-01-01

    Prenatal ontogenesis is a period of high sensitivity to stressful impact, so any stressor can lead to changes of physiological, biochemical indicators, behavioral and cognitive functions. The most common and clinically significant stress factor, which the embryo may be exposed during embryonic development, is hypoxia. In this case pathological changes in the central nervous system depend on the duration and severity of hypoxic exposure, individual tolerance and the stage of prenatal development, at each of which in the brain take place the basic histogenetic processes. By activating energetically disadvantageous anaerobic glycolysis hypoxia leads to excess of glutamate emission and cell apoptosis. Glutamine synthase is a basic enzyme that regulates metabolism of glutamate, catalyzing conversion of glutamate to glutamine with ammonia detoxification. The aim of the presented work was to reveal changes in the activity of one of the key enzyme of glutamate metabolism- glutamine synthetase in the brain of offspring of white rats undergone to hypoxia at different stages of prenatal ontogenesis. Hypoxia was created by placing female rats at stages of the pregnancy, corresponding to progestation period of organogenesis and fetal period of prenatal development, in the hypobaric chamber with exposure to 5% oxygen and 95% nitrogen gas mixture during 30 minutes per day. The offspring obtained from females of control and experimental groups were used for biochemical determinations in the age of 1 and 3 month. It has been established that hypoxia exposed to pregnant females during embryonic organogenesis causes significant changes in enzyme activity, particularly pronounced in the cerebral cortex and cerebellum, as compared with progestational and fetal hypoxia. Enzyme activity decreased in a greater degree in one-month-old rats undergone to prenatal hypoxia, than three- month-old animals. Thus, stress during intensive processes of proliferation and migration of cells of the

  6. Moderate Prenatal Alcohol Exposure Alters Functional Connectivity in the Adult Rat Brain.

    PubMed

    Rodriguez, Carlos I; Davies, Suzy; Calhoun, Vince; Savage, Daniel D; Hamilton, Derek A

    2016-10-01

    Past studies of moderate prenatal alcohol exposure (PAE) have focused on specific brain regions, neurotransmitter systems, and behaviors. However, the effects of PAE on brain function and behavior are complex and not limited to discrete brain regions. Thus, there is a critical need to understand the global effects of moderate PAE on neural function. A primary aim of this research was to explore the functional relationships in neural activity of spatially distinct areas by applying a widely used computational algorithm-group-independent component analysis (gICA)-to resting-state functional magnetic resonance imaging data from rats exposed to either an alcohol or saccharin control solution via maternal consumption during pregnancy. Long-Evans rat dams consumed either 5% (v/v) alcohol or a saccharin control solution throughout gestation. Adult offspring from each prenatal treatment group were anesthetized for functional, structural, and perfusion magnetic resonance-based image acquisition sequences. gICA was applied to the functional data to extract components. To determine connectivity, component time-course correlations were computed and compared. Additionally, spectral power analyses were utilized as an additional measure of functional connectivity. Finally, blood perfusion-assessed by arterial spin labeling-and whole-brain volumetric analyses were evaluated. Analyses revealed 17 components in several brain regions such as the cortex, hippocampus, and thalamus. PAE was associated with reductions in coordinated activity between components, especially in males. PAE was also associated with reductions in low-frequency spectral power, an effect that was more robust in females. Brain volumetric analyses revealed sex-dependent reductions in females while blood flow analyses revealed sex-dependent reductions in males. Moderate PAE leads to persistent changes in functional connectivity in the absence of whole-brain volume or blood flow measures. Future studies will

  7. SSRIs and the female brain--potential for utilizing steroid-stimulating properties to treat menstrual cycle-linked dysphorias.

    PubMed

    Lovick, Thelma

    2013-12-01

    One unexpected property of selective serotonin reuptake inhibitors is their ability, at doses well below those that effect 5-HT systems, to raise brain concentrations of neuroactive steroids such as the progesterone metabolite allopregnanolone. In women, rapid withdrawal from allopregnanolone when progesterone secretion drops sharply in the late luteal phase precipitates menstrual cycle-linked disorders such as premenstrual syndrome and catamenial epilepsy. Short-term, low-dose fluoxetine during the late luteal phase has the potential to prevent the development of such disorders, by raising brain allopregnanolone concentration. In female rats, withdrawal from allopregnanolone, as ovarian progesterone secretion falls rapidly in the late diestrus phase (similar to late luteal phase in women), induces upregulation of extrasynaptic GABAA receptors on GABAergic neurons in brain regions involved in mediating anxiety-like behaviors. The functional consequence of this receptor plasticity is disinhibition of principal neurons, hyperexcitable neuronal circuitry and increased behavioral responsiveness to anxiogenic stress. These withdrawal responses were prevented by short-term treatment with fluoxetine during the late diestrus phase, which raised brain allopregnanolone concentration, so blunting the rapid physiological fall. The steroid-stimulating properties of fluoxetine offer untapped opportunities for developing new treatments for menstrual cycle-linked disorders in women, which are precipitated by abrupt falls in brain concentration of allopregnanolone.

  8. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  9. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  10. Can intraurethral stimulation inhibit micturition reflex in normal female rats?

    PubMed Central

    Yu, Tian; Liao, Limin; Wyndaele, Jean Jacques

    2016-01-01

    ABSTRACT Objective The study was designed to determine the effect of low frequency (2.5Hz) intraurethral electrical stimulation on bladder capacity and maximum voiding pressures. Materials and Methods The experiments were conducted in 15 virgin female Sprague-Dawley rats (220–250g). The animals were anesthetized by intraperitoneal injection of urethane (1.5g/kg). Animal care and experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Antwerp University (code: 2013-50). Unipolar square pulses of 0.06mA were used to stimulate urethra at frequency of 2.5Hz (0.2ms pulse width) in order to evaluate the ability of intraurethral stimulation to inhibit bladder contractions. Continuous stimulation and intermittent stimulation with 5sec ‘‘on’’ and 5sec ‘‘off’’ duty cycle were applied during repeated saline cystometrograms (CMGs). Maximum voiding pressures (MVP) and bladder capacity were investigated to determine the inhibitory effect on bladder contraction induced by intraurethral stimulation. Results The continuous stimulation and intermittent stimulation significantly (p<0.05) decreased MVP and increased bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group. Conclusions The present results suggest that 2.5Hz continuous and intermittent intraurethral stimulation can inhibit micturition reflex, decrease MVP and increase bladder capacity. There was no significant difference in MVP and bladder capacity between continuous and intermittent stimulation group. PMID:27286128

  11. Depot risperidone-induced adverse metabolic alterations in female rats.

    PubMed

    Horska, Katerina; Ruda-Kucerova, Jana; Karpisek, Michal; Suchy, Pavel; Opatrilova, Radka; Kotolova, Hana

    2017-04-01

    Atypical antipsychotics are associated with adverse metabolic effects including weight gain, increased adiposity, dyslipidaemia, alterations in glucose metabolism and insulin resistance. Increasing evidence suggests that metabolic dysregulation precedes weight gain development. The aim of this study was to evaluate alterations in adipokines, hormones and basic serum biochemical parameters induced by chronic treatment with depot risperidone at two doses (20 and 40 mg/kg) in female Sprague-Dawley rats. Dose-dependent metabolic alterations induced by risperidone after 6 weeks of treatment were revealed. Concomitant to weight gain and increased liver weight, an adverse lipid profile with an elevated triglyceride level was observed in the high exposure group, administered a 40 mg/kg dose repeatedly, while the low dose exposure group, administered a 20 mg/kg dose, developed weight gain without alterations in the lipid profile and adipokine levels. An initial peak in leptin serum level after the higher dose was observed in the absence of weight gain. This finding may indicate that the metabolic alterations observed in this study are not consequent to body weight gain. Taken together, these data may support the primary effects of atypical antipsychotics on peripheral tissues.

  12. Isatin, regional distribution in rat brain and tissues.

    PubMed

    Watkins, P; Clow, A; Glover, V; Halket, J; Przyborowska, A; Sandler, M

    1990-01-01

    Isatin has recently been identified in rat tissues and normal human urine, where it forms the major proportion of the endogenous monoamine oxidase inhibitor, tribulin. In this paper, we show that isatin, measured by gas chromatography/mass spectrometry, has a distinct regional distribution in rat tissues, with highest concentrations in seminal vesicles (1.6 ?g/g) and vas deferens (3.4 ?g/g). There was also a discontinuous distribution within rat brain, concentrations being highest in the hippocampus (0.13 ?g/g).

  13. Opium can differently alter blood glucose, sodium and potassium in male and female rats.

    PubMed

    Karam, Gholamreza Asadi; Rashidinejad, Hamid Reza; Aghaee, Mohammad Mehdi; Ahmadi, Jafar; Rahmani, Mohammad Reza; Mahmoodi, Mehdi; Azin, Hosein; Mirzaee, Mohammad Reza; Khaksari, Mohammad

    2008-04-01

    To determine the effects of opium on serum glucose, potassium and sodium in male and female Wistar rat, opium solution (60 mg/kg) injected intraperitoneally and the same volume of distilled water was used as control (7 rats in each group). Blood samples were collected at 0, 30, 60, 120, 240 and 360 minutes after injection from orbit cavity and the values of serum glucose, sodium (Na(+)) and potassium (K(+)) were measured. The data were then analyzed by the repeated measure ANOVA based on sex and case-control group. P < 0.05 considered as significant difference. Serum glucose increased significantly at 30, 60, 120 and 240 minutes after opium solution injection, in female rats compared to a control group. However, the male rats had this rise at 30, 60 and 120 minutes after opium solution injection compared to control group. While serum glucose in male rats was significantly higher than females at 30, 60 and 120 minutes, this value was higher in the female rats at 360 minutes. Therefore, serum glucose alterations following opium injection was significantly different in groups and in the sexes at different times. Sodium (Na(+)) rose at 60, 240 and 360 minutes significantly in all rats compared to control group. However, sodium alteration following opium injection was significantly different only between treated and control groups but sex-independent at all times. Potassium (K(+)) increased significantly at 60, 120, 240 and 360 minutes in male rats, compared to a control group. In female rats K(+) significantly raised at 30, 120, 240 and 360 minutes. Therefore, the alteration of K(+) in male and female rats was found time dependent and sex independent. According to our results, opium increased serum glucose in male and female rats differently, and it interferes with metabolic pathways differently on a gender dependent basis. Opium raised serum Na(+) and K(+), thus it interfere with water regulation and blood pressure via different mechanism.

  14. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    PubMed

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males.

  15. Regional Differences in Mu and Kappa Opioid Receptor G-protein Activation in Brain in Male and Female Prairie Voles

    PubMed Central

    Martin, Thomas J.; Sexton, Tammy; Kim, Susy A.; Severino, Amie L.; Peters, Christopher M.; Young, Larry J.; Childers, Steven R.

    2015-01-01

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins as signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [35S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brain by DAMGO and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for nucleus accumbens core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. PMID:26523979

  16. Oxidative damage to rat brain in iron and copper overloads.

    PubMed

    Musacco-Sebio, Rosario; Ferrarotti, Nidia; Saporito-Magriñá, Christian; Semprine, Jimena; Fuda, Julián; Torti, Horacio; Boveris, Alberto; Repetto, Marisa G

    2014-08-01

    This study reports on the acute brain toxicity of Fe and Cu in male Sprague-Dawley rats (200 g) that received 0 to 60 mg kg(-1) (ip) FeCl2 or CuSO4. Brain metal contents and time-responses were determined for rat survival, in situ brain chemiluminescence and phospholipid and protein oxidation products. Metal doses hyperbolically defined brain metal content. Rat survival was 91% and 60% after Fe and Cu overloads. Brain metal content increased from 35 to 114 μg of Fe per g and from 3.6 to 34 μg of Cu per g. Brain chemiluminescence (10 cps cm(-2)) increased 3 and 2 times after Fe and Cu overloads, with half maximal responses (C50) of 38 μg of Fe per g of brain and 15 μg of Cu per g of brain, and with half time responses (t1/2) of 12 h for Fe and 20 h for Cu. Phospholipid peroxidation increased by 56% and 31% with C50 of 40 μg of Fe per g and 20 μg of Cu per g and with t1/2 of 9 h and 14 h. Protein oxidation increased by 45% for Fe with a C50 of 40 μg of Fe per g and 18% for Cu with a C50 of 10 μg of Cu per g and a t1/2 of 12 h for both metals. Fe and Cu brain toxicities are likely mediated by Haber-Weiss type HO˙ formation with subsequent oxidative damage.

  17. Regulation of atrial natriuretic peptide receptors in the rat brain

    SciTech Connect

    Saavedra, J.M.

    1987-06-01

    We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (ANP; 99-126) in the rat brain. Quantitative autoradiographic techniques and a /sup 125/I-labeled ligand, /sup 125/I-ANP (99-126), were employed. After in vitro autoradiography, quantification was achieved by computerized microdensitometry followed by comparison with /sup 125/I-standards. ANP receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood-pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of ANP receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and the choroid plexus. These changes are in contrast to those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of ANP. Under conditions of acute dehydration after water deprivation, as well as under conditions of chronic dehydration such as those present in homozygous Brattleboro rats, there was an up-regulation of ANP receptors in the subfornical organ. Our results indicate that in the brain, circumventricular organs contain ANP receptors which could respond to variations in the concentration of circulating ANP. In addition, brain areas inside the blood-brain barrier contain ANP receptors probably related to the endogenous, central ANP system. The localization of ANP receptors and the alterations in their regulation present in genetically hypertensive rats and after dehydration indicate that brain ANP receptors are probably related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function.

  18. Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field.

    PubMed

    Sonmez, Osman Fikret; Odaci, Ersan; Bas, Orhan; Kaplan, Süleyman

    2010-10-14

    The biological effects of electromagnetic field (EMF) exposure from mobile phones have growing concern among scientists since there are some reports showing increased risk for human health, especially in the use of mobile phones for a long duration. In the presented study, the effects on the number of Purkinje cells in the cerebellum of 16-week (16 weeks) old female rats were investigated following exposure to 900 MHz EMF. Three groups of rats, a control group (CG), sham exposed group (SG) and an electromagnetic field exposed group (EMFG) were used in this study. While EMFG group rats were exposed to 900 MHz EMF (1h/day for 28 days) in an exposure tube, SG was placed in the exposure tube but not exposed to EMF (1h/day for 28 days). The specific energy absorption rate (SAR) varied between 0.016 (whole body) and 2 W/kg (locally in the head). The CG was not placed into the exposure tube nor was it exposed to EMF during the study period. At the end of the experiment, all of the female rats were sacrificed and the number of Purkinje cells was estimated using a stereological counting technique. Histopathological evaluations were also done on sections of the cerebellum. Results showed that the total number of Purkinje cells in the cerebellum of the EMFG was significantly lower than those of CG (p<0.004) and SG (p<0.002). In addition, there was no significant difference at the 0.05 level between the rats' body and brain weights in the EMFG and CG or SG. Therefore, it is suggested that long duration exposure to 900 MHz EMF leads to decreases of Purkinje cell numbers in the female rat cerebellum.

  19. Ovarian steroids and modulation of morphine-induced analgesia and catalepsy in female rats.

    PubMed

    Banerjee, P; Chatterjee, T K; Ghosh, J J

    1983-12-23

    The influence of ovarian steroids on modulation of antinociceptive and cataleptic responses to morphine in female rats was evaluated. The sensitivity of the animals to morphine varied at different stages of the estrous cycle. The responses of postpartum and ovariectomized rats to morphine was attenuated. The test doses of estradiol-17 beta or progesterone, either alone or in combination, did not alter this attenuated morphine sensitivity. Testosterone, however, sensitized post-partum as well as ovariectomized rats to morphine. Unlike progesterone, 17-alpha-hydroxy progesterone antagonized testosterone. Collectively these data implicate ovarian testosterone as a physiological modulator of actions of morphine in female rats.

  20. [Bcl-2 expression following the brain concussion in rats].

    PubMed

    Zhu, Xu-yang; Wang, Feng; Fang, Wei-hua; Wu, Mao-wang

    2007-02-15

    To evaluate the expression of Bcl-2 protein after brain concussion. Expression levels of Bel-2 protein in cortex, pontine and cerebellum of rats were investigated using immunohistochemistry. There was no expression of Bcl-2 protein in control group seen. The expression of Bcl-2 protein in brain concussion groups was detected at l hour, and the expression level reached its peak 4 days after the concussion and then declined gradually. Our findings suggest that the detection of Bel-2 protein could be an indicator for diagnosis of brain concussion and for estimation of the post injury time interval.

  1. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  2. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    PubMed Central

    Hansberg-Pastor, Valeria; Piña-Medina, Ana Gabriela; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2015-01-01

    The CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP) with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle. PMID:26064112

  3. Effects of preconceptional gamma irradiation on the development of rat brain.

    PubMed

    Sanová, Stefánia; Bálentová, Sona; Slovinská, Lucia; Misúrová, Eva

    2005-01-01

    We investigated the influence of irradiation of rat males with sublethal dose (3 Gy) of gamma radiation 25 or 80 days before mating with control females on brain development in F1 generation progeny in prenatal and postnatal period. We found out the decrease in mitotic activity and increase in occurrence of chromosomal aberrations (chromosomal bridges) in embryos and brain (hemispheres and little brain) of youngs. Effects transferred to progeny from irradiated spermatids (by irradiation of males of F0 generation 25 days before fertilization) were more marked as effects transferred from irradiated spermatogonia (by irradiation 80 days before fertilization). During embryonic development and early postnatal period, the changes of mitotic index (MI) were gradually less expressive. The incidence of cells with unrepaired DNA damage (chromosomal bridges), however, was high until the end of experiment. These findings we consider as a manifestation of increased genome instability induced in the progeny by paternal irradiation.

  4. Waxholm Space atlas of the Sprague Dawley rat brain

    PubMed Central

    Papp, Eszter A.; Leergaard, Trygve B.; Calabrese, Evan; Johnson, G. Allan; Bjaalie, Jan G.

    2014-01-01

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 µm isotropic voxels for the MRI volume and 78 µm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multilevel data integration and analysis across reference spaces. PMID:24726336

  5. Waxholm Space atlas of the Sprague Dawley rat brain.

    PubMed

    Papp, Eszter A; Leergaard, Trygve B; Calabrese, Evan; Johnson, G Allan; Bjaalie, Jan G

    2014-08-15

    Three-dimensional digital brain atlases represent an important new generation of neuroinformatics tools for understanding complex brain anatomy, assigning location to experimental data, and planning of experiments. We have acquired a microscopic resolution isotropic MRI and DTI atlasing template for the Sprague Dawley rat brain with 39 μm isotropic voxels for the MRI volume and 78 μm isotropic voxels for the DTI. Building on this template, we have delineated 76 major anatomical structures in the brain. Delineation criteria are provided for each structure. We have applied a spatial reference system based on internal brain landmarks according to the Waxholm Space standard, previously developed for the mouse brain, and furthermore connected this spatial reference system to the widely used stereotaxic coordinate system by identifying cranial sutures and related stereotaxic landmarks in the template using contrast given by the active staining technique applied to the tissue. With the release of the present atlasing template and anatomical delineations, we provide a new tool for spatial orientation analysis of neuroanatomical location, and planning and guidance of experimental procedures in the rat brain. The use of Waxholm Space and related infrastructures will connect the atlas to interoperable resources and services for multi-level data integration and analysis across reference spaces. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. General Dissection of Female Ant Reproductive System and Brain

    USDA-ARS?s Scientific Manuscript database

    Dissection of the reproductive system of ant workers and queens can be useful for answering many questions. Observations of ovarian status in both female castes can be used to identify relationships between other factors and the ovaries, determine whether an individual has laid eggs, and, with more ...

  7. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  8. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  9. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  10. EVALUATION OF PERFLUOROOCTANE SULFONATE IN THE RAT BRAIN

    EPA Science Inventory

    Perfluorooctane Sulfonate (PFOS) is an environmentally persistent chemical that has been detected in humans and wildlife. PFOS is primarily distributed in liver and blood. The current study evaluated the level of PFOS in the adult and neonatal rat brain and determined whether t...

  11. Effects of protein malnutrition on oxidative status in rat brain.

    PubMed

    Feoli, Ana M; Siqueira, Ionara R; Almeida, Lúcia; Tramontina, Ana C; Vanzella, Cláudia; Sbaraini, Sabrina; Schweigert, Ingrid D; Netto, Carlos A; Perry, Marcos L S; Gonçalves, Carlos A

    2006-02-01

    This study evaluated the effects of protein malnutrition on oxidative status in rat brain areas. We investigated various parameters of oxidative status, free radical content (dichlorofluorescein formation), indexes of damage to lipid (thiobarbituric acid-reactive substances assay), and protein damage (tryptophan and tyrosine content) in addition to total antioxidant reactivity levels and antioxidant enzyme activities of superoxide dismutase, glutathione peroxidase, and catalase in different cerebral regions (cortex, hippocampus, and cerebellum) from rats subjected to prenatal and postnatal protein malnutrition (control 25% casein and protein malnutrition 7% casein). Protein malnutrition altered various parameters of oxidative stress, especially damage to macromolecules. Free radical content was unchanged by protein malnutrition. There was an increase in levels of thiobarbituric acid-reactive substances, the index of lipid peroxidation, in the cerebellum and cerebral cortex (P < 0.05) from protein-malnourished rats. Moreover, significant decreases in tryptophan and tyrosine in all tested brain structures (P < 0.05) were observed. Catalase activity was significantly decreased in the cerebellum (P < 0.05). In addition, a significant decrease in total antioxidant reactivity levels (P < 0.05) was observed in the cerebral cortex from protein-malnourished rats. The present data indicated that protein malnutrition increased oxidative damage to lipids and proteins from the studied brain areas. These results may be an indication of an important mechanism for changes in brain development that are caused by protein malnutrition.

  12. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  13. Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain

    PubMed Central

    Pradhan, Devaleena S.; Yu, Yan; Soma, Kiran K.

    2010-01-01

    In the songbird brain, dehydroepiandrosterone (DHEA) is metabolized to the active and aromatizable androgen androstenedione (AE) by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD). Thus, brain 3β-HSD plays a key role in regulating the steroidal milieu of the nervous system. Previous studies have shown that stress rapidly regulates brain 3β-HSD activity in a sex-specific manner. To elucidate endocrine regulation of brain 3β-HSD, we asked whether 17β-estradiol (E2) regulates DHEA metabolism in adult zebra finch (Taeniopygia guttata) and whether there are sex-specific effects. Brain tissue was homogenized and centrifuged to obtain supernatant lacking whole cells and cell nuclei. Supernatant was incubated with [3H]DHEA and radioinert E2 in vitro. Within only 10 min, E2 significantly reduced 3β-HSD activity in both male and female brain. Interestingly, the rapid effects of E2 were more pronounced in females than males. These are the first data to show a rapid effect of estrogens on the songbird brain and suggest that rapid estrogen effects differ between male and female brains. PMID:17949414

  14. Latent inhibition is affected by phase of estrous cycle in female rats.

    PubMed

    Quinlan, Matthew G; Duncan, Andrew; Loiselle, Catherine; Graffe, Nicole; Brake, Wayne G

    2010-12-01

    Estrogen has been shown to have a strong modulatory influence on several types of cognition in both women and female rodents. Latent inhibition is a task in which pre-exposure to a neutral stimulus, such as a tone, later impedes the association of that stimulus with a particular consequence, such as a shock. Previous work from our lab demonstrates that high levels of estradiol (E2) administered to ovariectomized (OVX) female rats abolishes latent inhibition when compared to female rats with low levels of E2 or male rats. To determine if this E2-induced impairment also occurs with the natural variations of ovarian hormones during the estrous cycle, this behavior was investigated in cycling female rats. In addition, pre-pubertal male and female rats were also tested in this paradigm to determine if the previously described sex differences are activational or organizational in nature. In a latent inhibition paradigm using a tone and a shock, adult rats were conditioned during different points of the estrous cycle. Rats conditioned during proestrus, a period of high E2 levels, exhibited attenuated latent inhibition when compared to rats conditioned during estrus or metestrus, periods associated with low levels of E2. Moreover, this effect is not seen until puberty indicating it is dependent on the surge of hormones at puberty. This study confirms recent findings that high E2 interferes with latent inhibition and is the first to show this is based in the activational actions of hormones.

  15. Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats.

    PubMed

    Carrier, Nicole; Kabbaj, Mohamed

    2012-05-01

    Affective disorders are twice as likely to occur in women as they are in men suggesting a critical role for gonadal hormones in their etiology. In particular, testosterone has been shown to have protective effects in men. To investigate antidepressant effects and interactions between testosterone and imipramine in socially isolated male and female rats. A chronic social isolation model was used to induce an anxiety and depressive-like state in adult gonadectomized (Gnx) male and ovariectomized (Ovx) female rats receiving chronic testosterone and imipramine treatments. Their anxiety and depression-like behaviors were examined using the light-dark box, elevated plus maze, open field, sucrose preference and novelty induced hypophagia tests. In socially isolated rats, the anxiolytic and antidepressant effects of testosterone and imipramine were limited to male rats. Additionally, testosterone enhanced the neurogenic effect of imipramine on hippocampal cell proliferation in male rats. Although female rats exhibited signs of anxiety and depressive-like behaviors following social isolation, testosterone and/or imipramine administration had no anxiolytic or antidepressant effects in Ovx females. Testosterone and imipramine had anxiolytic and antidepressant effects in socially isolated male, but not female rats. Testosterone enhanced the effect of imipramine on cell proliferation in the hippocampus of male rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Chronic cannabinoid administration to periadolescent rats modulates the metabolic response to acute cocaine in the adult brain.

    PubMed

    Higuera-Matas, Alejandro; Soto-Montenegro, Maria Luisa; Montoya, Gonzalo L; García-Vázquez, Verónica; Pascau, Javier; Miguéns, Miguel; Del Olmo, Nuria; Vaquero, Juan José; García-Lecumberri, Carmen; Desco, Manuel; Ambrosio, Emilio

    2011-06-01

    To analyze brain metabolic response to acute cocaine in male and female Wistar rats with or without a history of cannabinoid exposure during periadolescence. The synthetic cannabinoid agonist CP 55,940 (CP) or its vehicle (VH), were administered to male and female rats during periadolescence. When these animals reached adulthood, saline and cocaine-induced changes in 2-deoxy-2-[¹⁸F]fluoro-D-: glucose (FDG) uptake were studied by positron emission tomography. The baseline (post-saline) metabolism in the septal nuclei was higher in CP-females than in VH-females, although septal metabolism was lower in CP-females after cocaine, reaching similar values to those of VH-females at baseline. Cocaine did not affect metabolism in VH-females. Periadolescent cannabinoid treatment did not influence baseline metabolism in males although cocaine reduced the FDG uptake in the dorsal striatum of males that received the VH but not CP. These results suggest that cannabinoids during periadolescence modify baseline and cocaine-evoked brain metabolism in a sex-dependent manner. In the case of CP-females, the involvement of septal metabolic alterations in their susceptibility to the rewarding effects of cocaine should be further investigated.

  17. Preclinical Abuse Potential Assessment of Flibanserin: Effects on Intracranial Self-Stimulation in Female and Male Rats

    PubMed Central

    Lazenka, Matthew F.; Blough, Bruce E; Negus, S. Stevens

    2016-01-01

    INTRODUCTION Flibanserin is a serotonin receptor subtype 1A (5HT1A) agonist and 2A (5HT2A) antagonist that has been approved by the Food and Drug Administration for treating female sexual interest/arousal disorder. Little is known about the abuse potential of flibanserin. AIM This study examined abuse-related effects of flibanserin in rats using an intracranial self-stimulation (ICSS) procedure that has been used previously to evaluate abuse potential of other drugs. METHODS Adult female and male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for electrical brain stimulation under a “frequency-rate” ICSS procedure. In this procedure, increasing frequencies of brain stimulation maintain increasing rates of responding. Drugs of abuse typically increase (or “facilitate”) ICSS rates and produce leftward/upward shifts in ICSS frequency-rate curves, whereas drugs that lack abuse potential typically do not alter or only decrease ICSS rates. Initial studies determined the potency and time course of effects on ICSS produced by acute flibanserin (1.0, 3.2 and 10.0 mg/kg). Subsequent studies determined effects of flibanserin (3.2–18 mg/kg) before and after a regimen of repeated flibanserin administration (5.6 mg/kg/day x 5 days). Effects of the abused stimulant amphetamine (1.0 mg/kg) were examined as a positive control. MAIN OUTCOME MEASURE Flibanserin effects on ICSS frequency-rate curves in female and male rats were examined and compared to effects of amphetamine. RESULTS Baseline ICSS frequency-rate curves were similar in female and male rats. Both acute and repeated administration of flibanserin produced only decreases in ICSS rates, and rate-decreasing effects of the highest flibanserin dose (10 mg/kg) were greater in females than males. In contrast to flibanserin, amphetamine produced an abuse-related increase in ICSS rates that did not differ between females and males. CONCLUSIONS These results

  18. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience. Published by Elsevier B.V.

  19. FACS purification of immunolabeled cell types from adult rat brain

    PubMed Central

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2011-01-01

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience. PMID:21911005

  20. Effects of magnesium sulfate on traumatic brain edema in rats.

    PubMed

    Feng, Dong-fu; Zhu, Zhi-an; Lu, Yi-cheng

    2004-06-01

    To investigate the effects of magnesium sulfate on traumatic brain edema and explore its possible mechanism. Forty-eight Sprague-Dawley (SD) rats were randomly divided into three groups: Control, Trauma and Treatment groups. In Treatment group, magnesium sulfate was intraperitoneally administered immediately after the induction of brain trauma. At 24 h after trauma, total tissue water content and Na(+), K(+), Ca(2+), Mg(2+) contents were measured. Permeability of blood-brain barrier (BBB) was assessed quantitatively by Evans Blue (EB) dye technique. The pathological changes were also studied. Water, Na(+), Ca(2+) and EB contents in Treatment group were significantly lower than those in Trauma group (P<0.05). Results of light microscopy and electron microscopy confirmed that magnesium sulfate can attenuate traumatic brain injury and relieve BBB injury. Treatment with MgSO4 in the early stage can attenuate traumatic brain edema and prevent BBB injury.

  1. Effects of magnesium administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats.

    PubMed

    Esen, Figen; Erdem, Tulin; Aktan, Damla; Kalayci, Rivaze; Cakar, Nahit; Kaya, Mehmet; Telci, Lutfi

    2003-04-01

    In this study, we examined the effects of magnesium sulfate administration on brain edema and blood-brain barrier breakdown after experimental traumatic brain injury in rats. Seventy-one adult male Sprague-Dawley rats were anesthetized, and experimental closed head trauma was induced by allowing a 450-g weight to fall from a 2-m height onto a metallic disk fixed to the intact skull. Sixty-eight surviving rats were randomly assigned to receive an intraperitoneal bolus of either 750 micromol/kg magnesium sulfate (group 4; n = 30) or 1 mL of saline (group 2; n = 30) 30 minutes after induction of traumatic brain injury; 39 nontraumatized animals received saline (group 1; n = 21) or magnesium sulfate (group 3; n = 18) with an identical protocol of administration. Brain water content and brain tissue specific gravity, as indicators of brain edema, were measured 24 hours after traumatic brain injury. Blood-brain barrier integrity was evaluated quantitatively 24 hours after injury by spectrophotometric assay of Evans blue dye extravasations. In the magnesium-treated injured group, brain water content was significantly reduced (left hemisphere: group 2, 83.2 +/- 0.8; group 4, 78.4 +/- 0.7 [P <.05]; right hemisphere: group 2, 83.1 +/- 0.7; group 4, 78.4 +/- 0.5. [P <.05]) and brain tissue specific gravity was significantly increased (left hemisphere: group 2, 1.0391 +/- 0.0008; group 4, 1.0437 +/- 0.001 [P <.05]; right hemisphere, group 2, 1.0384 +/- 0.001; group 4, 1.0442 +/- 0.005 [P <.05]) compared with the saline-treated injured group. Evans blue dye content in the brain tissue was significantly decreased in the magnesium-treated injured group (left hemisphere: group 2, 0.0204 +/- 0.03; group 4, 0.0013 +/- 0.0002 [P <.05]; right hemisphere: group 2, 0.0064 +/- 0.0009; group 4, 0.0013 +/- 0.0003 [P <.05]) compared with the saline-treated injured group. The findings of the present study support that beneficial effects of magnesium sulfate exist after severe traumatic brain

  2. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: a study in rats.

    PubMed

    Li, Xiu-Juan; Jiang, Li; Chen, Long; Chen, Heng-Sheng; Li, Xin

    2013-09-01

    Dibutyl-phthalate (DBP) is a ubiquitous environmental contaminant. However, its neurotoxic effects on neonatal, immature or mature brains remain unclear. Here, we aimed to investigate the neurotoxicity of perinatal exposure of DBP on rodent offspring animals. Pregnant rats received intragastric DBP (500mg/kg body weight) daily from gestational day (GD) 6 to postnatal day (PND) 21. Animals in the control group received the same volume of edible corn oil. Brain sections or tissues from offspring rats on PND5, PND21 and PND60 were collected for analysis. Histological examination demonstrated that perinatal exposure of DBP resulted in hippocampal neuron loss and structural alternation in neonatal and immature offspring rats (PND5 and PND21), while no significant change was found in mature rats (PND60). DBP exposure induced cell apoptosis in hippocampal neurons of these neonatal and immature animals, as evidenced by the increased number of TUNEL-positive and Annexin V-propidium iodide (PI) positive cells and up-regulated caspase-3 activity. Moreover, DBP exposure decreased the expression of synaptophysin in the hippocampus and reduced both the slope and amplitude of field excitatory postsynaptic potentials (fEPSPs). DBP also impaired the spatial learning and memory of offspring rats. However, no significant difference in the susceptibility to DBP-induced neurotoxicity was found between male and female offspring rats. Our findings indicated that perinatal exposure of DBP could induce neurotoxicity in neonatal and immature offspring animals, but had no influence on mature animals after DBP withdrawal. These results may provide basic experimental evidence for better understanding the neurotoxic effects of DBP on neonatal, immature and mature brains. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood

    PubMed Central

    Markham, Julie A.; Herting, Megan M.; Luszpak, Agatha E.; Juraska, Janice M.; Greenough, William T.

    2009-01-01

    Myelination is an important process in brain development, and delays or abnormalities in this process have been associated with a number of conditions including autism, developmental delay, attention deficit disorder, and schizophrenia. Myelination can be sensitive to developmental experience; however, although the adult brain remains highly plastic, it is unknown whether myelination continues to be sensitive to experience during adulthood. Male and female rats were socially housed until four months of age, at which time they were moved into either a complex or “enriched” environment (EC) or an isolated condition (IC). Although the area of the splenium (posterior 20% of the callosum, which contains axons from visual cortical neurons) increased by about 10% following two months of EC housing, the area occupied by myelinated axons was not influenced by adult housing condition. Instead, it was the area occupied by glial cell processes and unmyelinated axons which significantly increased following EC housing. Neither the size nor the myelin content of the genu (anterior 15% of the callosum) was sensitive to manipulations of adult housing condition, but males had more area occupied by myelinated axons in both callosal regions. Finally, the inability of two months of complex environment housing during adulthood to impact the number of myelinated axons in the splenium was confirmed in a subset of animals using quantitative electron microscopy. We conclude that the sensitivity of myelination to experience is reduced in adulthood relative to development in both sexes. PMID:19596280

  4. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus.

    PubMed

    Tabatadze, Nino; Smejkalova, Tereza; Woolley, Catherine S

    2013-02-01

    Acute 17β-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.

  5. Perinatal manganese exposure and hydroxyl radical formation in rat brain.

    PubMed

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M; Nowak, Przemysław

    2015-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in

  6. Reductions in water and sodium intake by aged male and female rats.

    PubMed

    Begg, Denovan P; Sinclair, Andrew J; Weisinger, Richard S

    2012-11-01

    Aging results in reduced water and sodium intake responses in male rats. Because sex differences exist for water and sodium ingestion of young adult animals, we hypothesized that these sex differences would protect against the diminished water and sodium ingestion of aged female rats. Water and sodium intakes were examined in male and female young adult and aged Brown Norway rats in response to dipsogenic stimuli. Aged rats of both sexes consumed less water than young adult rats in response to 24-h water deprivation, thermal dehydration and hypertonic NaCl injection, but not to peripheral angiotensin II. Aged females consumed more water than males in response to hypertonic NaCl injection. Following sodium depletion, intake of 0.5 M NaCl solution over 2 h was higher in young adult rats than in aged rats. Aged animals had reduced angiotensin receptor 1A (AT(1A)) and atrial natriuretic peptide (ANP) mRNA expression in hypothalamic tissue with no sex differences. These data indicate that female rats are not protected from water and sodium intake deficits that occur in aging and that sex differences in sodium intake in young adult rats are eliminated with aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  8. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice.

    PubMed

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Giatti, Silvia; Caruso, Donatella; Viveros, Maria-Paz; Melcangi, Roberto C; Garcia-Segura, Luis M

    2015-06-01

    Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.

  9. Similar numbers of neurons are generated in the male and female rat preoptic area in utero.

    PubMed

    Orikasa, Chitose; Kondo, Yasuhiko; Usui, Sumiko; Sakuma, Yasuo

    2010-09-01

    The birth date of neurons comprising the sexually dimorphic nucleus of the rat preoptic area (SDN-POA) was determined by bromodeoxyuridine (BrdU) injections at a prescribed time during the embryonic period. Calbindin immunostaining was used as a marker to identity the SDN-POA. The animals were bred from dams injected with BrdU on days 14, 16 or 18 of pregnancy (fertilization defined as day 1). On day 15 after birth (PD), all offspring were euthanized and brain sections were prepared for histology. Neurogenesis in the SDN-POA began around embryonic day (ED) 14 and culminated on ED 18, whereas the preoptic neurons surrounding the SDN-POA generated earlier than did those of the SDN-POA. Although the SDN-POA was significantly larger in males than in females at PD15, the total numbers of neurons comprising the SDN-POA were not significantly different between sexes. Similar aggregates of somatostatin mRNA-positive cells in the central portion of the SDN-POA were observed in both sexes at PD8. On PD15, the aggregates became scattered in males, whereas the aggregates in females remained congested. These data suggest that sexual dimorphism in the SDN-POA results from male-specific postnatal radial spreading of cells rather than cell proliferation during embryonic neurogenesis. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    PubMed Central

    Tews, Björn; Bartsch, Dusan

    2011-01-01

    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system. PMID:22140568

  11. Soy Glyceollins Regulate Transcript Abundance in the Female Mouse Brain

    PubMed Central

    Bamji, Sanaya F.; Page, Robert B.; Patel, Dharti; Sanders, Alexia; Alvarez, Alejandro R.; Gambrell, Caitlin; Naik, Kuntesh; Raghavan, Ashwin M.; Burow, Matthew E.; Boue, Stephen M.; Klinge, Carolyn M.; Ivanova, Margarita; Corbitt, Cynthia

    2015-01-01

    Glyceollins (Gly), produced by soy plants in response to stress, have anti-estrogenic activity in breast and ovarian cancer cell lines in vitro and in vivo. In addition to known anti-estrogenic effects, Gly exhibits mechanisms of action not involving estrogen receptor (ER) signaling. To date, effects of Gly on gene expression in the brain are unknown. For this study, we implanted 17-β estradiol (E2) or placebo slow-release pellets into ovariectomized CFW mice followed by 11 days of exposure to Gly or vehicle i.p. injections. We then performed a microarray on total RNA extracted from whole brain hemispheres and identified differentially expressed genes (DEGs) by a 2 × 2 factorial ANOVA with an FDR = 0.20. In total, we identified 33 DEGs with a significant E2 main effect, 5 DEGs with a significant Gly main effect, 74 DEGs with significant Gly and E2 main effects (but no significant interaction term), and 167 DEGs with significant interaction terms. Clustering across all DEGs revealed that transcript abundances were similar between the E2+Gly and E2-only treatments. However, gene expression after Gly-only treatment was distinct from both of these treatments and was generally characterized by higher transcript abundance. Collectively, our results suggest that whether Gly acts in the brain through ER-dependent or ER-independent mechanisms depends on the target gene. PMID:25953511

  12. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  13. Anesthesia-induced neurodegeneration in fetal rat brains

    PubMed Central

    Wang, Shouping; Peretich, Kelly; Zhao, Yifan; Liang, Ge; Meng, Qingcheng; Wei, Huafeng

    2011-01-01

    Summary We investigated the extent of isoflurane induced neurodegeneration on the fetuses of pregnant rats exposed in utero. Pregnant rats at gestational day 21 were divided into three experimental groups. Rats in the control group spontaneously breathed 100% oxygen for one hour. Rats in the treatment groups breathed either 1.3% or 3% isoflurane in 100% oxygen through an endotracheal tube with mechanical ventilation for one hour. Rat pups were delivered by Caesarian section six hours after treatment and fetal blood was sampled from the left ventricle of each fetal heart and evaluated for S100β. Fetal brains were then evaluated for apoptosis using caspase-3 immunohistochemistry in the CA1 region of the hippocampus and the retrosplenial cortex (RS). The 3% isoflurane treatment group showed significantly higher levels of S100β levels and significantly increased average densities of total caspase-3 positive cells in the CA1 hippocampus and RS cortex as compared to the control and 1.3% isoflurane groups. There were no differences in S100β levels or densities of caspase-3 positive cells between the control and 1.3% isoflurane groups. Isoflurane at a concentration of 3% for one hour increased neurodegeneration in the hippocampal CA1 area and the retrosplenial cortex in the developing brain of fetal rats. PMID:20016413

  14. Evaluation of developmental toxicity of guaifenesin using pregnant female rats.

    PubMed

    Shabbir, Arham; Shamsi, Sadia; Shahzad, Muhammad; Butt, Hajra Ikram; Aamir, Khurram; Iqbal, Javed

    2016-01-01

    Guaifenesin possesses expectorant, muscle relaxant, and anticonvulsive properties. To the best of our knowledge, the promising data regarding the developmental toxicity of guaifenesin are scarce. The current study investigates the developmental toxic effects of guaifenesin in detail using female rats. Twenty-five dams were divided into five groups. Group 1 served as a control, while Group-2, -3, -4, and -5 were administered with 250, 350, 500, and 600 (mg/kg b.w.) doses of guaifenesin, respectively, starting from gestation day 6 to day 17. Half of the total recovered fetuses was subjected to morphologic and morphometric analysis, while other half was subjected to skeletal examination. A significant reduction in maternal weight, and food/water intake, was observed, however, no mortality and morbidity were observed. About 14 dead fetuses were found in Group-3 and -4 each, while 26 in Group 5. Morphological analysis revealed 21.2%, 45.4%, 67.2%, and 86.9% of total fetuses having hemorrhagic spots in Group-2, -3, -4, and -5, respectively. Dropping wrist/ankle and kinky tail were found in Group-4 and -5 only. Morphometric analysis showed a significant decline in fetal weight, full body length, skull length, forelimb length, hindlimb length, and tail length in all guaifenesin treated groups. Skeletal examination displayed that only Group 5 fetuses had increased intercostal space between 7(th) and 8(th) rib. We also observed improper development of carpals, metacarpals, tarsals, and metatarsals of the Group 5 fetuses. Guaifenesin showed a significant developmental toxicity at selected test doses; therefore, a careful use is suggested during pregnancy.

  15. Sleep homeostasis in the female rat during the estrous cycle.

    PubMed

    Schwierin, B; Borbély, A A; Tobler, I

    1998-11-16

    To investigate whether sleep homeostasis in the female rat is modulated by the estrous cycle, the vigilance states, EEG power spectra and cortical temperature (TCRT) were assessed on the basis of 4-day continuous recordings. A regulatory response was elicited by 6-h sleep deprivation (SD) during the proestrous (PRO) and the estrous (EST) day and compared to the baseline recordings. The vigilance states varied across the estrous cycle. In the PRO dark period the amount of sleep was reduced. The decrease in rapid-eye-movement (REM) sleep was already evident towards the end of the preceding light period, and an increased fragmentation of sleep was present throughout PRO. Compared to the other days of the estrous cycle, slow-wave activity (SWA; EEG power density 0.75-4.75 Hz) in nonREM (NREM) sleep was lower in PRO at the end of the light period and in the beginning of the dark period. High-frequency activity (HFA; EEG power density 10.25-25.0 Hz) was increased in the dark period of PRO. The SD performed during the first 6 h of the light period of PRO and EST enhanced SWA in NREM sleep and reduced sleep fragmentation during the subsequent 6 h. The extent and time course of the response to SD did not differ between the two phases of the estrous cycle. It is concluded that despite the marked baseline variations of the vigilance states and the EEG, homeostatic regulation is little affected by the estrous cycle. Copyright 1998 Elsevier Science B.V.

  16. Evaluation of developmental toxicity of guaifenesin using pregnant female rats

    PubMed Central

    Shabbir, Arham; Shamsi, Sadia; Shahzad, Muhammad; Butt, Hajra Ikram; Aamir, Khurram; Iqbal, Javed

    2016-01-01

    Objectives: Guaifenesin possesses expectorant, muscle relaxant, and anticonvulsive properties. To the best of our knowledge, the promising data regarding the developmental toxicity of guaifenesin are scarce. The current study investigates the developmental toxic effects of guaifenesin in detail using female rats. Materials and Methods: Twenty-five dams were divided into five groups. Group 1 served as a control, while Group-2, -3, -4, and -5 were administered with 250, 350, 500, and 600 (mg/kg b.w.) doses of guaifenesin, respectively, starting from gestation day 6 to day 17. Half of the total recovered fetuses was subjected to morphologic and morphometric analysis, while other half was subjected to skeletal examination. Results: A significant reduction in maternal weight, and food/water intake, was observed, however, no mortality and morbidity were observed. About 14 dead fetuses were found in Group-3 and -4 each, while 26 in Group 5. Morphological analysis revealed 21.2%, 45.4%, 67.2%, and 86.9% of total fetuses having hemorrhagic spots in Group-2, -3, -4, and -5, respectively. Dropping wrist/ankle and kinky tail were found in Group-4 and -5 only. Morphometric analysis showed a significant decline in fetal weight, full body length, skull length, forelimb length, hindlimb length, and tail length in all guaifenesin treated groups. Skeletal examination displayed that only Group 5 fetuses had increased intercostal space between 7th and 8th rib. We also observed improper development of carpals, metacarpals, tarsals, and metatarsals of the Group 5 fetuses. Conclusion: Guaifenesin showed a significant developmental toxicity at selected test doses; therefore, a careful use is suggested during pregnancy. PMID:27298495

  17. A cognitive rehabilitation paradigm effective in male rats lacks efficacy in female rats.

    PubMed

    Langdon, Kristopher D; Granter-Button, Shirley; Harley, Carolyn W; Moody-Corbett, Frances; Peeling, James; Corbett, Dale

    2014-10-01

    Cognitive dysfunction, as a consequence of dementia, is a significant cause of morbidity lacking efficacious treatment. Females comprise at least half of this demographic but have been vastly underrepresented in preclinical studies. The current study addressed this gap by assessing the protective efficacy of physical exercise and cognitive activity on learning and memory outcomes in a rat model of vascular dementia. Forty ovariectomized Sprague-Dawley rats (∼6 months old) were exposed to either a diet high in saturated fats and refined sugars or standard laboratory chow and underwent either chronic bilateral carotid occlusion or Sham surgery. Learning and memory abilities were evaluated using standard cognitive outcomes over the ensuing 6 months, followed by histologic analyses of hippocampal CA1 neurons. In Experiment 1, we confirmed hypoperfusion-induced cognitive dysfunction using a 2 × 2 (Surgery × Diet) experimental design, without alterations in hippocampal architecture. In Experiment 2, hypoperfused animals were either exposed to alternating days of physical (wheel running) and cognitive activity (modified Hebb-Williams maze) or sedentary housing. In contrast to males, this combination rehabilitation paradigm did not improve cognition or histopathologic outcomes in hypoperfused animals. These findings, highlighting differences between female and male animals, show the necessity of including both sexes in preclinical experimentation.

  18. Integration of neural networks activated by amphetamine in females with different estrogen levels: a functional imaging study in awake rats.

    PubMed

    Madularu, Dan; Yee, Jason R; Kenkel, William M; Moore, Kelsey A; Kulkarni, Praveen; Shams, Waqqas M; Ferris, Craig F; Brake, Wayne G

    2015-06-01

    Previous studies demonstrate that schizophrenia symptomatology in women is dependent upon estrogen levels. Estrogen has beneficial properties when administered in conjunction with antipsychotics, and estrogen also alters, in rats, dopamine neurotransmission, which is a common target of all antipsychotic medications, suggesting a possible interaction between the two. The aim of the current study was to investigate this possible interaction using functional magnetic resonance imaging in awake, female rats. Amphetamine-sensitized, ovariectomized rats receiving no, chronic low, or phasic high levels of estradiol replacement were used, and changes in blood-oxygen-level-dependent (BOLD) signal were recorded over time in response to an acute amphetamine injection. Increasing levels of estradiol enhanced BOLD activation in pathways previously known to be implicated in schizophrenia symptomatology, such as the mesocorticolimbic, habenular and olfactory pathways, as well as more widespread areas. We propose here the first comprehensive "amphetamine activation map" integrating brain regions where amphetamine-related BOLD activity is influenced by estrogen levels in sensitized female rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Oestradiol and insulin-like growth factor-1 reduce cell loss after global ischaemia in middle-aged female rats.

    PubMed

    Traub, M L; De Butte-Smith, M; Zukin, R S; Etgen, A M

    2009-12-01

    Whereas the ability of oestradiol and insulin-like growth factor (IGF)-1 to afford neuroprotection against ischaemia-induced neuronal death in young female and male rodents is well established, the impact of IGF-1 in middle-aged animals is largely unknown. The present study assessed the efficacy of oestradiol and IGF-1 with respect to reducing neuronal death after transient global ischaemia in middle-aged female rats after 8 weeks of hormone withdrawal. Rats were ovariohysterectomised and implanted 8 weeks later with an osmotic mini-pump delivering IGF-1 or saline into the lateral ventricle. Some rats also received physiological levels of oestradiol by subcutaneous pellet. Two weeks later, rats were subjected to global ischaemia or sham operation. Surviving hippocampal CA1 neurones were quantified. Ischaemia produced massive CA1 cell death compared to sham-operated animals, which was evident at 14 days. Significantly more neurones survived in animals treated with either oestradiol or IGF-1, but simultaneous treatment produced no additive effect. IGF-1, an endogenous growth factor, may be a clinically useful therapy in preventing human brain injury, with neuroprotective equivalence to oestradiol but without the harmful side-effects.

  20. Regional differences in the pituitary distribution of luteinizing hormone in the gonadectomized and proestrous female rat

    EPA Science Inventory

    Previous data have shown regional differences in the presence of anterior pituitary luteinizing hormone (LH) that generally correlate with comparable disparities in the distribution of gonadotropes throughout the gland. In female rats, the differences are apparent over the estro...

  1. Regional differences in the pituitary distribution of luteinizing hormone in the gonadectomized and proestrous female rat

    EPA Science Inventory

    Previous data have shown regional differences in the presence of anterior pituitary luteinizing hormone (LH) that generally correlate with comparable disparities in the distribution of gonadotropes throughout the gland. In female rats, the differences are apparent over the estro...

  2. Female brain size affects the assessment of male attractiveness during mate choice

    PubMed Central

    Corral-López, Alberto; Bloch, Natasha I.; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D.; Mank, Judith E.; Kolm, Niclas

    2017-01-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice. PMID:28345039

  3. Female brain size affects the assessment of male attractiveness during mate choice.

    PubMed

    Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas

    2017-03-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.

  4. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    PubMed

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  5. Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain.

    PubMed

    Sardi, Iacopo; la Marca, Giancarlo; Cardellicchio, Stefania; Giunti, Laura; Malvagia, Sabrina; Genitori, Lorenzo; Massimino, Maura; de Martino, Maurizio; Giovannini, Maria G

    2013-01-01

    Our group recently demonstrated in a rat model that pretreatment with morphine facilitates doxorubicin delivery to the brain in the absence of signs of increased acute systemic toxicity. Morphine and other drugs such as dexamethasone or ondansetron seem to inhibit MDR proteins localized on blood-brain barrier, neurons and glial cells increasing the access of doxorubicin to the brain by efflux transporters competition. We explored the feasibility of active modification of the blood-brain barrier protection, by using morphine dexamethasone or ondansetron pretreatment, to allow doxorubicin accumulation into the brain in a rodent model. Rats were pretreated with morphine (10 mg/kg, i.p.), dexamethasone (2 mg/kg, i.p.) or ondansetron (2 mg/kg, i.p.) before injection of doxorubicin (12 mg/kg, i.p.). Quantitative analysis of doxorubicin was performed by mass spectrometry. Acute hearth and kidney damage was analyzed by measuring doxorubicin accumulation, LDH activity and malondialdehyde plasma levels. The concentration of doxorubicin was significantly higher in all brain areas of rats pretreated with morphine (P < 0.001) or ondansetron (P < 0.05) than in control tissues. The concentration of doxorubicin was significantly higher in cerebral hemispheres and brainstem (P < 0.05) but not in cerebellum of rats pretreated with dexamethasone than in control tissues. Pretreatment with any of these drugs did not increase LDH activity or lipid peroxidation compared to controls. Our data suggest that morphine, dexamethasone or ondansetron pretreatment is able to allow doxorubicin penetration inside the brain by modulating the BBB. This effect is not associated with acute cardiac or renal toxicity. This finding might provide the rationale for clinical applications in the treatment of refractory brain tumors and pave the way to novel applications of active but currently inapplicable chemotherapeutic drugs.

  6. The ontogeny of exploratory behavior in male and female adolescent rats (Rattus norvegicus).

    PubMed

    Lynn, Debra A; Brown, Gillian R

    2009-09-01

    During adolescence, rats gain independence from their mothers and disperse from the natal burrow, with males typically dispersing further than females. We predicted that, if dispersal patterns are associated with responsiveness to novelty, exploratory behavior in novel environments would increase across adolescence, and males would explore more than females. Alternatively, females might explore more than males, if females are more motivated than males to learn about the immediate environment or if females have poorer spatial abilities than males. Twenty-five male and 21 female rats were exposed to two novel environments (open field and elevated plus-maze) during early, mid-, or late adolescence. Total locomotion and amount of exploration directed towards aversive areas increased across adolescence, even when body weight was included as a covariate. Female adolescents locomoted more and spent more time exploring aversive areas than males. Developmental changes in neural function potentially underlie age and sex differences in exploratory behavior.

  7. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  8. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  9. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  10. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  11. Naloxone reverses post-ejaculatory inhibition of sexual behaviour in female rats.

    PubMed

    Forsberg, G; Bednar, I; Eneroth, P; Södersten, P

    1987-06-01

    Sexual receptivity was inhibited in ovariectomized rats treated with oestradiol benzoate (OB: two injections of 2 micrograms) and progesterone (0.5 mg) immediately after ejaculation by the male and restored after the end of the post-ejaculatory refractory period in the male. The post-ejaculatory inhibition of sexual receptivity was reversed by i.p. (5 mg), intracerebroventricular (50 micrograms) or intrathecal (50 micrograms) injection of the opioid peptide receptor antagonist naloxone. The concentration of serum beta-endorphin-like immunoreactivity in ovariectomized rats treated with OB plus progesterone was unaltered by sexual interactions with males (18.3 +/- 6.0 (S.E.M.), 26.4 +/- 2.1 and 21.8 +/- 6.1 pmol/l before sexual activity, after ejaculation and after the end of the post-ejaculatory interval) but reduced to non-detectable by hypophysectomy. Subcutaneous injection of 10 micrograms beta-endorphin raised serum concentrations of beta-endorphin-like immunoreactivity but did not affect the display of sexual behaviour. The behaviour was also unaffected by intracerebroventricular injection of 0.1, 0.2 or 1.0 microgram beta-endorphin or by injections of 0.25 microgram beta-endorphin in the periaqueductal central grey of the mesencephalon. The results show that ejaculation by male rats causes a transient inhibition of sexual receptivity in the female which may be dependent upon opioid peptide receptor mechanisms in the brain and spinal cord. It is unlikely that the peptide is beta-endorphin.

  12. Changes in geometrical and biomechanical properties of immature male and female rat tibia

    NASA Technical Reports Server (NTRS)

    Zernicke, Ronald F.; Hou, Jack C.-H.; Vailas, Arthur C.; Nishimoto, Mitchell; Patel, Sanjay

    1990-01-01

    The differences in the geometry and mechanical properties of immature male and female rat tibiae were detailed in order to provide comparative data for spaceflight, exercise, or disease experiments that use immature rats as an animal model. The experiment focuses on the particularly rapid period of growth that occurs in the Sprague-Dawley rat between 40 and 60 d of age. Tibial length and middiaphysical cross-sectional data were analyzed for eight different groups of rats according to age and sex, and tibial mechanical properties were obtained via three-point bending tests to failure. Results indicate that, during the 15 d period of rapid growth, changes in rat tibial geometry are more important than changes in bone material properties for influencing the mechanical properties of the tibia. Male tibiae changed primarily in structural properties, while in the female rats major changes in mechanical properties of the tibia were only attributable to changes in the structural properties of the bone.

  13. The effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat

    PubMed Central

    Rathbone, L.

    1965-01-01

    1. Three groups of female rats (8–12 weeks old) were maintained respectively on a linoleic acid-rich diet, a linoleic acid-poor predominantly saturated-fatty acid diet and a normal diet. Changes in the fatty acid compositions of serum, brain, brain mitochondria-rich fraction and myelin were observed. 2. Of the serum fatty acids, linoleic acid showed the greatest change in the percentage of the total acids in response to diet; the change in the proportion of oleic acid was considerable. The percentages of arachidonic acid in serum fatty acids in the groups on the linoleic acid-rich and linoleic acid-poor diets were similar, but higher than those in the normal group. 3. Changes in the proportions of linoleic acid, arachidonic acid and docosahexaenoic acid occurred in brain fatty acids that to some extent paralleled those occurring in the serum. Changes in the proportions of most other acids in the serum fatty acids were not accompanied by corresponding changes in the brain fatty acids. 4. The percentage fatty acid compositions of a mitochondria-rich fraction and myelin are given, and changes in the relative proportions of linoleic acid, arachidonic acid and possibly some docosapolyenoic acids were demonstrated to occur as a result of diet. 5. The results are discussed in relation to the possible aetiology of multiple sclerosis. PMID:5881652

  14. Mothers do it differently: reproductive experience alters fear extinction in female rats and women

    PubMed Central

    Milligan-Saville, J S; Graham, B M

    2016-01-01

    Fear extinction is the laboratory basis of exposure therapy for anxiety disorders. Recent findings have revealed that estradiol is necessary to the consolidation of extinction memories in females. These findings are based on studies conducted using virgin rats and young women whose reproductive history is unknown. We hypothesized that motherhood, which results in extensive endocrinological, neurobiological and behavioral changes, may lead to alterations in fear extinction in females. We used a cross-species translational approach to investigate the impact of reproductive experience on fear extinction and fear relapse in female rats (n=116) and women (n=64). Although freezing during extinction recall was associated with estrous cycle phase during extinction training in virgin rats, this association was mitigated in age-matched reproductively experienced rats, even when fear extinction occurred 3 months after pups had been weaned, and even though reproductively experienced rats exhibited attenuated serum estradiol levels. In addition, although serum estradiol levels predicted extinction recall in human women with no prior reproductive experience, no such association was found in women with children. Finally, although virgin rats displayed both renewal and reinstatement after fear extinction, these common relapse phenomena were absent in rats with reproductive experience. Together, these findings suggest that reproductive experience alters the endocrine and behavioral features of fear extinction in females long after the hormonal surges of pregnancy and lactation have diminished. These results highlight the need to incorporate both hormonal and reproductive status as important factors in current models of fear extinction in females. PMID:27779622

  15. Spinal cord processing of cardiac nociception: are there sex differences between male and proestrous female rats?

    PubMed

    Little, Janine M; Qin, Chao; Farber, Jay P; Foreman, Robert D

    2011-09-21

    Sex differences in the characteristics of cardiac pain have been reported from clinical studies. For example, women experience chest pain less frequently than men. Women describe their chest pain as sharp and stabbing, while men have chest pain that is felt as a pressure or heaviness. Pain is also referred to the back more often in women than men. The mechanisms underlying sex differences in cardiac pain are unknown. One possible mechanism for the observed differences could be related to plasma estradiol. This study investigated the actions of estradiol on the activity of T(3) spinal neurons that process cardiosomatic information in male and female rats. Extracellular potentials of T(3) spinal neurons were recorded in response to mechanical somatic stimulation and noxious chemical cardiac stimulation in pentobarbital-anesthetized male and proestrous female rats. Fifty one percent and fifty percent of neurons responded to intrapericardial algogenic chemicals (0.2 ml) in male and female rats, respectively. Somatic fields were located by applying brush, pressure, and pinch to the upper body. Of those neurons receiving cardiac input, 54% in female and 55% in male rats also received somatic input. In both male and female rats, 81% of neurons responding to somatic stimuli had somatic fields located on the side of the upper body, while 19% of neurons had somatic fields located on the chest. These results indicate there are no significant differences in the responses of T(3) spinal neurons to cardiosomatic stimulation between male and proestrous female rats, despite differences in estradiol levels.

  16. Induction of maternal behavior in adult female rats following chronic morphine exposure during puberty.

    PubMed

    Byrnes, Elizabeth M; Rigero, Beth A; Bridges, Robert S

    2003-12-01

    The peripubertal period in the female rat is the time when the stimulatory effects of opioids on prolactin (PRL) secretion develop. In the adult rat, the administration of chronic high-dose morphine has been shown to attenuate the ability of opiates to stimulate PRL secretion. One function of PRL in adult virgin rats is the induction of maternal behavior. The present study examined whether chronic high-dose morphine exposure during the peripubertal period alters PRL-mediated induction of maternal behavior in adult female rats. Two groups of juvenile female rats were administered increasing doses of morphine or vehicle (s.c.) from age 30 to 50 days. As adults, these females either remained intact, or were ovariectomized and treated with a PRL-dependent, steroid hormone regimen that stimulates a rapid onset of maternal behavior. All females were then exposed daily to rat foster pups to determine whether peripubertal morphine exposure affected their latencies to induce maternal behavior. Morphine treatment resulted in a delay in vaginal opening and a temporary reduction in the rate of weight gain; however, the rate of onset of maternal behavior was unaffected by peripubertal morphine treatment. Thus, chronic morphine exposure in the pubertal female did not impact the expression of pup-induced maternal care.

  17. Analysis of c-Fos induction in response to social interaction in male and female Fisher 344 rats.

    PubMed

    Perkins, Amy E; Woodruff, Elizabeth R; Chun, Lauren E; Spencer, Robert L; Varlinskaya, Elena; Deak, Terrence

    2017-10-01

    Sex differences in the expression of social behavior are typically apparent in adolescent and adult rats. While the neurobiology underlying juvenile social play behavior has been well characterized, less is known about discrete brain regions involved in adult responsiveness to a same sex peer. Furthermore, whether adult males and females differ in their responsiveness to a social interaction in terms of neuronal activation indexed via immediate early gene (IEG) expression remains to be determined. Thus, the present study was designed to identify key sites relevant to the processing of sensory stimuli (generally) or social stimuli (specifically) after brief exposure to a same-sex social partner by assessing IEG expression. Four-month-old male and female Fisher (F) 344 rats (N=38; n=5-8/group) were either left undisturbed in their home cage as controls (HCC), exposed to a testing context alone for 30min (CXT), or were placed in the context for 20min and then allowed to socially interact (SI) with a sex-matched conspecific for 10min. Females demonstrated greater levels of social behavior, relative to males. Analysis of c-Fos induction revealed that females exhibited greater c-Fos expression in the prefrontal cortex, regardless of condition. In many brain regions, induction was similar in the CXT and SI groups. However, in the bed nucleus of the stria terminalis (BNST), females exhibited greater c-Fos induction in response to the social interaction relative to their male counterparts, indicating a sex difference in responsivity to social stimuli. Taken together, these data suggest that the BNST is a sexually dimorphic region in terms of activation in response to social stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exposure to a high-fat diet decreases sensitivity to Δ9-tetrahydrocannabinol-induced motor effects in female rats

    PubMed Central

    Wiley, Jenny L.; Jones, Amanda R.; Wright, M. Jerry

    2010-01-01

    Arachidonic acid, a fatty acid component of neuronal cell membranes, forms the backbone of endogenous ligands of the endocannabinoid system. The lipid nature of this system may make it particularly susceptible to changes in fat content of the diet, which may, in turn, affect endocannabinoid tone and subsequent changes in receptor expression or activity. The latter would also be expected to affect responses to exogenous cannabinoids. The purpose of the present study was to determine the effects of a high-fat diet on sensitivity to the pharmacological effects of Δ9-tetrahydrocannabinol (Δ9-THC). Male and female Long-Evans rats were fed either a diet of standard rodent chow or chow enhanced with corn oil. Subsequently, they were repeatedly assessed for Δ9-THC-induced hypomobility, catalepsy and hypothermia. Female rats that received the high fat diet beginning in adolescence or in adulthood became significantly less sensitive to the effects of Δ9-THC on motor behavior, but not its hypothermic effects, with faster development of decreased sensitivity in female rats that began the high-fat diet as adults. In contrast, diet-induced differences either did not occur, or were less pronounced, in male rats of both ages. After acute injection, brain and blood levels of Δ9-THC and its two primary metabolites were similar regardless of diet. Combined with the fact that diet differentially affected only some of the measures, these results suggest that pharmacokinetic differences cannot fully account for the effects of the high-fat diet on response to Δ9-THC. Further, these results suggest that dietary fat content may represent an important consideration in predicting the effects of marijuana in females. PMID:20850461

  19. The sexual preference of female rats is influenced by males' adolescent social stress history and social status.

    PubMed

    McCormick, Cheryl M; Cameron, Nicole M; Thompson, Madison A; Cumming, Mark J; Hodges, Travis E; Langett, Marissa

    2017-03-01

    Ongoing development of brain systems for social behaviour renders these systems susceptible to the influence of stressors in adolescence. We previously found that adult male rats that underwent social instability stress (SS) in mid-adolescence had decreased sexual performance compared with control males (CTL). Here, we test the hypotheses that SS in adolescence decreases the "attractiveness" of male rats as sexual partners compared with CTL rats and that dominance status is a protective factor against the effects of SS. The main prediction was that females would spend more time with CTL males than SS males, and that this bias would be greater for submissive than for dominant rats. Among dominant pairs (n=16), females preferred SS males, spending more time with and visiting more often SS than CTL males (each pair tested 5×), and SS males had shorter latencies to ejaculation, shorter inter-ejaculation intervals, and made more ejaculations compared with CTL males. Among submissive pairs (n=16), females spent more time with, visited more often, and displayed more paracopulatory behaviour with CTL than with SS males, and differences in sexual performance between SS and CTL males were modest and in the opposite direction from that in dominant pairs. The heightened motivation of SS males relative to CTL males for natural rewards may have attenuated differences in sexual performance in a paced mating context. In sum, the experience of stress in adolescence leads to long-lasting changes in males that are perceptible to females, are moderated by social status, and influence sexual behaviour.

  20. [Effect of oxythiamine and pyrithiamine on rat brain--morphological changes in the thiamine deficient rat brain (author's transl)].

    PubMed

    Oguchi, E; Okazaki, M; Hobara, R; Toyoshima, Y; Sakamoto, K

    1978-11-01

    We observed under light and electron microscopes morphological changes in the brains of rats in a thiamine deficient state as induced by an oxythiamine, pyrithiamine and thiamine deficient diet (OT, PT and TDD). We simultaneously determined thiamine levels in the whole brain of rats. The rats were separated into six groups-normal control, OT or PT treated rats (OT or PT group), OT or PT treated rats fed a TDD (OTD or PTD group), rats fed a TDD (TDD group)-. Microscopically, there were symmetrically distributed lesions containing spongy reticulation mainly in the vestibular nucleus. Electron microscopically, we found more advanced lesions in the OTD and PTD groups than in the TDD group. These ultrastructural changes were seen in the vicinity of capillaries and such consisted of abnormal endothelial cells and pericytes, excrescence of microglias, swelling or vacuolation of astrocytes, nerve cells containing distorted organelle and myelin degeneration, besides extracellular edema. The thiamine level in the TDD group decreased to 56% that of control. No effect of OT on the thiamine level was observed either in case of ingestion of a regular diet or when TDD was given. On the other hand, the thiamine level decreased to 43% in the PT group and to 17-23 in PTD. These results suggest that encephalopathy caused by the OT or PT-induced thiamine deficiency has the same selective vulnerable site as does the TDD-induced deficiency, however cellular sensitivity may differ slightly with the various ultrastructural changes.

  1. GESTATIONAL EXPOSURE TO NONYLPHENOL CAUSES PRECOCIOUS MAMMARY GLAND DEVELOPMENT IN FEMALE RAT OFFSPRING

    EPA Science Inventory

    This study examined whether or not exposure to 4-nonylphenol (NP) during late gestation affects reproductive and mammary development in the offspring of female rats. Time pregnant Long Evans rats were gavaged with NP (10 or 100 mg/kg), atrazine (ATR, 100 mg/kg), or corn oil on ge...

  2. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

    USDA-ARS?s Scientific Manuscript database

    Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...

  3. Osteoprotective Effect of Alfacalcidol in Female Rats with Systemic Chronic Inflammation

    USDA-ARS?s Scientific Manuscript database

    Studies have shown that alfacalcidol (a hydroxylated form of vitamin D) mitigates glucocorticoid-induced bone loss. This study was undertaken to explore the mechanism and bone microarchitecture of alfacalcidol in rats with systemic chronic inflammation. Thirty female rats (3-month-old) assigned to ...

  4. GESTATIONAL EXPOSURE TO NONYLPHENOL CAUSES PRECOCIOUS MAMMARY GLAND DEVELOPMENT IN FEMALE RAT OFFSPRING

    EPA Science Inventory

    This study examined whether or not exposure to 4-nonylphenol (NP) during late gestation affects reproductive and mammary development in the offspring of female rats. Time pregnant Long Evans rats were gavaged with NP (10 or 100 mg/kg), atrazine (ATR, 100 mg/kg), or corn oil on ge...

  5. EFFECT OF CONAZOLE FUNGICIDES ON REPRODUCTIVE DEVELOPMENT IN THE FEMALE RAT

    EPA Science Inventory

    Three triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postn...

  6. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  7. Superoxide-dependent hypertension in male and female endothelin B receptor-deficient rats.

    PubMed

    Sullivan, Jennifer C; Pollock, Jennifer S; Pollock, David M

    2006-06-01

    Evidence for endothelin (ET) involvement in the control of fluid volume balance and arterial pressure has been derived in part from the observations that rats lacking the ET(B) receptor develop hypertension when placed on a high-salt (HS) diet. The present study was designed to determine the effect of superoxide on salt-induced hypertension in male and female ET(B)-deficient (sl/sl) and wild-type control (wt) rats. After 14 days on a HS (8% NaCl) diet, female sl/sl rats had significantly elevated arterial pressure (183 +/- 2 mm Hg, tail cuff) compared with female wt rats (134 +/- 2 mm Hg). The response to a HS diet was lower in male sl/sl rats (166 +/- 6 mm Hg) yet was significantly greater than that in male wt controls (135 +/- 3 mm Hg). Separate groups of male and female sl/sl and wt rats were given tempol (1 mM in drinking water) during HS treatment. Arterial pressures were 149 +/- 5 mm Hg in male and 143 +/- 3 mm Hg in female sl/sl rats treated with tempol, values that were similar to those of controls on a normal salt diet. After 14 days, however, male and female sl/ sl rats recovered from the blood pressure-lowering effects of tempol. On Day 15, arterial pressures in female sl/sl rats on a HS diet were 160 +/- 6 mm Hg and 177 +/- 6 mm Hg in tempol-treated and untreated groups, respectively. In male sl/sl rats, arterial pressures were 155 +/- 3 mm Hg and 165 +/- 5 mm Hg in tempol-treated and untreated groups, respectively. On Day 15, no differences among groups with or without tempol were observed in plasma thiobarbituric acid-reactive substance (TBARS) concentrations or in urinary excretion of TBARS. Plasma ET-1 concentrations were significantly higher in female vs. male sl/sl rats. These results indicate that the early stages of salt-dependent hypertension produced by ET(B) receptor deficiency are dependent on superoxide and that the elevated pressure in the female rats may be due to elevated circulating levels of ET-1.

  8. The difference in the metabolism of injected [14c]histamine in male and female rats

    PubMed Central

    Westling, H.

    1958-01-01

    [14C]Histamine was injected subcutaneously in rats. The urine was collected for 24 hr. and analysed for [14C]histamine and its various metabolites. It was found that male rats excreted less unchanged [14C]histamine than female ones, the difference between the sexes existing also when the animals were treated with aminoguanidine. The cause of the sexual difference appeared to be that the male rats had a larger capacity to methylate histamine. PMID:13618558

  9. The antidepressants fluoxetine and bupropion differentially affect proceptive behavior in the naturally cycling female rat.

    PubMed

    Ventura-Aquino, Elisa; Fernández-Guasti, Alonso

    2013-11-01

    Fluoxetine, like other selective serotonin reuptake inhibitors, inhibits women's sexual desire and female rats' sexual behavior. Bupropion produces pro-sexual effects in women with and without depression, and yohimbine increases men's and male rats' sexual motivation, but their effects on female rats' proceptivity are unknown. To investigate the effects of fluoxetine, bupropion, and yohimbine on proceptivity and receptivity in the naturally cycling female rat. We studied the effect of chronic (minimum 14 days) fluoxetine (1.25 mg/kg, subcutaneous) and bupropion (5 mg/kg, intraperitoneal) and acute yohimbine (1 mg/kg, intraperitoneal) on sexual behavior of female rats selected in natural proestrus during an ejaculatory series. We also analyzed the effects of these treatments on locomotor activity. The main outcome measures were frequencies of hops/darts and ear wiggling, lordosis quotient and intensity, and locomotor activity. Fluoxetine inhibited ear wiggling and hopping/darting, while bupropion stimulated hopping/darting. These treatments did not modify the lordosis quotient and its intensity. Yohimbine did not change any aspect of female sexual behavior. At the doses and treatments used, fluoxetine and bupropion did not alter locomotor activity or disturb the length of the estrous cycle; however, yohimbine inhibited locomotor activity. The motivational components of female sexual behavior are more sensitive than the receptive components to the inhibitory actions of fluoxetine. Bupropion selectively stimulated hopping/darting, while yohimbine lacked an action on female sexual behavior. © 2013 International Society for Sexual Medicine.

  10. Human and rat brain lipofuscin proteome

    USDA-ARS?s Scientific Manuscript database

    The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may have yet ...

  11. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  12. Role of allatostatin-like factors from the brain of Tenebrio molitor females.

    PubMed

    Wasielewski, O; Skonieczna, M; Kodrík, D

    2009-08-01

    The effect of brain extract from females of freshly emerged Tenebrio molitor on ovary, oocyte development, total protein content of hemolymph, and ovary was studied in 4-day-old adult mealworm females. Injections of extracts of 2-brain equivalents into intact (unligatured) Tenebrio females did not affect ovarian and oocyte development. Injections of ligated females, however, with 2-brain equivalents on day 1 and 2 after adult emergence strongly inhibited ovarian growth and oocyte development. At day 4, ligated and injected females did not develop their ovaries and pre-vitellogenic oocytes were not found. The changes in ovarian development correlated with an increase in the concentration of soluble proteins in the hemolymph as compared with the saline-injected controls. Additionally, a strong reduction of total protein content in ovarian tissue was observed. Reverse phase HPLC separation of a methanolic brain extract of T. molitor females showed that fraction 5 has a similar retention time to synthetic cockroach allatostatin. Fraction 5 was eluted at 12.88 min, which was closest to the internal standard Dippu-AST I, which eluted at 12.77 min. An ELISA of fraction 5 from the methanolic brain extract using antibodies against allatostatins Grybi-AST A1 and Grybi-AST B1 from cricket Gryllus bimaculatus showed that fraction 5 cross-reacted with Grybi-AST A1 antibodies. The cross-reactivity was similar to the synthetic allatostatin from D. punctata, which was used as a positive control. These observations demonstrate a possible role for allatostatin-like brain factor(s) in regulating the reproductive cycle of Tenebrio molitor.

  13. Alcohol induced changes in phosphoinositide signaling system in rat brain

    SciTech Connect

    Pandey, S.; Piano, M.; Schwertz, D.; Davis, J.; Pandey, G. )

    1991-03-11

    Agonist-induced phosphoinositide break down functions as a signal generating system in a manner similar to the C-AMP system. In order to examine if the changes produced by chronic ethanol treatment on membrane lipid composition and metabolism effect the cellular functions of the neuron, the authors have examined the effect of chronic ethanol exposure on norepinephrine (NE) serotonin (5HT) and calcium ionophore (CI) stimulated phosphoinositide (PI) hydrolysis in rat cortical slices. Rats were maintained on liber-decarli diet alcohol and control liquid diet containing isocaloric sucrose substitute for two months. They were then sacrificed and brain was removed for determination of PI turnover. 5HT stimulated {sup 3}H- inositol monophosphate ({sup 3}H-IPI) formation was significantly lower in the cortex of alcohol treated rats as compared to control rats. However, neither CI nor NE stimulated IP1 formation was significantly different from control rats. The results thus indicate that chronic exposure to ethanol decreases 5HT induced PI breakdown in rat cortex. In order to examine if this decrease is related to a decrease in 5HT2 receptors, or decreased in coupling of receptor to the effector pathway, the authors are currently determining the number and affinity of 5HT2 receptors in alcohol treated rats.

  14. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain.

    PubMed

    Spivey, Jaclyn M; Padilla, Eimeira; Shumake, Jason D; Gonzalez-Lima, F

    2011-01-07

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Regional and sex-related differences in modulating effects of female sex steroids on ecto-5'-nucleotidase expression in the rat cerebral cortex and hippocampus.

    PubMed

    Mitrović, Nataša; Guševac, Ivana; Drakulić, Dunja; Stanojlović, Miloš; Zlatković, Jelena; Sévigny, Jean; Horvat, Anica; Nedeljković, Nadežda; Grković, Ivana

    2016-09-01

    Ecto-5'-nucleotidase (eN), a membrane rate-limiting enzyme of the purine catabolic pathway, catalyzes the conversion of AMP to adenosine involved in the regulation of many brain physiological and pathological processes. Since gender fundamentally determines hormonal milieu in the body and brain, it is reasonable to assume that sex differences in the activity of various signaling systems, including adenosine, may be generated by gonadal steroids. Thus, we examined expression of eN as a component of adenosine signaling system in the basal state in cerebral cortex and hippocampus of male and female rats at gene, protein and functional level, as well as in the state of gonadal hormone deprivation, induced by ovariectomy (OVX), whereas impact of steroid hormones was explored after repeated administration of 17α-estradiol, 17β-estradiol and progesterone for seven consecutive days. Results showed regional and sex-related differences in basal eN activity level, with the highest AMP hydrolysis observed in the hippocampus of male rats. Furthermore, ovarian steroids do not contribute to basal gene eN expression or the activity in cortical and hippocampal region of female rats. However, protein eN expression was increased in OVX rats in both investigated region. Investigated exogenous steroids had no influence on eN expression in male brain, while in OVX females alterations in eN activity were induced. The observed effects in female rats were different between examined regions e.g. in cortex, applied treatments predominantly decreased whereas in hippocampus increased eN activity. Based on the presented results, eN exerts regional and sex-related response in basal state as well as after treatment with female gonadal hormones, however the exact mechanisms of sex steroids actions on eN remain unclear and should be fully explored.

  16. Sorbitol accumulation in male and female rats consuming starch or fructose diets with or without copper

    SciTech Connect

    Lewis, C.G.; Fields, M.; Beal, T. )

    1989-02-09

    The present study was designed to examine the relationship between the sex of the rats, tissue sorbitol accumulation and copper deficiency in rats consuming dietary fructose. Rats were provided with a diet containing either 62.7% fructose or starch, and either 6.0 or 0.6 {mu}g copper/g for three weeks. Hepatic copper concentration of all rats consuming the copper-deficient diets was about 40% of copper sufficient rats. Hepatic, renal and thymic sorbitol concentrations were significantly elevated in males consuming the fructose, copper-deficient diet when compared to all other dietary groups regardless of the sex of the rat. Hepatic, renal the thymic fructose concentrations were significantly higher in rats eating fructose as compared to female rats. Hepatic glucose concentration was higher in males and females consuming the fructose, copper-deficient diet when compared to all other dietary groups. Renal glucose concentration was elevated in males as compared to females. These results demonstrate that the pathology and complications of copper deficiency in the male rat consuming fructose closely parallel aberration in tissue sorbitol accumulation.

  17. Effect of growth hormone and estrogen administration on hepatocyte alterations in old ovariectomized female wistar rats.

    PubMed

    Castillo, Carmen; Salazar, Veronica; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesus A F

    2005-02-01

    Aging could be due to the accumulation of oxidative damage. On the other hand, growth hormone (GH) and estrogen deficiency induce deleterious effects on different tissues, and hormonal replacement could counteract these effects. We have investigated whether GH and estrogen administration modify some parameters related to oxidative stress and inflammation in hepatocytes isolated from old ovariectomized female rats. Twenty-two month-old ovariectomized animals were divided into control rats, rats treated with GH, rats treated with estradiol, and rats treated with GH+estradiol. Two-month-old intact female rats were used as young reference group. Hepatocytes were isolated, cultured, and CO and NO release, ATP, cyclic-guanosyl monophosphate (cGMP), and lipid peroxide (LPO) content of cells, as well as phosphatidylcholine (PC)synthesis, were measured. Hepatocytes isolated from old ovariectomized rats showed a decrease in ATP content and PC synthesis compared to young rats. Age also induced an increase in LPO, NO, CO, and cGMP. Treating old rats with GH significantly increased ATP and reduced CO and cGMP levels. Estradiol administration improved all the parameters that were altered. Co-administration of GH and estrogens induced a more marked effect than estrogens alone only in cGMP content. In conclusion, administration of estrogens to old ovariectomized females seemed to prevent oxidative changes in hepatocytes, whereas the effect of GH is not so evident.

  18. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-09-01

    In comparison to male rodents, females are protected against angiotensin (ANG) II- and aldosterone (Aldo)-induced hypertension. However, the mechanisms underlying this protective effect are not well understood. ANG-(1-7) is formed from ANG II by angiotensin-converting enzyme 2 (ACE2) and has an antihypertensive effect in the central nervous system (CNS). The present study tested the hypothesis that central ANG-(1-7) plays an important protective role in attenuating the development of Aldo/NaCl-hypertension in female rats. Systemic infusion of Aldo into intact female rats with 1% NaCl as their sole drinking fluid resulted in a slight increase in blood pressure (BP). Intracerebroventricular (icv) infusion of A-779, an ANG-(1-7) receptor (Mas-R) antagonist, significantly augmented the pressor effects of Aldo/NaCl. In contrast, systemic Aldo/NaCl induced a significant increase in BP in ovariectomized (OVX) female rats, and central infusion of ANG-(1-7) significantly attenuated this Aldo/NaCl pressor effect. The inhibitory effect of ANG-(1-7) on the Aldo/NaCl pressor effect was abolished by concurrent infusion of A-779. RT-PCR analyses showed that there was a corresponding change in mRNA expression of several renin-angiotensin system components, estrogen receptors and an NADPH oxidase subunit in the lamina terminalis. Taken together these results suggest that female sex hormones regulate an antihypertensive axis of the brain renin-angiotensin system involving ACE2/ANG-(1-7)/Mas-R that plays an important counterregulatory role in protecting against the development of Aldo/NaCl-induced hypertension.

  19. Gonadotropin-inhibitory hormone promoter-driven enhanced green fluorescent protein expression decreases during aging in female rats.

    PubMed

    Soga, Tomoko; Kitahashi, Takashi; Clarke, Iain J; Parhar, Ishwar S

    2014-05-01

    Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.

  20. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  1. Regional development of glutamate dehydrogenase in the rat brain.

    PubMed

    Leong, S F; Clark, J B

    1984-07-01

    The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.

  2. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    PubMed

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  3. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney.

  4. The mate choice brain: comparing gene profiles between female choice and male coercive poeciliids.

    PubMed

    Lynch, K S; Ramsey, M E; Cummings, M E

    2012-03-01

    Genes that mediate mate preferences potentially play a key role in promoting and maintaining biological diversity. In this study, we compare mate preference behavior in two related poeciliid fishes with contrasting behavioral phenotypes and relate these behavioral differences to gene profiles in the brain. Results reveal that one poeciliid fish, the Northern swordtail, exhibits robust mate preference as compared to the Western mosquitofish, which utilizes a coercive mating system. Female swordtails display no significant difference in association time between male- and female-exposure trials, whereas female mosquitofish spend significantly less time associating with males relative to females. Furthermore, the preference strength for large males is significantly lower in female mosquitofish relative to swordtails. We then examine expression of three candidate genes previously shown to be associated with mate preference behavior in female swordtails and linked to neural plasticity in other vertebrates: neuroserpin (NS), neuroligin-3 (NLG-3) and N-methyl-d-aspartate receptor (NMDA-R). Whole brain gene expression patterns reveal that two genes (NS and NLG-3) are positively associated with mate preference behavior in female swordtails, a pattern opposing that of the mosquitofish. In mosquitofish females, these genes are downregulated when females express biases toward males yet are elevated in association with total motor activity patterns under asocial conditions, suggesting that the presence of males in mosquitofish species may inhibit expression of these genes. Both gene expression and female behavioral responses to males exhibit opposing patterns between these species, suggesting that this genetic pathway may potentially act as a substrate for the evolution of mate preference behavior. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  5. Pair housing differentially affects motivation to self-administer cocaine in male and female rats.

    PubMed

    Westenbroek, Christel; Perry, Adam N; Becker, Jill B

    2013-09-01

    Female rats exhibit greater intake and motivation to self-administer cocaine. In females but not males, isolation by itself is a stressor, which could lead to increased drug intake. Therefore, we hypothesized that social housing would buffer against stress and reduce the motivation to self-administer cocaine primarily in females. Male and female Sprague-Dawley rats were housed individually or in same-sex pairs. The individually housed rats and one of each pair were allowed to self-administer (SA) a low dose of cocaine (0.2 mg/kg/inf) on a fixed ratio (FR1) schedule for one week. Motivation for cocaine SA was measured for an additional 2 weeks on a progressive ratio schedule. Isolated females had greater cocaine-intake on the FR1 schedule and greater motivation to take cocaine than males. Pair-housing in females, but not males, attenuated the motivation to take cocaine. Isolated females, but not males, showed escalation of their motivation to take cocaine, which was attenuated by pair housing of females. Concluding, the motivation to take cocaine escalates in females but not males, and pair-housing of females attenuates this escalation.

  6. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  7. The role of odors and ultrasonic vocalizations in female rat (Rattus norvegicus) partner choice.

    PubMed

    Snoeren, Eelke M S; Ågmo, Anders

    2014-11-01

    Intrasexual competition for access to a female mate is believed to be unusual in wild male rats, which suggests that female choosiness could be more important. It has been shown that females spend more time with one male than with others when tested in a multiple partner paradigm. The male of first entry is visited most. The role of ultrasonic vocalizations (USVs) and male odors in the female rat's initial choice to approach one male instead of another are studied in these experiments. In Experiment 1, female rats were allowed to choose between 3 different intact males, whereas in Experiment 2, females could choose between a devocalized male and 2 intact males. Both experiments started with a 15-min period with inaccessible males followed by a 15-min period with accessible males in which the female could copulate with the males of her choice. The results showed that female rats spent more time with the male of first entry over the males visited subsequently. No differences were found in USV subtype patterns emitted by the different males or the time spent sniffing the different males in the period preceding the choice. In addition, the results of Experiment 2 showed that females visited the silent males as much as the vocalizing males. Thus, the present experiments did not offer any evidence suggesting that USVs or individual differences in male odors play any role in female mate choice. Other factors that were not investigated in this study might be involved in female rat mate selection, but it should also be considered that mate selection could be random. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  8. Acute Stress Differentially Affects Aromatase Activity in Specific Brain Nuclei of Adult Male and Female Quail

    PubMed Central

    Cornil, Charlotte A.; Balthazart, Jacques

    2011-01-01

    The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction. PMID:21878510

  9. Brain activation-based sexual orientation in female-to-male transsexuals.

    PubMed

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder.

  10. Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone.

    PubMed

    Holtz, Nathan A; Lozama, Anthony; Prisinzano, Thomas E; Carroll, Marilyn E

    2012-01-01

    Sex differences in methamphetamine (METH) use (females>males) have been demonstrated in clinical and preclinical studies. This experiment investigated the effect of sex on the reinstatement of METH-seeking behavior in rats and determined whether pharmacological interventions for METH-seeking vary by sex. Treatment drugs were modafinil (MOD), an analeptic, and allopregnanolone (ALLO), a neuroactive steroid and progesterone metabolite. Male and female rats were trained to self-administer i.v. infusions of METH (0.05 mg/kg/infusion). Next, rats self-administered METH for a 10-day maintenance period. METH was then replaced with saline, and rats extinguished lever-pressing behavior over 18 days. A multi-component reinstatement procedure followed whereby priming injections of METH (1mg/kg) were administered at the start of each daily session, preceded 30 min by MOD (128 mg/kg, i.p.), ALLO (15 mg/kg, s.c.), or vehicle treatment. MOD was also administered at the onset of the session to determine if it would induce the reinstatement of METH-seeking behavior. Female rats had greater METH-induced reinstatement responding compared to male rats following control treatment injections. MOD (compared to the DMSO control) attenuated METH-seeking behavior in male and female rats; however, ALLO only reduced METH-primed responding in females. MOD alone did not induce the reinstatement of METH-seeking behavior. These results support previous findings that females are more susceptible to stimulant abuse compared to males, and ALLO effectively reduced METH-primed reinstatement in females. Further, results illustrate the utility of MOD as a potential agent for prevention of relapse to METH use in both males and females. Published by Elsevier Ireland Ltd.

  11. Postnatal masculinization alters the HPA axis phenotype in the adult female rat.

    PubMed

    Seale, J V; Wood, S A; Atkinson, H C; Harbuz, M S; Lightman, S L

    2005-02-15

    The ability of postnatal testosterone propionate (TP) to masculinize both behaviour and gonadal cyclicity in the female rat is well documented. We have investigated whether postnatal androgen also has an organizational effect on another sexually dimorphic neuroendocrine system--the hypothalamo-pituitary-adrenal (HPA) axis. Female rats were exposed to a single injection of testosterone propionate (TP) or oil within 24 h of birth. As adults, rats were either ovariectomized and given 17beta-oestradiol replacement (OVXE2) or sham ovariectomized with cholesterol implants (SHOVX). An automated sampling system collected blood from unanaesthetized adult female rats every 10 min over a 24-h period, during a mild psychological stress (noise) and following an immunological lipopolysaccharide stress (LPS). Neonatal TP-treated SHOVX rats had a significant reduction in the number, height, frequency and amplitude of corticosterone pulses over the basal 24-h period, compared to both the neonatal oil-treated and TP-treated OVXE2 animals. The corticosterone response to both noise and LPS was also significantly decreased for the TP-treated SHOVX females. Three hours post-LPS administration, TP females had significantly lower values of paraventricular nucleus (PVN) corticotrophin releasing hormone (CRH), arginine vasopressin (AVP) and anterior pituitary proopiomelanocortin (POMC) mRNAs and greater PVN glucocorticoid receptor (GR) mRNA expression compared to the oil-treated controls. E2 replacement in adult TP rats normalized all the mRNA levels, except for PVN GR mRNA which did fall towards the levels of the oil-control animals. A single injection of TP within 24 h of birth disrupts the development of the characteristic female pattern of corticosterone secretion and the normal female HPA response to stress, resulting in a pattern similar to that seen in males. These effects can be reversed by E2 treatment in the adult TP female rat.

  12. Acute Oral Toxicity of Nitroguanidine in Male and Female Rats

    DTIC Science & Technology

    1988-03-01

    Baker HJ, Lindsey JR, Weisbroth SH, eds. Mycoplasmal and rickettsial diseases. In: The laboratory rat . Volume I. Biology and...were used for Limit Test animals. Pretest conditioning: Cuarantine/acclimation 10-24 Aug 84. Justification: The laboratory rat has proven to be

  13. Neonatal isolation enhances acquisition of cocaine self-administration and food responding in female rats.

    PubMed

    Kosten, Therese A; Sanchez, Hayde; Zhang, Xiang Yang; Kehoe, Priscilla

    2004-05-05

    We showed previously that neonatal isolation (ISO) enhances acquisition of cocaine self-administration in adult male rats without altering acquisition of food responding. Female rats show poorer performance in learning tasks and are differentially affected by stress compared to male rats. Thus, we investigated whether ISO alters acquisition of operant responding for cocaine and food in female rats with comparison to male rats. Litters were subjected to ISO or were non-handled (NH). Activity levels were assessed in adult rats. Then, rats were implanted with jugular catheters and allowed to self-administer cocaine under a fixed-ratio 1 (FR1) schedule of reinforcement using an escalating dose presentation procedure. Cocaine intake, discrimination of active versus inactive levers, and ineffective active lever responses were tabulated. Effects of non-contingent cocaine infusions (primes) and increasing FR on responding were then assessed. Other rats were allowed to lever press for food under an FR1 schedule (10 s time-out). ISO enhanced acquisition of operant responding for food and cocaine in female rats. The latter was demonstrated by better lever discrimination, emission of fewer ineffective responses, and superior performance in response to primes. Yet, NH females ingested more cocaine than ISO females during the initial acquisition phase. In male rats, ISO enhanced acquisition of cocaine self-administration but not food responding. Activity levels were unaffected by ISO or gender. These data confirm and extend our previous findings demonstrating the enduring effects of ISO on adult self-administration behavior and emphasize the importance of measuring behavioral patterns versus intake in acquisition studies.

  14. Food restriction-induced augmentation of heroin seeking in female rats: manipulations of ovarian hormones.

    PubMed

    Sedki, Firas; Gardner Gregory, James; Luminare, Adriana; D'Cunha, Tracey M; Shalev, Uri

    2015-10-01

    Food restriction augments heroin seeking in chronically food-restricted male rats under withdrawal, an effect not yet examined in female rats. Importantly, women and female rats possess an increased vulnerability to drugs of abuse, which may be mediated by fluctuations in ovarian hormones. We investigated the role of estradiol and progesterone in augmented heroin seeking in chronically food-restricted female rats, under withdrawal. Female rats self-administered heroin for 10-12 days and were then allowed unrestricted (sated) or restricted access to food (FDR; ∼10 % reduction in body weight) for 14 days. On day 14, rats underwent a heroin-seeking test. Exp. 1: Rats underwent ovariectomy or sham surgery and were treated with a low dose of estradiol (5.0 % in cholesterol; subcutaneous capsule). Exp. 2: Rats underwent ovariectomy and were administered with a high dose of estradiol (0.5 mg/kg; subcutaneous) for 8 days before testing. Exp. 3: Progesterone injections (2.0 mg/kg; subcutaneous) were administered 24 h and 2 h before testing. Food restriction resulted in augmented heroin seeking, compared to sated controls. While ovariectomy had no effect, estradiol replacement attenuated the food restriction effect. Injections of progesterone had no effect on heroin seeking in either the sated or FDR groups. The effect of food restriction on heroin seeking in female rats under withdrawal is as robust as previously found in males. Interestingly, estradiol replacement, but not progesterone, attenuates the food restriction effect in the ovariectomized rats, possibly due to its anorexic properties.

  15. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    PubMed Central

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  16. Genotoxicity of styrene-acrylonitrile trimer in brain, liver, and blood cells of weanling F344 rats.

    PubMed

    Hobbs, Cheryl A; Chhabra, Rajendra S; Recio, Leslie; Streicker, Michael; Witt, Kristine L

    2012-04-01

    Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer.

  17. Isolation and characterization of intact mitochondria from neonatal rat brain.

    PubMed

    Rajapakse, N; Shimizu, K; Payne, M; Busija, D

    2001-12-01

    Poor outcome after neonatal brain injury may be associated with alterations in mitochondrial function. Thus, isolated mitochondria have been a useful tool in understanding the underlying mechanisms of mitochondrial dysfunction. However, isolation and characterization of mitochondria from neonatal rat brain are not fully described. Thus, the aim of this study was to develop a rapid method for the isolation and characterization of functional mitochondria from neonatal rat brain. Mitochondria were isolated from 7-day-old rat brain weighing approximately 500 mg using a discontinuous Percoll density gradient. Brains were homogenized in 12% Percoll/sucrose buffer and layered onto a 26% Percoll/40% Percoll gradient followed by centrifugation. Four methods were used for assessing mitochondrial integrity and function: (1) electron microscopy to assess the morphology of the mitochondria and to determine the relative purity of the preparation; (2) fluorescence of chloromethyl-X-rosamine (Mito Tracker Red) in mitochondria as an indicator of mitochondrial membrane potential (Delta psi(m)); (3) state 3 and 4 respiration; and (4) protein import into mitochondria using an in vitro-synthesized mitochondrial malate dehydrogenase (mMDH). These studies demonstrated that the morphology of mitochondria is maintained with intact outer membranes and well-developed cristae, and Delta psi(m) is preserved. Respiration measurements revealed tightly coupled mitochondria with a respiration control ratio (RCR) of 4.1+/-0.18 (n=6). Import of precursor mMDH into mitochondria increased in a time-dependent manner maximizing at 15 min. The results indicate that neonatal brain mitochondria isolated using this method are well coupled, morphologically intact and are capable of protein import across the outer and inner mitochondrial membranes.

  18. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    PubMed Central

    Souza, M.F.; Couto-Pereira, N.S.; Freese, L.; Costa, P.A.; Caletti, G.; Bisognin, K.M.; Nin, M.S.; Gomez, R.; Barros, H.M.T.

    2014-01-01

    Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse. PMID:24878606

  19. Differences in Active Avoidance Conditioning in Male and Female Rats with Experimental Anxiety-Depressive Disorder.

    PubMed

    Khlebnikova, N N; Krupina, N A; Kushnareva, E Yu; Orlova, I N

    2015-07-01

    Using rat model of experimental anxiety-depressive disorder caused by postnatal administration of methionyl-2(S)-cyanopyrrolidine, an inhibitor of dipeptidyl peptidase IV, we compared conditioned active avoidance response and memory retention in males and females. In experimental males and females, conditioning was impaired in comparison with the control. In experimental groups, females were worse learners than males, while in control groups, females were better learners than males. Memory retention in experimental animals did not differ from that in controls 24 h after learning. Two months after learning, control females demonstrated better retention than control males.

  20. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury.

    PubMed

    Tulsulkar, Jatin; Ward, Alicia; Shah, Zahoor A

    2017-05-01

    A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1(-/-) intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1(-/-) intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1(-/-) and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain.

    PubMed

    Taylor, Michael D; Erikson, Keith M; Dobson, Allison W; Fitsanakis, Vanessa A; Dorman, David C; Aschner, Michael

    2006-09-01

    Manganese (Mn) is a ubiquitous and essential element that can be toxic at high doses. In individuals exposed to high levels of this metal, Mn can accumulate in various brain regions, leading to neurotoxicity. In particular, Mn accumulation in the mid-brain structures, such as the globus pallidus and striatum, can lead to a Parkinson's-like movement disorder known as manganism. While the mechanism of this toxicity is currently unknown, it has been postulated that Mn may be involved in the generation of reactive oxygen species (ROS) through interaction with intracellular molecules, such as superoxide and hydrogen peroxide, produced within mitochondria. Conversely, Mn is a required component of an important antioxidant enzyme, Mn superoxide dismutase (MnSOD), while glutamine synthetase (GS), a Mn-containing astrocyte-specific enzyme, is exquisitely sensitive to oxidative stress. To investigate the possible role of oxidative stress in Mn-induced neurotoxicity, a series of inhalation studies was performed in neonatal and adult male and female rats as well as senescent male rats exposed to various levels of airborne-Mn for periods of time ranging from 14 to 90 days. Oxidative stress was then indirectly assessed by measuring glutathione (GSH), metallothionein (MT), and GS levels in several brain regions. MT and GS mRNA levels and regional brain Mn concentrations were also determined. The collective results of these studies argue against extensive involvement of ROS in Mn neurotoxicity in rats of differing genders and ages. There are, however, instances of changes in individual endpoints consistent with oxidative stress in certain brain tissues.

  2. Differential expression of sirtuins in the aging rat brain

    PubMed Central

    Braidy, Nady; Poljak, Anne; Grant, Ross; Jayasena, Tharusha; Mansour, Hussein; Chan-Ling, Tailoi; Smythe, George; Sachdev, Perminder; Guillemin, Gilles J.

    2015-01-01

    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of “physiologically” aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging. PMID:26005404

  3. Modifier loci in non-mutant, female Wistar Kyoto rats influence cellular pathogenesis of nephronophthisis in Lewis polycystic kidney rats.

    PubMed

    Yengkopiong, Jada Pasquale; Lako, Joseph Daniel Wani

    2015-09-01

    Genetic modifier loci influence the inheritance of diseases and lead to variability in phenotype progression. We report the influence of modifier loci in female Wistar Kyoto (WKY) rats on cellular pathogenesis of nephronophthisis inherited from Lewis polycystic kidney (LPK) rats. The loci modified cellular expression and progression of nephronophthisis in the backcross 1 (BC1) progeny. Mating experiments to produce BC1 progeny were carried out between three male LPK and seven female WKY rats. Fifteen female rats from the F1 generation were mated with the male LPK rats to produce the BC1 progeny. The rats with cystic kidney disease were identified and histology of the kidneys was carried out. Mapping studies and linkage analysis were carried out to identify the modifier loci. The BC1 progeny were less affected than the LPK strain with respect to disease severity and progression of the kidneys to end stage renal disease. It was found that the mean values of all the disease phenotypes of the mutant BC1 progeny were significantly different from those of the LPK rats, and these segregated with the genotypes of the markers located on chromosomes 5q34-q36 and 7q11-q34, giving maximum LOD scores greater than 3 (p < 0.001).

  4. Mifepristone (RU486) inhibits lateral perforant path long-term potentiation in hippocampal slices from prenatally morphine-exposed female rats.

    PubMed

    Velísek, Libor; Vathy, Ilona

    2005-11-01

    In brain slices from prenatally saline-exposed female rats during proestrus and diestrus, long-term potentiation (LTP) can be induced in the lateral perforant pathway (LPP). Prenatal morphine exposure suppresses LTP induction in the LPP during proestrus. Here we studied synaptic plasticity in the LPP in slices from female rats prenatally exposed to morphine. Two additional factors were investigated: the role of the estrous cycle and role of glucocorticoid receptors. Hippocampal slices were prepared from adult, prenatally saline- or morphine-exposed female rats. One hour prior to decapitation, vaginal smears were obtained and the rats either in proestrus or diestrus were treated with a non-specific glucocorticoid receptor antagonist mifepristone (RU486) or with a vehicle. LPP was stimulated with high-frequency stimulation. Short-tem plasticity (STP) and the induction and maintenance of long-term potentiation (LTP) were assessed. In all groups of prenatally saline-exposed rats, LTP was induced and maintained with the exception of RU486-treated rats during proestrus where the LTP was induced but not maintained. In prenatally morphine-exposed females in diestrus, both STP and LTP were induced after postnatal vehicle treatment. In morphine-exposed, proestrous females, neither STP nor LTP were induced irrespective of the postnatal treatment. Thus, prenatal morphine exposure suppresses the induction of LTP in the LPP, except during diestrus. Data indicate that the induction and maintenance of LTP in the LPP in hippocampal slices from female rats is multifactorial: ovarian steroids and functionality of glucocorticoid receptors cooperation are necessary for induction and maintenance of the LTP, prenatal morphine exposure interferes with this process possibly by its long-term effects on synaptic plasticity.

  5. HEPES prevents edema in rat brain slices.

    PubMed

    MacGregor, D G; Chesler, M; Rice, M E

    2001-05-11

    Brain slices gain water when maintained in bicarbonate-buffered artificial cerebro-spinal fluid (ACSF) at 35 degrees C. We previously showed that this edema is linked to glutamate receptor activation and oxidative stress. An additional factor that may contribute to swelling is acidosis, which arises from high CO2 tension in brain slices. To examine the role of acidosis in slice edema, we added N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) to osmotically balanced ACSF (HEPES-ACSF), thereby increasing buffering capacity beyond that provided by bicarbonate/CO2. Water gain was markedly inhibited in HEPES-ACSF. After 3 h incubation in HEPES-ACSF at 35 degrees C, water gain was limited to that of fresh slices after 1 h recovery in ACSF at room temperature. The effect of HEPES in decreasing slice water gain was concentration dependent from 0.3 to 20 mM. The inhibition of water gain by HEPES suggests that tissue acidosis is a contributing factor in brain slice edema.

  6. Rat brains also have a default mode network

    PubMed Central

    Lu, Hanbing; Zou, Qihong; Gu, Hong; Raichle, Marcus E.; Stein, Elliot A.; Yang, Yihong

    2012-01-01

    The default mode network (DMN) in humans has been suggested to support a variety of cognitive functions and has been implicated in an array of neuropsychological disorders. However, its function(s) remains poorly understood. We show that rats possess a DMN that is broadly similar to the DMNs of nonhuman primates and humans. Our data suggest that, despite the distinct evolutionary paths between rodent and primate brain, a well-organized, intrinsically coherent DMN appears to be a fundamental feature in the mammalian brain whose primary functions might be to integrate multimodal sensory and affective information to guide behavior in anticipation of changing environmental contingencies. PMID:22355129

  7. Spectral and lifetime domain measurements of rat brain tumours

    NASA Astrophysics Data System (ADS)

    Abi Haidar, D.; Leh, B.; Allaoua, K.; Genoux, A.; Siebert, R.; Steffenhagen, M.; Peyrot, D.; Sandeau, N.; Vever-Bizet, C.; Bourg-Heckly, G.; Chebbi, I.; Collado-Hilly, M.

    2012-02-01

    During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

  8. Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats

    PubMed Central

    Normandin, Joseph J.; Murphy, Anne Z.

    2010-01-01

    Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. However, the function of the nPGi in female sexual behavior remains to be elucidated. To this end, male and female rats received bilateral excitotoxic fiber-sparing lesions of the nPGi, and sexual behavior and sexual behavior-induced Fos expression were examined. In males, nPGi lesions facilitated copulation, supporting the hypothesis that the nPGi, and not fibers-of-passage, is the source of descending inhibition of genital reflexes in male rats. nPGi lesions in males did not alter sexual behavior-induced Fos expression in any brain region examined. nPGi-lesioned females spent significantly less time mating with stimulus males and had significantly longer ejaculation-return latencies compared to baseline. These results did not significantly differ from control females, but this trend warranted further analysis of the reinforcing value of sexual behavior. Both lesioned and non-lesioned females formed a conditioned place preference (CPP) for artificial vaginocervical stimulation (aVCS). However, post-reinforcement, nPGi-lesioned females did not differ in the percentage of time in spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation

  9. Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats.

    PubMed

    Normandin, J J; Murphy, A Z

    2011-02-23

    Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. However, the function of the nPGi in female sexual behavior remains to be elucidated. To this end, male and female rats received bilateral excitotoxic fiber-sparing lesions of the nPGi, and sexual behavior and sexual behavior-induced Fos expression were examined. In males, nPGi lesions facilitated copulation, supporting the hypothesis that the nPGi, and not fibers-of-passage, is the source of descending inhibition of genital reflexes in male rats. nPGi lesions in males did not alter sexual behavior-induced Fos expression in any brain region examined. nPGi-lesioned females spent significantly less time mating with stimulus males and had significantly longer ejaculation-return latencies compared to baseline. These results did not significantly differ from control females, but this trend warranted further analysis of the reinforcing value of sexual behavior. Both lesioned and non-lesioned females formed a conditioned place preference (CPP) for artificial vaginocervical stimulation (aVCS). However, post-reinforcement, nPGi-lesioned females did not differ in the percentage of time spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation

  10. Influence of thiouracil-induced hypothyroidism on adrenal and gonadal functions in adult female rats.

    PubMed

    Tohei, A; Imai, A; Watanabe, G; Taya, K

    1998-04-01

    The effect of hypothyroidism on adrenals and gonads in adult female rats was investigated throughout the estrous cycle. Hypothyroidism was induced by administration of 4-Methyl-2-Thiouracil (Thiouracil) in the drinking water. The weight of ovaries and adrenals, and the plasma levels of corticosterone decreased in hypothyroid rats as compared with euthyroid rats throughout the estrous cycle. Hypothyroidism resulted in decreased concentrations of plasma LH on the day of diestrus and proestrus, whereas the plasma concentrations of prolactin and progesterone increased as compared with euthyroid rats. The weight of uteri and plasma concentrations of estradiol decreased during the day of diestrus and proestrus in hypothyroid rats as compared with euthyroid rats. To further clarify the dysfunction of hypothalamo-hypophysial-adrenal axis in hypothyroid rats, animals were stressed by immobilization for 3 hr. In hypothyroid rats, a marked increase in plasma levels of ACTH in response to immobilization stress was observed compared to euthyroid control, whereas increases in plasma concentrations of corticosterone were much smaller in hypothyroid than euthyroid rats. These results clearly indicate that hypothyroidism causes both gonadal and adrenal disturbances in adult female rats. The increased concentrations of plasma progesterone may be due to hypersecretion of prolactin during the day of proestrus and estrus, which in turn result in disruption of the estrous cycle.

  11. Low dose X-irradiation mitigates diazepam induced depression in rat brain.

    PubMed

    Kaur, Amandeep; Singla, Neha; Dhawan, D K

    2016-10-01

    Depression is considered as one of the most prevalent health ailments. Various anti-depressant drugs have been used to provide succour to this ailment, but with little success and rather have resulted in many side effects. On the other hand, low dose of ionizing radiations are reported to exhibit many beneficial effects on human body by stimulating various biological processes. The present study was conducted to investigate the beneficial effects of low doses of X-rays, if any, during diazepam induced depression in rats. Female Sprague Dawley rats were segregated into four different groups viz: Normal control, Diazepam treated, X-irradiated and Diazepam + X-irradiated. Depression model was created in rats by subjecting them to diazepam treatment at a dosage of 2 mg/kg b.wt./day for 3 weeks. The skulls of animals belonging to X-irradiated and Diazepam + X-irradiated rats were X-irradiated with a single fraction of 0.5 Gy, given twice a day for 3 days, thereby delivered dose of 3 Gy. Diazepam treated animals showed significant alterations in the neurobehavior and neuro-histoarchitecture, which were improved after X-irradiation. Further, diazepam exposure significantly decreased the levels of neurotransmitters and acetylcholinesterase activity, but increased the monoamine oxidase activity in brain. Interestingly, X-rays exposure to diazepam treated rats increased the levels of neurotransmitters, acetylcholinesterase activity and decreased the monoamine oxidase activity. Further, depressed rats also showed increased oxidative stress with altered antioxidant parameters, which were normalized on X-rays exposure. The present study, suggests that low dose of ionizing radiations, shall prove to be an effective intervention and a novel therapy in controlling depression and possibly other brain related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Female rats are more susceptible to the deleterious effects of paradoxical sleep deprivation on cognitive performance.

    PubMed

    Hajali, Vahid; Sheibani, Vahid; Esmaeili-Mahani, Saeed; Shabani, Mohammad

    2012-03-17

    Paradoxical sleep deprivation (PSD) may alter subsequent learning and memory capacity. There are differences in both the intensity and direction of responses of the male and female species to the same environmental stimuli and experimental conditions. In the present study, we examined the extent of the effects of PSD for 72h on spatial learning and memory, anxiety-like behavior, corticosterone levels, and the body weight in male as well as in intact and ovariectomized (OVX) female Wistar rats. Multiple platform method was used for PSD induction. Spatial learning and memory and anxiety-like behavior were determined using Morris water maze (MWM) task and open field test, respectively. The data showed that PSD could not significantly affect subsequent spatial learning and short-term memory in male rats, while it significantly impaired the performance of the intact and OVX female rats. The PSD-intact and -OVX female rats showed more memory impairment than the PSD-male animals. Those impairments do not appear to be due to elevated stress level, since the plasma corticosterone did not significantly change following PSD induction. The open field data showed that PSD significantly reduced anxiety-like behavior in all experimental groups. In addition, PSD had a reducing effect on the mean body weight of female groups. Such results suggest that the female rats are more vulnerable to the deleterious effects of sleep loss on cognitive performance.

  13. Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.

    PubMed

    Gao, Qing; Xu, Fei; Jiang, Cui; Chen, Zhifeng; Chen, Huafu; Liao, Huaqiang; Zhao, Ling

    2016-02-01

    Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. A new voxel-based method named functional connectivity density (FCD) mapping was applied to resting-state functional magnetic resonance imaging data of 55 female MWoA patients and 44 age-matched female healthy controls (HC). Comparing to HC, MWoA patients showed abnormal short-range FCD values in bilateral hippocampus, bilateral insula, right amygdale, right anterior cingulate cortex, bilateral putamen, bilateral caudate nucleus and the prefrontal cortex. The results suggested decreased intraregional connectivity of these pain-related brain regions in female MWoA. In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Central Infusion of Angiotensin II Type 2 Receptor Agonist Compound 21 Attenuates DOCA/NaCl-Induced Hypertension in Female Rats

    PubMed Central

    Dai, Shu-Yan; Zhang, Yu-Ping; Peng, Wei; Shen, Ying; He, Jing-Jing

    2016-01-01

    The present study investigated whether central activation of angiotensin II type 2 receptor (AT2-R) attenuates deoxycorticosterone acetate (DOCA)/NaCl-induced hypertension in intact and ovariectomized (OVX) female rats and whether female sex hormone status has influence on the effects of AT2-R activation. DOCA/NaCl elicited a greater increase in blood pressure in OVX females than that in intact females. Central infusion of compound 21, a specific AT2-R agonist, abolished DOCA/NaCl pressor effect in intact females, whereas same treatment in OVX females produced an inhibitory effect. Real-time RT-PCR analysis revealed that DOCA/NaCl enhanced the mRNA expression of hypertensive components including AT1-R, ACE-1, and TNF-α in the paraventricular nucleus of hypothalamus in both intact and OVX females. However, the mRNA expressions of antihypertensive components such as AT2-R, ACE-2, and IL-10 were increased only in intact females. Central AT2-R agonist reversed the changes in the hypertensive components in all females, while this agonist further upregulated the expression of ACE2 and IL-10 in intact females, but only IL-10 in OVX females. These results indicate that brain AT2-R activation plays an inhibitory role in the development of DOCA/NaCl-induced hypertension in females. This beneficial effect of AT2-R activation involves regulation of renin-angiotensin system and proinflammatory cytokines. PMID:26783414

  15. Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats.