Science.gov

Sample records for femo cofactor maturation

  1. Structural studies of the molybdenum site in the MoFe protein and it FeMo cofactor by EXAFS

    SciTech Connect

    Conradson, S.D.; Burgess, B.K.; Newton, W.E.; Mortenson, L.E.; Hodgson, K.O.

    1987-11-25

    Nitrogenase is a complex bacterial enzyme system that is responsible for the conversion of atmospheric N/sub 2/ to ammonia. The structure and function of molybdenum in the MoFe protein of this system has been the subject of a number of investigations, including the use of X-ray absorption spectroscopy. This paper reports the results of the authors recent studies on several states of the MoFe protein and its FeMo cofactor (which is extruded by treatment with N-methylformamide). Mo K-edge (XANES) and extended fine structure (EXAFS) spectra have been recorded to high energies above the absorption edge with excellent signal-to-nose on the semireduced form of the MoFe protein from both Clostridium pasteurianum and Azotobacter vinelandii and on the as isolated FeMo-co and FeMo-co treated with benzenethiol and with benzeneselenol. In all of the states studied, EXAFS results reveal that the Mo is in an environment that contains two or three oxygen (or nitrogen) atoms at 2.10-2.12 A, three to five S atoms at 2.37 A, and three to four Fe atoms at 2.68-2.70 A. The numbers of these ligands change upon removal of the cofactor from the protein as discussed in the paper. For FeMo-co, comparisons also show that thil/selenol is not binding directly to the Mo site. The results of these EXAFS (and their XANES published earlier) definitely show the presence of several low-Z ligands and are not compatible with a tetrahedral arrangement of only nearest S neighbors at the Mo site.

  2. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.

    PubMed

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I; Toci, René; Mendel, Ralf R; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-04

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  3. Sulphur shuttling across a chaperone during molybdenum cofactor maturation

    NASA Astrophysics Data System (ADS)

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I.; Toci, René; Mendel, Ralf R.; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-01

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP—used as a surrogate of the molybdenum cofactor’s nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  4. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.

    PubMed

    Iobbi-Nivol, Chantal; Leimkühler, Silke

    2013-01-01

    Molybdenum cofactor (Moco) biosynthesis is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified in bacteria to date. In molybdoenzymes Mo is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into four general steps in bacteria: 1) formation of the cyclic pyranopterin monophosphate, 2) formation of MPT, 3) insertion of molybdenum into molybdopterin to form Moco, and 4) additional modification of Moco with the attachment of GMP or CMP to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on molybdoenzymes, the biosynthesis of Moco, and its incorporation into specific target proteins focusing on Escherichia coli. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase*

    PubMed Central

    Fritsch, Johannes; Siebert, Elisabeth; Priebe, Jacqueline; Zebger, Ingo; Lendzian, Friedhelm; Teutloff, Christian; Friedrich, Bärbel; Lenz, Oliver

    2014-01-01

    The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster. PMID:24448806

  6. FeMo cofactor of nitrogenase: energetics and local interactions in the protein environment.

    PubMed

    Lovell, Timothy; Li, Jian; Case, David A; Noodleman, Louis

    2002-09-01

    A combined broken-symmetry density functional and continuum electrostatics approach has been applied to the iron-molybdenum center (FeMoco) of nitrogenase to evaluate the energetic effects of the local amino acid environment for several spin alignments of FeMoco. The protein environment preferentially stabilizes certain spin coupling patterns. The lowest energy spin alignment pattern in the protein displays calculated properties that match the experimental data better than any of the alternative possibilities. The total interaction energy of the protein with FeMoco has been evaluated and the contribution of each amino acid residue has been broken down into sidechain and backbone components. Arginine, lysine, aspartate and glutamate sidechains exert the largest electrostatic influence on FeMoco; specific residues are highlighted and their interaction with FeMoco discussed in the context of the available X-ray data from Azotobacter vinelandii (Av). Observed data for the M(N)(resting state)-->M(OX)(one-electron oxidized state) and M(N)-->M(R)(one-electron reduced state) or M(I)(alternative one-electron reduced state) redox couples are compared with those calculated for Av. The calculated redox potentials are fairly insensitive to the spin state of the oxidized or reduced states and the predicted qualitative trend of a more negative redox potential for the more reduced M(N)-->M(R) or M(I) couple is in accord with the available redox data. These calculations represent a first step towards the development of a microscopic model of electron and proton transfer events at the nitrogenase active site.

  7. Radical S-Adenosyl-L-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors

    DOE PAGES

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; ...

    2014-12-04

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. Furthermore, the FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-L-methionine enzymes are vital for the assembly of all three of these diverse cofactors. Here, in this minireview, we present and discuss the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of thesemore » remarkable metal cofactors.« less

  8. Radical S-Adenosyl-L-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors

    SciTech Connect

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; Broderick, Joan B.

    2014-12-04

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. Furthermore, the FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-L-methionine enzymes are vital for the assembly of all three of these diverse cofactors. Here, in this minireview, we present and discuss the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of these remarkable metal cofactors.

  9. Precipitation phase transformation in nanocrystalline Fe-Mo alloys.

    PubMed

    Sarkar, Subhajit; Bansal, Chandrahaas

    2004-01-01

    Precipitation phase transformation was studied in nanocrystalline Fe-rich Fe-Mo alloys with the use of X-ray diffraction and Mössbauer spectroscopy. Alloys up to 5 at% Mo in Fe were synthesized by mechanical alloying and formed in alpha phase bcc solid solutions with average grain sizes in the range of 10-13 nm. The precipitation transformation (alpha-->alpha + lambda) was found to proceed via a Mo clustering that was correlated with the size of the nanograins. This was understood in terms of the Gibbs Thomson effect with a concept of negative surface energy contribution to the Gibbs free energy of mixing in a nanocrystalline alloy with positive internal energy of mixing. This contribution increased the stability of the solid solution for nanosized grains, and the Mo precipitation started once the grains grew beyond a critical size. We argue that the Mo precipitation takes place in the grain boundary regions, and the Mo-rich lambda phase also precipitates directly in the grain boundary regions, in contrast to the microcrystalline alloys, where the Mo clusters formed within the grains and were first dissolved in the Fe matrix before the lambda phase was formed.

  10. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.

    PubMed

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-11-02

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe-V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe-Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme.

  11. Metal and cofactor insertion.

    PubMed

    Mendel, Ralf R; Smith, Alison G; Marquet, Andree; Warren, Martin J

    2007-10-01

    Cells require metal ions as cofactors for the assembly of metalloproteins. Principally one has to distinguish between metal ions that are directly incorporated into their cognate sites on proteins and those metal ions that have to become part of prosthetic groups, cofactors or complexes prior to insertion of theses moieties into target proteins. Molybdenum is only active as part of the molybdenum cofactor, iron can be part of diverse Fe-S clusters or of the heme group, while copper ions are directly delivered to their targets. We will focus in greater detail on molybdenum metabolism because molybdenum metabolism is a good example for demonstrating the role and the network of metals in metabolism: each of the three steps in the pathway of molybdenum cofactor formation depends on a different metal (iron, copper, molybdenum) and also the enzymes finally harbouring the molybdenum cofactor need additional metal-containing groups to function (iron sulfur-clusters, heme-iron).

  12. A new method for extraction of iron-molybdenum cofactor (FeMoco) from nitrogenase adsorbed to DEAE-cellulose. 1. Effects of anions, cations, and preextraction treatments.

    PubMed

    McLean, P A; Wink, D A; Chapman, S K; Hickman, A B; McKillop, D M; Orme-Johnson, W H

    1989-11-28

    A convenient and rapid method of obtaining the cofactor of nitrogenase (FeMoco) with a low and apparently limiting Fe/Mo ratio has been developed. FeMoco can be extracted from the MoFe protein bound to DEAE-cellulose. The cofactor is eluted in either N-methylformamide (NMF), N,N-dimethylformamide (DMF), or mixtures of these solvents by use of salts such as Et4NBr,Bu4NBr,Ph4PCl, and Ph4AsCl. The method is simple, is rapid (45 min), yields concentrated cofactor, and, unlike the original method [Shah, V. K., & Brill, W. J. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3249-3253] which requires anaerobic centrifugation, is easily scaled up. Furthermore, it gives yields of cofactor in excess of 70%. Its disadvantages are a high Fe:Mo ratio when DMF is the extracting solvent and a high salt concentration in the resultant FeMoco solution. These disadvantages are easily overcome by removing excess Fe by pretreating the cofactor with bipyridyl while still on the column. This gives Fe:Mo ratios of (6 +/- 1):1 (11 trials) with specific activities ranging from 170 to 220 nmol of C2H4/[min.(nmol of Mo)]. Chromatography on Sephadex LH-20 removes ca. 99% of the excess salt. The adsorption of MoFe protein to DEAE-cellulose seems to facilitate denaturation by organic solvents so that pretreatment of the protein with acid, used in earlier methods, is unnecessary. There is an apparent dependence on the charge density of the anion employed for elution of FeMoco bound to DEAE-cellulose, such that Cl- greater than Br- much greater than I-, PF6- is the order of effectiveness of the Bu4N+ salts of these anions.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Surface, optical characteristics and photocatalytic ability of Scheelite-type monoclinic Bi3FeMo2O12 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nie, Xinming; Wulayin, Wumitijiang; Song, Tingting; Wu, Minxiao; Qiao, Xuebin

    2016-11-01

    Bi3FeMo2O12 nanoparticles with the Scheelite-type monoclinic structure were prepared by the Pechini synthesis. The Bi3FeMo2O12 nanoparticle has a size of about 50 nm. The phase formation and structural characteristic were studied by X-ray diffraction (XRD) patterns and Rietveld refinements. The Scheelite framework is characterized by a superstructure constructed by the ordered arrangement of Fe/Mo tetrahedral on the B sites. The surface characteristics of Bi3FeMo2O12 nanoparticles were studied by the measurements such as the scanning electron microscope (SEM), the transmission electron microscopy (TEM), and the N2-adsorption-desorption isotherm. Bi3FeMo2O12 nanoparticles present an efficient optical absorption in a wide wavelength region from UV to 540 nm. The band gap energy was decided to be 2.3 eV and characterized by a direct allowed electronic optical transition. The photocatalytic activity of Bi3FeMo2O12 nanoparticles was confirmed by the photodegradation of the rhodamine B (RhB) dye solution. The experiments indicate that the Scheelite-type molybdate could be a potential candidate of a visible-light-driven photocatalyst.

  14. The Molybdenum Cofactor*

    PubMed Central

    Mendel, Ralf R.

    2013-01-01

    The transition element molybdenum needs to be complexed by a special cofactor to gain catalytic activity. Molybdenum is bound to a unique pterin, thus forming the molybdenum cofactor (Moco), which, in different variants, is the active compound at the catalytic site of all molybdenum-containing enzymes in nature, except bacterial molybdenum nitrogenase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also require iron, ATP, and copper. After its synthesis, Moco is distributed, involving Moco-binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. PMID:23539623

  15. The molybdenum cofactor.

    PubMed

    Mendel, Ralf R

    2013-05-10

    The transition element molybdenum needs to be complexed by a special cofactor to gain catalytic activity. Molybdenum is bound to a unique pterin, thus forming the molybdenum cofactor (Moco), which, in different variants, is the active compound at the catalytic site of all molybdenum-containing enzymes in nature, except bacterial molybdenum nitrogenase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also require iron, ATP, and copper. After its synthesis, Moco is distributed, involving Moco-binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms.

  16. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-10-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  17. Biology of the molybdenum cofactor.

    PubMed

    Mendel, Ralf R

    2007-01-01

    The transition element molybdenum (Mo) is an essential micronutrient for plants where it is needed as a catalytically active metal during enzyme catalysis. Four plant enzymes depend on molybdenum: nitrate reductase, sulphite oxidase, xanthine dehydrogenase, and aldehyde oxidase. However, in order to gain biological activity and fulfil its function in enzymes, molybdenum has to be complexed by a pterin compound thus forming the molybdenum cofactor. In this article, the path of molybdenum from its uptake into the cell, via formation of the molybdenum cofactor and its storage, to the final modification of the molybdenum cofactor and its insertion into apo-metalloenzymes will be reviewed.

  18. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect

    Gunning, John E; Laughter, Mark D; March-Leuba, Jose A

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  19. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus

    PubMed Central

    Bhatt, Shiven; Poudel, Saroj; Boyd, Eric S.; Boyd, Jeffrey M.

    2016-01-01

    Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins. PMID:27517714

  20. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Bhatt, Shiven; Poudel, Saroj; Boyd, Eric S; Boyd, Jeffrey M

    2016-08-01

    Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins.

  1. Experimental Investigation and Computer Simulation of Diffusion in Fe-Mo and Fe-Mn-Mo Alloys with Different Optimization Methods

    NASA Astrophysics Data System (ADS)

    Zheng, Weisen; Ågren, John; Lu, Xiao-Gang; He, Yanlin; Li, Lin

    2017-01-01

    In order to simulate the diffusional phase transformations involving the fcc and bcc phases for microalloyed steels, the diffusion mobilities for fcc and bcc Fe-Mo and Fe-Mn-Mo alloys were experimentally investigated and critically assessed. The diffusion-couple technique was employed to extract the interdiffusion coefficients in Fe-Mo and Fe-Mn-Mo alloys with the Sauer-Freise and Whittle-Green methods. Based on the present experimental interdiffsivities, the mobility parameters for the fcc and bcc phases in the Fe-Mo and Fe-Mn-Mo systems were optimized using the traditional method. Simultaneously, a direct method was developed and utilized to directly fit mobilities to the diffusion profiles rather than the diffusivities in the present work. The satisfactory description of the diffusion behavior in the Fe-Mo and Fe-Mn-Mo systems has confirmed the reliability of the direct method. Particularly, the two sets of diffusion mobilities obtained with both methods could simulate the diffusion phenomenon between the fcc and bcc phases in the Fe-Mo and Fe-Mn-Mo systems successfully.

  2. The Inflammatory Response to Femoral Arterial Closure Devices: A Randomized Comparison Among FemoStop, AngioSeal, and Perclose

    SciTech Connect

    Jensen, Jens Saleh, Nawzad; Jensen, Ulf; Svane, Bertil; Joensson, Anders; Tornvall, Per

    2008-07-15

    The objectives of this study were to investigate whether the systemic inflammatory response differs, in patients undergoing coronary angiography, among the arterial closure devices FemoStop, AngioSeal, and Perclose. The study is a prospective and randomized study. We measured pre- and postprocedural C-reactive protein (CRP), fibrinogen, and interleukin-6 (IL-6) plasma levels and collected clinical and procedural data on 77 patients who underwent coronary angiography because of stable angina pectoris. Patients were randomized to the following device: FemoStop (mechanical compression), AngioSeal (anchor and collagen sponge), or Perclose (nonabsorbable suture). No patient group experienced an increased incidence of vascular complications. There were no differences among the three groups regarding CRP, fibrinogen, or IL-6 values before or after coronary angiography. IL-6 levels increased 6 h after the procedure in all groups (p < 0.01), however, the increase did not differ among the groups. After 30 days there were no increased values of CRP or fibrinogen. We conclude that the femoral arterial closure devices AngioSeal and Perclose do not enhance an inflammatory response after a diagnostic coronary angiography, measured by CRP, fibrinogen, and IL-6, compared to femoral arterial closure using a mechanical compression device.

  3. Ab initio study of energetics and magnetism of sigma phase in Co-Mo and Fe-Mo systems

    NASA Astrophysics Data System (ADS)

    Pavlů, J.; Vřešťál, J.; Šob, M.

    2016-02-01

    We analyse, from first-principles, the energetics and magnetic ordering of sigma phases in Co-Mo and Fe-Mo systems. Total energy differences between the sigma phase and Standard Element Reference (SER) structures are calculated in the whole concentration range at equilibrium volumes by means of the linear muffin-tin orbitals method in the atomic-sphere approximation (LMTO-ASA), the full-potential linearised augmented-plane waves (FLAPW) method and the pseudopotential approach. They are compared with the enthalpy of formation of sigma phase obtained from the phase equilibria calculations at higher temperature based on the semiempirical CALPHAD (CALculation of PHAse Diagram) method. It turns out that the binary sigma phases are more stable than the weighted average of the sigma phase of elemental constituents and that this stability for Fe-Mo is higher than for Co-Mo. On the other hand it was found that the binary sigma phases do not exhibit any stability with respect to the weighted average of the SER structures. The magnetic configurations in all systems are investigated and the stabilizing effect of magnetic order in sigma phase at 0 K is presented. It turns out that the atomic magnetic moment strongly depends on the type of occupied sublattice and total composition of the alloy.

  4. Recognition of enzymes lacking bound cofactor by protein quality control

    PubMed Central

    Martínez-Limón, Adrián; Alriquet, Marion; Lang, Wei-Han; Calloni, Giulia; Wittig, Ilka; Vabulas, R. Martin

    2016-01-01

    Protein biogenesis is tightly linked to protein quality control (PQC). The role of PQC machinery in recognizing faulty polypeptides is becoming increasingly understood. Molecular chaperones and cytosolic and vacuolar degradation systems collaborate to detect, repair, or hydrolyze mutant, damaged, and mislocalized proteins. On the other hand, the contribution of PQC to cofactor binding-related enzyme maturation remains largely unexplored, although the loading of a cofactor represents an all-or-nothing transition in regard to the enzymatic function and thus must be surveyed carefully. Combining proteomics and biochemical analysis, we demonstrate here that cells are able to detect functionally immature wild-type enzymes. We show that PQC-dedicated ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP) recognizes and marks for degradation not only a mutant protein but also its wild-type variant as long as the latter remains cofactor free. A distinct structural feature, the protruding C-terminal tail, which appears in both the mutant and wild-type polypeptides, contributes to recognition by CHIP. Our data suggest that relative insufficiency of apoprotein degradation caused by cofactor shortage can increase amyloidogenesis and aggravate protein aggregation disorders. PMID:27733512

  5. Safety and efficacy of femoral artery closure with the FemoSeal(R) device after coronary angiography using a 7 French sheath.

    PubMed

    Wanitschek, M M; Suessenbacher, A; Dörler, J; Pachinger, O; Moes, N; Alber, H F

    2011-09-01

    Post-cardiac catheterization femoral artery hemostasis can be accomplished with several mechanisms, including the FemoSeal® hemostasis device which has been designed and approved for closure of 6 French (F) arterial puncture sites. The aim of this study was to investigate whether the FemoSeal® vascular closure device can effectively and safely seal 7F arterial puncture sites after diagnostic and interventional cardiac catheterizations. Femoral artery puncture sites of 50 consecutive patients undergoing cardiac catheterization were closed with the FemoSeal® vascular closure device, according to the manufacturer's instructions. Efficacy endpoints were time to hemostasis and successful ambulation. Safety endpoints included bleeding complications, vessel occlusion and pseudoaneurysms. Mean time to hemostasis was 57.8±26.3 seconds (0-125 seconds). Hemostasis was achieved in 100 percent of the 50 patients. One patient suffered minor bleeding the next day, i.e. local hematoma. This clinical study demonstrates that the FemoSeal® vascular closure device, initially approved for closure of 6F arterial puncture sites, shows promising efficacy and safety to seal a larger (7F) femoral arterial puncture sites after diagnostic and interventional cardiac catheterizations.

  6. Cofactor engineering for advancing chemical biotechnology.

    PubMed

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.

  7. Molybdenum cofactor and human disease.

    PubMed

    Schwarz, Guenter

    2016-04-01

    Four molybdenum-dependent enzymes are known in humans, each harboring a pterin-based molybdenum cofactor (Moco) in the active site. They catalyze redox reactions using water as oxygen acceptor or donator. Moco is synthesized by a conserved biosynthetic pathway. Moco deficiency results in a severe inborn error of metabolism causing often early childhood death. Disease-causing symptoms mainly go back to the lack of sulfite oxidase (SO) activity, an enzyme in cysteine catabolism. Besides their name-giving functions, Mo-enzymes have been recognized to catalyze novel reactions, including the reduction of nitrite to nitric oxide. In this review we cover the biosynthesis of Moco, key features of Moco-enzymes and focus on their deficiency. Underlying disease mechanisms as well as treatment options will be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineering redox balance through cofactor systems.

    PubMed

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. High resistive nanocrystalline Fe-M-O (M=Hf, Zr, rare-earth metals) soft magnetic films for high-frequency applications (invited)

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Makino, A.; Fujimori, H.; Inoue, A.

    1997-04-01

    Microstructure, soft magnetic properties, and applications of high resistive Fe-M-O (M=Hf, Zr, rare-earth metals) were studied. The Fe-M-O films are composed of bcc nanograins and amorphous phases with larger amounts of M and O elements which chemically combine each other. Consequently, the amorphous phases have high electrical resistivity. The compositional dependence of magnetic properties, electrical resistivity, and structure have been almost clarified. For example, the high magnetization of 1.3 T, high permeability of 1400 at 100 MHz and the high electrical resistivity of 4.1 μΩ m are simultaneously obtained for as-deposited Fe62Hf11O27 nanostructured film fabricated by rf reactive sputtering in a static magnetic field. Furthermore, Co addition to Fe-M-O films improves the frequency characteristics mainly by the increase in the crystalline anisotropy of the nanograins. The Co44.3Fe19.1Hf14.5O22.1 film exhibits the quality factor (Q=μ'/μ'') of 61 and the μ' of 170 at 100 MHz as well as the high Is of 1.1 T. This frequency characteristics is considered to be superior to the other films already reported. The films also exhibit high corrosion resistance in an isotonic sodium chloride solution. Therefore, these films enable us to realize the high-frequency magnetic devices, such as thin-film inductors and transformers for microswitching converters and ultrahigh-density recording heads.

  10. Inhibition of chymotrypsin by heparin cofactor II.

    PubMed Central

    Church, F C; Noyes, C M; Griffith, M J

    1985-01-01

    Human heparin cofactor II is a plasma protein that is known to inhibit thrombin. The rate of thrombin inhibition by heparin cofactor II is accelerated (greater than or equal to 1000-fold) in the presence of the glycosaminoglycans, heparin and dermatan sulfate. We have found that chymotrypsin A alpha is also inhibited by heparin cofactor II with a second-order rate constant value of 1.8 X 10(6) M-1 X min-1 at pH 8.0 and 25 degrees C. However, there was no measurable effect of heparin or dermatan sulfate on the rate of chymotrypsin inhibition. Arginine-modified heparin cofactor II showed a comparable percentage loss of both antichymotrypsin and antithrombin activities. Heparin cofactor II and chymotrypsin formed a stable complex with a Mr value near 90,000 when analyzed by NaDodSO4/polyacrylamide gel electrophoresis; this suggests a 1:1 reaction stoichiometry. The chymotrypsin cleavage site in heparin cofactor II was the same as that for thrombin, and primary structure analysis of the inhibitor showed a P'1-P'8 sequence of Ser-Thr-Gln-Val-Arg-Phe-Thr-Val ... . The results indicate that, in contrast to alpha 1-antichymotrypsin, which does not inhibit trypsin-like enzymes, including thrombin, heparin cofactor II can effectively inhibit both thrombin and chymotrypsin. PMID:3863104

  11. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  12. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  13. Cofactor engineering for more efficient production of chemicals and biofuels.

    PubMed

    Wang, Meng; Chen, Biqiang; Fang, Yunming; Tan, Tianwei

    2017-09-20

    Cofactors are involved in numerous intracellular reactions and critically influence redox balance and cellular metabolism. Cofactor engineering can support and promote the biocatalysis process, even help driving thermodynamically unfavorable reactions forwards. To achieve efficient production of chemicals and biofuels, cofactor engineering strategies such as altering cofactor supply or modifying reactants' cofactor preference have been developed to maintain redox balance. This review focuses primarily on the effects of cofactor engineering on carbon and energy metabolism. Coupling carbon metabolism with cofactor engineering can promote large-scale production, and even offer possibilities for producing new products or converting new materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High resistive nanocrystalline Fe-M-O (M=Hf, Zr, rare-earth metals) soft magnetic films for high-frequency applications (invited)

    SciTech Connect

    Hayakawa, Y.; Makino, A.; Fujimori, H.; Inoue, A.

    1997-04-01

    Microstructure, soft magnetic properties, and applications of high resistive Fe-M-O (M=Hf, Zr, rare-earth metals) were studied. The Fe-M-O films are composed of bcc nanograins and amorphous phases with larger amounts of M and O elements which chemically combine each other. Consequently, the amorphous phases have high electrical resistivity. The compositional dependence of magnetic properties, electrical resistivity, and structure have been almost clarified. For example, the high magnetization of 1.3 T, high permeability of 1400 at 100 MHz and the high electrical resistivity of 4.1 {mu}{Omega}m are simultaneously obtained for as-deposited Fe{sub 62}Hf{sub 11}O{sub 27} nanostructured film fabricated by rf reactive sputtering in a static magnetic field. Furthermore, Co addition to Fe-M-O films improves the frequency characteristics mainly by the increase in the crystalline anisotropy of the nanograins. The Co{sub 44.3}Fe{sub 19.1}Hf{sub 14.5}O{sub 22.1} film exhibits the quality factor (Q={mu}{sup {prime}}/{mu}{sup {prime}{prime}}) of 61 and the {mu}{sup {prime}} of 170 at 100 MHz as well as the high Is of 1.1 T. This frequency characteristics is considered to be superior to the other films already reported. The films also exhibit high corrosion resistance in an isotonic sodium chloride solution. Therefore, these films enable us to realize the high-frequency magnetic devices, such as thin-film inductors and transformers for microswitching converters and ultrahigh-density recording heads. {copyright} {ital 1997 American Institute of Physics.}

  15. Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6

    NASA Astrophysics Data System (ADS)

    Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.

    2016-01-01

    The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.

  16. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  17. Molybdenum Enzymes, Cofactors, and Model Systems.

    ERIC Educational Resources Information Center

    Burgmayer, S. J. N; Stiefel, E. I.

    1985-01-01

    Discusses: (l) molybdoenzymes (examining their distribution and metabolic role, composition and redox strategy, cofactors, substrate reactions, and mechanistic possibilities); (2) structural information on molybdenum (Mo) centers; (3) modeling studies (Mo-co models, nitrogenase models, and the MO-S duo); and (4) the copper-molybdenum antagonism.…

  18. Molybdenum Enzymes, Cofactors, and Model Systems.

    ERIC Educational Resources Information Center

    Burgmayer, S. J. N; Stiefel, E. I.

    1985-01-01

    Discusses: (l) molybdoenzymes (examining their distribution and metabolic role, composition and redox strategy, cofactors, substrate reactions, and mechanistic possibilities); (2) structural information on molybdenum (Mo) centers; (3) modeling studies (Mo-co models, nitrogenase models, and the MO-S duo); and (4) the copper-molybdenum antagonism.…

  19. Improvement of the photocatalytic properties of TiO2 by (Fe+Mo) co-doping—A possible way to retard the recombination process

    NASA Astrophysics Data System (ADS)

    Guo, Junbo; Gan, Zhanghua; Lu, Zhihong; Liu, Jing; Xi, Jingjing; Wan, Yang; Le, Lin; Liu, Hailin; Shi, Jing; Xiong, Rui

    2013-09-01

    Low visible light absorption and high charge carrier recombination rate are two main disadvantages of TiO2 as a photocatalyst which severely limit its practical applications. To overcome the problems, Fe mono-doped and (Fe+Mo) co-doped TiO2 were synthesized and studied. It was found that (Fe+Mo) co-doping can further increase the visible absorption and improve the photocatalytic property of TiO2 compared with Fe mono-doping; Fe mono-doping improves the photocatalytic property of TiO2 only at very low doping level (Fe concentration less than 1.0%), while by co-doping a small amount of Mo with Fe, the effective doping concentration of Fe can be pushed to a higher level and the photocatalytic property of TiO2 can be further improved. Photoluminescence spectra indicated that Mo dopant may play a role in retarding the recombination process when co-doped into TiO2 with Fe. The mechanism behind was discussed. It was suggested that doping a small amount of Mo into Fe-TiO2 might be an efficient way to further improve the photocatalytic property of Fe-TiO2 without losing its photocatalytic specificity.

  20. Identification of a Bis-molybdopterin Intermediate in Molybdenum Cofactor Biosynthesis in Escherichia coli*

    PubMed Central

    Reschke, Stefan; Sigfridsson, Kajsa G. V.; Kaufmann, Paul; Leidel, Nils; Horn, Sebastian; Gast, Klaus; Schulzke, Carola; Haumann, Michael; Leimkühler, Silke

    2013-01-01

    The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo–S and Mo–O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme. PMID:24003231

  1. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli.

    PubMed

    Reschke, Stefan; Sigfridsson, Kajsa G V; Kaufmann, Paul; Leidel, Nils; Horn, Sebastian; Gast, Klaus; Schulzke, Carola; Haumann, Michael; Leimkühler, Silke

    2013-10-11

    The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo-S and Mo-O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme.

  2. A survey of synthetic nicotinamide cofactors in enzymatic processes.

    PubMed

    Paul, Caroline E; Hollmann, Frank

    2016-06-01

    Synthetic nicotinamide cofactors are analogues of the natural cofactors used by oxidoreductases as redox intermediates. Their ability to be fine-tuned makes these biomimetics an attractive alternative to the natural cofactors in terms of stability, reactivity, and cost. The following mini-review focuses on the current state of the art of those biomimetics in enzymatic processes.

  3. Biosynthesis and Insertion of the Molybdenum Cofactor.

    PubMed

    Magalon, Axel; Mendel, Ralf R

    2015-01-01

    The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.

  4. Protocols for cofactor isolation of nitrogenase.

    PubMed

    Fay, Aaron W; Lee, Chi-Chung; Wiig, Jared A; Hu, Yilin; Ribbe, Markus W

    2011-01-01

    The iron-molybdenum cofactor (FeMoco) of the nitrogenase MoFe protein has remained a focal point in the field of bioinorganic chemistry for decades. This unique metal cluster has long been regarded as the actual site of dinitrogen reduction, and it is structurally complex and chemically unprecedented. A detailed characterization of the isolated FeMoco is crucial for elucidating the physiochemical properties of this biologically important cofactor. Such a study requires an effective technique to extract FeMoco intact, and in high yield, from the MoFe protein. A method involving the acid treatment of the MoFe protein and the subsequent extraction of FeMoco into an organic solvent was developed over 30 years ago and has been improved upon ever since. FeMoco isolated by this strategy is catalytically active and spectrally interesting, which provides a useful platform for future structure-function analyses of this unique cofactor. A general working protocol for FeMoco isolation is described in this chapter, along with some of the major modifications reported in the past years.

  5. Recent trends and novel concepts in cofactor-dependent biotransformations.

    PubMed

    Kara, Selin; Schrittwieser, Joerg H; Hollmann, Frank; Ansorge-Schumacher, Marion B

    2014-02-01

    Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.

  6. Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge.

    PubMed

    Bjornsson, Ragnar; Neese, Frank; DeBeer, Serena

    2017-02-06

    Despite decades of research, the structure-activity relationship of nitrogenase is still not understood. Only recently was the full molecular structure of the FeMo cofactor (FeMoco) revealed, but the charge and metal oxidation states of FeMoco have been controversial. With the recent identification of the interstitial atom as a carbide and the more recent revised oxidation-state assignment of the molybdenum atom as Mo(III), here we revisit the Mössbauer properties of FeMoco. By a detailed error analysis of density functional theory-computed isomer shifts and computing isomer shifts relative to the P-cluster, we find that only the charge of [MoFe7S9C](1-) fits the experimental data. In view of the recent Mo(III) identification, the charge of [MoFe7S9C](1-) corresponds to a formal oxidation-state assignment of Mo(III)3Fe(II)4Fe(III), although due to spin delocalization, the physical oxidation state distribution might also be interpreted as Mo(III)1Fe(II)4Fe(2.5)2Fe(III), according to a localized orbital analysis of the MS = 3/2 broken symmetry solution. These results can be reconciled with the recent spatially resolved anomalous dispersion study by Einsle et al. that suggests the Mo(III)3Fe(II)4Fe(III) distribution, if some spin localization (either through interactions with the protein environment or through vibronic coupling) were to take place.

  7. PBX proteins: much more than Hox cofactors.

    PubMed

    Laurent, Audrey; Bihan, Réjane; Omilli, Francis; Deschamps, Stéphane; Pellerin, Isabelle

    2008-01-01

    Pre-B cell leukaemia transcription factors (PBXs) were originally identified as Hox cofactors, acting within transcriptional regulation complexes to regulate genetic programs during development. Increasing amount of evidence revealed that PBX function is not restricted to a partnership with Hox or homeodomain proteins. Indeed, PBXs are expressed throughout murine embryonic development and are involved in several developmental pathways including Hox-independent mechanisms. This review summarizes what is known about PBX partnerships and proposes to position PBXs as central developmental factors whose role consists of integrating transduction signals, in order to regulate gene expression programs during development.

  8. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples

    PubMed Central

    Jordan, Frank; Patel, Hetalben

    2013-01-01

    This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 1017-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available. PMID:23914308

  9. Caenorhabditis elegans UBX cofactors for CDC-48/p97 control spermatogenesis.

    PubMed

    Sasagawa, Yohei; Yamanaka, Kunitoshi; Saito-Sasagawa, Yuko; Ogura, Teru

    2010-12-01

    UBX (ubiquitin regulatory X) domain-containing proteins act as cofactors for CDC-48/p97. CDC-48/p97 is essential for various cellular processes including retro-translocation in endoplasmic reticulum-associated degradation, homotypic membrane fusion, nuclear envelope assembly, degradation of ubiquitylated proteins, and cell cycle progression. CDC-48/p97-dependent processes are determined by differential binding of cofactors including UBX proteins, but the cellular functions of UBX proteins have not yet been elucidated, especially in multicellular organisms. Therefore, we investigated the functions of UBX family members using Caenorhabditis elegans, which expresses six UBX proteins, UBXN-1 to UBXN-6. All six UBXN proteins directly interacted with CDC-48.1 and CDC-48.2, and simultaneous knockdown of the expression of three genes, ubxn-1, ubxn-2 and ubxn-3, induced embryonic lethal and sterile phenotypes, but knockdown of either one or two did not. The sterile worms had a feminized germ-line phenotype, producing oocytes but no sperm. UBXN-1, UBXN-2 and UBXN-3 colocalized with CDC-48 in spermatocytes but not mature sperm. TRA-1A, which is a key factor in the sex determination pathway and inhibits spermatogenesis, accumulated in worms in which UBXN-1, UBXN-2 and UBXN-3 had been simultaneously knocked down. Taken together, these results suggest that UBXN-1, UBXN-2 and UBXN-3 are redundant cofactors for CDC-48/p97 and control spermatogenesis via the degradation of TRA-1A.

  10. Hydrothermal Synthesis and Structures of Two Tetramethylammonium Iron Molybdates (TMA) 2FeMo 6O 20and [TMA] 2[Fe(H 2O) 6]Mo 8O 26

    NASA Astrophysics Data System (ADS)

    Do, J.; Wang, X.; Jacobson, A. J.

    1999-02-01

    Two new compounds (TMA) 2FeMo 6O 20and [TMA] 2[Fe(H 2O) 6]Mo 8O 26have been synthesized by hydrothermal reactions. (TMA) 2FeMo 6O 20crystallizes in the monoclinic space group C2/ m; a=21.204(1) Å b=7.6393(5) Å, c=8.4191(6) Å, β=104.602(1)°, V=1319.7(2) Å 3, Z=2, ( R=2.23%, I>2 σ( I)) [TMA] 2[Fe(H 2O) 6]Mo 8O 26crystallizes in the space group P2 1/ n; a=10.3945(5) Å, b=16.4103(8) Å, c=10.8935(5) Å, β=98.842(1)°, V=1836.1(2) Å 3, Z=2 ( R=2.07% I>2 σ( I)). The structures of both compounds were determined by single crystal X-ray methods. The crystal structure of (TMA) 2FeMo 6O 20consists of 2∞[FeMo 6O 20] 2-layers separated by layers of tetramethylammonium cations. The [FeMo 6O 20] 2-layers are built up by the interconnection of corner- and edge-sharing MoO 6octahedral chains through FeO 6octahedra. The arrangement of MoO 6octahedra in the chains is identical to that found in the red potassium molybdenum bronze structure. In the (TMA) 2FeMo 6O 20structure, the chains are connected into layers by bridging FeO 6octahedra, in contrast to the bronze structure, where the chains are directly connected by sharing oxygen atoms. The structure of [TMA] 2[Fe(H 2O) 6]Mo 8O 26is made up by packing of octahedral [Fe(H 2O) 2+6] cations and β-[Mo 8O 4-26] cluster anions. These building units are interconnected through hydrogen bonds. Tetramethylammonium cations provide charge balance.

  11. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria

    PubMed Central

    Yokoyama, Kenichi; Leimkühler, Silke

    2016-01-01

    Molybdenum is the only second row transition metal essential for biological systems, which is biologically available as molybdate ion. In eukarya, bacteria and archaea, molybdenum is bound to either to a tricyclic pyranopterin, thereby forming the molybdenum cofactor (Moco), or in some bacteria to the FeS cluster based iron-molybdenum cofactor (FeMoco), which forms the active site of nitrogenase. To date more than 50 Moco-containing enzymes have been purified and biochemically or structurally characterized. The physiological role of molybdenum in these enzymes is fundamental to organisms, since the reactions include the catalysis of key steps in carbon, nitrogen and sulfur metabolism. The catalyzed reactions are in most cases oxo-transfer reactions or the hydroxylation of carbon centers. The biosynthesis of Moco has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the biosynthesis and maturation of molybdoenzymes and the biosynthesis and distribution of FeS clusters has been identified in the last years: 1) The synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) The sulfurtransferase for the dithiolene group in Moco is common also for the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the modification of the active site with a sulfur atom additionally involves a sulfurtransferase, 4) most molybdoenzymes in bacteria require FeS clusters as additional redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. PMID:25268953

  12. Cofactor dependent conformational switching of GTPases.

    PubMed

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-08-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP gamma S.

  13. The biosynthesis of the molybdenum cofactors.

    PubMed

    Mendel, Ralf R; Leimkühler, Silke

    2015-03-01

    The biosynthesis of the molybdenum cofactors (Moco) is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified to date. In all molybdoenzymes except nitrogenase, molybdenum is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into three general steps, with a fourth one present only in bacteria and archaea: (1) formation of the cyclic pyranopterin monophosphate, (2) formation of MPT, (3) insertion of molybdenum into molybdopterin to form Moco, and (4) additional modification of Moco in bacteria with the attachment of a nucleotide to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on the biosynthesis of Moco in bacteria, humans and plants.

  14. Cofactor Dependent Conformational Switching of GTPases

    PubMed Central

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-01-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\gamma}\\end{equation*}\\end{document} S. PMID:18502805

  15. In vivo generation of flavoproteins with modified cofactors.

    PubMed

    Mathes, Tilo; Vogl, Christian; Stolz, Jürgen; Hegemann, Peter

    2009-02-06

    To understand flavoprotein mechanisms and reactivity, biochemical and biophysical methods are usually employed, and differences between wild-type and mutated proteins with altered primary structures are placed under specific consideration. Alternatively, the cofactor can be modified, and modified flavoproteins can be studied accordingly. Here we present an efficient and general method for modifying the cofactor of flavoproteins in vivo. The modified cofactor is incorporated into apoprotein during protein biosynthesis in a riboflavin-auxotrophic Escherichia coli strain, which expresses a bacterial riboflavin transporter to import flavins from the medium. This system was used to introduce roseoflavin into the riboflavin-binding protein dodecin and into microbial blue-light photoreceptors of the BLUF (blue-light sensors using FAD) and LOV (light oxygen voltage) families. The modified photoreceptors showed absorption and fluorescence different from those of proteins carrying their natural cofactor or chromophores in solution, but did not show any photochemical reaction as implied by former physiological studies.

  16. New structural insights into the iron-molybdenum cofactor from azotobacter vinelandii nitrogenase through sulfur K and molybdenum L x-ray absorption edge studies

    SciTech Connect

    Hedman, B.; Frank, P.; Gheller, S.F.; Roe, A.L.; Newton, W.E.; Hodgson, K.O.

    1988-06-08

    The electronic and structural nature of sulfur and molybdenum in the FeMO cofactor (FeMO-co) isolated from Azotobacter vinelandii MoFe protein has been studied by X-ray absorption edge and near-edge spectroscopy (referred to herein collectively as XANES) at the sulfur K and molybdenum L/sub 3/ and L/sub 2/ absorption edges. In contrast to the relatively poor resolution found for X-ray absorption edges at higher energies (e.g., several electronvolts at the molybdenum K edge at 20 keV), resolution in the 2.5-3.0-keV region is significantly improved (e.g., 0.5 eV at the sulfur K edge at 2.47 keV), resulting in more edge structure with higher sensitivity to changes in electronic and structural environment. In order to record spectra from dilute samples at these low energies, an experimental method that takes advantage of the higher flux synchrotron radiation from an undulator magnet has been developed. XANES spectra have been recorded for FeMo-co in the oxidized (ox) and semireduced (s-r) forms and, for comparison, a number of inorganic complexes containing molybdenum and sulfur. To remove the interference of dithionite, its decomposition products, and other small, unbound molecules from the FeMo-co spectrum, an anaerobic column chromatographic method of purification has been developed. The spectrum of dithionite-free FeMo-co in the oxidized form could thus be recorded.

  17. Efficiently Communicating Rich Heterogeneous Geospatial Data from the FeMO2008 Dive Cruise with FlashMap on EarthRef.org

    NASA Astrophysics Data System (ADS)

    Minnett, R. C.; Koppers, A. A.; Staudigel, D.; Staudigel, H.

    2008-12-01

    the web without losing scalability and control of the base maps. Our Flash-based application is fully compatible with KML (Keyhole Markup Language) 2.2, the most recent iteration of KML, allowing users with existing Google Earth KML files to effortlessly display their geospatial content embedded in a web page. As a test case for FlashMap, the annual Iron-Oxidizing Microbial Observatory (FeMO) dive cruise to the Loihi Seamount, in conjunction with data available from ongoing and published FeMO laboratory studies, showcases the flexibility of this single web-based application. With a KML 2.2 compatible web-service providing the content, any database can display results in FlashMap. The user can then hide and show multiple layers of content, potentially from several data sources, and rapidly digest a vast quantity of information to narrow the search results. This flexibility gives experienced users the ability to drill down to exactly the record they are looking for (SERC at Carleton College's educational application of FlashMap at http://serc.carleton.edu/sp/erese/activities/22223.html) and allows users familiar with Google Earth the ability to load and view geospatial data content within a browser from any computer with an internet connection.

  18. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression.

    PubMed

    Kuiper, Caroline; Vissers, Margreet C M

    2014-01-01

    Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and catalyze the addition of a hydroxyl group to various substrates. The proline hydroxylase that is involved in collagen maturation is well known, but in recent times many new enzymes and functions have been uncovered, including those involved in epigenetic control and hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mechanistic insights into how ascorbate may affect tumor biology. In particular, there is growing evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor ascorbate levels. However, rigorous clinical intervention studies are lacking. This review will explore the physiological role of ascorbate as an enzyme co-factor and how this mechanism relates to cancer biology and treatment. The use of ascorbate in cancer should be informed by clinical studies based on such mechanistic hypotheses.

  19. Cofactor Engineering for Enhancing the Flux of Metabolic Pathways

    PubMed Central

    Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The manufacture of a diverse array of chemicals is now possible with biologically engineered strains, an approach that is greatly facilitated by the emergence of synthetic biology. This is principally achieved through pathway engineering in which enzyme activities are coordinated within a genetically amenable host to generate the product of interest. A great deal of attention is typically given to the quantitative levels of the enzymes with little regard to their overall qualitative states. This highly constrained approach fails to consider other factors that may be necessary for enzyme functionality. In particular, enzymes with physically bound cofactors, otherwise known as holoenzymes, require careful evaluation. Herein, we discuss the importance of cofactors for biocatalytic processes and show with empirical examples why the synthesis and integration of cofactors for the formation of holoenzymes warrant a great deal of attention within the context of pathway engineering. PMID:25221776

  20. Emerging roles for tubulin folding cofactors at the centrosome

    PubMed Central

    Fanarraga, Mónica López; Carranza, Gerardo; Castaño, Raquel; Jiménez, Victoria; Villegas, Juan Carlos

    2010-01-01

    Despite its fundamental role in centrosome biology, procentriole formation, both in the canonical and in the de novo replication pathways, remains poorly understood, and the molecular components that are involved in human cells are not well established. We found that one of the tubulin cofactors, TBCD, is localized at centrosomes and the midbody, and is required for spindle organization, cell abscission, centriole formation and ciliogenesis. Our studies have established a molecular link between the centriole and the midbody, demonstrating that this cofactor is also necessary for microtubule retraction during cell abscission. TBCD is the first centriolar protein identified that plays a role in the assembly of both “centriolar rosettes” during early ciliogenesis, and at the procentriole budding site by S/G2, a discovery that directly implicates tubulin cofactors in the cell division, cell migration and cell signaling research fields. PMID:20798813

  1. Virus maturation.

    PubMed

    Delgui, Laura R; Rodríguez, José F

    2013-01-01

    The formation of infectious virus particles is a highly complex process involving a series of sophisticated molecular events. In most cases, the assembly of virus structural elements results in the formation of immature virus particles unable to initiate a productive infection. Accordingly, for most viruses the final stage of the assembly pathway entails a set of structural transitions and/or biochemical modifications that transform inert precursor particles into fully infectious agents. In this chapter, we review the most relevant maturation mechanisms involved in the generation of infectious virions for a wide variety of viruses.

  2. Pterin chemistry and its relationship to the molybdenum cofactor

    PubMed Central

    Basu, Partha; Burgmayer, Sharon J.N.

    2011-01-01

    The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed. PMID:21607119

  3. Generation of protein-derived redox cofactors by posttranslational modification.

    PubMed

    Davidson, Victor L

    2011-01-01

    Redox enzymes which catalyze the oxidation and reduction of substrates are ubiquitous in nature. These enzymes typically possess exogenous cofactors to allow them to perform catalytic functions which cannot be accomplished using only amino acid residues. It is now evident that nature also employs an alternative strategy of generating catalytic and redox-active sites in proteins by posttranslational modification of amino acid residues. This review describes the structures and functions of several of these protein-derived cofactors and the diverse mechanisms of posttranslational modification through which they are generated.

  4. Dendrite arborization requires the dynein cofactor NudE.

    PubMed

    Arthur, Ashley L; Yang, Sihui Z; Abellaneda, Allison M; Wildonger, Jill

    2015-06-01

    The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Golgi outposts, which mediate dendrite branching, suggesting that NudE normally influences dendrite patterning by regulating Golgi outpost transport. Neurons lacking NudE also have increased microtubule dynamics, reflecting a change in microtubule stability that is likely to also contribute to abnormal dendrite growth and branching. These defects in dendritogenesis are rescued by elevating levels of Lis1, another dynein cofactor that interacts with NudE as part of a tripartite complex. Our data further show that the NudE C-terminus is dispensable for dendrite morphogenesis and is likely to modulate NudE activity. We propose that a key function of NudE is to enhance an interaction between Lis1 and dynein that is crucial for motor activity and dendrite architecture.

  5. Chemistry and bioactivity of an artificial adenosylpeptide B(12) cofactor.

    PubMed

    Zhou, Kai; Oetterli, René M; Brandl, Helmut; Lyatuu, Fredrick E; Buckel, Wolfgang; Zelder, Felix

    2012-09-24

    Artificial influence: We describe a semi-artificial adenosylpeptide B(12) that behaves as a cofactor in B(12)-dependent enzymatic reactions and demonstrate that the peptide backbone influences its chemical properties and modulates its bioactivity in vitro and in vivo. Inhibition of the growth of L. delbrueckii is demonstrated, thus providing a potentially powerful approach for the development of antibacterial and antiproliferative compounds.

  6. Iron-molybdenum cofactor synthesis in Azotobacter vinelandii Nif- mutants.

    PubMed Central

    Imperial, J; Shah, V K; Ugalde, R A; Ludden, P W; Brill, W J

    1987-01-01

    Nif- mutants of Azotobacter vinelandii defective in dinitrogenase activity synthesized iron-molybdenum cofactor (FeMo-co) and accumulated it in two protein-bound forms: inactive dinitrogenase and a possible intermediate involved in the FeMo-co biosynthetic pathway. FeMo-co from both these proteins could activate apo-dinitrogenase from FeMo-co-deficient mutants. PMID:3470286

  7. Cofactor Trapping, a New Method To Produce Flavin Mononucleotide ▿

    PubMed Central

    Krauss, Ulrich; Svensson, Vera; Wirtz, Astrid; Knieps-Grünhagen, Esther; Jaeger, Karl-Erich

    2011-01-01

    We have purified flavin mononucleotide (FMN) from a flavoprotein-overexpressing Escherichia coli strain by cofactor trapping. This approach uses an overexpressed flavoprotein to trap FMN, which is thus removed from the cascade regulating FMN production in E. coli. This, in turn, allows the isolation of highly pure FMN. PMID:21131527

  8. Studies on free radicals, antioxidants, and co-factors

    PubMed Central

    Rahman, Khalid

    2007-01-01

    The interplay between free radicals, antioxidants, and co-factors is important in maintaining health, aging and age-related diseases. Free radicals induce oxidative stress, which is balanced by the body’s endogenous antioxidant systems with an input from co-factors, and by the ingestion of exogenous antioxidants. If the generation of free radicals exceeds the protective effects of antioxidants, and some co-factors, this can cause oxidative damage which accumulates during the life cycle, and has been implicated in aging, and age dependent diseases such as cardiovascular disease, cancer, neurodegenerative disorders, and other chronic conditions. The life expectancy of the world population is increasing, and it is estimated that by 2025, 29% of the world population will be aged ≥60 years, and this will lead to an increase in the number of older people acquiring age-related chronic diseases. This will place greater financial burden on health services and high social cost for individuals and society. In order to acheive healthy aging the older people should be encouraged to acquire healthy life styles which should include diets rich in antioxidants. The aim of this review is to highlight the main themes from studies on free radicals, antioxidants and co-factors, and to propose an evidence-based strategy for healthy aging. PMID:18044138

  9. Structural Basis for Cofactor-Independent Dioxygenation in Vancomycin Biosynthesis

    SciTech Connect

    Widboom,P.; Fielding, E.; Liu, Y.; Bruner, S.

    2007-01-01

    Enzyme-catalyzed oxidations are some of the most common transformations in primary and secondary metabolism. The vancomycin biosynthetic enzyme DpgC belongs to a small class of oxygenation enzymes that are not dependent on an accessory cofactor or metal ion1. The detailed mechanism of cofactor-independent oxygenases has not been established. Here we report the first structure of an enzyme of this oxygenase class in complex with a bound substrate mimic. The use of a designed, synthetic substrate analogue allows unique insights into the chemistry of oxygen activation. The structure confirms the absence of cofactors, and electron density consistent with molecular oxygen is present adjacent to the site of oxidation on the substrate. Molecular oxygen is bound in a small hydrophobic pocket and the substrate provides the reducing power to activate oxygen for downstream chemical steps. Our results resolve the unique and complex chemistry of DpgC, a key enzyme in the biosynthetic pathway of an important class of antibiotics. Furthermore, mechanistic parallels exist between DpgC and cofactor-dependent flavoenzymes, providing information regarding the general mechanism of enzymatic oxygen activation.

  10. Structures and Activities of the Elongator Complex and Its Cofactors.

    PubMed

    Kolaj-Robin, Olga; Séraphin, Bertrand

    2017-01-01

    Elongator is a highly conserved eukaryotic protein complex consisting of two sets of six Elp proteins, while homologues of its catalytic subunit Elp3 are found in all the kingdoms of life. Although it was originally described as a transcription elongation factor, cumulating evidence suggests that its primary function is catalyzing tRNA modifications. In humans, defects in Elongator subunits are associated with neurological disorders and cancer. Although further studies are still required, a clearer picture of the molecular mechanism of action of Elongator and its cofactors has started to emerge within recent years that have witnessed significant development in the field. In this review we summarize recent Elongator-related findings provided largely by crystal structures of several subunits of the complex, the electron microscopy structure of the entire yeast holoenzyme, as well as the structure of the Elongator cofactor complex Kti11/Kti13. © 2017 Elsevier Inc. All rights reserved.

  11. Enzymic synthesis and cofactor activity of 3'-pyrophosphocoenzyme A.

    PubMed Central

    Mukai, J I; Sy, J; Lipmann, F

    1983-01-01

    The 3'-pyrophosphate derivative of CoA was synthesized by using the excreted 5'-to-3' pyrophosphoryl-transferring enzyme from Streptomyces adephospholyticus and ATP as donor and dephospho-CoA as acceptor. Cofactor activity of this new coenzyme A derivative was tested with Clostridium kluyveri phosphotransacetylase and hog heart succinic thiokinase. With the phosphotransacetylase, 3'-pyrophospho-CoA was found to be twice as active as CoA whereas dephospho-CoA was inactive. However, succinic thiokinase utilized all three types of CoA equally well. Adenosine 5'-monophosphate 3'-pyrophosphate also was synthesized and used as an analog of adenosine 5'-monophosphate 3'-monophosphate in the dog liver's sulfotransferase-catalyzed sulfate transfer from p-nitrophenyl sulfate to phenol. In contrast to the pyrophospho derivative of coenzyme A, adenosine 5'-monophosphate 3'-pyrophosphate was inactive as a cofactor. PMID:6574458

  12. Copper is a Cofactor of the Formylglycine‐Generating Enzyme

    PubMed Central

    Knop, Matthias; Dang, Thanh Quy; Jeschke, Gunnar

    2016-01-01

    Abstract Formylglycine‐generating enzyme (FGE) is an O2‐utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that CuI is an integral cofactor of this enzyme and binds with high affinity (K D=of 10−17  m) to a pair of active‐site cysteines. These findings establish FGE as a novel type of copper enzyme. PMID:27862795

  13. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    NASA Astrophysics Data System (ADS)

    Giancaspero, Teresa Anna; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina Maria; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-04-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2) in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD "chaperone". The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.-) and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4), respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  14. Coimmobilization of a Redox Enzyme and a Cofactor Regeneration System

    DTIC Science & Technology

    2006-07-01

    biocatalysis is widely used for redox reactions including asymmetric hydroxylations and epoxidations.2a Unfortunately, whole-cell systems are often...of purified redox enzymes in biocatalysis is limited by the cost of supplying stoichiometric amounts of cofactors for catalysis. An increasing...reduction of nitrobenzene to hydroxylaminobenzene (HAB) and has been successfully employed for whole-cell biocatalysis in o-aminophenol synthesis.4

  15. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.

  16. Organic cofactors in the metabolism of Dehalococcoides mccartyi strains

    PubMed Central

    Schipp, Christian J.; Marco-Urrea, Ernest; Kublik, Anja; Seifert, Jana; Adrian, Lorenz

    2013-01-01

    Dehalococcoides mccartyi strains are strictly anaerobic organisms specialized to grow with halogenated compounds as electron acceptor via a respiratory process. Their genomes are among the smallest known for free-living organisms, and the embedded gene set reflects their strong specialization. Here, we briefly review main characteristics of published Dehalococcoides genomes and show how genome information together with cultivation and biochemical experiments have contributed to our understanding of Dehalococcoides physiology and biochemistry. We extend this approach by the detailed analysis of cofactor metabolism in Dehalococcoides strain CBDB1. Dehalococcoides genomes were screened for encoded proteins annotated to contain or interact with organic cofactors, and the expression of these proteins was analysed by shotgun proteomics to shed light on cofactor requirements. In parallel, cultivation experiments testing for vitamin requirements showed that cyanocobalamin (vitamin B12), thiamine and biotin were essential supplements and that cyanocobalamin could be substituted by dicyanocobinamide and dimethylbenzimidazole. Dehalococcoides genome analysis, detection of single enzymes by shotgun proteomics and inhibition studies confirmed the expression of the biosynthetic pathways for pyridoxal-5-phosphate, flavin nucleotides, folate, S-adenosylmethionine, pantothenate and nicotinic acids in strain CBDB1. Haem/cytochromes, quinones and lipoic acids were not necessary for cultivation or dechlorination activity and no biosynthetic pathways were identified in the genomes. PMID:23479751

  17. Constraints on texture zero and cofactor zero models for neutrino mass

    SciTech Connect

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  18. Design of dinuclear manganese cofactors for bacterial reaction centers.

    PubMed

    Olson, Tien L; Espiritu, Eduardo; Edwardraja, Selvakumar; Simmons, Chad R; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2016-05-01

    A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  19. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    PubMed Central

    Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  20. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis.

    PubMed

    Giancaspero, Teresa A; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  1. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria.

    PubMed

    Vorholt, Julia A

    2002-10-01

    Methylotrophic bacteria can grow on a number of substrates as energy source with only one carbon atom, such as methanol, methane, methylamine, and dichloromethane. These compounds are metabolized via the cytotoxin formaldehyde. The formaldehyde consumption pathways, especially the pathways for the oxidation of formaldehyde to CO(2) for energy metabolism, are a central and critical part of the metabolism of these aerobic bacteria. Principally, two main types of pathways for the conversion of formaldehyde to CO(2) have been described: (1) a cyclic pathway initiated by the condensation of formaldehyde with ribulose monophosphate, and (2) distinct linear pathways that involve a dye-linked formaldehyde dehydrogenase or C(1) unit conversion bound to the cofactors tetrahydrofolate (H(4)F), tetrahydromethanopterin (H(4)MPT), glutathione (GSH), or mycothiol (MySH). The pathways involving the four cofactors have in common the following sequence of events: the spontaneous or enzyme-catalyzed condensation of formaldehyde and the respective C(1) carrier, the oxidation of the cofactor-bound C(1) unit and its conversion to formate, and the oxidation of formate to CO(2). However, the H(4)MPT pathway is more complex and involves intermediates that were previously known solely from the energy metabolism of methanogenic archaea. The occurrence of the different formaldehyde oxidation pathways is not uniform among different methylotrophic bacteria. The pathways are in part also used by other organisms to provide C(1) units for biosynthetic reactions (e.g., H(4)F-dependent enzymes) or detoxification of formaldehyde (e.g., GSH-dependent enzymes).

  2. NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding.

    PubMed

    Carugo, O; Argos, P

    1997-05-01

    The ubiquitous redox cofactors nicotinamide adenine dinucleotides [NAD and NADP] are very similar molecules, despite their participation in substantially different biochemical processes. NADP differs from NAD in only the presence of an additional phosphate group esterified to the 2'-hydroxyl group of the ribose at the adenine end and yet NADP is confined with few exceptions to the reactions of reductive biosynthesis, whereas NAD is used almost exclusively in oxidative degradations. The discrimination between NAD and NADP is therefore an impressive example of the power of molecular recognition by proteins. The many known tertiary structures of NADP complexes affords the possibility for an analysis of their discrimination. A systematic analysis of several crystal structures of NAD(P)-protein complexes show that: 1) the NADP coenzymes are more flexible in conformation than those of NAD; 2) although the protein-cofactor interactions are largely conserved in the NAD complexes, they are quite variable in those of NADP; and 3) in both cases the pocket around the nicotinamide moiety is substrate dependent. The conserved and variable interactions between protein and cofactors in the respective binding pockets are reported in detail. Discrimination between NAD and NADP is essentially a consequence of the overall pocket and not of a few residues. A clear fingerprint in NAD complexes is a carboxylate side chain that chelates the diol group at the ribose near the adenine, whereas in NADP complexes an arginine side chain faces the adenine plane and interacts with the phosphomonoester. The latter type of interaction might be a general feature of recognition of nucleotides by proteins. Other features such as strand-like hydrogen bonding between the NADP diphosphate moieties and the protein are also significant. The NADP binding pocket properties should prove useful in protein engineering and design.

  3. Biochemistry: role of PQQ as a mammalian enzyme cofactor?

    PubMed

    Felton, Leigh M; Anthony, Chris

    2005-02-03

    The announcement by Kasahara and Kato of a new redox-cofactor vitamin for mammals, pyrroloquinoline quinone (PQQ), was based on their claim that an enzyme, predicted to be involved in mouse lysine metabolism, is a PQQ-dependent dehydrogenase. However, this claim was dependent on a sequence analysis using databases that inappropriately label beta-propeller sequences as PQQ-binding motifs. What the evidence actually suggests is that the enzyme is an interesting novel protein that has a seven-bladed beta-propeller structure, but there is nothing to indicate that it is a PQQ-dependent dehydrogenase.

  4. Insights into hydrocarbon formation by nitrogenase cofactor homologs.

    PubMed

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-04-14

    The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN(-) to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN(-), which could be explained by the presence of a "free" Fe atom that is "unmasked" by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C-C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN(-) reduction without complications originating from the heterometal and homocitrate components. Nitrogenase is a metalloenzyme that is highly complex in structure and uniquely versatile in function. It catalyzes two reactions that parallel two important industrial processes: the reduction of nitrogen to ammonia, which parallels the Haber-Bosch process in ammonia production, and the reduction of carbon monoxide to hydrocarbons, which parallels the Fischer-Tropsch process in fuel production. Thus, the significance of nitrogenase can be appreciated from the perspective of the useful products it generates: (i) ammonia, the "fixed" nitrogen that is essential for the existence of the entire human population; and (ii) hydrocarbons, the "recycled" carbon fuel that could be used to directly address the worldwide energy shortage. This article provides initial insights into the catalytic characteristics of various nitrogenase cofactors in hydrocarbon formation. The reported assay system provides a useful tool for mechanistic

  5. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway.

    PubMed

    Hernandez, Jose A; Igarashi, Robert Y; Soboh, Basem; Curatti, Leonardo; Dean, Dennis R; Ludden, Paul W; Rubio, Luis M

    2007-01-01

    The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis.

  6. Cervical cancer: is herpes simplex virus type II a cofactor?

    PubMed Central

    Jones, C

    1995-01-01

    In many ways, cervical cancer behaves as a sexually transmitted disease. The major risk factors are multiple sexual partners and early onset of sexual activity. Although high-risk types of human papillomaviruses (HPV) play an important role in the development of nearly all cases of cervical cancer, other sexually transmitted infectious agents may be cofactors. Herpes simplex virus type 2 (HSV-2) is transmitted primarily by sexual contact and therefore has been implicated as a risk factor. Several independent studies suggest that HSV-2 infections correlate with a higher than normal incidence of cervical cancer. In contrast, other epidemiological studies have concluded that infection with HSV-2 is not a major risk factor. Two separate transforming domains have been identified within the HSV-2 genome, but continued viral gene expression apparently is not necessary for neoplastic transformation. HSV infections lead to unscheduled cellular DNA synthesis, chromosomal amplifications, and mutations. These observations suggest that HSV-2 is not a typical DNA tumor virus. It is hypothesized that persistent or abortive infections induce permanent genetic alterations that interfere with differentiation of cervical epithelium and subsequently induce abnormal proliferation. Thus, HSV-2 may be a cofactor in some but not all cases of cervical cancer. PMID:8665469

  7. Biochemistry of B12-cofactors in human metabolism.

    PubMed

    Kräutler, Bernhard

    2012-01-01

    Vitamin B12, the "antipernicious anaemia factor", is a crystallisable cobalt-complex, which belongs to a group of unique "complete" corrinoids, named cobalamins (Cbl). In humans, instead of the "vitamin", two organometallic B12-forms are coenzymes in two metabolically important enzymes: Methyl-cobalamin, the cofactor of methionine synthase, and coenzyme B12 (adenosyl-cobalamin), the cofactor of methylmalonyl-CoA mutase. The cytoplasmatic methionine synthase catalyzes the transfer of a methyl group from N-methyl-tetrahydrofolate to homocysteine to yield methionine and to liberate tetrahydrofolate. In the mitochondrial methylmalonyl-CoA mutase a radical process transforms methylmalonyl-CoA (a remains e.g. from uneven numbered fatty acids) into succinyl-CoA, for further metabolic use. In addition, in the human mitochondria an adenosyl-transferase incorporates the organometallic group of coenzyme B12. In all these enzymes, the bound B12-derivatives engage (or are formed) in exceptional organometallic enzymatic reactions. This chapter recapitulates the physiological chemistry of vitamin B12, relevant in the context of the metabolic transformation of B12-derivatives into the relevant coenzyme forms and their use in B12-dependent enzymes.

  8. Oxygen diffusion pathways in a cofactor-independent dioxygenase

    PubMed Central

    Di Russo, Natali V.; Condurso, Heather L.; Li, Kunhua; Bruner, Steven D.; Roitberg, Adrian E.

    2015-01-01

    Molecular oxygen plays an important role in a wide variety of enzymatic reactions. Through recent research efforts combining computational and experimental methods a new view of O2 diffusion is emerging, where specific channels guide O2 to the active site. The focus of this work is DpgC, a cofactor-independent oxygenase. Molecular dynamics simulations, together with mutagenesis experiments and xenon-binding data, reveal that O2 reaches the active site of this enzyme using three main pathways and four different access points. These pathways connect a series of dynamic hydrophobic pockets, concentrating O2 at a specific face of the enzyme substrate. Extensive molecular dynamics simulations provide information about which pathways are more frequently used. This data is consistent with the results of kinetic measurements on mutants and is difficult to obtain using computational cavity-location methods. Taken together, our results reveal that although DpgC is rare in its ability of activating O2 in the absence of cofactors or metals, the way O2 reaches the active site is similar to that reported for other O2-using proteins: multiple access channels are available, and the architecture of the pathway network can provide regio- and stereoselectivity. Our results point to the existence of common themes in O2 access that are conserved among very different types of proteins. PMID:26508997

  9. Insights into Hydrocarbon Formation by Nitrogenase Cofactor Homologs

    PubMed Central

    Lee, Chi Chung; Hu, Yilin

    2015-01-01

    ABSTRACT The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN− to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN−, which could be explained by the presence of a “free” Fe atom that is “unmasked” by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C−C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN− reduction without complications originating from the heterometal and homocitrate components. PMID:25873377

  10. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  11. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    PubMed Central

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-01-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM–MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM–MS data. PMID:27418477

  12. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    NASA Astrophysics Data System (ADS)

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-07-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM-MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM-MS data.

  13. Non-enzymatic glycation reduces heparin cofactor II anti-thrombin activity.

    PubMed

    Ceriello, A; Marchi, E; Barbanti, M; Milani, M R; Giugliano, D; Quatraro, A; Lefebvre, P

    1990-04-01

    The effects of non-enzymatic glycation on heparin cofactor II activity, at glucose concentrations which might be expected in physiological or diabetic conditions have been evaluated in this study. Radiolabelled glucose incorporation was associated with a loss of heparin cofactor anti-thrombin activity. The heparin cofactor heparin and dermatan sulfate-dependent inhibition of thrombin was significantly reduced, showing a remarkable decrease of the maximum second order rate constant. This study shows that heparin cofactor can be glycated at glucose concentrations found in the blood, and that this phenomenon produces a loss of heparin cofactor-antithrombin activity. These data suggest, furthermore, a possible link between heparin cofactor glycation and the pathogenesis of thrombosis in diabetes mellitus.

  14. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    PubMed Central

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-01-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme–cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes. PMID:26537172

  15. Kinetic analysis of oxygen utilization during cofactor biogenesis in a copper-containing amine oxidase from yeast.

    PubMed

    Schwartz, B; Dove, J E; Klinman, J P

    2000-04-04

    A detailed kinetic analysis of oxygen consumption during TPQ biogenesis has been carried out on a yeast copper amine oxidase. O(2) is consumed in a single, exponential phase, the rate of which responds linearly to dissolved oxygen concentration. This behavior is observed up to conditions of maximally obtainable oxygen concentrations. In contrast, no viscosity effect is observed on rate, implicating a high K(m) for O(2). Binding of oxygen appears to occur faster than its consumption and to result in displacement of the precursor tyrosine onto copper to form a charge-transfer species, described in the the preceding paper of this issue [Dove, J. E., Schwartz, B., Williams, N. K., and Klinman, J. P. (2000) Biochemistry 39, 3690-3698). Reaction between this intermediate and O(2) is proposed to occur in a rate-limiting step, and to proceed more rapidly when the tyrosine is deprotonated. This rate-limiting step in cofactor biogenesis does not display a solvent isotope effect and is, thus, uncoupled from proton transfer. Comparisons are drawn between the proposed biogenesis mechanism and that for the oxidation of reduced cofactor during catalytic turnover in the mature enzyme.

  16. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1

    SciTech Connect

    Zhang, Aihua; Li, Chia-Wei; Chen, J. Don . E-mail: chenjd@umdnj.edu

    2007-07-13

    The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a p160 coactivator-interacting protein that may inhibit transcriptional activity of nuclear receptors. Here, we have characterized the transcriptional regulatory domains of ANCO-1. Two intrinsic repression domains (RD) were identified: an N-terminal RD1 at residues 318-611 and a C-terminal RD2 at 2369-2663. ANCO-1 also contains an activation domain (AD) capable of stimulating transcription in both mammalian and yeast cells. The minimal AD was delimited to a 70-amino acid region at residues 2076-2145. Overall, full-length ANCO-1 exhibited transcriptional repressor activity, suggesting that RD domains may suppress the AD activity. We further demonstrated that ANCO-1 silencing by siRNA enhanced progesterone receptor-mediated transcription. Together, these results indicate that the transcriptional potential of ANCO-1 may be modulated by a combination of repression and activation signals.

  17. Theoretical estimation of redox potential of biological quinone cofactors.

    PubMed

    Gillet, Natacha; Lévy, Bernard; Moliner, Vicent; Demachy, Isabelle; de la Lande, Aurélien

    2017-07-05

    Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  19. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  20. EPR monitored redox titration of the cofactors of Saccharomyces cerevisiae Nar1.

    PubMed

    Hagedoorn, Peter-Leon; van der Weel, Laura; Hagen, Wilfred R

    2014-11-26

    Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.

  1. EPR Monitored Redox Titration of the Cofactors of Saccharomyces cerevisiae Nar1

    PubMed Central

    Hagedoorn, Peter-Leon; van der Weel, Laura; Hagen, Wilfred R.

    2014-01-01

    Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor. PMID:25490157

  2. The non-enzymatic reduction of azo dyes by flavin and nicotinamide cofactors under varying conditions.

    PubMed

    Morrison, Jessica M; John, Gilbert H

    2013-10-01

    Azo dyes are ubiquitous in products and often become environmental pollutants due to their anthropogenic nature. Azoreductases are enzymes which are present within many bacteria and are capable of breaking down the azo dyes via reduction of the azo bond. Often, though, carcinogenic aromatic amines are formed as metabolites and are of concern to humans. Azoreductases function via an oxidation-reduction reaction and require cofactors (a nicotinamide cofactor and sometimes a flavin cofactor) to perform their function. Non-enzymatic reduction of azo dyes in the absence of an azoreductase enzyme has been suggested in previous studies, but has never been studied in detail in terms of varying cofactor combinations, different oxygen states or pHs, nor has the enzymatic reduction been compared to azoreduction in terms of dye reduction or metabolites produced, which was the aim of this study. Reduction of azo dyes by different cofactor combinations was found to occur under both aerobic and anaerobic conditions and under physiologically-relevant pHs to produce the same metabolites as an azoreductase. Our results show that, in some cases, the non-enzymatic reduction by the cofactors was found to be equal to that seen with the azoreductase, suggesting that all dye reduction in these cases is due to the cofactors themselves. This study details the importance of the use of a cofactor-only control when studying azoreductase enzymes.

  3. Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor.

    PubMed

    Pan, Yuanyuan; Lu, Cheng; Dong, Hailing; Yu, Lingjun; Liu, Gang; Tan, Huarong

    2013-07-02

    Ribosome assembly cofactor RimP is one of the auxiliary proteins required for maturation of the 30S subunit in Escherichia coli. Although RimP in protein synthesis is important, its role in secondary metabolites biosynthesis has not been reported so far. Considering the close relationship between protein synthesis and the production of secondary metabolites, the function of ribosome assembly cofactor RimP on antibiotics production was studied in Streptomyces coelicolor and Streptomyces venezuelae. In this study, the rimP homologue rimP-SC was identified and cloned from Streptomyces coelicolor. Disruption of rimP-SC led to enhanced production of actinorhodin and calcium-dependent antibiotics by promoting the transcription of actII-ORF4 and cdaR. Further experiments demonstrated that MetK was one of the reasons for the increment of antibiotics production. In addition, rimP-SC disruption mutant could be used as a host to produce more peptidyl nucleoside antibiotics (polyoxin or nikkomycin) than the wild-type strain. Likewise, disruption of rimP-SV of Streptomyces venezuelae also significantly stimulated jadomycin production, suggesting that enhanced antibiotics production might be widespread in many other Streptomyces species. These results established an important relationship between ribosome assembly cofactor and secondary metabolites biosynthesis and provided an approach for yield improvement of secondary metabolites in Streptomyces.

  4. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    PubMed Central

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; Snow, Christopher D.; Brustad, Eric M.; McIntosh, John A.; Meinhold, Peter; Zhang, Liang; Arnold, Frances H.

    2013-01-01

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch. PMID:23776225

  5. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.

    PubMed

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K B; Snow, Christopher D; Brustad, Eric M; McIntosh, John A; Meinhold, Peter; Zhang, Liang; Arnold, Frances H

    2013-07-02

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.

  6. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    SciTech Connect

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; Snow, Christopher D.; Brustad, Eric M.; McIntosh, John A.; Meinhold, Peter; Zhang, Liang; Arnold, Frances H.

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.

  7. Co‐immobilized Phosphorylated Cofactors and Enzymes as Self‐Sufficient Heterogeneous Biocatalysts for Chemical Processes

    PubMed Central

    Velasco‐Lozano, Susana; Benítez‐Mateos, Ana I.

    2016-01-01

    Abstract Enzyme cofactors play a major role in biocatalysis, as many enzymes require them to catalyze highly valuable reactions in organic synthesis. However, the cofactor recycling is often a hurdle to implement enzymes at the industrial level. The fabrication of heterogeneous biocatalysts co‐immobilizing phosphorylated cofactors (PLP, FAD+, and NAD+) and enzymes onto the same solid material is reported to perform chemical reactions without exogeneous addition of cofactors in aqueous media. In these self‐sufficient heterogeneous biocatalysts, the immobilized enzymes are catalytically active and the immobilized cofactors catalytically available and retained into the solid phase for several reaction cycles. Finally, we have applied a NAD+‐dependent heterogeneous biocatalyst to continuous flow asymmetric reduction of prochiral ketones, thus demonstrating the robustness of this approach for large scale biotransformations. PMID:28000978

  8. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    DOE PAGES

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; ...

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymesmore » having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.« less

  9. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors.

    PubMed

    Eekels, Julia J M; Geerts, Dirk; Jeeninga, Rienk E; Berkhout, Ben

    2011-01-01

    In this study we tested whether HIV-1 replication could be inhibited by stable RNAi-mediated knockdown of cellular co-factors. Cell lines capable of expressing shRNAs against 30 candidate co-factors implicated at different steps of the viral replication cycle were generated and analyzed for effects on cell viability and inhibition of HIV-1 replication. For half of these candidate co-factors we obtained knockdown cell lines that are less susceptible to virus replication. For three co-factors (ALIX, ATG16 and TRBP) the cell lines were resistant to HIV-1 replication for up to 2 months. With these cells we could test the hypothesis that HIV-1 is not able to escape from RNAi-mediated suppression of cellular co-factors, which was indeed not detected.

  10. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction

    PubMed Central

    Martinoli, Christian; Dudek, Hanna M.; Orru, Roberto; Edmondson, Dale E.; Fraaije, Marco W.; Mattevi, Andrea

    2014-01-01

    A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches. PMID:24443704

  11. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors.

    PubMed

    Heuts, Dominic P H M; Scrutton, Nigel S; McIntire, William S; Fraaije, Marco W

    2009-07-01

    Many enzymes use one or more cofactors, such as biotin, heme, or flavin. These cofactors may be bound to the enzyme in a noncovalent or covalent manner. Although most flavoproteins contain a noncovalently bound flavin cofactor (FMN or FAD), a large number have these cofactors covalently linked to the polypeptide chain. Most covalent flavin-protein linkages involve a single cofactor attachment via a histidyl, tyrosyl, cysteinyl or threonyl linkage. However, some flavoproteins contain a flavin that is tethered to two amino acids. In the last decade, many studies have focused on elucidating the mechanism(s) of covalent flavin incorporation (flavinylation) and the possible role(s) of covalent protein-flavin bonds. These endeavors have revealed that covalent flavinylation is a post-translational and self-catalytic process. This review presents an overview of the known types of covalent flavin bonds and the proposed mechanisms and roles of covalent flavinylation.

  12. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.

    PubMed

    Velasco-Lozano, Susana; Benítez-Mateos, Ana I; López-Gallego, Fernando

    2017-01-16

    Enzyme cofactors play a major role in biocatalysis, as many enzymes require them to catalyze highly valuable reactions in organic synthesis. However, the cofactor recycling is often a hurdle to implement enzymes at the industrial level. The fabrication of heterogeneous biocatalysts co-immobilizing phosphorylated cofactors (PLP, FAD(+) , and NAD(+) ) and enzymes onto the same solid material is reported to perform chemical reactions without exogeneous addition of cofactors in aqueous media. In these self-sufficient heterogeneous biocatalysts, the immobilized enzymes are catalytically active and the immobilized cofactors catalytically available and retained into the solid phase for several reaction cycles. Finally, we have applied a NAD(+) -dependent heterogeneous biocatalyst to continuous flow asymmetric reduction of prochiral ketones, thus demonstrating the robustness of this approach for large scale biotransformations.

  13. Cofactors in allergic reactions to food: physical exercise and alcohol are the most important

    PubMed Central

    van Os‐Medendorp, Harmieke; Kruizinga, Astrid G.; Blom, W. Marty; Houben, Geert F.; Knulst, André C.

    2016-01-01

    Abstract Introduction Involvement of cofactors, like physical exercise, alcohol consumption and use of several types of medication, are associated with more severe food allergic symptoms. However, there is limited evidence on how often cofactors play a role in food allergic reactions. The study aimed to get more insight into the frequency of exposure to cofactors and how often cofactors are associated with more severe symptoms in food allergic patients. Methods A questionnaire was completed by patients visiting the Allergology outpatient clinic. Patients with food allergy were included. Outcome measures were the frequency of medication use of medication groups that might act as cofactor and the frequency that physical exercise, alcohol consumption and use of analgesics are associated with more severe food allergic symptoms. Results Four hundred ninety‐six patients were included in the study. The frequency with which patients used one or more types of medication that might act as cofactors was 7.7%: antacids/acid neutralizing medication (5%), NSAIDs (2%), beta blockers (0.6%), angiotensin‐converting enzyme inhibitors (0.6%), and angiotensin receptor blockers (0.2%). Of all patients, 13% reported more severe symptoms to food after involvement of one or more of the cofactors: physical exercise (10%), alcohol consumption (5%), and use of analgesics (0.6%). Sixty‐five percent did not know if these cofactors caused more severe symptoms; 22% reported that these cofactors had no effect. Conclusions Only a small percentage of patients (7.7%) used medication that might aggravate food allergic reactions. Physical exercise and alcohol consumption were the most frequently reported cofactors, but occurring still in only 10% or less. PMID:27980774

  14. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis

    DOE PAGES

    Hover, Bradley M.; Tonthat, Nam K.; Schumacher, Maria A.; ...

    2015-05-04

    The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3',8-cyclo-7,8-dihydro-guanosine 5'-triphosphate (3',8-cH2GTP) as the product ofmore » in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, in this paper we performed biochemical characterization of 3',8-cH2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3',8-cH2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3',8-cH2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3',8-cH2GTP (GTP 3',8-cyclase), and that of MoaC is to catalyze the rearrangement of 3',8-cH2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. In conclusion, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.« less

  15. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis

    SciTech Connect

    Hover, Bradley M.; Tonthat, Nam K.; Schumacher, Maria A.; Yokoyama, Kenichi

    2015-05-04

    The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3',8-cyclo-7,8-dihydro-guanosine 5'-triphosphate (3',8-cH2GTP) as the product of in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, in this paper we performed biochemical characterization of 3',8-cH2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3',8-cH2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3',8-cH2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3',8-cH2GTP (GTP 3',8-cyclase), and that of MoaC is to catalyze the rearrangement of 3',8-cH2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. In conclusion, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.

  16. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    SciTech Connect

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R. . E-mail: tsaneva@biochem.ucl.ac.uk

    2005-11-01

    TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.

  17. Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis.

    PubMed

    Probst, Corinna; Ringel, Phillip; Boysen, Verena; Wirsing, Lisette; Alexander, Mariko Matsuda; Mendel, Ralf R; Kruse, Tobias

    2014-05-01

    Molybdenum (Mo) is a trace element that is essential for important cellular processes. To gain biological activity, Mo must be complexed in the molybdenum cofactor (Moco), a pterin derivative of low molecular weight. Moco synthesis is a multi-step pathway that involves a variable number of genes in eukaryotes, which are assigned to four steps of eukaryotic Moco biosynthesis. Moco biosynthesis mutants lack any Moco-dependent enzymatic activities, including assimilation of nitrate (plants and fungi), detoxification of sulfite (humans and plants) and utilization of hypoxanthine as sole N-source (fungi). We report the first comprehensive genetic characterization of the Neurospora crassa (N. crassa) Moco biosynthesis pathway, annotating five genes which encode all pathway enzymes, and compare it with the characterized Aspergillus nidulans pathway. Biochemical characterization of the corresponding knock-out mutants confirms our annotation model, documenting the N. crassa/A. nidulans (fungal) Moco biosynthesis as unique, combining the organizational structure of both plant and human Moco biosynthesis genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. SAGA Is a General Cofactor for RNA Polymerase II Transcription.

    PubMed

    Baptista, Tiago; Grünberg, Sebastian; Minoungou, Nadège; Koster, Maria J E; Timmers, H T Marc; Hahn, Steve; Devys, Didier; Tora, László

    2017-10-05

    Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription, with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA- or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA- and TFIID-dominated genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation

    PubMed Central

    Kannemeier, Christian; Shibamiya, Aya; Nakazawa, Fumie; Trusheim, Heidi; Ruppert, Clemens; Markart, Philipp; Song, Yutong; Tzima, Eleni; Kennerknecht, Elisabeth; Niepmann, Michael; von Bruehl, Marie-Luise; Sedding, Daniel; Massberg, Steffen; Günther, Andreas; Engelmann, Bernd; Preissner, Klaus T.

    2007-01-01

    Upon vascular injury, locally controlled haemostasis prevents life-threatening blood loss and ensures wound healing. Intracellular material derived from damaged cells at these sites will become exposed to blood components and could contribute to blood coagulation and pathological thrombus formation. So far, the functional and mechanistic consequences of this concept are not understood. Here, we present in vivo and in vitro evidence that different forms of eukaryotic and prokaryotic RNA serve as promoters of blood coagulation. Extracellular RNA was found to augment (auto-)activation of proteases of the contact phase pathway of blood coagulation such as factors XII and XI, both exhibiting strong RNA binding. Moreover, administration of exogenous RNA provoked a significant procoagulant response in rabbits. In mice that underwent an arterial thrombosis model, extracellular RNA was found associated with fibrin-rich thrombi, and pretreatment with RNase (but not DNase) significantly delayed occlusive thrombus formation. Thus, extracellular RNA derived from damaged or necrotic cells particularly under pathological conditions or severe tissue damage represents the long sought natural “foreign surface” and provides a procoagulant cofactor template for the factors XII/XI-induced contact activation/amplification of blood coagulation. Extracellular RNA thereby reveals a yet unrecognized target for antithrombotic intervention, using RNase or related therapeutic strategies. PMID:17405864

  20. The modulation of WTI transcription function by cofactors.

    PubMed

    Roberts, Stefan G E

    2006-01-01

    Wilms' tumour is a paediatric malignancy of the kidneys that affects one in every 10,000 live births, making it the most common solid tumour in the young. This cancer arises due to a failure of the metanephric mesenchyme to differentiate and form the kidney filtration units and tubules, which instead undergo uncontrolled proliferation. WT1 (Wilms' tumour 1) was identified as a factor that is frequently mutated in Wilms' tumours. WT1 plays a central role in the development of the genito-urinary organs and also other regions of the embryo. A major function of WT1 is to act as a regulator of transcription, controlling the expression of genes that are involved in proliferation and differentiation. WT1 can either activate or repress transcription of its target genes. Thus the transcription function of WT1 is highly context-specific, and can be modulated by a number of cofactors. Here, the known interaction partners of WT1 and the mechanisms by which they modulate WT1 transcription function will be discussed.

  1. Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens

    PubMed Central

    Fay, Aaron W.; Wiig, Jared A.; Lee, Chi Chung; Hu, Yilin

    2015-01-01

    Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally “truncated” homologs of NifB from Methanosarcina acetivorans (NifBMa) and Methanobacterium thermoautotrophicum (NifBMt), which contain a SAM-binding domain at the N terminus but lack a domain toward the C terminus that shares homology with NifX, an accessory protein in M cluster biosynthesis. NifBMa and NifBMt are monomeric proteins containing a SAM-binding [Fe4S4] cluster (designated the SAM cluster) and a [Fe4S4]-like cluster pair (designated the K cluster) that can be processed into an [Fe8S9] precursor to the M cluster (designated the L cluster). Further, the K clusters in NifBMa and NifBMt can be converted to L clusters upon addition of SAM, which corresponds to their ability to heterologously donate L clusters to the biosynthetic machinery of A. vinelandii for further maturation into the M clusters. Perhaps even more excitingly, NifBMa and NifBMt can catalyze the removal of methyl group from SAM and the abstraction of hydrogen from this methyl group by 5′-deoxyadenosyl radical that initiates the radical-based incorporation of methyl-derived carbide into the M cluster. The successful identification of NifBMa and NifBMt as functional homologs of NifB not only enabled classification of a new subset of radical SAM methyltransferases that specialize in complex metallocluster assembly, but also provided a new tool for further characterization of the distinctive, NifB-catalyzed methyl transfer and conversion to an iron-bound carbide. PMID:26627238

  2. Redox cofactors insertion in prokaryotic molybdoenzymes occurs via a conserved folding mechanism

    PubMed Central

    Arias-Cartin, Rodrigo; Ceccaldi, Pierre; Schoepp-Cothenet, Barbara; Frick, Klaudia; Blanc, Jean-Michel; Guigliarelli, Bruno; Walburger, Anne; Grimaldi, Stéphane; Friedrich, Thorsten; Receveur-Brechot, Véronique; Magalon, Axel

    2016-01-01

    A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family. PMID:27886223

  3. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.

    PubMed

    Liu, Wenfang; Zhang, Songping; Wang, Ping

    2009-01-01

    Although there have been a long history of studying and using immobilized enzymes, little has been reported regarding the nature of immobilized cofactors. Herein we report that cofactor NAD(H) covalently attached to silica nanoparticles successfully coordinated with particle-immobilized enzymes and enabled multistep biotransformations. Specifically, silica nanoparticle-attached glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH) and NAD(H) were prepared and applied to catalyze the coupled reactions for production of alpha-ketoglutarate and lactate with the cofactor regenerated within the reaction cycle. It appeared that particle-particle collision driven by Brownian motion of the nanoparticles provided effective interactions among the catalytic components, and thus realized a dynamic shuttling of the particle-supported cofactor between the two enzymes to keep the reaction cycles continuing. Total turnover numbers (TTNs) as high as 20,000h(-1) were observed for the cofactor. It appeared to us that the use of particle-attached cofactor promises a new biochemical processing strategy for cofactor-dependent biotransformations.

  4. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source

    SciTech Connect

    Ugalde, R.A.; Imperial, J.; Shah, V.K.; Brill, W.J.

    1985-12-01

    NifQ/sup -/ and Mol/sup -/ mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ/sup -/ and Mol/sup -/ mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. The data show that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. This study suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high.

  5. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1

    PubMed Central

    2011-01-01

    Background Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity. Results Our results suggest that the kinase domain of Ire1 initially binds cofactors without activation of the RNase domain. RNase is activated upon a subsequent conformational rearrangement of Ire1 governed by the chemical properties of bound cofactors. The conformational step can be selectively inhibited by chemical perturbations of cofactors. Substitution of a single oxygen atom in the terminal β-phosphate group of a potent cofactor ADP by sulfur results in ADPβS, a cofactor that binds to Ire1 as well as to ADP but does not activate RNase. RNase activity can be rescued by thiophilic metal ions such as Mn2+ and Cd2+, revealing a functional metal ion-phosphate interaction which controls the conformation and RNase activity of the Ire1 ADP complex. Mutagenesis of the kinase domain suggests that this rearrangement involves movement of the αC-helix, which is generally conserved among protein kinases. Using X-ray crystallography, we show that oligomerization of Ire1 is sufficient for placing the αC-helix in the active, cofactor-bound-like conformation, even in the absence of cofactors. Conclusions Our structural and biochemical evidence converges on a model that the cofactor-induced conformational change in Ire1 is coupled to oligomerization of the receptor, which, in turn, activates RNase. The data reveal that cofactor-Ire1 interactions occur in two independent steps: binding of a cofactor to Ire1 and subsequent rearrangement of Ire1 resulting in its self-association. The pronounced allosteric effect of cofactors on

  6. Cofactor Requirement of HpyAV Restriction Endonuclease

    PubMed Central

    Chan, Siu-Hong; Opitz, Lars; Higgins, Lauren; O'loane, Diana; Xu, Shuang-yong

    2010-01-01

    Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms. PMID:20140205

  7. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  8. A cofactor approach to copper-dependent catalytic antibodies

    PubMed Central

    Nicholas, Kenneth M.; Wentworth, Paul; Harwig, Curtis W.; Wentworth, Anita D.; Shafton, Asher; Janda, Kim D.

    2002-01-01

    A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2. PMID:11880619

  9. [Adolescent brain maturation].

    PubMed

    Holzer, L; Halfon, O; Thoua, V

    2011-05-01

    Recent progress in neuroscience has yielded major findings regarding brain maturation during adolescence. Unlike the body, which reaches adult size and morphology during this period, the adolescent brain is still maturing. The prefrontal cortex appears to be an important locus of maturational change subserving executive functions that may regulate emotional and motivational issues. The recent expansion of the adolescent period has increased the lag between the onset of emotional and motivational changes activated by puberty and the completion of cognitive development-the maturation of self-regulatory capacities and skills that are continuing to develop long after puberty has occurred. This "disconnect" predicts risk for a broad set of behavioral and emotional problems. Adolescence is a critical period for high-level cognitive functions such as socialization that rely on maturation of the prefrontal cortex. Intervention during the period of adolescent brain development provides opportunities and requires an interdisciplinary approach.

  10. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli.

    PubMed

    Neumann, Meina; Mittelstädt, Gerd; Iobbi-Nivol, Chantal; Saggu, Miguel; Lendzian, Friedhelm; Hildebrandt, Peter; Leimkühler, Silke

    2009-05-01

    Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.

  11. Cofactor metals and antioxidant enzymes in cisplatin-treated rats: effect of antioxidant intervention.

    PubMed

    Sabuncuoglu, Suna; Eken, Ayse; Aydin, Ahmet; Ozgunes, Hilal; Orhan, Hilmi

    2015-10-01

    We explored the association between the activities of antioxidant enzymes and their metallic cofactors in rats treated with cisplatin. The antioxidant effects of aminoguanidine, and a combination of vitamins E and C were investigated. Plasma platin was significantly lower than liver and kidney. Cisplatin treatment caused significant increase in plasma Se-glutathione peroxidase activity. Activities of Se-glutathione peroxidase, glutathione S-transferase, catalase and Cu,Zn-superoxide dismutase have been found to be significantly decreased in liver and kidney compared to controls. Zn levels in these organs were diminished upon cisplatin treatment, while levels of Cu were unaffected. Interestingly, levels of iron, the cofactor of catalase, were found to be significantly increased in liver and kidney. Intervention with aminoguanidine or vitamins was generally prevented cisplatin-caused changes in the activity of enzymes and in the tissue levels of cofactor metals. These observations suggest that relation between activities of enzymes and levels of cofactor metals is multifactorial.

  12. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution.

    PubMed

    Bunner, Anne E; Nord, Stefan; Wikström, P Mikael; Williamson, James R

    2010-04-23

    Ribosome biogenesis is facilitated by a growing list of assembly cofactors, including helicases, GTPases, chaperones, and other proteins, but the specific functions of many of these assembly cofactors are still unclear. The effect of three assembly cofactors on 30S ribosome assembly was determined in vitro using a previously developed mass-spectrometry-based method that monitors the rRNA binding kinetics of ribosomal proteins. The essential GTPase Era caused several late-binding proteins to bind rRNA faster when included in a 30S reconstitution. RimP enabled faster binding of S9 and S19 and inhibited the binding of S12 and S13, perhaps by blocking those proteins' binding sites. RimM caused proteins S5 and S12 to bind dramatically faster. These quantitative kinetic data provide important clues about the roles of these assembly cofactors in the mechanism of 30S biogenesis. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Understanding Dermatan Sulfate-Heparin Cofactor II Interaction through Virtual Library Screening.

    PubMed

    Raghuraman, Arjun; Mosier, Philip D; Desai, Umesh R

    2010-09-09

    Dermatan sulfate, an important member of the glycosaminoglycan family, interacts with heparin cofactor II, a member of the serpin family of proteins, to modulate antithrombotic response. Yet, the nature of this interaction remains poorly understood at a molecular level. We report the genetic algorithm-based combinatorial virtual library screening study of a natural, high-affinity dermatan sulfate hexasaccharide with heparin cofactor II. Of the 192 topologies possible for the hexasaccharide, only 16 satisfied the "high-specificity" criteria used in computational study. Of these, 13 topologies were predicted to bind in the heparin-binding site of heparin cofactor II at a ∼60° angle to helix D, a novel binding mode. This new binding geometry satisfies all known solution and mutagenesis data and supports thrombin ternary complexation through a template mechanism. The study is expected to facilitate the design of allosteric agonists of heparin cofactor II as antithrombotic agents.

  14. Interactions of the Mcm1 MADS Box Protein with Cofactors That Regulate Mating in Yeast

    PubMed Central

    Mead, Janet; Bruning, Adrian R.; Gill, Michael K.; Steiner, Andrew M.; Acton, Thomas B.; Vershon, Andrew K.

    2002-01-01

    The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the α1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the α2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact α2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with α2 than for interaction with either α1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors. PMID:12052870

  15. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  16. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme

    PubMed Central

    Ferruz, Noelia; Tresadern, Gary; Pineda-Lucena, Antonio; De Fabritiis, Gianni

    2016-01-01

    Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg2+ ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg2+ ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process. PMID:27440438

  17. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.

    PubMed

    Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H

    2017-02-17

    The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

  18. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.

  19. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex

    PubMed Central

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-01-01

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel ‘recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4–Met28–Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity. PMID:22146299

  20. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol.

    PubMed

    Wang, Pengchao; Yang, Xinwei; Lin, Baixue; Huang, Jianzhong; Tao, Yong

    2017-09-22

    The efficiency of biocatalysis is often affected by an insufficient supply and regeneration of cofactors and redox equivalents. To alleviate this shortcoming, a cofactor self-sufficient system was developed for enhanced production of 2-phenylethanol (2-PE) in E. coli. A "bridge" between the amino acid and its corresponding alcohol was designed in the system using glutamate dehydrogenase. By coupling glutamate dehydrogenase with transaminase and alcohol dehydrogenase, the cosubstrate (2-oxoglutarate) and redox equivalents (NAD(P)H) were regenerated simultaneously, so that no external cofactor or redox source was required. Thus, a cofactor self-sufficient system was developed, which improved the biocatalyst efficiency 3.8-fold. The ammonium generated in this process was removed using zeolite, which further improved the biosynthetic efficiency and resulted in a cleaner system. To the best of our knowledge, this system yielded the highest titer of 2-PE ever obtained in E. coli. Additionally, the wider applicability of this self-sufficient strategy was demonstrated in the production of D-phenyllactic acid. This study thus offers a new method to resolve the cofactor/redox imbalance problem and demonstrates the feasibility of the cofactor self-sufficient strategy for enhanced production of diverse chemicals. Copyright © 2017. Published by Elsevier Inc.

  1. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH).

    PubMed

    Wang, Tao; Chen, Xiangjun; Han, Jun; Ma, Sichun; Wang, Jianmei; Li, Xufeng; Zhang, Hui; Liu, Zhibin; Yang, Yi

    2016-07-01

    SADHs from Thermoanaerobacter ethanolicus are enzymes that, together with various cofactors, catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. To explore how cofactors bind to SADH, TeSADH was cloned in this study, and Ser(199) and Arg(200) were replaced by Tyr and Asp, respectively. Both sites were expected to be inside or adjacent to the cofactor-binding domain according to computational a prediction. Analysis of TeSADH activities revealed that the enzymatic efficiency (kcat/Km) of the S199Y mutant was noticeably enhanced using by NADH, NADPH as cofactors, and similar with that of wild-type using by NADP(+), NAD(+). Conversely, the activity of the R200D mutant significantly decreased with all cofactors. Furthermore, in yeast, the S199Y mutant substantially elevated the ethanol concentration compared with the wild type. Molecular dynamics simulation results indicated the H-bonding network between TeSADH and the cofactors was stronger for the S199Y mutant and the binding energy was simultaneously increased. Moreover, the fluorescence results indicated the S199Y mutant exhibited an increased preference for NAD(P)H, binding with NAD(P)H more compactly compared with wild type. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Toward Teacher Maturity.

    ERIC Educational Resources Information Center

    Pickle, Judy

    1985-01-01

    The essence of teacher maturity can be synthesized into personal, professional, and process domains. Although overlapping, these categories add a multidimensional approach to the search for what is good in teaching and provide a model for professional development. (MT)

  3. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase

    SciTech Connect

    Warren, M.J.; Jordan, P.M.

    1988-12-13

    The formation of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase was shown to depend on the presence of 5-aminolevulinic acid. A hemA/sup -/ mutant formed inactive deaminase when grown in the absence of 5-aminolevulinic acid since this strain was unable to biosynthesize the dipyrromethane cofactor. The mutant formed normal levels of deaminase, however, when grown in the presence of 5-aminolevulinic acid. Porphobilinogen, the substrate, interacts with the free ..cap alpha..-position of the dipyrromethane cofactor to give stable enzyme-intermediate complexes. Experiments with regiospecifically labeled intermediate complexes have shown that, in the absence of further substrate molecules, the complexes are interconvertible by the exchange of the terminal pyrrole ring of each complex. The formation of enzyme-intermediate complexes is accompanied by the exposure of a cysteine residue, suggesting that substantial conformational changes occur on binding substrate. Specific labeling of the dipyrromethane cofactor by growth of the E. coli in the presence of 5-amino(5-/sup 14/C)levulinic acid has confirmed that the cofactor is not subject to catalytic turnover. Experiments with the ..cap alpha..-substituted substrate analogue ..cap alpha..-bromoporphobilinogen have provided further evidence that the cofactor is responsible for the covalent binding of the substrate at the catalytic site. On the basis of these cummulative findings, it has been possible to construct a mechanistic scheme for the deaminase reaction involving a single catalytic site which is able to catalyze the addition or removal of either NH/sub 3/ or H/sub 2/O. The role of the cofactor both as a primer and as a means for regulating the number of substrates bound in each catalytic cycle is discussed.

  4. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

    PubMed

    Ghosh, Amit; Zhao, Huimin; Price, Nathan D

    2011-01-01

    Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment.

  5. Genome-Scale Consequences of Cofactor Balancing in Engineered Pentose Utilization Pathways in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Amit; Zhao, Huimin; Price, Nathan D.

    2011-01-01

    Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA) was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment. PMID:22076150

  6. A new cofactor in prokaryotic enzyme: Tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase

    SciTech Connect

    McIntire, W.S. Univ. of California, San Francisco ); Wemmer, D.E. ); Chistoserdov, A.; Lidstrom, M.E. )

    1991-05-10

    Methylamine dehydrogenase (MADH), an {alpha}{sub 2}{beta}{sub 2} enzyme from numerous methylotrophic soil bacteria, contains a novel quinonoid redox prosthetic group that is covalently bound to its small {beta} subunit through two amino acyl residues. A comparison of the amino acid sequence deduced from the gene sequence of the small subunit for the enzyme from Methylobacterium extorquens AM1 with the published amino acid sequence obtained by Edman degradation method, allowed the identification of the amino acyl constituents of the cofactor as two tryptophyl residues. This information was crucial for interpreting {sup 1}H and {sup 13}C nuclear magnetic resonance, and mass spectral data collected for the semicarbazide- and carboxymethyl-derivatized bis(tripeptidyl)-cofactor of MADH from bacterium W3A1. The cofactor is composed of two cross-linked tryptophyl residues. Although there are many possible isomers, only one is consistent with all the data: The first tryptophyl residue in the peptide sequence exists as an indole-6,7-dione, and is attached at its 4 position to the 2 position of the second, otherwise unmodified, indole side group. Contrary to earlier reports, the cofactor of MADH is not 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), a derivative thereof, of pro-PQQ. This appears to be the only example of two cross-linked, modified amino acyl residues having a functional role in the active site of an enzyme, in the absence of other cofactors or metal ions.

  7. Regulation of Estrogen-Dependent Transcription by the LIM Cofactors CLIM and RLIM in Breast Cancer

    PubMed Central

    Johnsen, Steven A.; Güngör, Cenap; Prenzel, Tanja; Riethdorf, Sabine; Riethdorf, Lutz; Taniguchi-Ishigaki, Naoko; Rau, Thomas; Tursun, Baris; Furlow, J. David; Sauter, Guido; Scheffner, Martin; Pantel, Klaus; Gannon, Frank; Bach, Ingolf

    2009-01-01

    Mammary oncogenesis is profoundly influenced by signaling pathways controlled by Estrogen Receptor-alpha (ERα). Although it is known that ERα exerts its oncogenic effect by stimulating the proliferation of many human breast cancers through the activation of target genes, our knowledge of the underlying transcriptional mechanisms remains limited. Our published work has shown that the in vivo activity of LIM homeodomain transcription factors (LIM-HDs) is critically regulated by Cofactors of LIM-HD proteins (CLIM) and the ubiquitin ligase RING finger LIM domain interacting protein (RLIM). Here, we identify CLIM and RLIM as novel ERα cofactors that co-localize and interact with ERα in primary human breast tumors. We show that both cofactors associate with estrogen responsive promoters and regulate the expression of endogenous ERα target genes in breast cancer cells. Surprisingly, our results indicate opposing functions of LIM cofactors for ERα and LIM-HDs: whereas CLIM enhances transcriptional activity of LIM-HDs, it inhibits transcriptional activation mediated by ERα on most target genes in vivo. In turn, the ubiquitin ligase RLIM inhibits transcriptional activity of LIM-HDs, but enhances transcriptional activation of endogenous ERα target genes. Results from a human breast cancer tissue microarray (TMA) of 1,335 patients revealed a highly significant correlation of elevated CLIM levels to ER/PR positivity and poor differentiation of tumors. Combined, these results indicate that LIM cofactors CLIM and RLIM regulate the biological activity of ERα during the development of human breast cancer. PMID:19117995

  8. Cofactor-specific photochemical function resolved by ultrafast spectroscopy in photosynthetic reaction center crystals.

    PubMed

    Huang, Libai; Ponomarenko, Nina; Wiederrecht, Gary P; Tiede, David M

    2012-03-27

    High-resolution mapping of cofactor-specific photochemistry in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides was achieved by polarization selective ultrafast spectroscopy in single crystals at cryogenic temperature. By exploiting the fixed orientation of cofactors within crystals, we isolated a single transition within the multicofactor manifold, and elucidated the site-specific photochemical functions of the cofactors associated with the symmetry-related active A and inactive B branches. Transient spectra associated with the initial excited states were found to involve a set of cofactors that differ depending upon whether the monomeric bacteriochlorophylls, BChl(A), BChl(B), or the special pair bacteriochlorophyll dimer, P, was chosen for excitation. Proceeding from these initial excited states, characteristic photochemical functions were resolved. Specifically, our measurements provide direct evidence for an alternative charge separation pathway initiated by excitation of BChl(A) that does not involve P*. Conversely, the initial excited state produced by excitation of BChl(B) was found to decay by energy transfer to P. A clear sequential kinetic resolution of BChl(A) and the A-side bacteriopheophytin, BPh(A), in the electron transfer proceeding from P* was achieved. These experiments demonstrate the opportunity to resolve photochemical function of individual cofactors within the multicofactor RC complexes using single crystal spectroscopy.

  9. Cofactor dependence and isotype distribution of anticardiolipin antibodies in viral infections

    PubMed Central

    Guglielmone, H; Vitozzi, S; Elbarcha, O; Fernandez, E

    2001-01-01

    BACKGROUND—Antibodies to cardiolipin (aCLs) are often detected in patients with autoimmune disorders or infectious diseases.
OBJECTIVE—To investigate the distribution of aCL isotypes and requirement of protein cofactor in viral infections in order to establish the importance, if any, of these antibodies in these infectious diseases.
PATIENTS AND METHODS—The isotype distribution of aCLs in the sera from 160 patients with infection caused by HIV-1 (n=40), hepatitis A virus (n=40), hepatitis B virus (n=40), or hepatitis C virus (n=40) was studied by standardised enzyme linked immunosorbent assay (ELISA) in the presence and absence of protein cofactor (mainly β2-glycoprotein I). Serum samples from healthy volunteers and patients with syphilis and antiphospholipid syndrome were also included and served as negative and positive control groups respectively.
RESULTS—The prevalence of one or more aCL isotypes in serum of patients with HIV-1, hepatitis A virus, hepatitis B virus, or hepatitis C virus infection was 47%, 92%, 42%, and 17% respectively (principally IgM and/or IgA). Most of these antibodies were mainly cofactor independent.
CONCLUSIONS—The presence of aCLs in viral infections is principally cofactor independent, suggesting that cofactor dependence of the aCLs should be assessed to distinguish subjects most likely to suffer from clinical symptoms observed in the presence of these antibodies.

 PMID:11302873

  10. A Novel Role for Arabidopsis Mitochondrial ABC Transporter ATM3 in Molybdenum Cofactor Biosynthesis[W][OA

    PubMed Central

    Teschner, Julia; Lachmann, Nicole; Schulze, Jutta; Geisler, Mirco; Selbach, Kristina; Santamaria-Araujo, Jose; Balk, Janneke; Mendel, Ralf R.; Bittner, Florian

    2010-01-01

    The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco. PMID:20164445

  11. Phagosome maturation: aging gracefully.

    PubMed Central

    Vieira, Otilia V; Botelho, Roberto J; Grinstein, Sergio

    2002-01-01

    Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review. PMID:12061891

  12. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.

    PubMed

    Campbell, Elliot; Wheeldon, Ian R; Banta, Scott

    2010-12-01

    Cofactor specificity in the aldo-keto reductase (AKR) superfamily has been well studied, and several groups have reported the rational alteration of cofactor specificity in these enzymes. Although most efforts have focused on mesostable AKRs, several putative AKRs have recently been identified from hyperthermophiles. The few that have been characterized exhibit a strong preference for NAD(H) as a cofactor, in contrast to the NADP(H) preference of the mesophilic AKRs. Using the design rules elucidated from mesostable AKRs, we introduced two site-directed mutations in the cofactor binding pocket to investigate cofactor specificity in a thermostable AKR, AdhD, which is an alcohol dehydrogenase from Pyrococcus furiosus. The resulting double mutant exhibited significantly improved activity and broadened cofactor specificity as compared to the wild-type. Results of previous pre-steady-state kinetic experiments suggest that the high affinity of the mesostable AKRs for NADP(H) stems from a conformational change upon cofactor binding which is mediated by interactions between a canonical arginine and the 2'-phosphate of the cofactor. Pre-steady-state kinetics with AdhD and the new mutants show a rich conformational behavior that is independent of the canonical arginine or the 2'-phosphate. Additionally, experiments with the highly active double mutant using NADPH as a cofactor demonstrate an unprecedented transient behavior where the binding mechanism appears to be dependent on cofactor concentration. These results suggest that the structural features involved in cofactor specificity in the AKRs are conserved within the superfamily, but the dynamic interactions of the enzyme with cofactors are unexpectedly complex.

  13. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    PubMed

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Catalytic reduction of CN−, CO and CO2 by nitrogenase cofactors in lanthanide-driven reactions**

    PubMed Central

    Lee, Chi Chung

    2014-01-01

    Nitrogenase cofactors can be extracted into an organic solvent and added in an adenosine triphosphate (ATP)-free, organic solvent-based reaction medium to catalyze the reduction of cyanide (CN−), carbon monoxide (CO) and carbon dioxide (CO2) when samarium (II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are supplied as a reductant and a proton source, respectively. Driven by SmI2, the cofactors not only catalytically reduce CN− or CO to C1-C4 hydrocarbons, but also catalytically reduce CO2 to CO and C1-C3 hydrocarbons. The observation of C-C coupling from CO2 reveals a unique, Fischer-Tropsch-like reaction with an atypical carbonaceous substrate; whereas the achievement of catalytic turnover of CN−, CO and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for hydrocarbon production from these carbon-containing compounds. PMID:25420957

  15. Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones.

    PubMed

    Havel, Jan; Weuster-Botz, Dirk

    2007-07-01

    The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2'-3'-4'-5'-6'-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP(+)) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.

  16. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors.

    PubMed

    Bimpilas, Andreas; Panagopoulou, Marilena; Tsimogiannis, Dimitrios; Oreopoulou, Vassiliki

    2016-04-15

    Copigmentation of anthocyanins accounts for over 30% of fresh red wine color, while during storage, the color of polymeric pigments formed between anthocyanins and proanthocyanidins predominates. Rosmarinic acid and natural extracts rich in hydroxycinnamic acids, obtained from aromatic plants (Origanum vulgare and Satureja thymbra), were examined as cofactors to fresh Merlot wine and the effect on anthocyanin copigmentation and wine color was studied during storage for 6months. An increase of the copigmented anthocyanins that enhanced color intensity by 15-50% was observed, confirming the ability of complex hydroxycinnamates to form copigments. The samples with added cofactors retained higher percentages of copigmented anthocyanins and higher color intensity, compared to the control wine, up to 3 months. However, the change in the equilibrium between monomeric and copigmented anthocyanins that was induced by added cofactors, did not affect the rate of polymerization reactions during storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Tight Junction Proteins Claudin-1, -6, and -9 Are Entry Cofactors for Hepatitis C Virus▿

    PubMed Central

    Meertens, Laurent; Bertaux, Claire; Cukierman, Lisa; Cormier, Emmanuel; Lavillette, Dimitri; Cosset, François-Loïc; Dragic, Tatjana

    2008-01-01

    Hepatitis C virus (HCV) is a major cause of liver disease in humans. The CD81 tetraspanin is necessary but not sufficient for HCV penetration into hepatocytes, and it was recently reported that the tight junction protein claudin-1 is a critical HCV entry cofactor. Here, we confirm the role of claudin-1 in HCV entry. In addition, we show that claudin-6 and claudin-9 expressed in CD81+ cells also enable the entry of HCV pseudoparticles derived from six of the major genotypes. Whereas claudin-1, -6, and -9 function equally well as entry cofactors in endothelial cells, claudin-1 is more efficient in hepatoma cells. This suggests that additional cellular factors modulate the ability of claudins to function as HCV entry cofactors. Our work has generated novel and essential means to investigate the mechanism of HCV penetration into hepatocytes and the role of the claudin protein family in HCV dissemination, replication, and pathogenesis. PMID:18234789

  18. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  19. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.

    PubMed

    Prier, Christopher K; Arnold, Frances H

    2015-11-11

    Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.

  20. The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom

    PubMed Central

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-01-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe–V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe–Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  1. The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis.

    PubMed

    Caetano-Anollés, Gustavo; Kim, Kyung Mo; Caetano-Anollés, Derek

    2012-02-01

    The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.

  2. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli.

    PubMed

    Anderson, L A; McNairn, E; Lubke, T; Pau, R N; Boxer, D H; Leubke, T

    2000-12-01

    The expression of the moa locus, which encodes enzymes required for molybdopterin biosynthesis, is enhanced under anaerobiosis but repressed when the bacterium is able to synthesize active molybdenum cofactor. In addition, moa expression exhibits a strong requirement for molybdate. The molybdate enhancement of moa transcription is fully dependent upon the molybdate-binding protein, ModE, which also mediates molybdate repression of the mod operon encoding the high-affinity molybdate uptake system. Due to the repression of moa in molybdenum cofactor-sufficient strains, the positive molybdate regulation of moa is revealed only in strains unable to make the active cofactor. Transcription of moa is controlled at two sigma-70-type promoters immediately upstream of the moaA gene. Deletion mutations covering the region upstream of moaA have allowed each of the promoters to be studied in isolation. The distal promoter is the site of the anaerobic enhancement which is Fnr-dependent. The molybdate induction of moa is exerted at the proximal promoter. Molybdate-ModE binds adjacent to the -35 region of this promoter, acting as a direct positive regulator of moa. The molybdenum cofactor repression also appears to act at the proximal transcriptional start site, but the mechanism remains to be established. Tungstate in the growth medium affects moa expression in two ways. Firstly, it can act as a functional molybdate analogue for the ModE-mediated regulation. Secondly, tungstate brings about the loss of the molybdenum cofactor repression of moa. It is proposed that the tungsten derivative of the molybdenum cofactor, which is known to be formed under such conditions, is ineffective in bringing about repression of moa. The complex control of moa is discussed in relation to the synthesis of molybdoenzymes in the bacterium.

  3. ModE-Dependent Molybdate Regulation of the Molybdenum Cofactor Operon moa in Escherichia coli

    PubMed Central

    Anderson, Lisa A.; McNairn, Elizabeth; Leubke, Torben; Pau, Richard N.; Boxer, David H.

    2000-01-01

    The expression of the moa locus, which encodes enzymes required for molybdopterin biosynthesis, is enhanced under anaerobiosis but repressed when the bacterium is able to synthesize active molybdenum cofactor. In addition, moa expression exhibits a strong requirement for molybdate. The molybdate enhancement of moa transcription is fully dependent upon the molybdate-binding protein, ModE, which also mediates molybdate repression of the mod operon encoding the high-affinity molybdate uptake system. Due to the repression of moa in molybdenum cofactor-sufficient strains, the positive molybdate regulation of moa is revealed only in strains unable to make the active cofactor. Transcription of moa is controlled at two sigma-70-type promoters immediately upstream of the moaA gene. Deletion mutations covering the region upstream of moaA have allowed each of the promoters to be studied in isolation. The distal promoter is the site of the anaerobic enhancement which is Fnr-dependent. The molybdate induction of moa is exerted at the proximal promoter. Molybdate-ModE binds adjacent to the −35 region of this promoter, acting as a direct positive regulator of moa. The molybdenum cofactor repression also appears to act at the proximal transcriptional start site, but the mechanism remains to be established. Tungstate in the growth medium affects moa expression in two ways. Firstly, it can act as a functional molybdate analogue for the ModE-mediated regulation. Secondly, tungstate brings about the loss of the molybdenum cofactor repression of moa. It is proposed that the tungsten derivative of the molybdenum cofactor, which is known to be formed under such conditions, is ineffective in bringing about repression of moa. The complex control of moa is discussed in relation to the synthesis of molybdoenzymes in the bacterium. PMID:11092866

  4. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor.

    PubMed

    Griese, Julia J; Kositzki, Ramona; Schrapers, Peer; Branca, Rui M M; Nordström, Anders; Lehtiö, Janne; Haumann, Michael; Högbom, Martin

    2015-10-16

    Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor*

    PubMed Central

    Griese, Julia J.; Kositzki, Ramona; Schrapers, Peer; Branca, Rui M. M.; Nordström, Anders; Lehtiö, Janne; Haumann, Michael; Högbom, Martin

    2015-01-01

    Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from MnII and FeII in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189–17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability. PMID:26324712

  6. Maturation in Larch 1

    PubMed Central

    Greenwood, Michael S.; Hopper, Catherine A.; Hutchison, Keith W.

    1989-01-01

    The time course of maturation in eastern larch (Larix laricina [Du Roi] K. Koch) was examined by grafting scions from trees of different ages onto 2-year-old root stock and following scion development for several years. Height, diameter, foliar chlorophyll content, and rooting ability of scion-derived cuttings all varied linearly as a function of log10 age. Chlorophyll content (milligrams per gram of dry weight) increased while height, diameter, and ability to root decreased with age (P < 0.01). The tendency toward orthotropic growth and branch formation per centimeter of main stem decreased abruptly between age 1 and 5 years (P < 0.01). Total chlorophyll content of both long and short shoot foliage increased by 30 to 50% with increasing age, but the chlorophyll a/b ratio did not change. Also, juvenile long shoot needles were significantly longer than mature (P < 0.01). Surprisingly, the juvenile scions produced more total strobili over two successive years, but the mature scions produced a significantly higher proportion of male strobili (P < 0.001 year 1; P < 0.02 year 2). The age-related changes in foliar traits were not associated with changes in DNA methylation between juvenile and mature scions. Using HPLC, we found that 20% of foliar DNA cytosine residues were methylated in both scion types. Images Figure 1 PMID:16666785

  7. Jealousy and Moral Maturity.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; Deuger, Donna J.

    Jealousy may be perceived as either good or bad depending upon the moral maturity of the individual. To investigate this conclusion, a study was conducted testing two hypothesis: a positive relationship exists between conventional moral reasoning (reference to norms and laws) and the endorsement and level of jealousy; and a negative relationship…

  8. Mature Students Studying Mathematics.

    ERIC Educational Resources Information Center

    Hirst, Keith

    1999-01-01

    Discusses mature students in the single subject area of mathematics in a single institution and makes comparisons with traditional universities. Reviews some features of the age distribution, entry qualifications, degree-class distribution, non-completion rates and gender distribution. (Author/ASK)

  9. Brain maturation and epilepsy.

    PubMed

    Dulac, Olivier; Milh, Mathieu; Holmes, Gregory L

    2013-01-01

    At full term, both glutamate and gamma-amino-butyric acid (GABA) are excitatory; cortical synapses are beginning to appear, there is little myelin in the cerebral hemispheres, and long tracts hardly start to develop. Neonatal myoclonic encephalopathy can result from premature activation of N-methyl-D-aspartate (NMDA) transmission. Benign neonatal seizures and migrating partial seizures in infancy could involve excessive or premature excitability of deep cortical layers. Benign rolandic epilepsy and continuous spike waves in slow sleep are consistent with an excess of both excitatory and inhibitory cortical synapses. West and Lennox-Gastaut syndromes express age-related diffuse cortical hyperexcitability, the pattern depending on the age of occurrence; synchronization of spikes is becoming possible with maturation of the myelin. Idiopathic generalized epilepsy is itself modulated by maturation that causes frontal hyperexcitability generating myoclonic-astatic seizures, between the ages of infantile and juvenile myoclonic epilepsies. Physiological delay of hippocampo-neocortical pathways maturation could account for the delayed occurrence of mesial temporal epilepsy following infantile damage, whereas premature maturation could contribute to fronto-temporal damage characteristic of fever-induced epileptic encephalopathy in school-age children, a dramatic school-age epileptic encephalopathy.

  10. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production.

    PubMed

    Chen, Yong; Liu, Qingguo; Chen, Xiaochun; Wu, Jinglan; Guo, Ting; Zhu, Chenjie; Ying, Hanjie

    2015-04-01

    Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. To understand the impact of cofactors on physiological functions, a systematic approach was applied, which involved redox state analysis, energy charge analysis, and metabolite analysis. Using uridine 5'-monophosphate metabolism in Saccharomyces cerevisiae as a model, we demonstrated that regulation of intracellular the ratio of NADPH to NADP(+) not only redistributed the carbon flux between the glycolytic and pentose phosphate pathways, but also regulated the redox state of NAD(H), resulting in a significant change of ATP, and a significantly altered spectrum of metabolic products.

  11. A global transcription cofactor bound to juxtaposed strands of unwound DNA.

    PubMed

    Werten, Sebastiaan; Moras, Dino

    2006-02-01

    The 1.74-A crystal structure of the human transcription cofactor PC4 in complex with a single-stranded 20-mer oligonucleotide reveals how symmetry-related beta-surfaces of the protein homodimer interact with juxtaposed 5-nucleotide DNA regions running in opposite directions. The structure explains high-affinity binding of PC4 to the complementary strands of unwinding duplex DNA, and it suggests the cofactor may have a role in relaxing negative supercoils or exposing unpaired bases for sequence-specific recognition by other biomolecules.

  12. Structure determination of the UDP-disaccharide fragment of cytoplasmic cofactor isolated from Methanobacterium thermoautotrophicum.

    PubMed

    Marsden, B J; Sauer, F D; Blackwell, B A; Kramer, J K

    1989-03-31

    The methylcoenzyme M methylreductase reaction has an absolute requirement for 7-mercaptoheptanoylthreonine phosphate or component B, which is the active component of the intact molecule previously referred to as cytoplasmic cofactor. A hydrolytic fragment of cytoplasmic cofactor has been purified and identified as uridine 5'-(O-2-acetamido-2-deoxy-beta-manno-pyranuronosyl acid (1----4)-2-acetamido-2-deoxy-alpha-glucopyranosyl diphosphate) by high resolution NMR and fast atom bombardment mass spectro-metry. It is postulated that UDP-disaccharide may function to anchor 7-mercaptoheptanoyl threonine phosphate at the active site of the methyl-reductase enzyme complex.

  13. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors

    PubMed Central

    Zinder, John C.

    2017-01-01

    The eukaryotic RNA exosome is an essential and conserved protein complex that can degrade or process RNA substrates in the 3′-to-5′ direction. Since its discovery nearly two decades ago, studies have focused on determining how the exosome, along with associated cofactors, achieves the demanding task of targeting particular RNAs for degradation and/or processing in both the nucleus and cytoplasm. In this review, we highlight recent advances that have illuminated roles for the RNA exosome and its cofactors in specific biological pathways, alongside studies that attempted to dissect these activities through structural and biochemical characterization of nuclear and cytoplasmic RNA exosome complexes. PMID:28202538

  14. Delayed visual maturation.

    PubMed Central

    Cole, G F; Hungerford, J; Jones, R B

    1984-01-01

    Sixteen blind babies who were considered to be showing the characteristics of delayed visual maturation were studied prospectively. The diagnosis was made on clinical grounds, and the criteria for this are discussed. All of these infants developed visual responses between 4 and 6 months of age and had normal or near normal visual acuities by 1 year of age. Long term follow up, however, has shown neurological abnormalities in some of these children. PMID:6200080

  15. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition.

    PubMed

    Payne, Karl A P; White, Mark D; Fisher, Karl; Khara, Basile; Bailey, Samuel S; Parker, David; Rattray, Nicholas J W; Trivedi, Drupad K; Goodacre, Royston; Beveridge, Rebecca; Barran, Perdita; Rigby, Stephen E J; Scrutton, Nigel S; Hay, Sam; Leys, David

    2015-06-25

    The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.

  16. Mycofactocin-associated mycobacterial dehydrogenases with non-exchangeable NAD cofactors

    PubMed Central

    Haft, Daniel H.; Pierce, Phillip G.; Mayclin, Stephen J.; Sullivan, Amy; Gardberg, Anna S.; Abendroth, Jan; Begley, Darren W.; Phan, Isabelle Q.; Staker, Bart L.; Myler, Peter J.; Marathias, Vasilios M.; Lorimer, Donald D.; Edwards, Thomas E.

    2017-01-01

    During human infection, Mycobacterium tuberculosis (Mtb) survives the normally bacteriocidal phagosome of macrophages. Mtb and related species may be able to combat this harsh acidic environment which contains reactive oxygen species due to the mycobacterial genomes encoding a large number of dehydrogenases. Typically, dehydrogenase cofactor binding sites are open to solvent, which allows NAD/NADH exchange to support multiple turnover. Interestingly, mycobacterial short chain dehydrogenases/reductases (SDRs) within family TIGR03971 contain an insertion at the NAD binding site. Here we present crystal structures of 9 mycobacterial SDRs in which the insertion buries the NAD cofactor except for a small portion of the nicotinamide ring. Line broadening and STD-NMR experiments did not show NAD or NADH exchange on the NMR timescale. STD-NMR demonstrated binding of the potential substrate carveol, the potential product carvone, the inhibitor tricyclazol, and an external redox partner 2,6-dichloroindophenol (DCIP). Therefore, these SDRs appear to contain a non-exchangeable NAD cofactor and may rely on an external redox partner, rather than cofactor exchange, for multiple turnover. Incidentally, these genes always appear in conjunction with the mftA gene, which encodes the short peptide MftA, and with other genes proposed to convert MftA into the external redox partner mycofactocin. PMID:28120876

  17. Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photoenzymatic synthesis under visible light.

    PubMed

    Lee, Joon Seok; Lee, Sahng Ha; Kim, Jae Hong; Park, Chan Beum

    2011-07-21

    We present a microfluidic artificial photosynthetic platform that incorporates quantum dots and redox enzymes for photoenzymatic synthesis of fine chemicals under visible light. Similar to natural photosynthesis, photochemical cofactor regeneration takes place in the light-dependent reaction zone, which is then coupled with the light-independent, enzymatic synthesis in the downstream of the microchannel.

  18. Engineering the Assembly of Heme Cofactors in Man-Made Proteins

    PubMed Central

    2015-01-01

    Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways. PMID:24495285

  19. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition

    PubMed Central

    Payne, Karl A.P.; White, Mark D.; Fisher, Karl; Khara, Basile; Bailey, Samuel S.; Parker, David; Rattray, Nicholas J.W.; Trivedi, Drupad K.; Goodacre, Royston; Beveridge, Rebecca; Barran, Perdita; Rigby, Stephen E.J.; Scrutton, Nigel S.; Hay, Sam; Leys, David

    2016-01-01

    The ubiD/ubiX or the homologous fdc/pad genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis1–3 or microbial biodegradation of aromatic compounds4–6 respectively. Despite biochemical studies on individual gene products, the composition and co-factor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7–9. We show Fdc is solely responsible for (de)carboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesised by the associated UbiX/Pad10. Atomic resolution crystal structures reveal two distinct isomers of the oxidized cofactor can be observed: an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with drastically altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. While 1,3-dipolar cycloaddition is commonly used in organic chemistry11–12, we propose this presents the first example of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation. PMID:26083754

  20. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes.

    PubMed

    Patton, Gregory C; Stenmark, Pål; Gollapalli, Deviprasad R; Sevastik, Robin; Kursula, Petri; Flodin, Susanne; Schuler, Herwig; Swales, Colin T; Eklund, Hans; Himo, Fahmi; Nordlund, Pär; Hedstrom, Lizbeth

    2011-10-30

    Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.

  1. Tetrahydropterin as a possible natural cofactor in the drosophila phenylalanine hydroxylation system

    SciTech Connect

    Bel, Y.; Jacobson, K.B.; Ferre, J. . Dept. of Genetics; Oak Ridge National Lab., TN; Valencia Univ. . Dept. of Genetics)

    1989-01-01

    The aim of the present work is the study of phenylalanine hydroxylase (PH) activity of Drosophila melanogaster wild type with different cofactors: the two natural occurring tetrahydropteridines (BH{sub 4} and PH{sub 4}) and the synthetic 6,7-dimethyltetrahydropterin (DMPH{sub 4}), as well as the determination of this activity at different developmental stages. 7 refs., 2 figs.

  2. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways

    PubMed Central

    Heininger, Annika U.; Hackert, Philipp; Andreou, Alexandra Z.; Boon, Kum-Loong; Memet, Indira; Prior, Mira; Clancy, Anne; Schmidt, Bernhard; Urlaub, Henning; Schleiff, Enrico; Sloan, Katherine E.; Deckers, Markus; Lührmann, Reinhard; Enderlein, Jörg; Klostermeier, Dagmar; Rehling, Peter; Bohnsack, Markus T.

    2016-01-01

    ABSTRACT A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes. PMID:26821976

  3. The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes.

    PubMed

    Glas, Andreas F; Maul, Melanie J; Cryle, Max; Barends, Thomas R M; Schneider, Sabine; Kaya, Emine; Schlichting, Ilme; Carell, Thomas

    2009-07-14

    Archae possess unique biochemical systems quite distinct from the pathways present in eukaryotes and eubacteria. 7,8-Dimethyl-8-hydroxy-5deazaflavin (F(0)) and F(420) are unique deazaflavin-containing coenzyme and methanogenic signature molecules, essential for a variety of biochemical transformations associated with methane biosynthesis and light-dependent DNA repair. The deazaflavin cofactor system functions during methane biosynthesis as a low-potential hydrid shuttle F(420)/F(420)H(2). In DNA photolyase repair proteins, the deazaflavin cofactor is in the deprotonated state active as a light-collecting energy transfer pigment. As such, it converts blue sunlight into energy used by the proteins to drive an essential repair process. Analysis of a eukaryotic (6-4) DNA photolyase from Drosophila melanogaster revealed a binding pocket, which tightly binds F(0). Residues in the pocket activate the cofactor by deprotonation so that light absorption and energy transfer are switched on. The crystal structure of F(0) in complex with the D. melanogaster protein shows the atomic details of F(0) binding and activation, allowing characterization of the residues involved in F(0) activation. The results show that the F(0)/F(420) coenzyme system, so far believed to be strictly limited to the archael kingdom of life, is far more widespread than anticipated. Analysis of a D. melanogaster extract and of a DNA photolyase from the primitive eukaryote Ostreococcus tauri provided direct proof for the presence of the F(0) cofactor also in higher eukaryotes.

  4. Prevalence and Gene Characteristics of Antibodies with Cofactor-induced HIV-1 Specificity*

    PubMed Central

    Lecerf, Maxime; Scheel, Tobias; Pashov, Anastas D.; Jarossay, Annaelle; Ohayon, Delphine; Planchais, Cyril; Mesnage, Stephane; Berek, Claudia; Kaveri, Srinivas V.; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    The healthy immune repertoire contains a fraction of antibodies that bind to various biologically relevant cofactors, including heme. Interaction of heme with some antibodies results in induction of new antigen binding specificities and acquisition of binding polyreactivity. In vivo, extracellular heme is released as a result of hemolysis or tissue damage; hence the post-translational acquisition of novel antigen specificities might play an important role in the diversification of the immunoglobulin repertoire and host defense. Here, we demonstrate that seronegative immune repertoires contain antibodies that gain reactivity to HIV-1 gp120 upon exposure to heme. Furthermore, a panel of human recombinant antibodies was cloned from different B cell subpopulations, and the prevalence of antibodies with cofactor-induced specificity for gp120 was determined. Our data reveal that upon exposure to heme, ∼24% of antibodies acquired binding specificity for divergent strains of HIV-1 gp120. Sequence analyses reveal that heme-sensitive antibodies do not differ in their repertoire of variable region genes and in most of the molecular features of their antigen-binding sites from antibodies that do not change their antigen binding specificity. However, antibodies with cofactor-induced gp120 specificity possess significantly lower numbers of somatic mutations in their variable region genes. This study contributes to the understanding of the significance of cofactor-binding antibodies in immunoglobulin repertoires and of the influence that the tissue microenvironment might have in shaping adaptive immune responses. PMID:25564611

  5. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.

    PubMed

    Gand, Martin; Thöle, Christian; Müller, Hubertus; Brundiek, Henrike; Bashiri, Ghader; Höhne, Matthias

    2016-07-20

    Engineering cofactor specificity of enzymes is a promising approach that can expand the application of enzymes for biocatalytic production of industrially relevant chemicals. Until now, only NADPH-dependent imine reductases (IREDs) are known. This limits their applications to reactions employing whole cells as a cost-efficient cofactor regeneration system. For applications of IREDs as cell-free catalysts, (i) we created an IRED variant showing an improved activity for NADH. With rational design we were able to identify four residues in the (R)-selective IRED from Streptomyces GF3587 (IR-Sgf3587), which coordinate the 2'-phosphate moiety of the NADPH cofactor. From a set of 15 variants, the highest NADH activity was caused by the single amino acid exchange K40A resulting in a 3-fold increased acceptance of NADH. (ii) We showed its applicability using an immobilisate obtained either from purified enzyme or from lysate using the EziG(™) carriers. Applying the variant and NADH, we reached 88% conversion in a preparative scale biotransformation when employing 4% (w/v) 2-methylpyrroline. (iii) We demonstrated a one-enzyme cofactor regeneration approach using the achiral amine N-methyl-3-aminopentanone as a hydrogen donor co-substrate.

  6. Engineering the assembly of heme cofactors in man-made proteins.

    PubMed

    Solomon, Lee A; Kodali, Goutham; Moser, Christopher C; Dutton, P Leslie

    2014-02-26

    Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways.

  7. Refolding of horseradish peroxidase is enhanced in presence of metal cofactors and ionic liquids.

    PubMed

    Bae, Sang-Woo; Eom, Doyoung; Mai, Ngoc Lan; Koo, Yoon-Mo

    2016-03-01

    The effects of various refolding additives, including metal cofactors, organic co-solvents, and ionic liquids, on the refolding of horseradish peroxidase (HRP), a well-known hemoprotein containing four disulfide bonds and two different types of metal centers, a ferrous ion-containing heme group and two calcium atoms, which provide a stabilizing effect on protein structure and function, were investigated. Both metal cofactors (Ca(2+) and hemin) and ionic liquids have positive impact on the refolding of HRP. For instance, the HRP refolding yield remarkably increased by over 3-fold upon addition of hemin and calcium chloride to the refolding buffer as compared to that in the conventional urea-containing refolding buffer. Moreover, the addition of ionic liquids [EMIM][Cl] to the hemin and calcium cofactor-containing refolding buffer further enhanced the HRP refolding yield up to 80% as compared to 12% in conventional refolding buffer at relatively high initial protein concentration (5 mg/ml). These results indicated that refolding method utilizing metal cofactors and ionic liquids could enhance the yield and efficiency for metalloprotein.

  8. Nickel trafficking system responsible for urease maturation in Helicobacter pylori.

    PubMed

    Ge, Rui-Guang; Wang, Dong-Xian; Hao, Ming-Cong; Sun, Xue-Song

    2013-12-07

    Helicobacter pylori (H. pylori) is a common human pathogen responsible for various gastric diseases. This bacterium relies on the production of urease and hydrogenase to inhabit the acidic environment of the stomach. Nickel is an essential cofactor for urease and hydrogenase. H. pylori has to uptake sufficient nickel ions for the maturation of urease, and on the other way, to prevent the toxic effects of excessive nickel ions. Therefore, H. pylori has to strike a delicate balance between the import of nickel ions, its efficient intracellular storage, and delivery to nickel-dependent metalloenzymes when required. The assembly and maturation of the urease enzyme is a complex and timely ordered process, requiring various regulatory, uptake, chaperone and accessory proteins. In this review, we focus on several nickel trafficking proteins involved in urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The work will deepen our understanding of how this pathogenic bacterium adapts to severe habitant environments in the host.

  9. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae

    PubMed Central

    Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole

    2015-01-01

    Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD+/NADH or, to a lesser extent, NADP+/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation. PMID:26475113

  10. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    PubMed

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Molecular Determinants of the Cofactor Specificity of Ribitol Dehydrogenase, a Short-Chain Dehydrogenase/Reductase

    PubMed Central

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)+ to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD+ (S156D, [kcat/Km,NAD]/[kcat/Km,NADP] = 10.9, where Km,NAD is the Km for NAD+ and Km,NADP is the Km for NADP+). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP+ as the cofactor (S156H, [kcat/Km,NAD]/[kcat/Km,NADP] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156. PMID:22344653

  12. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase.

    PubMed

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha; Kang, Yun Chan; Lee, Jung-Kul

    2012-05-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.

  13. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria.

    PubMed

    Ney, Blair; Ahmed, F Hafna; Carere, Carlo R; Biswas, Ambarish; Warden, Andrew C; Morales, Sergio E; Pandey, Gunjan; Watt, Stephen J; Oakeshott, John G; Taylor, Matthew C; Stott, Matthew B; Jackson, Colin J; Greening, Chris

    2017-01-01

    F420 is a low-potential redox cofactor that mediates the transformations of a wide range of complex organic compounds. Considered one of the rarest cofactors in biology, F420 is best known for its role in methanogenesis and has only been chemically identified in two phyla to date, the Euryarchaeota and Actinobacteria. In this work, we show that this cofactor is more widely distributed than previously reported. We detected the genes encoding all five known F420 biosynthesis enzymes (cofC, cofD, cofE, cofG and cofH) in at least 653 bacterial and 173 archaeal species, including members of the dominant soil phyla Proteobacteria, Chloroflexi and Firmicutes. Metagenome datamining validated that these genes were disproportionately abundant in aerated soils compared with other ecosystems. We confirmed through high-performance liquid chromatography analysis that aerobically grown stationary-phase cultures of three bacterial species, Paracoccus denitrificans, Oligotropha carboxidovorans and Thermomicrobium roseum, synthesized F420, with oligoglutamate sidechains of different lengths. To understand the evolution of F420 biosynthesis, we also analyzed the distribution, phylogeny and genetic organization of the cof genes. Our data suggest that although the Fo precursor to F420 originated in methanogens, F420 itself was first synthesized in an ancestral actinobacterium. F420 biosynthesis genes were then disseminated horizontally to archaea and other bacteria. Together, our findings suggest that the cofactor is more significant in aerobic bacterial metabolism and soil ecosystem composition than previously thought. The cofactor may confer several competitive advantages for aerobic soil bacteria by mediating their central metabolic processes and broadening the range of organic compounds they can synthesize, detoxify and mineralize.

  14. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.

    PubMed

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G

    1987-06-30

    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  15. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth.

    PubMed

    Sun, Ting; Li, Xuan; Zhang, Peng; Chen, Wen-Dan; Zhang, Hai-liang; Li, Dan-Dan; Deng, Rong; Qian, Xiao-Jun; Jiao, Lin; Ji, Jiao; Li, Yun-Tian; Wu, Rui-Yan; Yu, Yan; Feng, Gong-Kan; Zhu, Xiao-Feng

    2015-05-26

    Beclin 1, a protein essential for autophagy, regulates autophagy by interacting with Vps34 and other cofactors to form the Beclin 1 complex. Modifications of Beclin 1 may lead to the induction, inhibition or fine-tuning of the autophagic response under a variety of conditions. Here we show that Beclin 1 is acetylated by p300 and deacetylated by SIRT1 at lysine residues 430 and 437. In addition, the phosphorylation of Beclin 1 at S409 by CK1 is required for the subsequent p300 binding and Beclin 1 acetylation. Beclin 1 acetylation inhibits autophagosome maturation and endocytic trafficking by promoting the recruitment of Rubicon. In tumour xenografts, the expression of 2KR mutant Beclin 1 (substitution of K430 and K437 to arginines) leads to enhanced autophagosome maturation and tumour growth suppression. Therefore, our study identifies an acetylation-dependent regulatory mechanism governing Beclin 1 function in autophagosome maturation and tumour growth.

  16. Vocational Maturity and Self Concepts.

    ERIC Educational Resources Information Center

    Helbing, Hans

    The relationship between separate dimensions of vocational maturity and different self-concept and identity variables were examined. Subjects were Dutch students, age 14-18 years. The vocational maturity dimensions were measured by Dutch adaptations of American vocational maturity scales. Instruments for self-concept and identity measurement were…

  17. Capability Maturity Model for Software,

    DTIC Science & Technology

    1991-08-01

    This paper provides a technical overview of the Capability Maturity Model for Software and reflects the most current version. Specifically, this...paper, in combination with the Key Practices of the Capability Maturity Model , is intended to help software organizations use the CMM as a guide to improve the maturity of their software process.

  18. Dissociation of motor maturation.

    PubMed

    DiMario, Francis J

    2003-06-01

    We prospectively acquired clinical data regarding the presentation, evaluation, and developmental progress of all patients identified with dissociated motor maturation to define their clinical outcomes. Children (N = 8) referred for evaluation of suspected cerebral palsy because of delayed sitting or walking and identified to have dissociated motor maturation were followed with serial clinical examination. All displayed the characteristic "sitting on air" posture while held in vertical suspension and had otherwise normal developmental assessments. This posture is composed of the hips held in flexion and abduction with the knees extended and feet plantar or dorsiflexed. Three children were initially evaluated at 10 months of age owing to absence of sitting and five other children were evaluated at a mean of 14 months (range 12-19 months) owing to inability to stand. Follow-up evaluations were conducted over a mean of 10.5 months (range 5-34 months). Five children were born prematurely at 34 to 36 weeks gestation. Denver Developmental Screening Test and general and neurologic examinations were normal except to note hypotonia in six children and the "sitting on air" posture in all of the children. Four children have older siblings or parents who "walked late" (after 15 months). On average, the children attained sitting by 8 months (range 7-10 months). One child did not crawl prior to independent walking, two children scooted rather than crawled, and five children crawled at an average of 13.5 months (range 10-16 months). All children cruised by a mean of 18 months (range 16-21.5 months) and attained independent walking by 20.1 months (range 18-25 months). Neuroimaging and serum creatine kinase enzyme testing were normal in two children who were tested. These eight children conform to the syndrome of dissociated motor maturation. The "sitting on air" posture serves as a diagnostic sign and anticipated excellent prognosis, but follow-up is required to ensure a normal

  19. Maturation in Larch 1

    PubMed Central

    Hutchison, Keith W.; Sherman, Christopher D.; Weber, Jill; Smith, Sandra Schiller; Singer, Patricia B.; Greenwood, Michael S.

    1990-01-01

    The effect of maturation on the morphological and photosynthetic characteristics, as well as the expression of two genes involved in photosynthesis in the developing, current year foliage of Eastern larch (Larix laricina [Du Roi]) is described. These effects were observed on foliage during the third growing season after grafting of scions from trees of different ages onto 2 year old rootstock. Specific leaf weight (gram dry weight per square meter), leaf cross-sectional area (per square millimeter), and chlorophyll content (milligram per gram dry weight) all increase with increasing age in long shoot foliage from both indoor- and outdoor-grown trees. Net photosynthesis (NPS) (mole of CO2 per square millimeter per second) increases with age on indoor- but not outdoor-grown trees. NPS also increases with increased chlorophyll content, but outdoor-grown scions of all ages had higher chlorophyll content, and chlorophyll does not appear to be limiting for NPS outdoors. To extend these studies of maturation-related differences in foliar morphology and physiology to the molecular genetic level, sequences were cloned from the cab and rbsS gene families of larch. Both cab and rbcS gene families are expressed in foliage but not in roots, and they are expressed in light-grown seedlings of larch but only at very low levels in dark-grown seedlings (~2% of light-grown seedlings). Steady-state cab mRNA levels are relatively higher (~40%) in newly expanding short shoot foliage from juvenile plants compared to mature plants. Unlike cab, the expression of the rbcS gene family did not seem to vary with age. These data show that the maturation-related changes in morphological and physiological phenotypes are associated with changes in gene expression. No causal relationship has been established, however. Indeed, we conclude that the faster growth of juvenile scions reported previously (MS Greenwood, CA Hopper, KW Hutchison [1989] Plant Physiol 90: 406-412) is not due to increased NPS

  20. Host co-factors of the retrovirus-like transposon Ty1

    PubMed Central

    2012-01-01

    Background Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. Results To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. Conclusion Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are

  1. Targeted cofactor quantification in metabolically engineered E. coli using solid phase extraction and hydrophilic interaction liquid chromatography-mass spectrometry.

    PubMed

    Li, Zhucui; Yang, Afang; Li, Yujing; Liu, Pingping; Zhang, Zhidan; Zhang, Xueli; Shui, Wenqing

    2016-03-01

    Quantification of energy and redox cofactors is of great value to synthetic biologists to infer the balance of energy metabolism in engineered microbial strains and assess each strain's potential for further improvement. Most currently used methods for intracellular cofactor measurement suffer from incomplete coverage, low reproducibility, suboptimal sensitivity or specificity. In this study, we described an SPE-HILIC/MS approach for simultaneous determination of six cofactor targets (ATP, ADP, NAD, NADH, NADP, NADPH) in Escherichia coli cells. Sufficient linearity, precision and metabolite recoveries of this new approach justified its reliability in targeted cofactor quantification. Our approach was then compared with conventional enzymatic assays to demonstrate its superior performance. We applied the SPE-HILIC/MS approach to profile shift of cofactor balances in several engineered E. coli strains with varying isobutanol production. Our cofactor analysis clearly revealed that optimal energy fitness was achieved in the highest-yield strain through combined modulation of a transhydrogenase and a NAD(+) kinase. Apart from the targeted cofactors, the SPE enrichment procedure also allowed for confident identification of 39 groups of polar metabolites mainly involved in central carbon metabolism in E. coli cells. Copyright © 2016. Published by Elsevier B.V.

  2. Variable motif utilization in homeotic selector (Hox)-cofactor complex formation controls specificity.

    PubMed

    Lelli, Katherine M; Noro, Barbara; Mann, Richard S

    2011-12-27

    Homeotic selector (Hox) proteins often bind DNA cooperatively with cofactors such as Extradenticle (Exd) and Homothorax (Hth) to achieve functional specificity in vivo. Previous studies identified the Hox YPWM motif as an important Exd interaction motif. Using a comparative approach, we characterize the contribution of this and additional conserved sequence motifs to the regulation of specific target genes for three Drosophila Hox proteins. We find that Sex combs reduced (Scr) uses a simple interaction mechanism, where a single tryptophan-containing motif is necessary for Exd-dependent DNA-binding and in vivo functions. Abdominal-A (AbdA) is more complex, using multiple conserved motifs in a context-dependent manner. Lastly, Ultrabithorax (Ubx) is the most flexible, in that it uses multiple conserved motifs that function in parallel to regulate target genes in vivo. We propose that using different binding mechanisms with the same cofactor may be one strategy to achieve functional specificity in vivo.

  3. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A.; Einsle, Oliver; Howard, James B.; Rees, Douglas C.

    2014-01-01

    The mechanism of nitrogenase remains enigmatic, with a major unresolved issue concerning how inhibitors and substrates bind to the active site. We report a crystal structure of carbon monoxide (CO) inhibited nitrogenase MoFe-protein at 1.50 Å resolution, revealing a CO molecule bridging Fe2 and Fe6 of the FeMo-cofactor. The μ2 binding geometry is achieved by replacing a belt-sulfur atom (S2B) and highlights the generation of a reactive iron species uncovered by the displacement of sulfur. The CO inhibition is fully reversible as established by regain of enzyme activity and reappearance of S2B in the 1.43 Å resolution structure of the reactivated enzyme. The substantial and reversible reorganization of the FeMo-cofactor accompanying CO binding was unanticipated and provides insights into a catalytically competent state of nitrogenase. PMID:25258081

  4. Ca cofactor of the water-oxidation complex: Evidence for a Mn/Ca heteronuclear cluster

    SciTech Connect

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; McFarlane, Karen L.; Pizarro, Shelly A.; Sauer, Ken; Yachandra, Vittal K.

    2001-07-25

    Calcium and chloride are necessary cofactors for the proper function of the oxygen-evolving complex (OEC) of Photosystem II (PS II). Located in the thylakoid membranes of green plants, cyanobacteria and algae, PS II and the OEC catalyze the light-driven oxidation of water into dioxygen (released into the biosphere), protons and electrons for carbon fixation. The actual chemistry of water oxidation is performed by a cluster of four manganese atoms, along with the requisite cofactors Ca{sup 2+} and Cl{sup -}. While the Mn complex has been extensively studied by X-ray absorption techniques, comparatively less is known about the Ca{sup 2+} cofactor. The fewer number of studies on the Ca{sup 2+} cofactor have sometimes relied on substituting the native cofactor with strontium or other metals, and have stirred some debate about the structure of the binding site. past efforts using Mn EXAFS on Sr-substituted PSII are suggestive of a close link between the Mn cluster and Sr, within 3.5 {angstrom}. The most recent published study using Sr EXAFS on similar samples confirms this finding of a 3.5 {angstrom} distance between Mn and Sr. This finding was base3d on a second Fourier peak (R {approx} 3 {angstrom}) in the Sr EXAFS from functional samples, but is absent from inactive, hydroxylamine-treated PS II. This Fourier peak II was found to fit best to two Mn at 3.5 {angstrom} rather than lighter atoms (carbon). Nevertheless, other experiments have given contrary results. They wanted to extend the technique by using polarized Sr EXAFS on layered Sr-substituted samples, to provide important angle information. Polarized EXAFS involves collecting spectra for different incident angles ({theta}) between the membrane normal of the layered sample and the X-ray electric field vector. Dichroism in the EXAFS can occur, depending on how the particular absorber-backscatterer (A-B) vector is aligned with the electric field. Through analysis of the dichroism, they extract the average number

  5. Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor

    PubMed Central

    Thompson, Michael C.; Crowley, Christopher S.; Kopstein, Jeffrey; Bobik, Thomas A.; Yeates, Todd O.

    2014-01-01

    The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 Å resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein–ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule. PMID:25484204

  6. Menaquinone-7 Is Specific Cofactor in Tetraheme Quinol Dehydrogenase CymA

    PubMed Central

    McMillan, Duncan G. G.; Marritt, Sophie J.; Butt, Julea N.; Jeuken, Lars J. C.

    2012-01-01

    Little is known about enzymatic quinone-quinol interconversions in the lipid membrane when compared with our knowledge of substrate transformations by globular enzymes. Here, the smallest example of a quinol dehydrogenase in nature, CymA, has been studied. CymA is a monotopic membrane tetraheme c-type cytochrome belonging to the NapC/NirT family and central to anaerobic respiration in Shewanella sp. Using protein-film electrochemistry, it is shown that vesicle-bound menaquinone-7 is not only a substrate for this enzyme but is also required as a cofactor when converting other quinones. Here, we propose that the high concentration of quinones in the membrane negates the evolutionary pressure to create a high affinity active site. However, the instability and reactivity of reaction intermediate, semiquinone, might require a cofactor that functions to minimize damaging side reactions. PMID:22393052

  7. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria.

    PubMed

    Leimkühler, Silke; Wuebbens, Margot M; Rajagopalan, K V

    2011-05-01

    Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center.

  8. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria

    PubMed Central

    Leimkühler, Silke; Wuebbens, Margot M.; Rajagopalan, K.V.

    2010-01-01

    Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center. PMID:21528011

  9. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes

    PubMed Central

    Cruz-Reyes, Jorge; Mooers, Blaine H.M.; Abu-Adas, Zakaria; Kumar, Vikas; Gulati, Shelly

    2016-01-01

    Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100–400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans. PMID:27540585

  10. Correlation between dental maturity and cervical vertebral maturity.

    PubMed

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P < 0.05). In girls, the mandibular second molar had the highest and the canine the lowest correlation. In boys, the canine had the highest and the first premolar the lowest correlation. Tooth calcification stage was significantly correlated with cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  11. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    PubMed

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  12. Co-Factor Binding Confers Substrate Specificity to Xylose Reductase from Debaryomyces hansenii

    PubMed Central

    Singh, Appu Kumar; Mondal, Alok K.; Kumaran, S.

    2012-01-01

    Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards “non-substrate” sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (Kd∼5.0–10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4–5 fold molar excess. Comparison of Kd values with Km values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism. PMID:23049810

  13. Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii.

    PubMed

    Biswas, Dipanwita; Pandya, Vaibhav; Singh, Appu Kumar; Mondal, Alok K; Kumaran, S

    2012-01-01

    Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards "non-substrate" sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (K(d)∼5.0-10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4-5 fold molar excess. Comparison of K(d) values with K(m) values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism.

  14. Regulation of Prp43-mediated disassembly of spliceosomes by its cofactors Ntr1 and Ntr2

    PubMed Central

    Fourmann, Jean-Baptiste; Tauchert, Marcel J.; Ficner, Ralf

    2017-01-01

    Abstract The DEAH-box NTPase Prp43 disassembles spliceosomes in co-operation with the cofactors Ntr1/Spp382 and Ntr2, forming the NTR complex. How Prp43 is regulated by its cofactors to discard selectively only intron-lariat spliceosomes (ILS) and defective spliceosomes and to prevent disassembly of earlier and properly assembled/wild-type spliceosomes remains unclear. First, we show that Ntr1΄s G-patch motif (Ntr1GP) can be replaced by the GP motif of Pfa1/Sqs1, a Prp43΄s cofactor in ribosome biogenesis, demonstrating that the specific function of Ntr1GP is to activate Prp43 for spliceosome disassembly and not to guide Prp43 to its binding site in the spliceosome. Furthermore, we show that Ntr1΄s C-terminal domain (CTD) plays a safeguarding role by preventing Prp43 from disrupting wild-type spliceosomes other than the ILS. Ntr1 and Ntr2 can also discriminate between wild-type and defective spliceosomes. In both type of spliceosomes, Ntr1-CTD impedes Prp43-mediated disassembly while the Ntr1GP promotes disassembly. Intriguingly, Ntr2 plays a specific role in defective spliceosomes, likely by stabilizing Ntr1 and allowing Prp43 to enter a productive interaction with the GP motif of Ntr1. Our data indicate that Ntr1 and Ntr2 act as ‘doorkeepers’ and suggest that both cofactors inspect the RNP structure of spliceosomal complexes thereby targeting suboptimal spliceosomes for Prp43-mediated disassembly. PMID:27923990

  15. Thermodynamic analysis of interactions between cofactor and neuronal nitric oxide synthase.

    PubMed

    Sanae, Ryuhei; Kurokawa, Fumiaki; Oda, Masayuki; Ishijima, Sumio; Sagami, Ikuko

    2011-03-15

    The thermodynamics of cofactor binding to the isolated reductase domain (Red) of nNOS and its mutants have been studied by isothermal titration calorimetry. The NADP(+) and 2',5'-ADP binding stoichiometry to Red were both 1:1, consistent with a one-site kinetic model instead of a two-site model. The binding constant (K(D) = 71 nM) and the large heat capacity change (ΔC(p) = -440 cal mol(-1) K(-1)) for 2',5'-ADP were remarkably different from those for NADP(+) (1.7 μM and -140 cal mol(-1) K(-1), respectively). These results indicate that the nicotinamide moiety as well as the adenosine moiety has an important role in binding to nNOS. They also suggest that the thermodynamics of the conformational change in Red caused by cofactor binding are significantly different from the conformational changes that occur in cytochrome c reductase, in which the nicotinamide moiety of the cofactor is not essential for binding. Analysis of the deletion mutant of the autoinhibitory helix (RedΔ40) revealed that the deletion resulted in a decrease in the binding affinity of 2',5'-ADP with more unfavorable enthalpy gain. In the case of RedCaM, which contains a calmodulin (CaM) binding site, the presence of Ca(2+)/CaM caused a 6.7-fold increase in the binding affinity for 2',5'-ADP that was mostly due to the favorable entropy change. These results are consistent with a model in which Ca(2+)/CaM induces a conformational change in NOS to a flexible "open" form from a "closed" form that locked by cofactor binding, and this change facilitates the electron transfer required for catalysis.

  16. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor

    PubMed Central

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung

    2011-01-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function. PMID:21720211

  17. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria.

    PubMed

    McKinlay, James B; Harwood, Caroline S

    2010-06-29

    The Calvin-Benson-Bassham cycle (Calvin cycle) catalyzes virtually all primary productivity on Earth and is the major sink for atmospheric CO(2). A less appreciated function of CO(2) fixation is as an electron-accepting process. It is known that anoxygenic phototrophic bacteria require the Calvin cycle to accept electrons when growing with light as their sole energy source and organic substrates as their sole carbon source. However, it was unclear why and to what extent CO(2) fixation is required when the organic substrates are more oxidized than biomass. To address these questions we measured metabolic fluxes in the photosynthetic bacterium Rhodopseudomonas palustris grown with (13)C-labeled acetate. R. palustris metabolized 22% of acetate provided to CO(2) and then fixed 68% of this CO(2) into cell material using the Calvin cycle. This Calvin cycle flux enabled R. palustris to reoxidize nearly half of the reduced cofactors generated during conversion of acetate to biomass, revealing that CO(2) fixation plays a major role in cofactor recycling. When H(2) production via nitrogenase was used as an alternative cofactor recycling mechanism, a similar amount of CO(2) was released from acetate, but only 12% of it was reassimilated by the Calvin cycle. These results underscore that N(2) fixation and CO(2) fixation have electron-accepting roles separate from their better-known roles in ammonia production and biomass generation. Some nonphotosynthetic heterotrophic bacteria have Calvin cycle genes, and their potential to use CO(2) fixation to recycle reduced cofactors deserves closer scrutiny.

  18. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria

    PubMed Central

    McKinlay, James B.; Harwood, Caroline S.

    2010-01-01

    The Calvin-Benson-Bassham cycle (Calvin cycle) catalyzes virtually all primary productivity on Earth and is the major sink for atmospheric CO2. A less appreciated function of CO2 fixation is as an electron-accepting process. It is known that anoxygenic phototrophic bacteria require the Calvin cycle to accept electrons when growing with light as their sole energy source and organic substrates as their sole carbon source. However, it was unclear why and to what extent CO2 fixation is required when the organic substrates are more oxidized than biomass. To address these questions we measured metabolic fluxes in the photosynthetic bacterium Rhodopseudomonas palustris grown with 13C-labeled acetate. R. palustris metabolized 22% of acetate provided to CO2 and then fixed 68% of this CO2 into cell material using the Calvin cycle. This Calvin cycle flux enabled R. palustris to reoxidize nearly half of the reduced cofactors generated during conversion of acetate to biomass, revealing that CO2 fixation plays a major role in cofactor recycling. When H2 production via nitrogenase was used as an alternative cofactor recycling mechanism, a similar amount of CO2 was released from acetate, but only 12% of it was reassimilated by the Calvin cycle. These results underscore that N2 fixation and CO2 fixation have electron-accepting roles separate from their better-known roles in ammonia production and biomass generation. Some nonphotosynthetic heterotrophic bacteria have Calvin cycle genes, and their potential to use CO2 fixation to recycle reduced cofactors deserves closer scrutiny. PMID:20558750

  19. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  20. Stress and Activity of Molybdenum-Containing Complex (Molybdenum Cofactor) in Winter Wheat Seeds

    PubMed Central

    Vunkova-Radeva, Reneta; Schiemann, Johan; Mendel, Ralf-Reiner; Salcheva, Galitona; Georgieva, Damyana

    1988-01-01

    Molybdenum, applied in vivo, restored the damage from low temperature with winter wheat (Triticum aestivum, var “Sadovo 1”) grown on acid soil and, in addition, sharply increased productivity (G Salcheva, D Georgieva, 1982; G Salcheva et al., 1977, 1979). Two fractions with molybdenum-cofactor activity in seeds were detected. One of them has a molecular weight of about 230 kilodaltons corresponding to xanthine oxidase activity and leaf nitrate reductase activity. The other has a molecular weight of about 60 kilodaltons. The ratio between the molybdenum-cofactor activity of these fractions was different in `mother' seeds used in the experiment, in seeds obtained from the damaged plants, and in seeds obtained from the damaged plants restored by in vivo molybdenum addition. Every one of these fractions consisted of several components in which molybdenum-cofactor activity and stability in vitro was different. We suggest that plants store molybdenum as molybdenum carriers in these low molecular weight fractions. Images Fig. 2 PMID:16666178

  1. Developmental expression patterns of candidate co-factors for vertebrate Six family transcription factors

    PubMed Central

    Neilson, Karen M.; Pignoni, Francesca; Yan, Bo; Moody, Sally A.

    2010-01-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by co-factor proteins. Two Six genes and one co-factor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for about half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila co-factor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  2. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    SciTech Connect

    Fielding,E.; Widboom, P.; Bruner, S.

    2007-01-01

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  3. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    PubMed Central

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  4. Intracellular Trafficking of the Pyridoxal Cofactor. Implications for Health and Metabolic Disease*

    PubMed Central

    Whittaker, James W.

    2016-01-01

    The importance of the vitamin B6-derived pyridoxal cofactor for human health has been established through more than 70 years of intensive biochemical research, revealing its fundamental roles in metabolism. B6 deficiency, resulting from nutritional limitation or impaired uptake from dietary sources, is associated with epilepsy, neuromuscular disease and neurodegeneration. Hereditary disorders of B6 processing are also known, and genetic defects in pathways involved in transport of B6 into the cell and its transformation to the pyridoxal-5′-phosphate enzyme cofactor can contribute to cardiovascular disease by interfering with homocysteine metabolism and the biosynthesis of vasomodulatory polyamines. Compared to the processes involved in cellular uptake and processing of the B6 vitamers, trafficking of the PLP cofactor across intracellular membranes is very poorly understood, even though the availability of PLP within subcellular compartments (particularly the mitochondrion) may have important health implications. The aim of this review is to concisely summarize the state of current knowledge of intracellular trafficking of PLP and to identify key directions for future research. PMID:26619753

  5. The nitrogenase FeMo-cofactor and P-cluster pair: 2. 2 [Angstrom] resolution structures

    SciTech Connect

    Chan, M.K.; Jongsun Kim; Rees, D.C. )

    1993-05-07

    Structures recently proposed for the FeMo-cofactor and P-cluster pair of the nitrogenase molybdenum-iron (MoFe)-protein from Azotobacter vinelandii have been crystallographically verified at 2.2 angstrom resolution. Significantly, no hexacoordinate sulfur atoms are observed in either type of metal center. Consequently, the six bridged iron atoms in the FeMo-cofactor are trigonally coordinated by nonprotein ligands, although there may be some iron-iron bonding interactions that could provide a fourth coordination interaction for these sites. Two of the cluster sulfurs in the P-cluster pair are very close together ([approximately]2.1 angstroms), indicating that they form a disulfide bond. These findings indicate that a cavity exists in the interior of the FeMo-cofactor that could be involved in substrate binding and suggest that redox reactions at the P-cluster pair may be linked to transitions of two cluster-bound sulfurs between disulfide and sulfide oxidation states. 12 refs., 3 figs.

  6. Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC.

    PubMed

    Fielding, Elisha N; Widboom, Paul F; Bruner, Steven D

    2007-12-11

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3,5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC [Widboom, P. W., Fielding, E. N., Liu, Y., and Bruner, S. D. (2007) Nature 447, 342-345] confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  7. A Live Zebrafish-Based Screening System for Human Nuclear Receptor Ligand and Cofactor Discovery

    PubMed Central

    Tiefenbach, Jens; Moll, Pamela R.; Nelson, Meryl R.; Hu, Chun; Baev, Lilia; Kislinger, Thomas; Krause, Henry M.

    2010-01-01

    Nuclear receptors (NRs) belong to a superfamily of transcription factors that regulate numerous homeostatic, metabolic and reproductive processes. Taken together with their modulation by small lipophilic molecules, they also represent an important and successful class of drug targets. Although many NRs have been targeted successfully, the majority have not, and one third are still orphans. Here we report the development of an in vivo GFP-based reporter system suitable for monitoring NR activities in all cells and tissues using live zebrafish (Danio rerio). The human NR fusion proteins used also contain a new affinity tag cassette allowing the purification of receptors with bound molecules from responsive tissues. We show that these constructs 1) respond as expected to endogenous zebrafish hormones and cofactors, 2) facilitate efficient receptor and cofactor purification, 3) respond robustly to NR hormones and drugs and 4) yield readily quantifiable signals. Transgenic lines representing the majority of human NRs have been established and are available for the investigation of tissue- and isoform-specific ligands and cofactors. PMID:20339547

  8. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  9. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases.

    PubMed

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J; Kaput, Jim; Priami, Corrado

    2016-01-18

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900's at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases.

  10. Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor

    PubMed Central

    Cuzic, Simona; Hartmann, Roland K.

    2005-01-01

    We demonstrate, for the first time, catalysis by Escherichia coli ribonuclease P (RNase P) RNA with Zn2+ as the sole divalent metal ion cofactor in the presence of ammonium, but not sodium or potassium salts. Hill analysis suggests a role for two or more Zn2+ ions in catalysis. Whereas Zn2+ destabilizes substrate ground state binding to an extent that precludes reliable Kd determination, Co(NH3)63+ and Sr2+ in particular, both unable to support catalysis by themselves, promote high-substrate affinity. Zn2+ and Co(NH3)63+ substantially reduce the fraction of precursor tRNA molecules capable of binding to RNase P RNA. Stimulating and inhibitory effects of Sr2+ on the ribozyme reaction with Zn2+ as cofactor could be rationalized by a model involving two Sr2+ ions (or two classes of Sr2+ ions). Both ions improve substrate affinity in a cooperative manner, but one of the two inhibits substrate conversion in a non-competitive mode with respect to the substrate and the Zn2+. A single 2′-fluoro modification at nt −1 of the substrate substantially weakened the inhibitory effect of Sr2+. Our results demonstrate that the studies on RNase P RNA with metal cofactors other than Mg2+ entail complex effects on structural equilibria of ribozyme and substrate RNAs as well as E·S formation apart from the catalytic performance. PMID:15867194

  11. Biochemical Characterization of Molybdenum Cofactor-free Nitrate Reductase from Neurospora crassa*

    PubMed Central

    Ringel, Phillip; Krausze, Joern; van den Heuvel, Joop; Curth, Ute; Pierik, Antonio J.; Herzog, Stephanie; Mendel, Ralf R.; Kruse, Tobias

    2013-01-01

    Nitrate reductase (NR) is a complex molybdenum cofactor (Moco)-dependent homodimeric metalloenzyme that is vitally important for autotrophic organism as it catalyzes the first and rate-limiting step of nitrate assimilation. Beside Moco, eukaryotic NR also binds FAD and heme as additional redox active cofactors, and these are involved in electron transfer from NAD(P)H to the enzyme molybdenum center where reduction of nitrate to nitrite takes place. We report the first biochemical characterization of a Moco-free eukaryotic NR from the fungus Neurospora crassa, documenting that Moco is necessary and sufficient to induce dimer formation. The molybdenum center of NR reconstituted in vitro from apo-NR and Moco showed an EPR spectrum identical to holo-NR. Analysis of mutants unable to bind heme or FAD revealed that insertion of Moco into NR occurs independent from the insertion of any other NR redox cofactor. Furthermore, we showed that at least in vitro the active site formation of NR is an autonomous process. PMID:23539622

  12. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.

    PubMed

    Yokoyama, Kenichi; Leimkühler, Silke

    2015-06-01

    The biosynthesis of the molybdenum cofactor (Moco) has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the assembly of molybdoenzymes and the biosynthesis of FeS clusters has been identified in the recent years: 1) the synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) the sulfurtransferase for the dithiolene group in Moco is also involved in the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the addition of a sulfido-ligand to the molybdenum atom in the active site additionally involves a sulfurtransferase, and 4) most molybdoenzymes in bacteria require FeS clusters as redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Pyridoxine-dependent epilepsy with elevated urinary α-amino adipic semialdehyde in molybdenum cofactor deficiency.

    PubMed

    Struys, Eduard Alexander; Nota, Benjamin; Bakkali, Abdellatif; Al Shahwan, Saad; Salomons, Gajja Sophi; Tabarki, Brahim

    2012-12-01

    α-Amino adipic semialdehyde (α-AASA) accumulates in body fluids from patients with pyridoxine-dependent epilepsy because of mutations in antiquitin (ALDH7A1) and serves as the biomarker for this condition. We have recently found that the urinary excretion of α-AASA was also increased in molybdenum cofactor and sulfite oxidase deficiencies. The seizures in pyridoxine-dependent epilepsy are caused by lowered cerebral levels of pyridoxal-5-phosphate (PLP), the bioactive form of pyridoxine (vitamin B(6)), which can be corrected by the supplementation of pyridoxine. The nonenzymatic trapping of PLP by the cyclic form of α-AASA is causative for the lowered cerebral PLP levels. We describe 2 siblings with clinically evident pyridoxine-responsive seizures associated with increased urinary excretion of α-AASA. Subsequent metabolic investigations revealed several metabolic abnormities, all indicative for molybdenum cofactor deficiency. Molecular investigations indeed revealed a known homozygous mutation in the MOCS2 gene. Based upon the clinically evident pyridoxine-responsive seizures in these 2 siblings, we recommend considering pyridoxine supplementation to patients affected with molybdenum cofactor or sulfite oxidase deficiencies.

  14. Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches

    PubMed Central

    Li, Yajing; van der Est, Art; Lucas, Marie Gabrielle; Ramesh, V. M.; Gu, Feifei; Petrenko, Alexander; Lin, Su; Webber, Andrew N.; Rappaport, Fabrice; Redding, Kevin

    2006-01-01

    Photosystem I has two branches of cofactors down which light-driven electron transfer (ET) could potentially proceed, each consisting of a pair of chlorophylls (Chls) and a phylloquinone (PhQ). Forward ET from PhQ to the next ET cofactor (FX) is described by two kinetic components with decay times of ≈20 and ≈200 ns, which have been proposed to represent ET from PhQB and PhQA, respectively. Immediately preceding each quinone is a Chl (ec3), which receives a H-bond from a nearby tyrosine. To decrease the reduction potential of each of these Chls, and thus modify the relative yield of ET within the targeted branch, this H-bond was removed by conversion of each Tyr to Phe in the green alga Chlamydomonas reinhardtii. Together, transient optical absorption spectroscopy performed in vivo and transient electron paramagnetic resonance data from thylakoid membranes showed that the mutations affect the relative amplitudes, but not the lifetimes, of the two kinetic components representing ET from PhQ to FX. The mutation near ec3A increases the fraction of the faster component at the expense of the slower component, with the opposite effect seen in the ec3B mutant. We interpret this result as a decrease in the relative use of the targeted branch. This finding suggests that in Photosystem I, unlike type II reaction centers, the relative efficiency of the two branches is extremely sensitive to the energetics of the embedded redox cofactors. PMID:16467143

  15. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics

    PubMed Central

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Wittkamp, Florian; Apfel, Ulf-Peter; Heberle, Joachim; Haumann, Michael; Stripp, Sven Timo

    2016-01-01

    The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN−) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of 13CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN− at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective 13CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle. PMID:27432985

  16. Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases.

    PubMed

    Cahn, Jackson K B; Brinkmann-Chen, Sabine; Spatzal, Thomas; Wiig, Jared A; Buller, Andrew R; Einsle, Oliver; Hu, Yilin; Ribbe, Markus W; Arnold, Frances H

    2015-06-15

    Although most sequenced members of the industrially important ketol-acid reductoisomerase (KARI) family are class I enzymes, structural studies to date have focused primarily on the class II KARIs, which arose through domain duplication. In the present study, we present five new crystal structures of class I KARIs. These include the first structure of a KARI with a six-residue β2αB (cofactor specificity determining) loop and an NADPH phosphate-binding geometry distinct from that of the seven- and 12-residue loops. We also present the first structures of naturally occurring KARIs that utilize NADH as cofactor. These results show insertions in the specificity loops that confounded previous attempts to classify them according to loop length. Lastly, we explore the conformational changes that occur in class I KARIs upon binding of cofactor and metal ions. The class I KARI structures indicate that the active sites close upon binding NAD(P)H, similar to what is observed in the class II KARIs of rice and spinach and different from the opening of the active site observed in the class II KARI of Escherichia coli. This conformational change involves a decrease in the bending of the helix that runs between the domains and a rearrangement of the nicotinamide-binding site. © The Authors Journal Compilation © 2015 Biochemical Society.

  17. Cofactor-free light-driven whole-cell cytochrome P450 catalysis.

    PubMed

    Park, Jong Hyun; Lee, Sahng Ha; Cha, Gun Su; Choi, Da Som; Nam, Dong Heon; Lee, Jae Hyung; Lee, Jung-Kul; Yun, Chul-Ho; Jeong, Ki Jun; Park, Chan Beum

    2015-01-12

    Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non-functionalized hydrocarbons. Here, we have designed a novel light-driven platform for cofactor-free, whole-cell P450 photo-biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β-estradiol), to demonstrate the general applicability of the light-driven, cofactor-free system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches.

    PubMed

    Li, Yajing; van der Est, Art; Lucas, Marie Gabrielle; Ramesh, V M; Gu, Feifei; Petrenko, Alexander; Lin, Su; Webber, Andrew N; Rappaport, Fabrice; Redding, Kevin

    2006-02-14

    Photosystem I has two branches of cofactors down which light-driven electron transfer (ET) could potentially proceed, each consisting of a pair of chlorophylls (Chls) and a phylloquinone (PhQ). Forward ET from PhQ to the next ET cofactor (FX) is described by two kinetic components with decay times of approximately 20 and approximately 200 ns, which have been proposed to represent ET from PhQB and PhQA, respectively. Immediately preceding each quinone is a Chl (ec3), which receives a H-bond from a nearby tyrosine. To decrease the reduction potential of each of these Chls, and thus modify the relative yield of ET within the targeted branch, this H-bond was removed by conversion of each Tyr to Phe in the green alga Chlamydomonas reinhardtii. Together, transient optical absorption spectroscopy performed in vivo and transient electron paramagnetic resonance data from thylakoid membranes showed that the mutations affect the relative amplitudes, but not the lifetimes, of the two kinetic components representing ET from PhQ to F(X). The mutation near ec3A increases the fraction of the faster component at the expense of the slower component, with the opposite effect seen in the ec3B mutant. We interpret this result as a decrease in the relative use of the targeted branch. This finding suggests that in Photosystem I, unlike type II reaction centers, the relative efficiency of the two branches is extremely sensitive to the energetics of the embedded redox cofactors.

  19. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response.

    PubMed

    Staudigl, Michael; Gersting, Søren W; Danecka, Marta K; Messing, Dunja D; Woidy, Mathias; Pinkas, Daniel; Kemter, Kristina F; Blau, Nenad; Muntau, Ania C

    2011-07-01

    The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH(4) cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH(4) concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH(4) loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH(4) ratio. Finally, evaluation of data from BH(4) loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH(4)-responsive PAH deficiency.

  20. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.

    PubMed

    Ringel, Phillip; Krausze, Joern; van den Heuvel, Joop; Curth, Ute; Pierik, Antonio J; Herzog, Stephanie; Mendel, Ralf R; Kruse, Tobias

    2013-05-17

    Nitrate reductase (NR) is a complex molybdenum cofactor (Moco)-dependent homodimeric metalloenzyme that is vitally important for autotrophic organism as it catalyzes the first and rate-limiting step of nitrate assimilation. Beside Moco, eukaryotic NR also binds FAD and heme as additional redox active cofactors, and these are involved in electron transfer from NAD(P)H to the enzyme molybdenum center where reduction of nitrate to nitrite takes place. We report the first biochemical characterization of a Moco-free eukaryotic NR from the fungus Neurospora crassa, documenting that Moco is necessary and sufficient to induce dimer formation. The molybdenum center of NR reconstituted in vitro from apo-NR and Moco showed an EPR spectrum identical to holo-NR. Analysis of mutants unable to bind heme or FAD revealed that insertion of Moco into NR occurs independent from the insertion of any other NR redox cofactor. Furthermore, we showed that at least in vitro the active site formation of NR is an autonomous process.

  1. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics.

    PubMed

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Wittkamp, Florian; Apfel, Ulf-Peter; Heberle, Joachim; Haumann, Michael; Stripp, Sven Timo

    2016-07-26

    The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle.

  2. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor

    PubMed Central

    Huijbers, Mieke M. E.; Martínez-Júlvez, Marta; Westphal, Adrie H.; Delgado-Arciniega, Estela; Medina, Milagros; van Berkel, Willem J. H.

    2017-01-01

    Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered. PMID:28256579

  3. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.

    PubMed

    Otrelo-Cardoso, Ana Rita; Schwuchow, Viola; Rodrigues, David; Cabrita, Eurico J; Leimkühler, Silke; Romão, Maria João; Santos-Silva, Teresa

    2014-01-01

    Molybdenum and tungsten enzymes require specific chaperones for folding and cofactor insertion. PaoD is the chaperone of the periplasmic aldehyde oxidoreductase PaoABC. It is the last gene in the paoABCD operon in Escherichia coli and its presence is crucial for obtaining mature enzyme. PaoD is an unstable, 35 kDa, protein. Our biochemical studies showed that it is a dimer in solution with a tendency to form large aggregates, especially after freezing/thawing cycles. In order to improve stability, PaoD was thawed in the presence of two ionic liquids [C4mim]Cl and [C2OHmim]PF6 and no protein precipitation was observed. This allowed protein concentration and crystallization using polyethylene glycol or ammonium sulfate as precipitating agents. Saturation transfer difference - nuclear magnetic resonance (STD-NMR) experiments have also been performed in order to investigate the effect of the ionic liquids in the stabilization process, showing a clear interaction between the acidic ring protons of the cation and, most likely, negatively charged residues at the protein surface. DLS assays also show a reduction of the overall size of the protein aggregates in presence of ionic liquids. Furthermore, cofactor binding studies on PaoD showed that the protein is able to discriminate between molybdenum and tungsten bound to the molybdenum cofactor, since only a Mo-MPT form of the cofactor remained bound to PaoD.

  4. Biochemical, Stabilization and Crystallization Studies on a Molecular Chaperone (PaoD) Involved in the Maturation of Molybdoenzymes

    PubMed Central

    Otrelo-Cardoso, Ana Rita; Schwuchow, Viola; Rodrigues, David; Cabrita, Eurico J.; Leimkühler, Silke; Romão, Maria João; Santos-Silva, Teresa

    2014-01-01

    Molybdenum and tungsten enzymes require specific chaperones for folding and cofactor insertion. PaoD is the chaperone of the periplasmic aldehyde oxidoreductase PaoABC. It is the last gene in the paoABCD operon in Escherichia coli and its presence is crucial for obtaining mature enzyme. PaoD is an unstable, 35 kDa, protein. Our biochemical studies showed that it is a dimer in solution with a tendency to form large aggregates, especially after freezing/thawing cycles. In order to improve stability, PaoD was thawed in the presence of two ionic liquids [C4mim]Cl and [C2OHmim]PF6 and no protein precipitation was observed. This allowed protein concentration and crystallization using polyethylene glycol or ammonium sulfate as precipitating agents. Saturation transfer difference – nuclear magnetic resonance (STD-NMR) experiments have also been performed in order to investigate the effect of the ionic liquids in the stabilization process, showing a clear interaction between the acidic ring protons of the cation and, most likely, negatively charged residues at the protein surface. DLS assays also show a reduction of the overall size of the protein aggregates in presence of ionic liquids. Furthermore, cofactor binding studies on PaoD showed that the protein is able to discriminate between molybdenum and tungsten bound to the molybdenum cofactor, since only a Mo-MPT form of the cofactor remained bound to PaoD. PMID:24498065

  5. In vitro maturation of oocytes.

    PubMed

    Smith, G D

    2001-10-01

    In vitro maturation (IVM) of human oocytes is an emerging assisted reproductive technology with great promise. To be successful, this process must entail both nuclear and cytoplasmic maturation. Endogenous regulation of oocyte maturation is a complex sequence of events regulated by endocrine parameters, oocyte/follicular cross-talk, and intra-oocyte kinase/phosphatase interactions. Although nuclear maturation during human oocyte IVM progresses normally, cytoplasmic maturation is significantly lacking, as exemplified by poor embryonic developmental competence and pregnancy rates. Advances made in immature oocyte isolation and oocyte and embryo culture conditions have increased the clinical feasibility of IVM. However, in order to achieve acceptable birth rates, future studies should focus on characterization and regulation of oocyte cytoplasmic maturation, and how oocyte-derived factors influence zygotic genome activation and embryonic developmental competence.

  6. Mechanisms of Hierarchical Cortical Maturation

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2017-01-01

    Cortical information processing is structurally and functionally organized into hierarchical pathways, with primary sensory cortical regions providing modality specific information and associative cortical regions playing a more integrative role. Historically, there has been debate as to whether primary cortical regions mature earlier than associative cortical regions, or whether both primary and associative cortical regions mature simultaneously. Identifying whether primary and associative cortical regions mature hierarchically or simultaneously will not only deepen our understanding of the mechanisms that regulate brain maturation, but it will also provide fundamental insight into aspects of adolescent behavior, learning, neurodevelopmental disorders and computational models of neural processing. This mini-review article summarizes the current evidence supporting the sequential and hierarchical nature of cortical maturation, and then proposes a new cellular model underlying this process. Finally, unresolved issues associated with hierarchical cortical maturation are also addressed. PMID:28959187

  7. Maturational and Non-Maturational Factors in Heritage Language Acquisition

    ERIC Educational Resources Information Center

    Moon, Ji Hye

    2012-01-01

    This dissertation aims to understand the maturational and non-maturational aspects of early bilingualism and language attrition in heritage speakers who have acquired their L1 incompletely in childhood. The study highlights the influential role of age and input dynamics in early L1 development, where the timing of reduction in L1 input and the…

  8. Maturational and Non-Maturational Factors in Heritage Language Acquisition

    ERIC Educational Resources Information Center

    Moon, Ji Hye

    2012-01-01

    This dissertation aims to understand the maturational and non-maturational aspects of early bilingualism and language attrition in heritage speakers who have acquired their L1 incompletely in childhood. The study highlights the influential role of age and input dynamics in early L1 development, where the timing of reduction in L1 input and the…

  9. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    NASA Astrophysics Data System (ADS)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  10. Interaction between the AAA+ ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding.

    PubMed

    Rao, Maya V; Williams, Dewight R; Cocklin, Simon; Loll, Patrick J

    2017-09-22

    p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum associated degradation (ERAD). However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif (VBM) interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C-terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  11. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation.

    PubMed

    Suess, Daniel L M; Britt, R David

    2015-09-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H(+) and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN(-) ligands of the H-cluster, tracing (57)Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN(-) ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

  12. The Mature Athlete

    PubMed Central

    McCarthy, Moira M.; Hannafin, Jo A.

    2014-01-01

    Context: Aging changes the biology, healing capacity, and biomechanical function of tendons and ligaments and results in common clinical pathologies that present to orthopedic surgeons, primary care physicians, physical therapists, and athletic trainers. A better understanding of the age-related changes in these connective tissues will allow better patient care. Evidence Acquisition: The PubMed database was searched in December 2012 for English-language articles pertaining to age-related changes in tendons and ligaments. Level of Evidence: Level 5. Results: The mature athlete faces challenges associated with age-dependent changes in the rotator cuff, Achilles tendon, lateral humeral epicondylar tendons, quadriceps tendon, and patellar tendon. The anterior cruciate ligament and the medial collateral ligament are the most studied intra-articular and extra-articular ligaments, and both are associated with age-dependent changes. Conclusion: Tendons and ligaments are highly arranged connective tissue structures that maintain joint motion and joint stability. These structures are subject to vascular and compositional changes with increasing age that alter their mechanotransduction, biology, healing capacity, and biomechanical function. Emerging research into the etiology of age-dependent changes will provide further information to help combat the age-related clinical complications associated with the injuries that occur to tendons and ligaments. PMID:24427441

  13. Feline leukemia virus T entry is dependent on both expression levels and specific interactions between cofactor and receptor.

    PubMed

    Cheng, Heather H; Anderson, Maria M; Overbaugh, Julie

    2007-03-01

    Feline leukemia virus (FeLV) subgroup T uses both a multiple membrane-spanning receptor, FePit1, and a soluble cofactor, FeLIX, to enter feline cells. FeLIX is expressed from endogenous FeLV-related sequence and resembles the receptor binding domain (RBD) of the viral envelope protein. It remains unclear whether FeLV-T receptor activity requires specific residues within FePit1 and FeLIX and/or a threshold level of receptor/cofactor expression. To address this, we examined FeLV-T infection of cells expressing variable levels of FePit1 and other gammaretroviral receptors in the presence of variable amounts of soluble cofactor, either RBD or the envelope surface subunit (SU). Cofactor-receptor pairs fall into three groups with regard to mediating FeLV-T infection: those that are efficient at all concentrations tested, such as FePit1 and FeLIX; those requiring high expression of both cofactor and receptor; and those that are non-functional as receptors even at high expression. This suggests that both expression levels and specific interactions with receptor and cofactor are critical for mediating entry of FeLV-T.

  14. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors.

    PubMed

    Nowak, Claudia; Beer, Barbara; Pick, André; Roth, Teresa; Lommes, Petra; Sieber, Volker

    2015-01-01

    The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox). Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13% FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyze the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as by-product.

  15. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme.

    PubMed

    Bingaman, Jamie L; Zhang, Sixue; Stevens, David R; Yennawar, Neela H; Hammes-Schiffer, Sharon; Bevilacqua, Philip C

    2017-04-01

    RNA enzymes (ribozymes) have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors; likewise, the naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies have implicated GlcN6P as the general acid. Here we describe new catalytic roles of GlcN6P through experiments and calculations. Large stereospecific normal thio effects and a lack of metal-ion rescue in the holoribozyme indicate that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal-ion rescue in the aporibozyme reveals that this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, thereby allowing RNA to compensate for its limited functional diversity.

  16. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors

    PubMed Central

    Nowak, Claudia; Beer, Barbara; Pick, André; Roth, Teresa; Lommes, Petra; Sieber, Volker

    2015-01-01

    The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox). Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13% FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyze the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as by-product. PMID:26441891

  17. Career Maturity of Welfare Recipients.

    ERIC Educational Resources Information Center

    Beckman, Carol M.

    To investigate the career maturity of welfare recipients, this thesis examines six independent variables: (1) race; (2) sex; (3) age; (4) level of formal education; (5) general intelligence; and (6) locus of control. Scales taken from the Career Maturity Inventory served as the dependent variables. The sample consisted of 83 welfare recipients who…

  18. Treating mature stands for wildlife

    Treesearch

    William H. Healy; Gary F. Houf

    1989-01-01

    Stands older than 60 years or that are medium to large sawtimber size generally provide good wildlife habitat. Mature trees usually produce abundant mast and provide den sites (see fig. 1 in Note 9.04 Treating Immature Stands). The undergrowth in these stands produces moderate amounts of browse and herbage. Mature stands also provide opportunities for management...

  19. Financial maturity of yellow birch

    Treesearch

    William B. Leak

    1969-01-01

    The methods used to compute financial maturity of yellow birch sawtimber are similar to those used for paper birch sawtimber, except for minor differences in detail. The procedure followed for yellow-birch veneer-log trees was also similar, except that local veneer grades and local veneer-log prices were used as the basis for the financial maturity computations.

  20. Career Education and Career Maturity.

    ERIC Educational Resources Information Center

    Trebilco, Geoffrey R.

    1984-01-01

    Investigated the relationships between career maturity and career curriculum in 38 Melbourne metropolitan secondary schools (N=2280 students) using an Australian adaption of the Career Development Inventory. Results confirmed that schools with career education programs achieved higher gains in student career maturity. (JAC)

  1. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase

    PubMed Central

    Sanli, Gulsah; Banta, Scott; Anderson, Stephen; Blaber, Michael

    2004-01-01

    Corynebacterium 2,5-Diketo-D-gluconic acid reductase (2,5-DKGR) catalyzes the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-Keto-L-gulonic acid (2-KLG). 2-KLG is an immediate precursor to L-ascorbic acid (vitamin C), and 2,5-DKGR is, therefore, an important enzyme in a novel industrial method for the production of vitamin C. 2,5-DKGR, as with most other members of the aldo-keto reductase (AKR) superfamily, exhibits a preference for NADPH compared to NADH as a cofactor in the stereo-specific reduction of substrate. The application of 2,5-DKGR in the industrial production of vitamin C would be greatly enhanced if NADH could be efficiently utilized as a cofactor. A mutant form of 2,5-DKGR has previously been identified that exhibits two orders of magnitude higher activity with NADH in comparison to the wild-type enzyme, while retaining a high level of activity with NADPH. We report here an X-ray crystal structure of the holo form of this mutant in complex with NADH cofactor, as well as thermodynamic stability data. By comparing the results to our previously reported X-ray structure of the holo form of wild-type 2,5-DKGR in complex with NADPH, the structural basis of the differential NAD(P)H selectivity of wild-type and mutant 2,5-DKGR enzymes has been identified. PMID:14718658

  2. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors.

    PubMed

    Bou-Torrent, Jordi; Toledo-Ortiz, Gabriela; Ortiz-Alcaide, Miriam; Cifuentes-Esquivel, Nicolas; Halliday, Karen J; Martinez-García, Jaime F; Rodriguez-Concepcion, Manuel

    2015-11-01

    Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors.

  3. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.

    PubMed Central

    Blankenfeldt, W.; Nowicki, C.; Montemartini-Kalisz, M.; Kalisz, H. M.; Hecht, H. J.

    1999-01-01

    The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group. PMID:10595543

  4. Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus.

    PubMed

    Keshipeddy, Santosh; Reeve, Stephanie M; Anderson, Amy C; Wright, Dennis L

    2015-07-22

    While antifolates such as Bactrim (trimethoprim-sulfamethoxazole; TMP-SMX) continue to play an important role in treating community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), resistance-conferring mutations, specifically F98Y of dihydrofolate reductase (DHFR), have arisen and compromise continued use. In an attempt to extend the lifetime of this important class, we have developed a class of propargyl-linked antifolates (PLAs) that exhibit potent inhibition of the enzyme and bacterial strains. Probing the role of the configuration at the single propargylic stereocenter in these inhibitors required us to develop a new approach to nonracemic 3-aryl-1-butyne building blocks by the pairwise use of asymmetric conjugate addition and aldehyde dehydration protocols. Using this new route, a series of nonracemic PLA inhibitors was prepared and shown to possess potent enzyme inhibition (IC50 values <50 nM), antibacterial effects (several with MIC values <1 μg/mL) and to form stable ternary complexes with both wild-type and resistant mutants. Unexpectedly, crystal structures of a pair of individual enantiomers in the wild-type DHFR revealed that the single change in configuration of the stereocenter drove the selection of an alternative NADPH cofactor, with the minor α-anomer appearing with R-27. Remarkably, this cofactor switching becomes much more prevalent when the F98Y mutation is present. The observation of cofactor site plasticity leads to a postulate for the structural basis of TMP resistance in DHFR and also suggests design strategies that can be used to target these resistant enzymes.

  5. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication

    PubMed Central

    Tibbs, Zachary E; Falany, Charles N

    2015-01-01

    The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate (PAPS), and release the byproduct, 3′, 5′-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro. PMID:26236487

  6. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis

    PubMed Central

    Kass, Itamar; Hoke, David E.; Costa, Mauricio G. S.; Reboul, Cyril F.; Porebski, Benjamin T.; Cowieson, Nathan P.; Leh, Hervé; Pennacchietti, Eugenia; McCoey, Julia; Kleifeld, Oded; Borri Voltattorni, Carla; Langley, David; Roome, Brendan; Mackay, Ian R.; Christ, Daniel; Perahia, David; Buckle, Malcolm; Paiardini, Alessandro; De Biase, Daniela; Buckle, Ashley M.

    2014-01-01

    The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5′-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5′-phosphate–binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies. PMID:24927554

  7. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis.

    PubMed

    Kass, Itamar; Hoke, David E; Costa, Mauricio G S; Reboul, Cyril F; Porebski, Benjamin T; Cowieson, Nathan P; Leh, Hervé; Pennacchietti, Eugenia; McCoey, Julia; Kleifeld, Oded; Borri Voltattorni, Carla; Langley, David; Roome, Brendan; Mackay, Ian R; Christ, Daniel; Perahia, David; Buckle, Malcolm; Paiardini, Alessandro; De Biase, Daniela; Buckle, Ashley M

    2014-06-24

    The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.

  8. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation

    SciTech Connect

    Islam, Kabirul; Chen, Yuling; Wu, Hong; Bothwell, Ian R.; Blum, Gil J.; Zeng, Hong; Dong, Aiping; Zheng, Weihong; Min, Jinrong; Deng, Haiteng; Luo, Minkui

    2013-11-18

    Protein methyltransferase (PMT)-mediated posttranslational modification of histone and nonhistone substrates modulates stability, localization, and interacting partners of target proteins in diverse cellular contexts. These events play critical roles in normal biological processes and are frequently deregulated in human diseases. In the course of identifying substrates of individual PMTs, bioorthogonal profiling of protein methylation (BPPM) has demonstrated its merits. In this approach, specific PMTs are engineered to process S-adenosyl-L-methionine (SAM) analogs as cofactor surrogates and label their substrates with distinct chemical modifications for target elucidation. Despite the proof-of-concept advancement of BPPM, few efforts have been made to explore its generality. With two cancer-relevant PMTs, EuHMT1 (GLP1/KMT1D) and EuHMT2 (G9a/KMT1C), as models, we defined the key structural features of engineered PMTs and matched SAM analogs that can render the orthogonal enzyme–cofactor pairs for efficient catalysis. Here we have demonstrated that the presence of sulfonium-β-sp2 carbon and flexible, medium-sized sulfonium-δ-substituents are crucial for SAM analogs as BPPM reagents. The bulky cofactors can be accommodated by tailoring the conserved Y1211/Y1154 residues and nearby hydrophobic cavities of EuHMT1/2. Profiling proteome-wide substrates with BPPM allowed identification of >500 targets of EuHMT1/2 with representative targets validated using native EuHMT1/2 and SAM. This finding indicates that EuHMT1/2 may regulate many cellular events previously unrecognized to be modulated by methylation. The present work, therefore, paves the way to a broader application of the BPPM technology to profile methylomes of diverse PMTs and elucidate their downstream functions.

  9. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    PubMed Central

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  10. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    PubMed

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  11. Substrate, Product, and Cofactor: the Extraordinarily Flexible Relationship between the CDE Superfamily and Heme

    PubMed Central

    Celis, Arianna I.; DuBois, Jennifer L.

    2015-01-01

    PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α, β-barrel domain. Of these, six different groups bind heme inside the barrel’s interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature’s most important small molecules. PMID:25778630

  12. FrsA functions as a cofactor-independent decarboxylase to control metabolic flux.

    PubMed

    Lee, Kyung-Jo; Jeong, Chang-Sook; An, Young Jun; Lee, Hyun-Jung; Park, Soon-Jung; Seok, Yeong-Jae; Kim, Pil; Lee, Jung-Hyun; Lee, Kyu-Ho; Cha, Sun-Shin

    2011-05-29

    The interaction between fermentation-respiration switch (FrsA) protein and glucose-specific enzyme IIA(Glc) increases glucose fermentation under oxygen-limited conditions. We show that FrsA converts pyruvate to acetaldehyde and carbon dioxide in a cofactor-independent manner and that its pyruvate decarboxylation activity is enhanced by the dephosphorylated form of IIA(Glc) (d-IIA(Glc)). Crystal structures of FrsA and its complex with d-IIA(Glc) revealed residues required for catalysis as well as the structural basis for the activation by d-IIA(Glc).

  13. Protein-protein interactions and human cellular cofactors as new targets for HIV therapy.

    PubMed

    Tintori, Cristina; Brai, Annalaura; Fallacara, Anna Lucia; Fazi, Roberta; Schenone, Silvia; Botta, Maurizio

    2014-10-01

    Two novel approaches for the development of new drugs against AIDS are summarized each leading to the achievement of important discoveries in anti-HIV therapy. Despite the success of HAART in reducing mortality, resistant strains continue to emerge in the clinic, underscoring the importance of developing next-generation drugs. Protein-protein interactions and human cellular cofactors represent the new targets of tomorrow in HIV research. The most relevant results obtained in the last few years by the two new strategies are described herein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana.

    PubMed

    Hoff, T; Frandsen, G I; Rocher, A; Mundy, J

    1998-07-09

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis.

  15. Substituted quinoline quinones as surrogates for the PQQ cofactor: an electrochemical and computational study.

    PubMed

    Dorfner, Walter L; Carroll, Patrick J; Schelter, Eric J

    2015-04-17

    Pyrroloquinoline quinones (PQQ) are important cofactors that shuttle redox equivalents in diverse metalloproteins. Quinoline 7,8-quinones have been synthesized and characterized as surrogates for PQQ to elucidate redox energetics within metalloenzyme active sites. The quinoline 7,8-quinones were accessed using polymer-supported iodoxybenzoic acid and the compounds evaluated using solution electrochemistry. Together with a family of quinones, the products were evaluated computationally and used to generate a predictive correlation between a computed ΔG and the experimental reduction potentials.

  16. Evidence for a reduced heparin cofactor II biological activity in diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Milani, M R; Giugliano, D

    1990-01-01

    A reduction of heparin cofactor II (HCII) biological activity, despite its normal plasma concentration, is reported in insulin-dependent diabetic patients. A good linear correlation between HCII activity and concentration is present in normal controls but not in diabetics. In these subjects HCII activity correlates inversely with fasting blood glucose and glycated proteins but not with Hb A1. These data demonstrate the presence of a depressed HCII activity in the presence of its normal plasma concentration in insulin-dependent diabetics and suggest a role for short-term metabolic control in conditioning this phenomenon.

  17. Predictive Capability Maturity Model (PCMM).

    SciTech Connect

    Swiler, Laura Painton; Knupp, Patrick Michael; Urbina, Angel

    2010-10-01

    Predictive Capability Maturity Model (PCMM) is a communication tool that must include a dicussion of the supporting evidence. PCMM is a tool for managing risk in the use of modeling and simulation. PCMM is in the service of organizing evidence to help tell the modeling and simulation (M&S) story. PCMM table describes what activities within each element are undertaken at each of the levels of maturity. Target levels of maturity can be established based on the intended application. The assessment is to inform what level has been achieved compared to the desired level, to help prioritize the VU activities & to allocate resources.

  18. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    PubMed

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  19. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    PubMed Central

    Pyper, Sean R.; Viswakarma, Navin; Jia, Yuzhi; Zhu, Yi-Jun; Fondell, Joseph D.; Reddy, Janardan K.

    2010-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24. PMID:20885938

  20. Identity of cofactor bound to mycothiol conjugate amidase (Mca) influenced by expression and purification conditions.

    PubMed

    Kocabas, Evren; Liu, Hualan; Hernick, Marcy

    2015-08-01

    Mycothiol serves as the primary reducing agent in Mycobacterium species, and is also a cofactor for the detoxification of xenobiotics. Mycothiol conjugate amidase (Mca) is a metalloamidase that catalyzes the cleavage of MS-conjugates to form a mercapturic acid, which is excreted from the mycobacterium, and 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside. Herein we report on the metal cofactor preferences of Mca from Mycobacterium smegmatis and Mycobacterium tuberculosis. Importantly, results from homology models of Mca from M. smegmatis and M. tuberculosis suggest that the metal binding site of Mca is identical to that of the closely related protein N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB). This finding is supported by results from zinc ion affinity measurements that indicate Mca and MshB have comparable K(D)(ZnII) values (~10-20 pM). Furthermore, results from pull-down experiments using Halo-Mca indicate that Mca purifies with (stoichiometric) Fe(2+) when purified under anaerobic conditions, and Zn(2+) when purified under aerobic conditions. Consequently, Mca is likely a Fe(2+)-dependent enzyme under physiological conditions; with Zn(2+)-Mca an experimental artifact that could become biologically relevant under oxidatively stressed conditions. Importantly, these findings suggest that efforts towards the design of Mca inhibitors should include targeting the Fe(2+) form of the enzyme.

  1. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions

    SciTech Connect

    Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Landorf, Elizabeth V.; Konopka, Allan; Collart, Frank; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.

    2016-02-02

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are critically needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically-predicted functions. Of particular importance are transport mechanisms, used to shuttle nutrients and metabolites across cell mem-branes, such as B vitamins, which are indispensable to metabolic reactions crucial to the survival of diverse microbes ranging from members of environmental microbial communities to human pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, and characterization of intra-cellular enzyme-cofactor/nutrient associations are needed to enable a significantly improved understanding of microbial biochemis-try and physiology, how microbes associate with others, and how they sense and respond to environmental perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular protein-cofactor associations through live cell labeling of the filamentous anoxygenic pho-toheterotroph, Chloroflexus aurantiacus J-10-fl, known for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by iden-tifying B vitamin transport and disposition mechanisms required for survival.

  2. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors.

    PubMed

    Osz, Judit; Brélivet, Yann; Peluso-Iltis, Carole; Cura, Vincent; Eiler, Sylvia; Ruff, Marc; Bourguet, William; Rochel, Natacha; Moras, Dino

    2012-03-06

    Transcription regulation by steroid hormones, vitamin derivatives, and metabolites is mediated by nuclear receptors (NRs), which play an important role in ligand-dependent gene expression and human health. NRs function as homodimers or heterodimers and are involved in a combinatorial, coordinated and sequentially orchestrated exchange between coregulators (corepressors, coactivators). The architecture of DNA-bound functional dimers positions the coregulators proteins. We previously demonstrated that retinoic acid (RAR-RXR) and vitamin D3 receptors (VDR-RXR) heterodimers recruit only one coactivator molecule asymmetrically without steric hindrance for the binding of a second cofactor. We now address the problem of homodimers for which the presence of two identical targets enhances the functional importance of the mode of binding. Using structural and biophysical methods and RAR as a model, we could dissect the molecular mechanism of coactivator recruitment to homodimers. Our study reveals an allosteric mechanism whereby binding of a coactivator promotes formation of nonsymmetrical RAR homodimers with a 21 stoichiometry. Ligand conformation and the cofactor binding site of the unbound receptor are affected through the dimer interface. A similar control mechanism is observed with estrogen receptor (ER) thus validating the negative cooperativity model for an established functional homodimer. Correlation with published data on other NRs confirms the general character of this regulatory pathway.

  3. A simple method to engineer a protein-derived redox cofactor for catalysis

    PubMed Central

    Shin, Sooim; Choi, Moonsung; Williamson, Heather R.; Davidson, Victor L.

    2014-01-01

    The 6x-Histidine tag which is commonly used for purification of recombinant proteins was converted to a catalytic redox-active center by incorporation of Co2+. Two examples of the biological activity of this engineered protein-derived cofactor are presented. After inactivation of the natural diheme cofactor of MauG, it was shown that the Co2+-loaded 6xHis-tag could substitute for the hemes in the H2O2-driven catalysis of tryptophan tryptophylquinone biosynthesis. To further demonstrate that the Co2+-loaded 6xHis-tag could mediate long range electron transfer, it was shown that addition of H2O2 to the Co2+-loaded 6xHis-tagged Cu1+ amicyanin oxidizes the copper site which is 20 Å away. These results provide proof of principle for this simple method by which to introduce a catalytic redox-active site into proteins for potential applications in research and biotechnology. PMID:24858537

  4. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets

    PubMed Central

    Collins, Cailin T.; Hess, Jay L.

    2015-01-01

    HOXA9 is a homeodomain-containing transcription factor that plays an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation, however the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for the greater than 50% of AML with overexpression of HOXA9. PMID:26028034

  5. Crystal Structures of Cyclohexanone Monooxygenase Reveal Complex Domain Movements and a Sliding Cofactor

    SciTech Connect

    Mirza, I.; Yachnin, B; Wang, S; Grosse, S; Bergeron, H; Imura, A; Iwaki, H; Hasegawa, Y; Lau, P; Berghuis, A

    2009-01-01

    Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O{sub 2} as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP+ in two distinct states, to resolutions of 2.3 and 2.2 {angstrom}. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.

  6. Immobilized cofactor derivatives for kinetic-based enzyme capture strategies: direct coupling of NAD(P)+.

    PubMed

    Oakey, Laura; Mulcahy, Patricia

    2004-12-15

    This study reevaluates the potential for direct coupling of NAD(P)(+) to a carboxylate-terminating spacer arm using carbodiimide-promoted coupling in an attempt to develop a greatly simplified synthetic method for cofactor immobilization that would support the more widespread adoption of kinetic-based enzyme capture (KBEC) strategies for protein purification applications and protein-detecting arrays/proteomic studies. Direct coupling of NAD(+) to epoxy (1,4-butanediol diglycidyl ether)-activated Sepharose is also described. Depending on the synthetic method used, the position of attachment of cofactor is concluded to be primarily through the pyrophosphate or ribosyl hydroxyl groups. Total substitution levels varied from 0.5 to 2 micromol/g wet weight with 28-67% accessibility. Model bioaffinity chromatographic studies employing KBEC strategies are reported for bovine heart L-lactate dehydrogenase, yeast alcohol dehydrogenase, l-phenylalanine dehydrogenase from Sporosarcina, glutamate dehydrogenase (GDH) from Candida utilis, and GDH from bovine liver. The NAD(+) derivative prepared using epoxy-activated Sepharose shows most potential for further development based on total substitution levels, the apparent absence of nonbiospecific interference, reversible biospecific adsorption of some of the test enzymes using soluble KBEC/stripping ligand tactics, and the relative simplicity of the synthetic method.

  7. A simple method to engineer a protein-derived redox cofactor for catalysis.

    PubMed

    Shin, Sooim; Choi, Moonsung; Williamson, Heather R; Davidson, Victor L

    2014-10-01

    The 6×-Histidine tag which is commonly used for purification of recombinant proteins was converted to a catalytic redox-active center by incorporation of Co(2+). Two examples of the biological activity of this engineered protein-derived cofactor are presented. After inactivation of the natural diheme cofactor of MauG, it was shown that the Co(2+)-loaded 6×His-tag could substitute for the hemes in the H2O2-driven catalysis of tryptophan tryptophylquinone biosynthesis. To further demonstrate that the Co(2+)-loaded 6×His-tag could mediate long range electron transfer, it was shown that addition of H2O2 to the Co(2+)-loaded 6×His-tagged Cu(1+) amicyanin oxidizes the copper site which is 20Å away. These results provide proof of principle for this simple method by which to introduce a catalytic redox-active site into proteins for potential applications in research and biotechnology.

  8. Dissecting Torsin/cofactor function at the nuclear envelope: a genetic study

    PubMed Central

    Laudermilch, Ethan; Tsai, Pei-Ling; Graham, Morven; Turner, Elizabeth; Zhao, Chenguang; Schlieker, Christian

    2016-01-01

    The human genome encodes four Torsin ATPases, the functions of which are poorly understood. In this study, we use CRISPR/Cas9 engineering to delete all four Torsin ATPases individually and in combination. Using nuclear envelope (NE) blebbing as a phenotypic measure, we establish a direct correlation between the number of inactivated Torsin alleles and the occurrence of omega-shaped herniations within the lumen of the NE. A similar, although not identical, redundancy is observed for LAP1 and LULL1, which serve as regulatory cofactors for a subset of Torsin ATPases. Unexpectedly, deletion of Tor2A in a TorA/B/3A-deficient background results in a stark increase of bleb formation, even though Tor2A does not respond to LAP1/LULL1 stimulation. The robustness of the observed phenotype in Torsin-deficient cells enables a structural analysis via electron microscopy tomography and a compositional analysis via immunogold labeling. Ubiquitin and nucleoporins were identified as distinctively localizing components of the omega-shaped bleb structure. These findings suggest a functional link between the Torsin/cofactor system and NE/nuclear pore complex biogenesis or homeostasis and establish a Torsin-deficient cell line as a valuable experimental platform with which to decipher Torsin function. PMID:27798237

  9. Early features in neuroimaging of two siblings with molybdenum cofactor deficiency.

    PubMed

    Higuchi, Ryuzo; Sugimoto, Takuya; Tamura, Akira; Kioka, Naomi; Tsuno, Yoshinobu; Higa, Asumi; Yoshikawa, Norishige

    2014-01-01

    We report the features of neuroimaging within 24 hours after birth in 2 siblings with molybdenum cofactor deficiency. The first sibling was delivered by emergency cesarean section because of fetal distress and showed pedaling and crawling seizures soon after birth. Brain ultrasound revealed subcortical multicystic lesions in the frontal white matter, and brain MRI at 4 hours after birth showed restricted diffusion in the entire cortex, except for the area adjacent to the subcortical cysts. The second sibling was delivered by elective cesarean section. Cystic lesions were seen in the frontal white matter on ultrasound, and brain MRI showed low signal intensity on T1-weighted image and high signal intensity on T2-weighted image in bifrontal white matter within 24 hours after birth, at which time the infant sucked sluggishly. Clonic spasm appeared at 29 hours after birth. The corpus callosum could not be seen clearly on ultrasound or MRI in both infants. Cortical atrophy and white matter cystic lesions spread to the entire hemisphere and resulted in severe brain atrophy within ~1 month in both infants. Subcortical multicystic lesions on ultrasound and a cortex with nonuniform, widespread, restricted diffusion on diffusion-weighted images are early features of neuroimaging in patients with molybdenum cofactor deficiency type A.

  10. Crystallization and preliminary crystallographic analysis of molybdenum-cofactor biosynthesis protein C from Thermus thermophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Chen, Lirong; Liu, Zhi-Jie; Wang, Bi-Cheng; Nishida, Masami; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2010-12-03

    The Gram-negative aerobic eubacterium Thermus thermophilus is an extremely important thermophilic microorganism that was originally isolated from a thermal vent environment in Japan. The molybdenum cofactor in this organism is considered to be an essential component required by enzymes that catalyze diverse key reactions in the global metabolism of carbon, nitrogen and sulfur. The molybdenum-cofactor biosynthesis protein C derived from T. thermophilus was crystallized in two different space groups. Crystals obtained using the first crystallization condition belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 64.81, b = 109.84, c = 115.19 {angstrom}, {beta} = 104.9{sup o}; the crystal diffracted to a resolution of 1.9 {angstrom}. The other crystal form belonged to space group R32, with unit-cell parameters a = b = 106.57, c = 59.25 {angstrom}, and diffracted to 1.75 {angstrom} resolution. Preliminary calculations reveal that the asymmetric unit contains 12 monomers and one monomer for the crystals belonging to space group P2{sub 1} and R32, respectively.

  11. Effect of mitochondrial cofactors and antioxidants supplementation on cognition in the aged canine.

    PubMed

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W; Cotman, Carl W

    2016-01-01

    A growing body of research has focused on modifiable risk factors for prevention and attenuation of cognitive decline in aging. This has led to an unprecedented interest in the relationship between diet and cognitive function. Several preclinical and epidemiologic studies suggest that dietary intervention can be used to improve cognitive function but randomized controlled trials are increasingly failing to replicate these findings. Here, we use a canine model of aging to evaluate the effects of specific components of diet supplementation which contain both antioxidants and a combination of mitochondrial cofactors (lipoic acid [LA] and acetyl-l-carnitine) on a battery of cognitive functions. Our data suggest that supplementation with mitochondrial cofactors, but not LA or antioxidant alone, selectively improve long-term recall in aged canines. Furthermore, we found evidence that LA alone could have cognitive impairing effects. These results contrast to those of a previous longitudinal study in aged canine. Our data demonstrate that one reason for this difference may be the nutritional status of animals at baseline for the 2 studies. Overall, this study suggests that social, cognitive, and physical activity together with optimal dietary intake (rather than diet alone) promotes successful brain aging.

  12. [Pathogenesis of AIDS: possible role of co-factors in HIV reactivation].

    PubMed

    Veronesi, R; Focaccia, R; Mazza, C C

    1989-01-01

    One of the most intriguing aspects concerning the pathogenesis of AIDS is the long period of latency of the HIV in human cells, not causing any cytopatic effect in some and, on the other hand, causing cell destruction, at short periods, in others. The various agents and the mechanisms they adopt to reactivate the latente HIV, were described. Also the frequent epidemiological observation on the presence of both such agents and the HIV in AIDS patients allowed the authors to speculate on the probable important role of a cohort of co-factors which determine the destiny of such individuals. Special considerations were made in respect to the hepatitis B virus, cytomegalovirus, herpesviruses (HHV-1, e and 6), EB virus, HTLV-1 and 2 retroviruses, group B arbovirus Maguary, malaria and other endemic infectious diseases which victimize millions of Brazilians. Accepting the importance of such co-factors acting on the viral gens that regulate the HIV expression in the host cell, it was speculated on the possible role of vaccines, such as the hepatitis B vaccine, and some antiviral drugs which could be useful in the indirect prevention of AIDS-disease in both HIV-carriers and those practising AIDS-high-risk-activities.

  13. Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase.

    PubMed

    Hossain, Mohammad S; Le, Cuong Q; Joseph, Ebenezer; Nguyen, Toan Q; Johnson-Winters, Kayunta; Foss, Frank W

    2015-05-14

    F420 and FO are phenolic 5-deazaflavin cofactors that complement nicotinamide and flavin redox coenzymes in biochemical oxidoreductases and photocatalytic systems. Specifically, these 5-deazaflavins lack the single electron reactivity with O2 of riboflavin-derived coenzymes (FMN and FAD), and, in general, have a more negative redox potential than NAD(P)(+). For example, F420-dependent NADP(+) oxidoreductase (Fno) is critical to the conversion of CO2 to CH4 by methanogenic archaea, while FO functions as a light-harvesting agent in DNA repair. The preparation of these cofactors is an obstacle to their use in biochemical studies and biotechnology. Here, a convenient synthesis of FO was achieved by improving the redox stability of synthetic intermediates containing a polar, electron-rich aminophenol fragment. Improved yields and simplified purification techniques for FO are described. Additionally, Fno activity was restored with FO in the absence of F420. Investigating the FO-dependent NADP(+)/NADPH redox process by stopped-flow spectrophotometry, steady state kinetics were defined as having a Km of 4.00 ± 0.39 μM and a kcat of 5.27 ± 0.14 s(-1). The preparation of FO should enable future biochemical studies and novel uses of F420 mimics.

  14. Epitope mapping of 10 monoclonal antibodies against the pig analogue of human membrane cofactor protein (MCP)

    PubMed Central

    PéRez De La Lastra, J M; Van Den Berg, C W; Bullido, R; Almazán, F; Domínguez, J; Llanes, D; Morgan, B P

    1999-01-01

    Pig membrane cofactor protein (MCP; CD46) is a 50 000–60 000 MW glycoprotein that is expressed on a wide variety of cells, including erythrocytes. Pig MCP has cofactor activity for factor I-mediated cleavage of C3b and is an efficient regulator of the classical and alternative pathway of human and pig complement. A panel of 10 monoclonal antibodies (mAbs) was collected from two different laboratories; all of these mAbs were raised against pig leucocytes and all recognized the same complex banding pattern on sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) of erythrocyte membranes. All were shown to be reactive with pig MCP and were divided into four groups of mutually competitive antibodies based on competition studies for membrane-bound MCP and for soluble MCP, the latter by surface plasmon resonance (SPR) analysis. The antigenic properties of membrane-bound and soluble MCP were similar, although some interesting differences were revealed. None of the 10 mAbs were cross-reactive with human MCP and only one showed cross-reactivity with leucocytes from a panel of large mammals – a weak cross-reactivity with a subset of dog leucocytes. All antibodies in one of the epitope groups and some in a second epitope group were able to block the functional activity of pig MCP, as measured by inhibition of MCP-catalysed C3 degradation by factor I. PMID:10233756

  15. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor.

    PubMed

    Mirza, I Ahmad; Yachnin, Brahm J; Wang, Shaozhao; Grosse, Stephan; Bergeron, Hélène; Imura, Akihiro; Iwaki, Hiroaki; Hasegawa, Yoshie; Lau, Peter C K; Berghuis, Albert M

    2009-07-01

    Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O(2) as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP(+) in two distinct states, to resolutions of 2.3 and 2.2 A. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.

  16. Distribution and Properties of the Genes Encoding the Biosynthesis of the Bacterial Cofactor, Pyrroloquinoline Quinone†

    PubMed Central

    Shen, Yao-Qing; Bonnot, Florence; Imsand, Erin M.; RoseFigura, Jordan M.; Sjölander, Kimmen; Klinman, Judith P.

    2012-01-01

    Pyrroloquinoline quinone (PQQ) is a small, redox-active molecule that serves as a cofactor for several bacterial dehydrogenases, introducing pathways for carbon utilization that confer a growth advantage. Early studies had implicated a ribosomally translated peptide as the substrate for PQQ production. This study presents a sequence and structure based analysis of the components of the pqq operon. We find the necessary components for PQQ production are present in 126 prokaryotes, most of which are Gram- negative and a number of which are pathogens. A total of five gene products, PqqA, PqqB, PqqC, PqqD and PqqE, are concluded to be obligatory for PQQ production. Three of the gene products in the pqq operon, PqqB, PqqC and PqqE, are members of large protein superfamilies. By combining evolutionary conservation patterns with information from three-dimensional structures, we are able to differentiate the gene products involved in PQQ biosynthesis from those with divergent functions. The observed persistence of a conserved gene order within analyzed operons strongly suggests a role for protein/protein interactions in the course of cofactor biosynthesis. These studies propose previously unidentified roles for several of the gene products as well as possible new targets for antibiotic design and application. PMID:22324760

  17. Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands

    PubMed Central

    Villarin, Joseph M.; McCurdy, Ethan P.; Martínez, José C.; Hengst, Ulrich

    2016-01-01

    Cytoplasmic dynein mediates retrograde transport in axons, but it is unknown how its transport characteristics are regulated to meet acutely changing demands. We find that stimulus-induced retrograde transport of different cargos requires the local synthesis of different dynein cofactors. Nerve growth factor (NGF)-induced transport of large vesicles requires local synthesis of Lis1, while smaller signalling endosomes require both Lis1 and p150Glued. Lis1 synthesis is also triggered by NGF withdrawal and required for the transport of a death signal. Association of Lis1 transcripts with the microtubule plus-end tracking protein APC is required for their translation in response to NGF stimulation but not for their axonal recruitment and translation upon NGF withdrawal. These studies reveal a critical role for local synthesis of dynein cofactors for the transport of specific cargos and identify association with RNA-binding proteins as a mechanism to establish functionally distinct pools of a single transcript species in axons. PMID:28000671

  18. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  19. FAD Synthesis and Degradation in the Nucleus Create a Local Flavin Cofactor Pool*

    PubMed Central

    Giancaspero, Teresa Anna; Busco, Giovanni; Panebianco, Concetta; Carmone, Claudia; Miccolis, Angelica; Liuzzi, Grazia Maria; Colella, Matilde; Barile, Maria

    2013-01-01

    FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg−1 protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min−1·mg−1 protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events. PMID:23946482

  20. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool.

    PubMed

    Giancaspero, Teresa Anna; Busco, Giovanni; Panebianco, Concetta; Carmone, Claudia; Miccolis, Angelica; Liuzzi, Grazia Maria; Colella, Matilde; Barile, Maria

    2013-10-04

    FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.

  1. Polyphosphate is a cofactor for the activation of factor XI by thrombin

    PubMed Central

    Choi, Sharon H.; Smith, Stephanie A.

    2011-01-01

    Factor XI deficiency is associated with a bleeding diathesis, but factor XII deficiency is not, indicating that, in normal hemostasis, factor XI must be activated in vivo by a protease other than factor XIIa. Several groups have identified thrombin as the most likely activator of factor XI, although this reaction is slow in solution. Although certain nonphysiologic anionic polymers and surfaces have been shown to enhance factor XI activation by thrombin, the physiologic cofactor for this reaction is uncertain. Activated platelets secrete the highly anionic polymer polyphosphate, and our previous studies have shown that polyphosphate has potent procoagulant activity. We now report that polyphosphate potently accelerates factor XI activation by α-thrombin, β-thrombin, and factor XIa and that these reactions are supported by polyphosphate polymers of the size secreted by activated human platelets. We therefore propose that polyphosphate is a natural cofactor for factor XI activation in plasma that may help explain the role of factor XI in hemostasis and thrombosis. PMID:21976677

  2. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    NASA Astrophysics Data System (ADS)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  3. Dual Role of the Molybdenum Cofactor Biosynthesis Protein MOCS3 in tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Humans*

    PubMed Central

    Chowdhury, Mita Mullick; Dosche, Carsten; Löhmannsröben, Hans-Gerd; Leimkühler, Silke

    2012-01-01

    We studied two pathways that involve the transfer of persulfide sulfur in humans, molybdenum cofactor biosynthesis and tRNA thiolation. Investigations using human cells showed that the two-domain protein MOCS3 is shared between both pathways. MOCS3 has an N-terminal adenylation domain and a C-terminal rhodanese-like domain. We showed that MOCS3 activates both MOCS2A and URM1 by adenylation and a subsequent sulfur transfer step for the formation of the thiocarboxylate group at the C terminus of each protein. MOCS2A and URM1 are β-grasp fold proteins that contain a highly conserved C-terminal double glycine motif. The role of the terminal glycine of MOCS2A and URM1 was examined for the interaction and the cellular localization with MOCS3. Deletion of the C-terminal glycine of either MOCS2A or URM1 resulted in a loss of interaction with MOCS3. Enhanced cyan fluorescent protein and enhanced yellow fluorescent protein fusions of the proteins were constructed, and the fluorescence resonance energy transfer efficiency was determined by the decrease in the donor lifetime. The cellular localization results showed that extension of the C terminus with an additional glycine of MOCS2A and URM1 altered the localization of MOCS3 from the cytosol to the nucleus. PMID:22453920

  4. Maturation of sugar maple seed

    Treesearch

    Clayton M., Jr. Carl; Albert G., Jr. Snow; Albert G. Snow

    1971-01-01

    The seeds of a sugar maple tree (Acer saccharum Marsh.) do not mature at the same time every year. And different trees mature their seeds at different times. So time of year is not a reliable measure of when seeds are ripe. Better criteria are needed. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple...

  5. Naturally Engineered Maturation of Cardiomyocytes

    PubMed Central

    Scuderi, Gaetano J.; Butcher, Jonathan

    2017-01-01

    Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This

  6. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the normal...

  7. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the normal...

  8. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the normal...

  9. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure...

  10. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure...

  11. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis

    PubMed Central

    Chen, Cynthia; Lodish, Harvey F.

    2014-01-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA1 and TAL1, have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation and whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor Tfdp2 were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression, and knockdown of Tfdp2 results in significantly reduced rates of proliferation, as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis. PMID:24607859

  12. Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B12 Enzyme IcmF*♦

    PubMed Central

    Li, Zhu; Kitanishi, Kenichi; Twahir, Umar T.; Cracan, Valentin; Chapman, Derrell; Warncke, Kurt; Banerjee, Ruma

    2017-01-01

    IcmF is a 5′-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system. PMID:28130442

  13. Flavin Adenine Dinucleotide and N(5) ,N(10) -Methenyltetrahydrofolate are the in planta Cofactors of Arabidopsis thaliana Cryptochrome 3.

    PubMed

    Göbel, Tanja; Reisbacher, Stefan; Batschauer, Alfred; Pokorny, Richard

    2017-01-01

    Members of the cryptochrome/photolyase family (CPF) of proteins utilize noncovalently bound light-absorbing cofactors for their biological function. Usually, the identity of these cofactors is determined after expression in heterologous systems leaving the question unanswered whether these cofactors are identical to the indigenous ones. Here, cryptochrome 3 from Arabidopsis thaliana was expressed as a fusion with the green fluorescent protein in Arabidopsis plants. Besides the confirmation of the earlier report of its localization in chloroplasts, our data indicate that fractions of the fusion protein are present in the stroma and associated with thylakoids, respectively. Furthermore, it is shown that the fusion protein expressed in planta contains the same cofactors as the His6 -tagged protein expressed in Escherichia coli, that is, flavin adenine dinucleotide and N(5) ,N(10) -methenyltetrahydrofolate. This demonstrates that the heterologously expressed cryptochrome 3, characterized in a number of previous studies, is a valid surrogate of the corresponding protein expressed in plants. To our knowledge, this is also a first conclusive analysis of cofactors bound to an Arabidopsis protein belonging to the CPF and purified from plant tissue. © 2016 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  14. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis.

    PubMed

    Chen, Cynthia; Lodish, Harvey F

    2014-06-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.

  15. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export.

    PubMed

    Fan, Jing; Kuai, Bin; Wu, Guifen; Wu, Xudong; Chi, Binkai; Wang, Lantian; Wang, Ke; Shi, Zhubing; Zhang, Heng; Chen, She; He, Zhisong; Wang, Siyuan; Zhou, Zhaocai; Li, Guohui; Cheng, Hong

    2017-10-02

    The exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4. Significantly, hMTR4 plays a key role in specifically recruiting the exosome to its targets. Furthermore, we provide several lines of evidence indicating that hMTR4 executes this role by directly competing with the mRNA export adaptor ALYREF for associating with ARS2, a component of the cap-binding complex (CBC), and this competition is critical for determining whether an RNA is degraded or exported to the cytoplasm. Together, our results indicate that the competition between hMTR4 and ALYREF determines exosome recruitment and functions in creating balanced nuclear RNA pools for degradation and export. © 2017 The Authors.

  16. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma.

    PubMed

    Alshaikh, N A; Rosing, J; Thomassen, M C L G D; Castoldi, E; Simioni, P; Hackeng, T M

    2017-02-17

    Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation.

  17. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.

    PubMed

    Scott, Deborah J; da Costa, Bernardo M T; Espy, Stephanie C; Keasling, Jay D; Cornish, Katrina

    2003-09-01

    Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP) cofactor requirements, and are membrane-bound enzymes.

  18. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis.

    PubMed

    Zhang, Yi-Bi; Zhou, Jiao; Xu, Qiu-Man; Cheng, Jing-Sheng; Luo, Yu-Lu; Yuan, Ying-Jin

    2016-09-15

    Sulfamethoxazole (SMX), an extensively prescribed or administered antibiotic pharmaceutical product, is usually detected in aquatic environments, because of its incomplete metabolism and elimination. This study investigated the effects of exogenous cofactors on the bioremoval and biotransformation of SMX by Alcaligenes faecalis. High concentration (100mg·L(-1)) of exogenous vitamin C (VC), vitamin B6 (VB6) and oxidized glutathione (GSSG) enhanced SMX bioremoval, while the additions of vitamin B2 (VB2) and vitamin B12 (VB12) did not significantly alter the SMX removal efficiency. Globally, cellular growth of A. faecalis and SMX removal both initially increased and then gradually decreased, indicating that SMX bioremoval is likely dependent on the primary biomass activity of A. faecalis. The decreases in the SMX removal efficiency indicated that some metabolites of SMX might be transformed into parent compound at the last stage of incubation. Two transformation products of SMX, N-hydroxy sulfamethoxazole (HO-SMX) and N4-acetyl sulfamethoxazole (Ac-SMX), were identified by a high-performance liquid chromatograph coupled with mass spectrometer. High concentrations of VC, nicotinamide adenine dinucleotide hydrogen (NADH, 7.1mg·L(-1)), and nicotinamide adenine dinucleotide (NAD(+), 6.6mg·L(-1)), and low concentrations of reduced glutathione (GSH, 0.1 and 10mg·L(-1)) and VB2 (1mg·L(-1)) remarkably increased the formation of HO-SMX, while VB12 showed opposite effects on HO-SMX formation. In addition, low concentrations of GSH and NADH enhanced Ac-SMX formation by the addition of A. faecalis, whereas cofactors (VC, VB2, VB12, NAD(+), and GSSG) had no obvious impact on the formation of Ac-SMX compared with the controls. The levels of Ac-SMX were stable when biomass of A. faecalis gradually decreased, indicating the direct effect of biomass on the formation of Ac-SMX by A. faecalis. In sum, these results help us understand the roles played by exogenous cofactors in

  19. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.

    PubMed

    Fujihashi, Masahiro; Numoto, Nobutaka; Kobayashi, Yukiko; Mizushima, Akira; Tsujimura, Masanari; Nakamura, Akira; Kawarabayasi, Yutaka; Miki, Kunio

    2007-01-26

    UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.

  20. The cleaved N-terminus of pVI binds peripentonal hexons in mature adenovirus

    PubMed Central

    Snijder, Joost; Benevento, Marco; Moyer, Crystal L.; Reddy, Vijay; Nemerow, Glen R.; Heck, Albert J.R.

    2014-01-01

    Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both the N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen-deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule. PMID:24613303

  1. The cleaved N-terminus of pVI binds peripentonal hexons in mature adenovirus.

    PubMed

    Snijder, Joost; Benevento, Marco; Moyer, Crystal L; Reddy, Vijay; Nemerow, Glen R; Heck, Albert J R

    2014-05-01

    Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen-deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Reduced Accumulation of ABA during Water Stress in a Molybdenum Cofactor Mutant of Barley 1

    PubMed Central

    Walker-Simmons, Mary; Kudrna, David A.; Warner, Robert L.

    1989-01-01

    A barley (Hordeum vulgare L.) mutant (Az34) has been identified with low basal levels of abscisic acid (ABA) and with reduced capacity for producing ABA in response to water stress. The mutation is in a gene controlling the molybdenum cofactor resulting in a pleiotropic deficiency in at least three molybdoenzymes, nitrate reductase, xanthine dehydrogenase, and aldehyde oxidase. The mutant was found to lack aldehyde oxidase activity with several substrates including: (a) ABA aldehyde, a putative precursor of ABA; (b) an acetylenic analog of ABA aldehyde; and (c) heptaldehyde. Elevating the growth temperature from 18 to 26°C caused mutant leaves to wilt and brown. Desiccation of mutant leaves was prevented by applying ABA. These results indicate that ABA biosynthesis at some developmental stages is dependent upon a molybdoenzyme which may be an aldehyde oxidase. Images Figure 5 PMID:16666835

  3. Income poverty, poverty co-factors, and the adjustment of children in elementary school.

    PubMed

    Ackerman, Brian P; Brown, Eleanor D

    2006-01-01

    Since 1990, there have been great advances in how developmental researchers construct poverty. These advances are important because they may help inform social policy at many levels and help frame how American culture constructs poverty for children, both symbolically and in the opportunities children and families get to escape from poverty. Historically, developmental perspectives have embodied social address and main effects models, snapshot views of poverty effects at single points in time, and a rather narrow focus on income as the symbolic marker of the ecology of disadvantage. More recent views, in contrast, emphasize the diverse circumstances of disadvantaged families and diverse outcomes of disadvantaged children, the multiple sources of risk and the multiple determinants of poor outcomes for these children, dynamic aspects of that ecology, and change as well as continuity in outcome trajectories. The advances also consist of more powerful frames for understanding the ecology of disadvantage and the risk it poses for child outcomes. Most developmental researchers still tend to frame causal variables ultimately in terms of the dichotomy between social causation and social selection views, with a primary emphasis on the former. In part, this framing has reflected limitations of sample size and design, because the theoretical and empirical power of reciprocal selection models is clear (Kim et al., 2003). The conceptual advances that prompt such models include widespread acknowledgement of third variable problems in interpreting effects, of the clear need for multivariate approaches, and the need to pursue mechanisms and moderators of the relations between causal candidates and child outcomes. In the context of these advances, one of the core goals of our research program has been to construct robust representations of environmental adversity for disadvantaged families. Most of our research focuses on contextual co-factors at a family level (e.g., maternal

  4. Cofactor-induced reversible folding of Flavodoxin-4 from Lactobacillus acidophilus

    PubMed Central

    Dutta, Samit Kumar; Serrano, Pedro; Geralt, Michael; Axelrod, Herbert L; Xu, Qingping; Lesley, Scott A; Godzik, Adam; Deacon, Ashley M; Elsliger, Marc-André; Wilson, Ian A; Wüthrich, Kurt

    2015-01-01

    Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN-binding mechanism to flavodoxins-4 were obtained from the NMR structures of the apo-protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO) and exhibits the characteristic flavodoxin fold, with a central five-stranded parallel β–sheet and five α-helices forming an α/β-sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β-sheet and covers the FMN-binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins. PMID:26177955

  5. Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M.; Malmsten, Martin; Mörgelin, Matthias

    2013-01-01

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity. PMID:23656734

  6. Co-factors in HIV neurobehavioural disturbances: substance abuse, hepatitis C and aging.

    PubMed

    Gonzalez, Raul; Cherner, Mariana

    2008-02-01

    Neurocognitive disturbances associated with HIV infection may be modulated or confounded by coexisting and comorbid conditions that reflect the changing populations affected by the disease. HIV infection is often accompanied by substance dependence and/or hepatitis C co-infection. Both of these cofactors that may lead to brain dysfunction on their own, and therefore can affect the nature and course neurocognitive functioning in HIV. Improvements in antiretroviral therapies translate into greater longevity for people infected with HIV, many of whom are now entering their 6th and 7th decade of life and beyond. The increasing proportion of older persons with HIV is also the result of new infections in this age group. As aging confers additional metabolic, neurologic, and neuropsychiatric vulnerability, it is important to understand how this constellation of changes affects neurocognitive functioning in the context of HIV.

  7. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  8. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions.

    PubMed

    Noumsi, Christelle Jouogo; Pourhassan, Nina; Darnajoux, Romain; Deicke, Michael; Wichard, Thomas; Burrus, Vincent; Bellenger, Jean-Philippe

    2016-02-01

    Biological nitrogen fixation can be catalysed by three isozymes of nitrogenase: molybdenum (Mo)-nitrogenase, vanadium (V)-nitrogenase and iron-only (Fe)-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, molybdenum, vanadium and iron, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of molybdenum and vanadium under cellular conditions that are usually considered not molybdenum limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Viral infection and aging as cofactors for the development of pulmonary fibrosis

    PubMed Central

    Naik, Payal K; Moore, Bethany B

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown origin and progression that primarily affects older adults. Accumulating clinical and experimental evidence suggests that viral infections may play a role, either as agents that predispose the lung to fibrosis or exacerbate existing fibrosis. In particular, herpesviruses have been linked with IPF. This article summarizes the evidence for and against viral cofactors in IPF pathogenesis. In addition, we review mechanistic studies in animal models that highlight the fibrotic potential of viral infection, and explore the different mechanisms that might be responsible. We also review early evidence to suggest that the aged lung may be particularly susceptible to viral-induced fibrosis and make recommendations for future research directions. PMID:21128751

  10. Protective effect of membrane cofactor protein against complement-dependent injury.

    PubMed

    Xu, Dong; Huang, Shou-jian; Wang, Jin-qun; Wu, Chu-kun

    2005-08-01

    To evaluate the protective role of membrane cofactor protein (MCP, CD46) on complement-dependent injury. MCP was separated by ion exchange chromatography on a DEAE sephadex A-50 column from pig erythrocyte ghosts. Its protective effect was tested in models such as cobra venom factor (CVF)-induced platelet metamorphosis and aggregation, human serum-induced injury in isolated working guinea pig heart and reverse passive Arthus reaction. MCP inhibited CVF-induced platelet metamorphosis with an IC50 of 56.7 mg/L+/-2.6 mg/L, and prevented injury induced by activated complement in isolated working guinea pig hearts. In the rat model of reverse Arthus reaction, MCP relieved the skin lesions induced by immune complexes. MCP has a protective effect against complement-dependent injury.

  11. The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor

    PubMed Central

    Losón, Oliver C.; Liu, Raymond; Rome, Michael E.; Meng, Shuxia; Kaiser, Jens T.; Shan, Shu-ou; Chan, David C.

    2014-01-01

    SUMMARY Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission. PMID:24508339

  12. The mitochondrial fission receptor MiD51 requires ADP as a cofactor.

    PubMed

    Losón, Oliver C; Liu, Raymond; Rome, Michael E; Meng, Shuxia; Kaiser, Jens T; Shan, Shu-ou; Chan, David C

    2014-03-04

    Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.

  13. Substance Abuse, Hepatitis C, and Aging in HIV: Common Cofactors that Contribute to Neurobehavioral Disturbances

    PubMed Central

    Schuster, Randi Melissa; Gonzalez, Raul

    2013-01-01

    Although the prevalence of neurocognitive disturbances among individuals with HIV has decreased in recent years, rates of impairment still remain high. This review presents findings from comorbid conditions that may contribute to further neurocognitive impairments in this already vulnerable population. We will focus on three co-factors that have received substantial attention in the neuroAIDS literature: drug use, hepatitis C co-infection (HCV), and aging. All three conditions commonly co-occur with HIV and likely interact with HIV in complex ways. Collectively, the extant literature suggests that drug use, HCV, and aging serve to worsen the neurocognitive profile of HIV through several overlapping mechanisms. A better understanding of how specific comorbidities interact with HIV may reveal specific phenotypes of HIV-associated neurocognitive disorder that may aid in the development of more targeted behavioral and pharmacological treatment efforts. PMID:24014165

  14. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors.

    PubMed

    Zabidi, Muhammad A; Stark, Alexander

    2016-12-01

    Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.

  15. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors

    PubMed Central

    Guasch, Laura; Nicklaus, Marc C.; Meier, Jordan L.

    2015-01-01

    SUMMARY The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between fatty acyl-CoAs and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. PMID:26190825

  16. Crystal Structures of Phosphite Dehydrogenase Provide Insights into Nicotinamide Cofactor Regeneration

    SciTech Connect

    Zou, Yaozhong; Zhang, Houjin; Brunzelle, Joseph S.; Johannes, Tyler W.; Woodyer, Ryan; Hung, John E.; Nair, Nikhil; van der Donk, Wilfred A.; Zhao, Huimin; Nair, Satish K.

    2012-08-21

    The enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD{sup +}-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been shown to conduct the enzymatic oxidation of phosphorus. Despite investigation for more than a decade into both the mechanism of its unusual reaction and its utility in cofactor regeneration, there has been a lack of any structural data for PTDH. Here we present the cocrystal structure of an engineered thermostable variant of PTDH bound to NAD{sup +} (1.7 {angstrom} resolution), as well as four other cocrystal structures of thermostable PTDH and its variants with different ligands (all between 1.85 and 2.3 {angstrom} resolution). These structures provide a molecular framework for understanding prior mutational analysis and point to additional residues, located in the active site, that may contribute to the enzymatic activity of this highly unusual catalyst.

  17. A Bombyx mandarina mutant exhibiting translucent larval skin is controlled by the molybdenum cofactor sulfurase gene.

    PubMed

    Fujii, Tsuguru; Ozaki, Masataka; Masamoto, Takaaki; Katsuma, Susumu; Abe, Hiroaki; Shimada, Toru

    2009-04-01

    During the maintenance of the wild silkworm, Bombyx mandarina, a mutant phenotype exhibiting translucent skin was identified. Based on the crossing experiments with the domesticated silkworm, Bombyx mori, we found that the mutant was controlled by molybdenum cofactor sulfurase (MoCoS) gene. We designated the mutant ''Ozaki's translucent'' (og(Z)). We found a 2.1-kb deletion containing the transcription initiation site, exons 1 and 2, and the 5' end of exon 3 of the MoCoS gene. The transcript of the MoCoS gene was not detected in the og(Z) homozygote. We concluded that og(Z) is a complete loss-of-function allele generated by a disruption of the MoCoS gene.

  18. Esmond E. Snell--the pathfinder of B vitamins and cofactors.

    PubMed

    Hayashi, Hideyuki; Tanase, Sumio; Yagi, Toshiharu

    2010-04-01

    Esmond E. Snell (1914-2003) was a giant of B-vitamin and enzyme research. His early research in bacterial nutrition had lead to the discovery of vitamins such as lipoic acid and folic acid, and an anti-vitamin avidin. He developed microbiological assay methods for riboflavin and other vitamins and amino acids, which are still used today. He also investigated the metabolism of vitamins, discovered pyridoxal and pyridoxamine as the active forms of vitamin B(6) and revealed the mechanism of transamination and other reactions catalysed by vitamin B(6) enzymes. His research in later years on pyruvoyl-dependent histidine decarboxylase unveiled the biogenesis mechanism of this first built-in cofactor. Throughout his career, he was a great mentor of many people, all of whom are inspired by his philosophy of science.

  19. Structural and spectroscopic consequences of hexacoordination of a bacteriochlorophyll cofactor in the Rhodobacter sphaeroides reaction center .

    PubMed

    Frolov, Dmitrij; Marsh, May; Crouch, Lucy I; Fyfe, Paul K; Robert, Bruno; van Grondelle, Rienk; Hadfield, Andrea; Jones, Michael R

    2010-03-09

    The structural and functional consequences of changing the coordination state of one of the bacteriochlorophyll (BChl) cofactors in the purple bacterial reaction center have been explored. A combination of steady state spectroscopy and X-ray crystallography was used to demonstrate that mutagenesis of residue 181 of the L-polypeptide from Phe to Arg (FL181R) causes the BChl at the accessory (B(B)) position on the so-called inactive cofactor branch to become hexacoordinated, with no significant changes to the structure of the surrounding protein. This change was accompanied by the appearance of a distinctive absorbance band at 631 nm in the room-temperature absorbance spectrum. The ligand donor was not the Arg side chain but rather an intervening water molecule, and contrary to expectations, the Mg of B(B) did not adopt a more in-plane geometry in response to hexacoordination. The mutation caused a disturbance to the detailed conformation of the BChl macrocycle that manifested in a number of subtle changes to the resonance Raman spectrum. Hexacoordination of B(B) produced a small increase in the lifetime of the excited electronic state of the primary donor bacteriochlorophylls (P*), indicating some disturbance to light-driven energy and/or electron transfer events on the time scale of a few picoseconds after light excitation. The B(B) bacteriochlorophyll returned to a pentacoordinated state in a double mutant where the FL181R mutation was combined with removal of the native axial ligand through mutation of His M182 to Leu. Experimental evidence of hexacoordinated bacteriochlorophylls in the literature on antenna proteins is considered, and possible reasons why hexacoordinated bacteriochlorophylls and chlorophylls appear to be avoided in photosynthetic proteins are discussed.

  20. SSDP cofactors regulate neural patterning and differentiation of specific axonal projections

    PubMed Central

    Zhong, Zhen; Ma, Hong; Taniguchi-Ishigaki, Naoko; Nagarajan, Lalitha; Becker, Catherina G.; Bach, Ingolf; Becker, Thomas

    2010-01-01

    The developmental activity of LIM homeodomain transcription factors (LIM-HDs) is critically controlled by LIM domain-interacting cofactors of LIM-HDs (CLIM, NLI, LDB). CLIM cofactors associate with Single stranded DNA binding proteins (SSDPs, also known as SSBPs) thereby recruiting SSDP1 and/or SSDP2 to LIM-HD/CLIM complexes. Although evidence has been presented that SSDPs are important for the activity of specific LIM-HD/CLIM complexes, the developmental roles of SSDPs are unclear. We show that SSDP1a and SSDP1b mRNAs are widely expressed early during zebrafish development with conspicuous expression of SSDP1b in sensory trigeminal and Rohon-Beard neurons. SSDP1 and CLIM immunoreactivity co-localize in these neuronal cell types and in other structures. Over-expression of the N-terminal portion of SSDP1 (N-SSDP1), which contains the CLIM interaction domain, increases endogenous CLIM protein levels in vivo and impairs the formation of eyes and midbrain-hindbrain boundary. In addition, inhibition of SSDP1 via N-SSDP1 over-expression or SSDP1b knock down impairs trigeminal and Rohon-Beard sensory axon growth. We show that N-SSDP1 is able to partially rescue the inhibition of axon growth induced by a dominant-negative form of CLIM (DN-CLIM). These results reveal specific functions of SSDP in neural patterning and sensory axon growth, in part due to the stabilization of LIM-HD/CLIM complexes. PMID:21056553

  1. In Vitro Bioconversion of Pyruvate to n-Butanol with Minimized Cofactor Utilization

    PubMed Central

    Reiße, Steven; Haack, Martina; Garbe, Daniel; Sommer, Bettina; Steffler, Fabian; Carsten, Jörg; Bohnen, Frank; Sieber, Volker; Brück, Thomas

    2016-01-01

    Due to enhanced energy content and reduced hygroscopicity compared with ethanol, n-butanol is flagged as the next generation biofuel and platform chemical. In addition to conventional cellular systems, n-butanol bioproduction by enzyme cascades is gaining momentum due to simplified process control. In contrast to other bio-based alcohols like ethanol and isobutanol, cell-free n-butanol biosynthesis from the central metabolic intermediate pyruvate involves cofactors [NAD(P)H, CoA] and acetyl-CoA-dependent intermediates, which complicates redox and energy balancing of the reaction system. We have devised a biochemical process for cell-free n-butanol production that only involves three enzyme activities, thereby eliminating the need for acetyl-CoA. Instead, the process utilizes only NADH as the sole redox mediator. Central to this new process is the amino acid catalyzed enamine–aldol condensation, which transforms acetaldehyde directly into crotonaldehyde. Subsequently, crotonaldehyde is reduced to n-butanol applying a 2-enoate reductase and an alcohol dehydrogenase, respectively. In essence, we achieved conversion of the platform intermediate pyruvate to n-butanol utilizing a biocatalytic cascade comprising only three enzyme activities and NADH as reducing equivalent. With reference to previously reported cell-free n-butanol reaction cascades, we have eliminated five enzyme activities and the requirement of CoA as cofactor. Our proof-of-concept demonstrates that n-butanol was synthesized at neutral pH and 50°C. This integrated reaction concept allowed GC detection of all reaction intermediates and n-butanol production of 148 mg L−1 (2 mM), which compares well with other cell-free n-butanol production processes. PMID:27800475

  2. Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties.

    PubMed

    Zarei, Iman; Brown, Dustin G; Nealon, Nora Jean; Ryan, Elizabeth P

    2017-12-01

    Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this

  3. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16

    PubMed Central

    Wenning, Leonie; Stöveken, Nadine; Wübbeler, Jan Hendrik

    2015-01-01

    Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs. PMID:26590284

  4. Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration.

    PubMed

    Braun, Michael; Link, Hannes; Liu, Luo; Schmid, Rolf D; Weuster-Botz, Dirk

    2011-06-01

    Reduction and oxidation of steroids in the human gut are catalyzed by hydroxysteroid dehydrogenases of microorganisms. For the production of 12-ketochenodeoxycholic acid (12-Keto-CDCA) from cholic acid the biocatalytic application of the 12α-hydroxysteroid dehydrogenase of Clostridium group P, strain C 48-50 (HSDH) is an alternative to chemical synthesis. However, due to the intensive costs the necessary cofactor (NADP(+) ) has to be regenerated. The alcohol dehydrogenase of Thermoanaerobacter ethanolicus (ADH-TE) was applied to catalyze the reduction of acetone while regenerating NADP(+) . A mechanistic kinetic model was developed for the process development of cholic acid oxidation using HSDH and ADH-TE. The process model was derived by identifying the parameters for both enzymatic models separately using progress curve measurements of batch processes over a broad range of concentrations and considering the underlying ordered bi-bi mechanism. Both independently derived kinetic models were coupled via mass balances to predict the production of 12-Keto-CDCA with HSDH and integrated cofactor regeneration with ADH-TE and acetone as co-substrate. The prediction of the derived model was suitable to describe the dynamics of the preparative 12-Keto-CDCA batch production with different initial reactant and enzyme concentrations. These datasets were used again for parameter identification. This led to a combined model which excellently described the reaction dynamics of biocatalytic batch processes over broad concentration ranges. Based on the identified process model batch process optimization was successfully performed in silico to minimize enzyme costs. By using 0.1 mM NADP(+) the HSDH concentration can be reduced to 3-4 µM and the ADH concentration to 0.4-0.6 µM to reach the maximal possible conversion of 100 mM cholic acid within 48 h. In conclusion, the identified mechanistic model offers a powerful tool for a cost-efficient process design. Copyright © 2010 Wiley

  5. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.

    PubMed

    Matsuda, Fumio; Ishii, Jun; Kondo, Takashi; Ida, Kengo; Tezuka, Hironori; Kondo, Akihiko

    2013-12-05

    Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker's yeast (Saccharomyces cerevisiae) strains have been developed following the strategy with respect to its advantageous characteristics for cost-effective isobutanol production. However, the isobutanol yields and titers attained by the developed strains need to be further improved through engineering of S. cerevisiae metabolism. Two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in S. cerevisiae. Isobutanol production levels were increased in strains lacking genes encoding members of the pyruvate dehydrogenase complex such as LPD1, indicating that the pyruvate supply for isobutanol biosynthesis is competing with acetyl-CoA biosynthesis in mitochondria. Isobutanol production was increased by overexpression of enzymes responsible for transhydrogenase-like shunts such as pyruvate carboxylase, malate dehydrogenase, and malic enzyme. The integration of a single gene deletion lpd1Δ and the activation of the transhydrogenase-like shunt further increased isobutanol levels. In a batch fermentation test at the 50-mL scale from 100 g/L glucose using the two integrated strains, the isobutanol titer reached 1.62 ± 0.11 g/L and 1.61 ± 0.03 g/L at 24 h after the start of fermentation, which corresponds to the yield at 0.016 ± 0.001 g/g glucose consumed and 0.016 ± 0.0003 g/g glucose consumed, respectively. These results demonstrate that downregulation of competing pathways and metabolic functions for resolving the cofactor imbalance are promising strategies to construct S. cerevisiae strains that effectively produce isobutanol.

  6. Platelet factor 4 stimulates thrombomodulin protein C-activating cofactor activity. A structure-function analysis.

    PubMed

    Slungaard, A; Key, N S

    1994-10-14

    Thrombomodulin (TM) is an anionic (pI approximately 4) protein cofactor that promotes thrombin (THR) cleavage of protein C to generate activated protein C (APC), a potent anticoagulant. We find that the cationic platelet alpha-granule protein platelet factor 4 (PF4) stimulates 4-25-fold the cofactor activity of rabbit TM and two differentially glycanated versions of an extracellular domain human TM polypeptide in which the glycosaminoglycan (GAG) is either present (GAG+ TM) or absent (GAG- TM) with an ED50 of 3.3-10 micrograms/ml. No such stimulation occurs in response to beta-thromboglobulin or thrombospondin, or when protein C lacking its gamma-carboxyglutamic acid (Gla) domain is the substrate. Heparin and chondroitin sulfates A and E reverse PF4 stimulation. PF4 minimally affects the Kd for THR but decreases 30-fold (from 8.3 to 0.3 microM) the Km for protein C of APC generation by GAG+ TM. PF4 also strikingly transforms the [Ca2+] dependence profile of rabbit and GAG+ TM to resemble that of GAG- TM. A potential explanation for this is that PF4, like Ca2+, induces heparin-reversible alterations in native (but not Gla-domainless) protein C conformation as assessed by autofluorescence emission analysis. We conclude that PF4 stimulates TM APC generation by interacting electrostatically with both the TM GAG and the protein C Gla domain to enhance markedly the affinity of the THR.TM complex for protein C. By this mechanism, PF4 may play a previously unsuspected role in the physiologic regulation of clotting.

  7. Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients

    PubMed Central

    Zaki, Maha S.; Selim, Laila; EL-Bassyouni, Hala T.; Issa, Mahmoud Y.; Mahmoud, Iman; Ismail, Samira; Girgis, Mariane; Sadek, Abdelrahim A.; Gleeson, Joseph G.; Abdel Hamid, Mohamed S.

    2016-01-01

    Aim Molybdenum cofactor deficiency (MoCD) and Sulfite oxidase deficiency (SOD) are rare autosomal recessive conditions of sulfur-containing amino acid metabolism with overlapping clinical features and emerging therapies. The clinical phenotype is indistinguishable and they can only be differentiated biochemically. MOCS1, MOCS2, MOCS3, and GPRN genes contribute to the synthesis of molybdenum cofactor, and SUOX gene encodes sulfite oxidase. The aim of this study was to elucidate the clinical, radiological, biochemical and molecular findings in patients with SOD and MoCD. Methods Detailed clinical and radiological assessment of 9 cases referred for neonatal encephalopathy with hypotonia, microcephaly, and epilepsy led to a consideration of disorders of sulfur-containing amino acid metabolism. The diagnosis of six with MoCD and three with SOD was confirmed by biochemical tests, targeted sequencing, and whole exome sequencing where suspicion of disease was lower. Results Novel SUOX mutations were detected in 3 SOD cases and a novel MOCS2 mutation in 1 MoCD case. Most patients presented in the first 3 months of life with intractable tonic–clonic seizures, axial hypotonia, limb hypertonia, exaggerated startle response, feeding difficulties, and progressive cystic encephalomalacia on brain imaging. A single patient with MoCD had hypertrophic cardiomyopathy, hitherto unreported with these diseases. Interpretation Our results emphasize that intractable neonatal seizures, spasticity, and feeding difficulties can be important early signs for these disorders. Progressive microcephaly, intellectual disability and specific brain imaging findings in the first year were additional diagnostic aids. These clinical cues can be used to minimize delays in diagnosis, especially since promising treatments are emerging for MoCD type A. PMID:27289259

  8. 1-Aminocyclopropane-1-carboxylic acid oxidase: insight into cofactor binding from experimental and theoretical studies.

    PubMed

    Brisson, Lydie; El Bakkali-Taheri, Nadia; Giorgi, Michel; Fadel, Antoine; Kaizer, József; Réglier, Marius; Tron, Thierry; Ajandouz, El Hassan; Simaan, A Jalila

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket.

  9. 7 CFR 1421.101 - Maturity dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Maturity dates. 1421.101 Section 1421.101 Agriculture... Maturity dates. (a)(1) All marketing assistance loans shall mature on demand by CCC and no later than the... filed and disbursed except, for transferred marketing assistance loan collateral. The maturity date for...

  10. 7 CFR 1421.101 - Maturity dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Maturity dates. 1421.101 Section 1421.101 Agriculture... Maturity dates. (a)(1) All marketing assistance loans shall mature on demand by CCC and no later than the... filed and disbursed except, for transferred marketing assistance loan collateral. The maturity date for...

  11. 38 CFR 7.7 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Maturity. 7.7 Section 7.7... Soldiers' and Sailors' Civil Relief Act Amendments of 1942 § 7.7 Maturity. (a) The phrase maturity of a policy as a death claim or otherwise (SSCRA, as amended) will not include a termination or maturity of a...

  12. 38 CFR 7.7 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Maturity. 7.7 Section 7.7... Soldiers' and Sailors' Civil Relief Act Amendments of 1942 § 7.7 Maturity. (a) The phrase maturity of a policy as a death claim or otherwise (SSCRA, as amended) will not include a termination or maturity of a...

  13. 38 CFR 7.7 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Maturity. 7.7 Section 7.7... Soldiers' and Sailors' Civil Relief Act Amendments of 1942 § 7.7 Maturity. (a) The phrase maturity of a policy as a death claim or otherwise (SSCRA, as amended) will not include a termination or maturity of a...

  14. 38 CFR 7.7 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Maturity. 7.7 Section 7.7... Soldiers' and Sailors' Civil Relief Act Amendments of 1942 § 7.7 Maturity. (a) The phrase maturity of a policy as a death claim or otherwise (SSCRA, as amended) will not include a termination or maturity of a...

  15. 7 CFR 1421.101 - Maturity dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Maturity dates. 1421.101 Section 1421.101 Agriculture... Maturity dates. (a)(1) All marketing assistance loans shall mature on demand by CCC and no later than the... filed and disbursed except, for transferred marketing assistance loan collateral. The maturity date for...

  16. 7 CFR 1421.101 - Maturity dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Maturity dates. 1421.101 Section 1421.101 Agriculture... Maturity dates. (a)(1) All marketing assistance loans shall mature on demand by CCC and no later than the... filed and disbursed except, for transferred marketing assistance loan collateral. The maturity date for...

  17. Career Maturity and Physically Disabled College Students.

    ERIC Educational Resources Information Center

    Burkhead, E. Jane; Cope, Corrine S.

    1984-01-01

    Examined the relationships between career maturity, sex, physical disability, and grades in 40 disabled and 46 nondisabled college students. Results showed disabled students were more vocationally mature than nondisabled students and female students were more vocationally mature than males. Type of disability was not related to career maturity.…

  18. 7 CFR 51.2841 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mature. 51.2841 Section 51.2841 Agriculture... Creole Types) Definitions § 51.2841 Mature. Mature means well cured. Midseason onions which are not customarily held in storage shall be considered mature when harvested in accordance with good commercial...

  19. 7 CFR 51.2841 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Mature. 51.2841 Section 51.2841 Agriculture... Mature. Mature means well cured. Midseason onions which are not customarily held in storage shall be considered mature when harvested in accordance with good commercial practice at a stage which will not result...

  20. 7 CFR 51.484 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mature. 51.484 Section 51.484 Agriculture Regulations..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Cantaloups 1 Definitions § 51.484 Mature. Mature means that the cantaloup has reached the stage of maturity which will insure the proper completion...

  1. 7 CFR 51.484 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.484 Section 51.484 Agriculture Regulations..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Cantaloups 1 Definitions § 51.484 Mature. Mature means that the cantaloup has reached the stage of maturity which will insure the proper completion...

  2. 7 CFR 51.2841 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.2841 Section 51.2841 Agriculture... Creole Types) Definitions § 51.2841 Mature. Mature means well cured. Midseason onions which are not customarily held in storage shall be considered mature when harvested in accordance with good commercial...

  3. Ribosome maturation in E. coli.

    PubMed

    Silengo, L; Altruda, F; Dotto, G P; Lacquaniti, F; Perlo, C; Turco, E; Mangiarotti, G

    1977-01-01

    In vivo and in vitro experiments have shown that processing of ribosomal RNA is a late event in ribosome biogenesis. The precursor form of RNA is probably necessary to speed up the assembly of ribomal proteins. Newly formed ribosomal particles which have already entered polyribosomes differ from mature ribosomes not only in their RNA content but also in their susceptibility to unfolding in low Mg concentration and to RNase attack. Final maturation of new ribosomes is probably dependent on their functioning in protein synthesis. Thus only those ribosomes which have proven to be functional may be converted into stable cellular structures.

  4. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease.

    PubMed

    Redko, Yulia; Condon, Ciarán

    2009-03-01

    Ribosomal RNAs (rRNAs) are processed from larger primary transcripts in every living system known. The maturation of 23S rRNA in Bacillus subtilis is catalysed by Mini-III, a member of the RNase III family of enzymes that lacks the characteristic double-stranded RNA binding domain of its relatives. We have previously shown that Mini-III processing of 23S precursor rRNA in assembled 50S ribosomal subunits is much more efficient than a substrate with no ribosomal proteins bound, suggesting that one or more large subunit proteins act as a cofactor for Mini-III cleavage. Here we show that this cofactor is ribosomal protein L3. Stimulation of the Mini-III cleavage reaction is through L3 binding to its normal site at the 3' end of 23S rRNA. We present indirect evidence that suggests that L3 acts at the level of substrate, rather than enzyme conformation. We also discuss the potential implication of using ribosomal protein cofactors in rRNA processing for ribosome quality control.

  5. Enticing Mature Females into College.

    ERIC Educational Resources Information Center

    Loseth, Lexie; Moreau, Linda

    Following a review of the literature on mature female students, this paper examines enrollment trends in a selection of colleges in Alberta (Canada) and presents the findings of a survey of returning women students at Red Deer College. The literature review highlights factors related to the personal and professional development of women graduates…

  6. Psychosocial Maturity or Social Desirability?

    ERIC Educational Resources Information Center

    Greenberger, Ellen

    The psychosocial maturity scale (PSM) described in several earlier papers is a self-report questionnaire. It is vulnerable, as are other questionnaires of this type, to respondents' wishes to present themselves in a socially desirable light. In this study, scores on two social desirability scales are examined in relation to PSM. Correlations…

  7. Human oocyte maturation in vitro.

    PubMed

    Coticchio, Giovanni; Dal-Canto, Mariabeatrice; Guglielmo, Maria-Cristina; Mignini-Renzini, Mario; Fadini, Rubens

    2012-01-01

    Oocytes from medium-sized antral follicles have already completed their growth phase and, if released from the follicular environment and cultured in vitro, are able to resume the meiotic process and mature. However, in vitro maturation (IVM) does not entirely support all the nuclear and cytoplasmic changes that occur physiologically as an effect of the ovulatory stimulus. Regardless, oocyte IVM is widely applied for the breeding of agriculturally important species. In assisted reproduction technology, IVM has been proposed as an alternative treatment to circumvent the drawbacks of standard ovarian stimulation regimens. Initially introduced to eliminate the risks of ovarian hyperstimulation syndrome afflicting women presenting with polycystic ovaries, subsequently IVM has been suggested to represent an additional approach suitable also for normovulatory patients. So far, in children born from IVM cycles, no doubts of an increased incidence of congenital abnormalities have been raised. Many more births would be achieved if novel IVM systems, currently dominated by empiricism, could be conceived according to more physiological criteria. Recent findings shedding new light on the control of meiotic progression, the support of cumulus cells to the oocyte cellular reorganization occurring during maturation, and the modulation of the stimulus that promotes oocyte maturation downstream the mid-cycle gonadotropin signal are likely to provide crucial hints for the development of more efficient IVM systems.

  8. Vineland Social Maturity Scale Profile.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    The Vineland Social Maturity Scale (VSMS), despite its limitations, is an excellent clinical technique and includes psychometric and questionnaire characteristics. It is a good single measure of adaptive behavior. The VSMS Profile in this paper uses content categories different from the original Scale, but based upon the same items. It lends…

  9. The People Capability Maturity Model

    ERIC Educational Resources Information Center

    Wademan, Mark R.; Spuches, Charles M.; Doughty, Philip L.

    2007-01-01

    The People Capability Maturity Model[R] (People CMM[R]) advocates a staged approach to organizational change. Developed by the Carnegie Mellon University Software Engineering Institute, this model seeks to bring discipline to the people side of management by promoting a structured, repeatable, and predictable approach for improving an…

  10. Enticing Mature Females into College.

    ERIC Educational Resources Information Center

    Loseth, Lexie; Moreau, Linda

    Following a review of the literature on mature female students, this paper examines enrollment trends in a selection of colleges in Alberta (Canada) and presents the findings of a survey of returning women students at Red Deer College. The literature review highlights factors related to the personal and professional development of women graduates…

  11. Adolescent Maturation in Transitioning Cultures.

    ERIC Educational Resources Information Center

    Mulroy, Kevin; Palacios, Anna; Reid, Robert E.

    This is a theoretical study of adolescent maturation within a cultural context. Personality development and disintegration due to the pressure of a dominant culture on a minority culture is considered. An attempt is made to understand how teachers might assist students to work out their psychological growth by story telling. The need for cultural…

  12. Financial maturity of paper birch

    Treesearch

    Joseph J. Mendel

    1969-01-01

    One objective in forestry is to earn the greatest possible return on the capital invested in growing timber. To do this, the forester not only must know which silvicultural methods to use, but also ought to know the methods of economic analysis that will help him make the decisions that will lead to the greatest return. The financial maturity concept provides a method...

  13. Motivational Maturity and Helping Behavior

    ERIC Educational Resources Information Center

    Haymes, Michael; Green, Logan

    1977-01-01

    Maturity in conative development (type of motivation included in Maslow's needs hierarchy) was found to be predictive of helping behavior in middle class white male college students. The effects of safety and esteem needs were compared, and the acceptance of responsibility was also investigated. (GDC)

  14. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions.

  15. Superior inorganic ion cofactors of tetraborate species attaining highly efficient heterogeneous electrocatalysis for water oxidation on cobalt oxyhydroxide nanoparticles.

    PubMed

    Takeuchi, Ryouchi; Sato, Tetsuya; Tanaka, Kou; Aiso, Kaoru; Chandra, Debraj; Saito, Kenji; Yui, Tatsuto; Yagi, Masayuki

    2017-10-05

    A heterogeneous catalyst incorporating an inorganic ion cofactor for electrochemical water oxidation was exploited using a CoO(OH) nanoparticle layer-deposited electrode. The significant catalytic current for water oxidation was generated in a Na2B4O7 solution at pH 9.4 when applying at 0.94 V vs. Ag/AgCl in contrast to no catalytic current generation in the K2SO4 solution at the same pH. HB4O7- and B4O72- ions are indicated to act as key cofactors for the induced catalytic activity of the CoO(OH) layer. The Na2B4O7 concentration-dependence of Icat was analyzed based on a Michaelis-Menten type kinetics to provide affinity constant of cofactors to the active sites, Km = 28 mM and the maximum catalytic current density, Imax = 2.3 mA cm-2. The Imax value was 1.4 times higher than that (1.3 mA cm-2) for the previously-reported case of CO32- ions. This could be explained by the shorter-range proton transfer from the active site to the proton-accepting cofactor due to the larger size and more flexible conformation of HB4O7- and B4O72- ions compared with CO32- ions.

  16. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors

    PubMed Central

    Laurino, Paola; Tóth-Petróczy, Ágnes; Meana-Pañeda, Rubén; Lin, Wei; Truhlar, Donald G.; Tawfik, Dan S.

    2016-01-01

    Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose’s ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint—geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif. PMID:26938925

  17. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors.

    PubMed

    Laurino, Paola; Tóth-Petróczy, Ágnes; Meana-Pañeda, Rubén; Lin, Wei; Truhlar, Donald G; Tawfik, Dan S

    2016-03-01

    Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.

  18. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies

    PubMed Central

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  19. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    PubMed

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  20. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.

    PubMed

    Black, Katherine A; Dos Santos, Patricia C

    2015-06-01

    Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  1. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    PubMed

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  2. HIV-1 integrase modulates the interaction of the HIV-1 cellular cofactor LEDGF/p75 with chromatin.

    PubMed

    Astiazaran, Paulina; Bueno, Murilo Td; Morales, Elisa; Kugelman, Jeffrey R; Garcia-Rivera, Jose A; Llano, Manuel

    2011-04-21

    Chromatin binding plays a central role in the molecular mechanism of LEDGF/p75 in HIV-1 DNA integration. Conflicting results have been reported in regards to the relevance of the LEDGF/p75 chromatin binding element PWWP domain in its HIV-1 cofactor activity. Here we present evidence that re-expression of a LEDGF/p75 mutant lacking the PWWP domain (ΔPWWP) rescued HIV-1 infection in cells verified to express background levels of endogenous LEDGF/p75 that do not support efficient HIV-1 infection. The HIV-1 cofactor activity of LEDGF/p75 ΔPWWP was similar to that of LEDGF/p75 wild type (WT). A possible molecular explanation for the nonessential role of PWWP domain in the HIV-1 cofactor activity of LEDGF/p75 comes from the fact that coexpression of HIV-1 integrase significantly restored the impaired chromatin binding activity of LEDGF/p75 ΔPWWP. However, integrase failed to promote chromatin binding of a non-chromatin bound LEDGF/p75 mutant that lacks both the PWWP domain and the AT hook motifs (ΔPWWP/AT) and that exhibits negligible HIV-1 cofactor activity. The effect of integrase on the chromatin binding of LEDGF/p75 requires the direct interaction of these two proteins. An HIV-1 integrase mutant, unable to interact with LEDGF/p75, failed to enhance chromatin binding, whereas integrase wild type did not increase the chromatin binding strength of a LEDGF/p75 mutant lacking the integrase binding domain (ΔIBD). Our data reveal that the PWWP domain of LEDGF/p75 is not essential for its HIV-1 cofactor activity, possibly due to an integrase-mediated increase of the chromatin binding strength of this LEDGF/p75 mutant.

  3. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium

    PubMed Central

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos

    2014-01-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  4. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    PubMed

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  5. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance

    PubMed Central

    2013-01-01

    Background Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker’s yeast (Saccharomyces cerevisiae) strains have been developed following the strategy with respect to its advantageous characteristics for cost-effective isobutanol production. However, the isobutanol yields and titers attained by the developed strains need to be further improved through engineering of S. cerevisiae metabolism. Results Two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in S. cerevisiae. Isobutanol production levels were increased in strains lacking genes encoding members of the pyruvate dehydrogenase complex such as LPD1, indicating that the pyruvate supply for isobutanol biosynthesis is competing with acetyl-CoA biosynthesis in mitochondria. Isobutanol production was increased by overexpression of enzymes responsible for transhydrogenase-like shunts such as pyruvate carboxylase, malate dehydrogenase, and malic enzyme. The integration of a single gene deletion lpd1Δ and the activation of the transhydrogenase-like shunt further increased isobutanol levels. In a batch fermentation test at the 50-mL scale from 100 g/L glucose using the two integrated strains, the isobutanol titer reached 1.62 ± 0.11 g/L and 1.61 ± 0.03 g/L at 24 h after the start of fermentation, which corresponds to the yield at 0.016 ± 0.001 g/g glucose consumed and 0.016 ± 0.0003 g/g glucose consumed, respectively. Conclusions These results demonstrate that downregulation of competing pathways and metabolic functions for resolving the cofactor imbalance are promising strategies to construct S. cerevisiae strains that effectively produce

  6. Maturation of Oocytes in Vitro.

    PubMed

    Lonergan, Patrick; Fair, Trudee

    2016-01-01

    Only a fraction of oocytes present in the ovaries at birth are ever ovulated during the lifetime of a female mammal. In vitro maturation (IVM) offers the possibility to exploit what is a largely untapped biological resource. Although IVM is used routinely for the in vitro production of embryos in domestic species, especially cattle, its clinical use in human-assisted reproduction is still evolving. The successful recapitulation in vitro of the events associated with successful oocyte maturation is not always achieved, with the majority of immature oocytes typically failing to develop to the blastocyst stage. Evidence suggests that although culture conditions throughout in vitro embryo production may have a modest influence on the developmental potential of the early embryo, the quality of the oocyte at the start of the process is the key factor determining the proportion of oocytes developing to the blastocyst stage.

  7. Maturation of the adolescent brain

    PubMed Central

    Arain, Mariam; Haque, Maliha; Johal, Lina; Mathur, Puja; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Sharma, Sushil

    2013-01-01

    Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain’s region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex

  8. Maturation of the adolescent brain.

    PubMed

    Arain, Mariam; Haque, Maliha; Johal, Lina; Mathur, Puja; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Sharma, Sushil

    2013-01-01

    Adolescence is the developmental epoch during which children become adults - intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain's region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex, disease

  9. Maturity model for enterprise interoperability

    NASA Astrophysics Data System (ADS)

    Guédria, Wided; Naudet, Yannick; Chen, David

    2015-01-01

    Historically, progress occurs when entities communicate, share information and together create something that no one individually could do alone. Moving beyond people to machines and systems, interoperability is becoming a key factor of success in all domains. In particular, interoperability has become a challenge for enterprises, to exploit market opportunities, to meet their own objectives of cooperation or simply to survive in a growing competitive world where the networked enterprise is becoming a standard. Within this context, many research works have been conducted over the past few years and enterprise interoperability has become an important area of research, ensuring the competitiveness and growth of European enterprises. Among others, enterprises have to control their interoperability strategy and enhance their ability to interoperate. This is the purpose of the interoperability assessment. Assessing interoperability maturity allows a company to know its strengths and weaknesses in terms of interoperability with its current and potential partners, and to prioritise actions for improvement. The objective of this paper is to define a maturity model for enterprise interoperability that takes into account existing maturity models while extending the coverage of the interoperability domain. The assessment methodology is also presented. Both are demonstrated with a real case study.

  10. Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II–deficient mice

    PubMed Central

    Aihara, Ken-ichi; Azuma, Hiroyuki; Akaike, Masashi; Ikeda, Yasumasa; Sata, Masataka; Takamori, Nobuyuki; Yagi, Shusuke; Iwase, Takashi; Sumitomo, Yuka; Kawano, Hirotaka; Yamada, Takashi; Fukuda, Toru; Matsumoto, Takahiro; Sekine, Keisuke; Sato, Takashi; Nakamichi, Yuko; Yamamoto, Yoko; Yoshimura, Kimihiro; Watanabe, Tomoyuki; Nakamura, Takashi; Oomizu, Akimasa; Tsukada, Minoru; Hayashi, Hideki; Sudo, Toshiki; Kato, Shigeaki; Matsumoto, Toshio

    2007-01-01

    Heparin cofactor II (HCII) specifically inhibits thrombin action at sites of injured arterial wall, and patients with HCII deficiency exhibit advanced atherosclerosis. However, the in vivo effects and the molecular mechanism underlying the action of HCII during vascular remodeling remain elusive. To clarify the role of HCII in vascular remodeling, we generated HCII-deficient mice by gene targeting. In contrast to a previous report, HCII–/– mice were embryonically lethal. In HCII+/– mice, prominent intimal hyperplasia with increased cellular proliferation was observed after tube cuff and wire vascular injury. The number of protease-activated receptor–1–positive (PAR-1–positive) cells was increased in the thickened vascular wall of HCII+/– mice, suggesting enhanced thrombin action in this region. Cuff injury also increased the expression levels of inflammatory cytokines and chemokines in the vascular wall of HCII+/– mice. The intimal hyperplasia in HCII+/– mice with vascular injury was abrogated by human HCII supplementation. Furthermore, HCII deficiency caused acceleration of aortic plaque formation with increased PAR-1 expression and oxidative stress in apoE-KO mice. These results demonstrate that HCII protects against thrombin-induced remodeling of an injured vascular wall by inhibiting thrombin action and suggest that HCII is potentially therapeutic against atherosclerosis without causing coagulatory disturbance. PMID:17549254

  11. Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue.

    PubMed

    Rohm, Maria; Sommerfeld, Anke; Strzoda, Daniela; Jones, Allan; Sijmonsma, Tjeerd P; Rudofsky, Gottfried; Wolfrum, Christian; Sticht, Carsten; Gretz, Norbert; Zeyda, Maximilian; Leitner, Lukas; Nawroth, Peter P; Stulnig, Thomas M; Berriel Diaz, Mauricio; Vegiopoulos, Alexandros; Herzig, Stephan

    2013-04-02

    Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Vascular dermatan sulfate regulates the antithrombotic activity of heparin cofactor II

    PubMed Central

    He, Li; Giri, Tusar K.; Vicente, Cristina P.

    2008-01-01

    Heparin cofactor II (HCII)–deficient mice form occlusive thrombi more rapidly than do wild-type mice following injury to the carotid arterial endothelium. Dermatan sulfate (DS) and heparan sulfate (HS) increase the rate of inhibition of thrombin by HCII in vitro, but it is unknown whether vascular glycosaminoglycans play a role in the antithrombotic effect of HCII in vivo. In this study, we found that intravenous injection of either wild-type recombinant HCII or a variant with low affinity for HS (K173H) corrected the abnormally short thrombosis time of HCII-deficient mice, while a variant with low affinity for DS (R189H) had no effect. When HCII was incubated with frozen sections of the mouse carotid artery, it bound specifically to DS in the adventitia. HCII was undetectable in the wall of the uninjured carotid artery, but it became concentrated in the adventitia following endothelial injury. These results support the hypothesis that HCII interacts with DS in the vessel wall after disruption of the endothelium and that this interaction regulates thrombus formation in vivo. PMID:18281504

  13. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    SciTech Connect

    Fanarraga, M.L.

    2009-02-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes.

  15. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Glucosamine and Glucosamine-6-phosphate Derivatives: Catalytic Cofactor Analogs for the glmS Ribozyme

    PubMed Central

    Posakony, Jeffrey J.; Ferré-D'Amaré, Adrian R.

    2013-01-01

    Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactor of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogs, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz) and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogs. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection. PMID:23578404

  17. Histone acetyltransferase cofactor Trrap maintains self-renewal and restricts differentiation of embryonic stem cells.

    PubMed

    Sawan, Carla; Hernandez-Vargas, Hector; Murr, Rabih; Lopez, Fabrice; Vaissière, Thomas; Ghantous, Akram Y; Cuenin, Cyrille; Imbert, Jean; Wang, Zhao-Qi; Ren, Bing; Herceg, Zdenko

    2013-05-01

    Chromatin states are believed to play a key role in distinct patterns of gene expression essential for self-renewal and pluripotency of embryonic stem cells (ESCs); however, the genes governing the establishment and propagation of the chromatin signature characteristic of pluripotent cells are poorly understood. Here, we show that conditional deletion of the histone acetyltransferase cofactor Trrap in mouse ESCs triggers unscheduled differentiation associated with loss of histone acetylation, condensation of chromatin into distinct foci (heterochromatization), and uncoupling of H3K4 dimethylation and H3K27 trimethylation. Trrap loss results in downregulation of stemness master genes Nanog, Oct4, and Sox2 and marked upregulation of specific differentiation markers from the three germ layers. Chromatin immunoprecipitation-sequencing analysis of genome-wide binding revealed a significant overlap between Oct4 and Trrap binding in ESCs but not in differentiated mouse embryonic fibroblasts, further supporting a functional interaction between Trrap and Oct4 in the maintenance of stemness. Remarkably, failure to downregulate Trrap prevents differentiation of ESCs, suggesting that downregulation of Trrap may be a critical step guiding transcriptional reprogramming and differentiation of ESCs. These findings establish Trrap as a critical part of the mechanism that restricts differentiation and promotes the maintenance of key features of ESCs. Copyright © 2013 AlphaMed Press.

  18. Accelerated atherogenesis and neointima formation in heparin cofactor II–deficient mice

    PubMed Central

    Vicente, Cristina P.; He, Li

    2007-01-01

    Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin when bound to dermatan sulfate or heparin. HCII-deficient mice are viable and fertile but rapidly develop thrombosis of the carotid artery after endothelial injury. We now report the effects of HCII deficiency on atherogenesis and neointima formation. HCII-null or wild-type mice, both on an apolipoprotein E–null background, were fed an atherogenic diet for 12 weeks. HCII-null mice developed plaque areas in the aortic arch approximately 64% larger than wild-type mice despite having similar plasma lipid and glucose levels. Neointima formation was induced by mechanical dilation of the common carotid artery. Thrombin activity, determined by hirudin binding or chromogenic substrate hydrolysis within 1 hour after injury, was higher in the arterial walls of HCII-null mice than in wild-type mice. After 3 weeks, the median neointimal area was 2- to 3-fold greater in HCII-null than in wild-type mice. Dermatan sulfate administered intravenously within 48 hours after injury inhibited neointima formation in wild-type mice but had no effect in HCII-null mice. Heparin did not inhibit neointima formation. We conclude that HCII deficiency promotes atherogenesis and neointima formation and that treatment with dermatan sulfate reduces neointima formation in an HCII-dependent manner. PMID:17878401

  19. Placental dermatan sulfate: isolation, anticoagulant activity, and association with heparin cofactor II

    PubMed Central

    Giri, Tusar K.; Tollefsen, Douglas M.

    2006-01-01

    Pregnancy is associated with hemostatic challenges that may lead to thrombosis. Heparin cofactor II (HCII) is a glycosaminoglycan-dependent thrombin inhibitor present in both maternal and fetal plasma. HCII activity increases during pregnancy, and HCII levels are significantly decreased in women with severe pre-eclampsia. Dermatan sulfate (DS) specifically activates HCII and is abundant in the placenta, but the locations of DS and HCII in the placenta have not been determined. We present evidence that DS is the major anticoagulant glycosaminoglycan in the human placenta at term. DS isolated from human placenta contains disaccharides implicated in activation of HCII and has anticoagulant activity similar to that of mucosal DS. Immunohistochemical studies revealed that DS is associated with fetal blood vessels and stromal regions of placental villi but is notably absent from the syncytiotrophoblast cells in contact with the maternal circulation. HCII colocalizes with DS in the walls of fetal blood vessels and is also present in syncytiotrophoblast cells. Our data suggest that DS is in a position to activate HCII in the fetal blood vessels or in the stroma of placental villi after injury to the syncytiotrophoblast layer and thereby inhibit fibrin generation in the placenta. PMID:16339402

  20. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition.

    PubMed

    Zayed, Hatem; Izsvák, Zsuzsanna; Khare, Dheeraj; Heinemann, Udo; Ivics, Zoltán

    2003-05-01

    Sleeping Beauty (SB) is the most active Tc1/ mariner-type transposon in vertebrates. SB contains two transposase-binding sites (DRs) at the end of each terminal inverted repeat (IR), a feature termed the IR/DR structure. We investigated the involvement of cellular proteins in the regulation of SB transposition. Here, we establish that the DNA-bending, high-mobility group protein, HMGB1 is a host-encoded cofactor of SB transposition. Transposition was severely reduced in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of HMGB1, and was partially complemented by HMGB2, but not with the HMGA1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit HMGB1 to transposon DNA. HMGB1 stimulated preferential binding of the transposase to the DR further from the cleavage site, and promoted bending of DNA fragments containing the transposon IR. We propose that the role of HMGB1 is to ensure that transposase-transposon complexes are first formed at the internal DRs, and subsequently to promote juxtaposition of functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.

  1. The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors.

    PubMed

    Godfrey, Linda V; Glass, Jennifer B

    2011-01-01

    The nitrogen (N) cycle is the only global biogeochemical cycle that is driven by biological functions involving the interaction of many microorganisms. The N cycle has evolved over geological time and its interaction with the oxygen cycle has had profound effects on the evolution and timing of Earth's atmosphere oxygenation (Falkowski and Godfrey, 2008). Almost every enzyme that microorganisms use to manipulate N contains redox-sensitive metals. Bioavailability of these metals has changed through time as a function of varying redox conditions, and likely influenced the biological underpinnings of the N cycle. It is possible to construct a record through geological time using N isotopes and metal concentrations in sediments to determine when the different stages of the N cycle evolved and the role metal availability played in the development of key enzymes. The same techniques are applicable to understanding the operation and changes in the N cycle through geological time. However, N and many of the redox-sensitive metals in some of their oxidation states are mobile and the isotopic composition or distribution can be altered by subsequent processes leading to erroneous conclusions. This chapter reviews the enzymology and metal cofactors of the N cycle and describes proper utilization of methods used to reconstruct evolution of the N cycle through time.

  2. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  3. Structural Investigation of the GlmS Ribozyme Bound to Its Catalytic Cofactor

    SciTech Connect

    Cochrane,J.; Lipchock, S.; Strobel, S.

    2007-01-01

    The GlmS riboswitch is located in the 5'-untranslated region of the gene encoding glucosamine-6-phosphate (GlcN6P) synthetase. The GlmS riboswitch is a ribozyme with activity triggered by binding of the metabolite GlcN6P. Presented here is the structure of the GlmS ribozyme (2.5 {angstrom} resolution) with GlcN6P bound in the active site. The GlmS ribozyme adopts a compact double pseudoknot tertiary structure, with two closely packed helical stacks. Recognition of GlcN6P is achieved through coordination of the phosphate moiety by two hydrated magnesium ions as well as specific nucleobase contacts to the GlcN6P sugar ring. Comparison of this activator bound and the previously published apoenzyme complex supports a model in which GlcN6P does not induce a conformational change in the RNA, as is typical of other riboswitches, but instead functions as a catalytic cofactor for the reaction. This demonstrates that RNA, like protein enzymes, can employ the chemical diversity of small molecules to promote catalytic activity.

  4. Cofactor Engineering for Enhanced Production of Diols by Klebsiella pneumoniae From Co-Substrate.

    PubMed

    Wang, Meng; Zhou, Yiou; Tan, Tianwei

    2017-08-18

    Diols, such as 1,3-propanediol (1,3-PDO) and 2,3-butanediol (2,3-BDO), have several promising properties for many synthetic reactions. Here, the cofactor engineering strategy, including the construction of Entner-Doudoroff pathway and transhydrogenase-based NADH regeneration system, was applied in producing diols from mixtures of glucose and glycerol. Entner-Doudoroff pathway had a high regeneration rate of NAD(P)H. This work described a strategy to administrate intracellular NADH/NAD(+) ratio and improved the concentration of diols. The improvement of NADH/NAD(+) ratio also effected gene transcription level of the central carbon pathway and cell growth. Finally, the intracellular NADH/NAD(+) ratio in KP-APZDUT was increased by 92.8% compared to the KP-T and the concentration, yield and productivity of diols were increased to 110.8 g L(-1) , 0.78 mol mol(-1) , and 3.46 g Lh(-1) , respectively. The strategy described here provides an approach to achieve a recombinant strain which is capable of producing diols with high yield and productivity. To the best of our knowledge, the Entner-Doudoroff pathway has not yet been used to produce 1,3-PDO or 2,3-BDO in Klebsiella pneumoniae. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Properties of a microtubule-associated cofactor-independent protein kinase from pig brain.

    PubMed Central

    Scott, C W; Caputo, C B; Salama, A I

    1989-01-01

    A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures. Images Fig. 1. Fig. 6. Fig. 7. PMID:2557823

  6. Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks.

    PubMed

    Uthicke, S; Logan, M; Liddy, M; Francis, D; Hardy, N; Lamare, M

    2015-02-12

    Coral reefs face a crisis due to local and global anthropogenic stressors. A large proportion of the ~50% coral loss on the Great Barrier Reef has been attributed to outbreaks of the crown-of-thorns-seastar (COTS). A widely assumed cause of primary COTS outbreaks is increased larval survivorship due to higher food availability, linked with anthropogenic runoff . Our experiment using a range of algal food concentrations at three temperatures representing present day average and predicted future increases, demonstrated a strong influence of food concentration on development is modulated by temperature. A 2°C increase in temperature led to a 4.2-4.9 times (at Day 10) or 1.2-1.8 times (Day 17) increase in late development larvae. A model indicated that food was the main driver, but that temperature was an important modulator of development. For instance, at 5000 cells ml(-1) food, a 2°C increase may shorten developmental time by 30% and may increase the probability of survival by 240%. The main contribution of temperature is to 'push' well-fed larvae faster to settlement. We conclude that warmer sea temperature is an important co-factor promoting COTS outbreaks.

  7. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  8. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    DOE PAGES

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; ...

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes withmore » different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.« less

  9. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  10. The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells

    PubMed Central

    Mauvezin, Caroline; Orpinell, Meritxell; Francis, Víctor A; Mansilla, Francisco; Duran, Jordi; Ribas, Vicent; Palacín, Manuel; Boya, Patricia; Teleman, Aurelio A; Zorzano, Antonio

    2010-01-01

    The regulation of autophagy in metazoans is only partly understood, and there is a need to identify the proteins that control this process. The diabetes- and obesity-regulated gene (DOR), a recently reported nuclear cofactor of thyroid hormone receptors, is expressed abundantly in metabolically active tissues such as muscle. Here, we show that DOR shuttles between the nucleus and the cytoplasm, depending on cellular stress conditions, and re-localizes to autophagosomes on autophagy activation. We demonstrate that DOR interacts physically with autophagic proteins Golgi-associated ATPase enhancer of 16 kDa (GATE16) and microtubule-associated protein 1A/1B-light chain 3. Gain-of-function and loss-of-function studies indicate that DOR stimulates autophagosome formation and accelerates the degradation of stable proteins. CG11347, the DOR Drosophila homologue, has been predicted to interact with the Drosophila Atg8 homologues, which suggests functional conservation in autophagy. Flies lacking CG11347 show reduced autophagy in the fat body during pupal development. All together, our data indicate that DOR regulates autophagosome formation and protein degradation in mammalian and Drosophila cells. PMID:20010805

  11. Cuticle Integrity and Biogenic Amine Synthesis in Caenorhabditis elegans Require the Cofactor Tetrahydrobiopterin (BH4)

    PubMed Central

    Loer, Curtis M.; Calvo, Ana C.; Watschinger, Katrin; Werner-Felmayer, Gabriele; O’Rourke, Delia; Stroud, Dave; Tong, Amy; Gotenstein, Jennifer R.; Chisholm, Andrew D.; Hodgkin, Jonathan; Werner, Ernst R.; Martinez, Aurora

    2015-01-01

    Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host–pathogen interactions. PMID:25808955

  12. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    PubMed

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. CBP/p300 as a co-factor for the Microphthalmia transcription factor.

    PubMed

    Sato, S; Roberts, K; Gambino, G; Cook, A; Kouzarides, T; Goding, C R

    1997-06-26

    The Microphthalmia basic-Helix-Loop-Helix-Leucine Zipper (bHLH-LZ) transcription factor (Mi) plays a crucial role in the genesis of melanocytes; mice deficient for a functional (Microphthalmia) gene product lack all pigment cells. We show here that the Mi activation domain resides N-terminal to the DNA-binding domain and that as little as 18 amino acids are sufficient to mediate transcription activation. The minimal activation region of Mi is highly conserved in the related transcription factor TFE3 and is predicted to adopt an amphipathic alpha-helical conformation. This region of Mi is also highly conserved with a region of E1A known to be essential for binding the CBP/p300 transcription cofactor. Consistent with these observations, the Mi activation domain can interact in vitro with CBP specifically through a region of CBP required for complex formation with E1A, P/CAF and c-Fos, and anti p300 antibodies can co-immunoprecipitate Mi from both melanocyte and melanoma cell lines. In addition, co-transfection of a vector expressing CBP2 (aas 1621-1891) fused to the VP16 activation domain potentiated the ability of Mi to activate transcription, confirming the significance of the CBP-Mi interaction observed in vitro. These data suggest that transcription activation by Mi is achieved at least in part by recruitment of CBP. The parallels between transcription regulation by Microphthalmia in melanocytes and MyoD in muscle cells are discussed.

  14. Coupled reactions on bioparticles: Stereoselective reduction with cofactor regeneration on PhaC inclusion bodies.

    PubMed

    Spieler, Valerie; Valldorf, Bernhard; Maaß, Franziska; Kleinschek, Alexander; Hüttenhain, Stefan H; Kolmar, Harald

    2016-07-01

    Chiral alcohols are important building blocks for specialty chemicals and pharmaceuticals. The production of chiral alcohols from ketones can be carried out stereo selectively with alcohol dehydrogenases (ADHs). To establish a process for cost-effective enzyme immobilization on solid phase for application in ketone reduction, we used an established enzyme pair consisting of ADH from Rhodococcus erythropolis and formate dehydrogenase (FDH) from Candida boidinii for NADH cofactor regeneration and co-immobilized them on modified poly-p-hydroxybutyrate synthase (PhaC)-inclusion bodies that were recombinantly produced in Escherichia coli cells. After separate production of genetically engineered and recombinantly produced enzymes and particles, cell lysates were combined and enzymes endowed with a Kcoil were captured on the surface of the Ecoil presenting particles due to coiled-coil interaction. Enzyme-loaded particles could be easily purified by centrifugation. Total conversion of 4'-chloroacetophenone to (S)-4-chloro-α-methylbenzyl alcohol could be accomplished using enzyme-loaded particles, catalytic amounts of NAD(+) and formate as substrates for FDH. Chiral GC-MS analysis revealed that immobilized ADH retained enantioselectivity with 99 % enantiomeric excess. In conclusion, this strategy may become a cost-effective alternative to coupled reactions using purified enzymes. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C

    DOE PAGES

    Gruschus, James M.; Jiang, Zhiping; Yap, Thai Leong; ...

    2015-01-16

    Mutations in the gene for the lysosomal enzyme glucocerebrosidase (GCase) cause Gaucher disease and are the most common risk factor for Parkinson disease (PD). Analytical ultracentrifugation of 8 μM GCase shows equilibrium between monomer and dimer forms. However, in the presence of its co-factor saposin C (Sap C), only monomer GCase is seen. Isothermal calorimetry confirms that Sap C associates with GCase in solution in a 1:1 complex (Kd = 2.1 ± 1.1 μM). Saturation cross-transfer NMR determined that the region of Sap C contacting GCase includes residues 63–66 and 74–76, which is distinct from the region known to enhancemore » GCase activity. Because α-synuclein (α-syn), a protein closely associated with PD etiology, competes with Sap C for GCase binding, its interaction with GCase was also measured by ultracentrifugation and saturation cross-transfer. Unlike Sap C, binding of α-syn to GCase does not affect multimerization. However, adding α-syn reduces saturation cross-transfer from Sap C to GCase, confirming displacement. To explore where Sap C might disrupt multimeric GCase, GCase x-ray structures were analyzed using the program PISA, which predicted stable dimer and tetramer forms. In conclusion, for the most frequently predicted multimer interface, the GCase active sites are partially buried, suggesting that Sap C might disrupt the multimer by binding near the active site.« less

  16. High prevalence of co-factor independent anticardiolipin antibodies in malaria exposed individuals

    PubMed Central

    Consigny, P H; Cauquelin, B; Agnamey, P; Comby, E; Brasseur, P; Ballet, J J; Roussilhon, C

    2002-01-01

    Anticardiolipin antibodies (aCL) were investigated in 137 individuals chronically exposed to malaria and living in Africa and Asia. They belonged to several groups according to parasite (Plasmodium falciparum or vivax) and clinical manifestations (i.e. asymptomatic parasite carriers, acute uncomplicated attack or severe malaria episodes). aCL were measured in an enzyme immunoassay (ELISA) performed in the presence of either goat serum (aCLs) or gelatin (aCLg). In a group of 53 patients with autoimmune manifestations (i.e. antiphospholipid syndrome and/or lupus), detection of IgG but not IgM aCL was markedly reduced in the presence of gelatin. In malaria donors, high prevalence of serum co-factor-independent IgG and IgM were detected, and the presence of goat serum in the assay consistently decreased their detection. aCLg levels were found to be related to the clinical/endemic status of donors. IgG aCLg were found to be higher in asymptomatic P. falciparum carriers than in patients with uncomplicated acute or cerebral malaria. IgM aCLg were higher in the cerebral malaria group than in groups with uncomplicated acute malaria patients or asymptomatic individuals. Data suggest that using a serum co-factor independent, sensitive ELISA, aCL are commonly detected during malarial infections and related to malarial infection status. PMID:11882047

  17. Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using Protein G as a cofactor.

    PubMed

    Sun, Xinghua; Zhang, Guandong; Patel, Dhruvinkumar; Stephens, Dennis; Gobin, Andre M

    2012-10-01

    Gold-gold sulfide nanoparticles (GGS-NPs) fabricated from chloroauric acid and sodium thiosulfate show unique near infrared (NIR) absorption that renders them as a promising candidate for photothermal cancer therapy. To improve targeting efficiency, we developed a versatile method to allow ordered immunoconjugation of antibodies on the surfaces of these nanoparticles via a PEGylated recombinant Protein G (ProG). The PEGylated ProG was prepared with orthopyridyldisulfide-polyethylene glycol-succinimidyl valerate, average MW 2000 (OPSS-PEG-SVA), to first allow the self-assembly of ProG on the nanoparticles, subsequently antibodies were added to this construct to enable active targeting. The bioconjugated GGS-NPs were characterized by TEM, NIR-spectra, dynamic light scattering and modified immunoassay. In in vitro studies, the ProG-conjugated GGS-NPs with bound mouse anti c-erbB-2 (HER-2) immunoglobulin G (IgG) successfully targeted the HER-2 overexpressing breast cancer cell, SK-BR-3. Extensive cell death was observed for the targeted SK-BR-3 line at a low laser power of 540 J (3 W cm(-2) for 3 min) while the control breast cancer cell (low expressing HER-2), HTB-22 survived. Using PEGylated ProG as a cofactor for immobilization of antibodies offers a promising strategy to functionalize various IgGs on nanoparticles for engineering their biomedical applications in cancer therapeutics.

  18. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly.

    PubMed

    Schaedler, Theresia A; Thornton, Jeremy D; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J; van Veen, Hendrik W; Balk, Janneke

    2014-08-22

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.

  19. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions

    PubMed Central

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-01-01

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. PMID:27604871

  20. A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

    PubMed Central

    Giancaspero, Teresa Anna; Barile, Maria

    2013-01-01

    Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H) and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms). A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H) destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18), which is inhibited by NAD+ and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae. PMID:24078860

  1. Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C

    PubMed Central

    Gruschus, James M.; Jiang, Zhiping; Yap, Thai Leong; Hill, Stephanie A.; Grishaev, Alexander; Piszczek, Grzegorz; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-01

    Mutations in the gene for the lysosomal enzyme glucocerebrosidase (GCase) cause Gaucher disease and are the most common risk factor for Parkinson disease (PD). Analytical ultracentrifugation of 8 μM GCase shows equilibrium between monomer and dimer forms. However, in the presence of its co-factor saposin C (Sap C), only monomer GCase is seen. Isothermal calorimetry confirms that Sap C associates with GCase in solution in a 1:1 complex (Kd = 2.1 ± 1.1 μM). Saturation cross-transfer NMR determined that the region of Sap C contacting GCase includes residues 63–66 and 74–76, which is distinct from the region known to enhance GCase activity. Because α-synuclein (α-syn), a protein closely associated with PD etiology, competes with Sap C for GCase binding, its interaction with GCase was also measured by ultracentrifugation and saturation cross-transfer. Unlike Sap C, binding of α-syn to GCase does not affect multimerization. However, adding α-syn reduces saturation cross-transfer from Sap C to GCase, confirming displacement. To explore where Sap C might disrupt multimeric GCase, GCase x-ray structures were analyzed using the program PISA, which predicted stable dimer and tetramer forms. For the most frequently predicted multimer interface, the GCase active sites are partially buried, suggesting that Sap C might disrupt the multimer by binding near the active site. PMID:25600808

  2. Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C

    SciTech Connect

    Gruschus, James M.; Jiang, Zhiping; Yap, Thai Leong; Hill, Stephanie A.; Grishaev, Alexander; Piszczek, Grzegorz; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-16

    Mutations in the gene for the lysosomal enzyme glucocerebrosidase (GCase) cause Gaucher disease and are the most common risk factor for Parkinson disease (PD). Analytical ultracentrifugation of 8 μM GCase shows equilibrium between monomer and dimer forms. However, in the presence of its co-factor saposin C (Sap C), only monomer GCase is seen. Isothermal calorimetry confirms that Sap C associates with GCase in solution in a 1:1 complex (Kd = 2.1 ± 1.1 μM). Saturation cross-transfer NMR determined that the region of Sap C contacting GCase includes residues 63–66 and 74–76, which is distinct from the region known to enhance GCase activity. Because α-synuclein (α-syn), a protein closely associated with PD etiology, competes with Sap C for GCase binding, its interaction with GCase was also measured by ultracentrifugation and saturation cross-transfer. Unlike Sap C, binding of α-syn to GCase does not affect multimerization. However, adding α-syn reduces saturation cross-transfer from Sap C to GCase, confirming displacement. To explore where Sap C might disrupt multimeric GCase, GCase x-ray structures were analyzed using the program PISA, which predicted stable dimer and tetramer forms. In conclusion, for the most frequently predicted multimer interface, the GCase active sites are partially buried, suggesting that Sap C might disrupt the multimer by binding near the active site.

  3. Distribution of valence electrons of the flavin cofactor in NADH-cytochrome b5 reductase

    PubMed Central

    Takaba, Kiyofumi; Takeda, Kazuki; Kosugi, Masayuki; Tamada, Taro; Miki, Kunio

    2017-01-01

    Flavin compounds such as flavin adenine dinucleotide (FAD), flavin mononucleotide and riboflavin make up the active centers in flavoproteins that facilitate various oxidoreductive processes. The fine structural features of the hydrogens and valence electrons of the flavin molecules in the protein environment are critical to the functions of the flavoproteins. However, information on these features cannot be obtained from conventional protein X-ray analyses at ordinary resolution. Here we report the charge density analysis of a flavoenzyme, NADH-cytochrome b5 reductase (b5R), at an ultra-high resolution of 0.78 Å. Valence electrons on the FAD cofactor as well as the peptide portion, which are clearly visualized even after the conventional refinement, are analyzed by the multipolar atomic model refinement. The topological analysis for the determined electron density reveals the valence electronic structure of the isoalloxazine ring of FAD and hydrogen-bonding interactions with the protein environment. The tetrahedral electronic distribution around the N5 atom of FAD in b5R is stabilized by hydrogen bonding with CαH of Tyr65 and amide-H of Thr66. The hydrogen bonding network leads to His49 composing the cytochrome b5-binding site via non-classical hydrogen bonds between N5 of FAD and CαH of Tyr65 and O of Tyr65 and CβH of His49. PMID:28225078

  4. brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum.

    PubMed

    Peck, R F; Echavarri-Erasun, C; Johnson, E A; Ng, W V; Kennedy, S P; Hood, L; DasSarma, S; Krebs, M P

    2001-02-23

    Bacteriorhodopsin, the light-driven proton pump of Halobacterium salinarum, consists of the membrane apoprotein bacterioopsin and a covalently bound retinal cofactor. The mechanism by which retinal is synthesized and bound to bacterioopsin in vivo is unknown. As a step toward identifying cellular factors involved in this process, we constructed an in-frame deletion of brp, a gene implicated in bacteriorhodopsin biogenesis. In the Deltabrp strain, bacteriorhodopsin levels are decreased approximately 4.0-fold compared with wild type, whereas bacterioopsin levels are normal. The probable precursor of retinal, beta-carotene, is increased approximately 3.8-fold, whereas retinal is decreased by approximately 3.7-fold. These results suggest that brp is involved in retinal synthesis. Additional cellular factors may substitute for brp function in the Deltabrp strain because retinal production is not abolished. The in-frame deletion of blh, a brp paralog identified by analysis of the Halobacterium sp. NRC-1 genome, reduced bacteriorhodopsin accumulation on solid medium but not in liquid. However, deletion of both brp and blh abolished bacteriorhodopsin and retinal production in liquid medium, again without affecting bacterioopsin accumulation. The level of beta-carotene increased approximately 5.3-fold. The simplest interpretation of these results is that brp and blh encode similar proteins that catalyze or regulate the conversion of beta-carotene to retinal.

  5. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    PubMed

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors.

    PubMed

    Fox, Stefan; Strasdeit, Henry

    2013-06-01

    Tetrapyrroles are essential to basic biochemical processes such as electron transfer and photosynthesis. However, it is not known whether these evolutionary old molecules have a prebiotic origin. We have serendipitously obtained pyrroles, which are the corresponding monomers, in laboratory experiments that simulated the interaction of amino acid-containing seawater with molten lava. The thermal pyrrole formation from amino acids, which so far has only been reported for special cases, can be explained by the observation that the amino acids become metal bonded, for example in (CaCl2)3(Hala)2·6H2O (Hala=DL-alanine), when the seawater evaporates. At a few hundred degrees Celsius, sea salt crusts also release hydrochloric acid (HCl). On primordial volcanic islands, the volatile pyrroles and HCl must have condensed at cooler locations, for example, in rock pools. There, pyrrole oligomerization may have occurred. To study this possibility, we added formaldehyde and nitrite, two species for which plausible prebiotic sources are known, to 2,4-diethylpyrrole and HCl. We found that even at high dilution conjugated (oxidized) oligomers, including octaethylporphyrin and other cyclic and open-chain tetrapyrroles, were formed. All experiments were conducted under rigorously oxygen-free conditions. Our results suggest that primitive versions of present-day biological cofactors such as chlorophylls, bilins, and heme were spontaneously abiotically synthesized on primordial volcanic islands and thus may have been available to the first protocells.

  7. Spectroscopic evidence for cofactor-substrate interaction in the radical-SAM enzyme TYW1.

    PubMed

    Kathirvelu, Velavan; Perche-Letuvée, Phanélie; Latour, Jean-Marc; Atta, Mohamed; Forouhar, Farhad; Gambarelli, Serge; Garcia-Serres, Ricardo

    2017-06-22

    TYW1 is a metalloenzyme involved in the modifications of guanosine 37 of Phe-tRNA of Eukaryota and Archaea. It catalyzes the second step of Wybutosine biosynthesis, which consists of the formation of the tricyclic compound imG-14 from m(1)G using pyruvate and SAM (S-adenosyl-methionine) as co-substrates. Two [4Fe-4S] clusters are needed in the catalytic process. One effects the reductive binding of SAM, which initiates the radical reaction that inserts a C-C moiety into m(1)G. The other [4Fe-4S] cluster binds the pyruvate molecule that provides the C-C motif. Using a combination of EPR and Mössbauer spectroscopy, we have been able to probe the binding of both cofactors to the FeS clusters. The results highlight an interaction between pyruvate and SAM, indicating that they bind in close vicinity inside the catalytic pocket. They also indicate a chelating binding mode of pyruvate to the accessible Fe site of the corresponding FeS cluster. This binding mode has been used to construct a docking model of holoTYW1 with pyruvate and SAM, which is consistent with the spectroscopic findings.

  8. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production.

  9. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases.

    PubMed

    Paradis-Bleau, Catherine; Markovski, Monica; Uehara, Tsuyoshi; Lupoli, Tania J; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G

    2010-12-23

    Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in vivo. We further show that LpoB promotes PG synthesis by its partner PBP in vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors.

    PubMed

    Kimura, Makoto

    2017-09-01

    Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.

  11. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  12. The transcription cofactor CRTC1 protects from aberrant hepatic lipid accumulation

    PubMed Central

    Kim, Hwijin

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging global health-problem. NAFLD encompasses a range of conditions associated with hepatic steatosis, aberrant accumulation of fat in hepatocytes. Although obesity and metabolic syndrome are considered to have a strong association with NAFLD, genetic factors that predispose liver to NAFLD and molecular mechanisms by which excess hepatic lipid develops remain largely unknown. We report that the transcription cofactor CRTC1 confers broad spectrum protection against hepatic steatosis development. CRTC1 directly interferes with the expression of genes regulated by lipogenic transcription factors, most prominently liver x receptor α (LXRα). Accordingly, Crtc1 deficient mice develop spontaneous hepatic steatosis in young age. As a cyclic AMP effector, CRTC1 mediates anti-steatotic effects of calorie restriction (CR). Notably, CRTC1 also mediates anti-lipogenic effects of bile acid signaling, whereas it is negatively regulated by miR-34a, a pathogenic microRNA upregulated in a broad spectrum of NAFLD. These patterns of gene function and regulation of CRTC1 are distinct from other CR-responsive proteins, highlighting critical protective roles that CRTC1 selectively plays against NAFLD development, which in turn provides novel opportunities for selectively targeting beneficial therapeutic effects of CR. PMID:27869139

  13. Post-translational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone

    PubMed Central

    Davidson, Victor L.; Wilmot, Carrie M.

    2014-01-01

    Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH that is required for these catalytic activities. TTQ is biosynthesized through the post-translational modification of two Trp residues within MADH, during which the indole rings of two Trp side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form that is responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ~ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review will address these highly unusual aspects of the long range catalytic reaction that is mediated by MauG. PMID:23746262

  14. Purification and characterization of iron-cofactored superoxide dismutase from Enteromorpha linza

    NASA Astrophysics Data System (ADS)

    Lü, Mingsheng; Cai, Ruanhong; Wang, Shujun; Liu, Zhaopu; Jiao, Yuliang; Fang, Yaowei; Zhang, Xiaoxin

    2013-11-01

    A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase ( ElSOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/mg protein were obtained. The SDS-PAGE exhibited ElSOD a single band near 23 kDa and the gel filtration study showed ElSOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. El SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35°C, and it still had 29.8% relative activity at 0°C, then ElSOD can be classified as a cold-adapted enzyme. ElSOD was stable when temperature was below 40°C or the pH was within the range of 5-10. The first 11 N-terminal amino acids of ElSOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.

  15. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics

    PubMed Central

    Rayala, Suresh K.; Martin, Emil; Sharina, Iraida G.; Molli, Poonam R.; Wang, Xiaoping; Jacobson, Raymond; Murad, Ferid; Kumar, Rakesh

    2007-01-01

    Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of α- and β-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics. PMID:18048340

  16. 7 CFR 51.3058 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3058 Mature. Mature means that the avocado has reached a...

  17. 7 CFR 51.3058 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3058 Mature. Mature means that the avocado has reached a...

  18. 7 CFR 51.3058 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3058 Mature. Mature means that the avocado has reached a...

  19. 7 CFR 51.2651 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2651 Mature. Mature means that the cherries have reached the stage of growth which will insure the...

  20. 7 CFR 51.1530 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND THE EGG PRODUCTS INSPECTION ACT FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION... Mature. “Mature” means that the fruit has reached the stage of maturity which will insure a proper completion of the ripening process. ...

  1. 7 CFR 51.1530 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND THE EGG PRODUCTS INSPECTION ACT FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1 2 (INSPECTION... Mature. “Mature” means that the fruit has reached the stage of maturity which will insure a proper completion of the ripening process. ...

  2. 7 CFR 51.2651 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2651 Mature. Mature means that the cherries have reached the stage of growth which will insure the...

  3. 7 CFR 51.3058 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3058 Mature. Mature means that the avocado has reached a stage of growth which will insure a proper completion of...

  4. Career Maturity: The Construct and its Measurement.

    ERIC Educational Resources Information Center

    Savickas, Mark L.

    1984-01-01

    Describes vocational maturity and assists counselors in identifying what the various career maturity instruments measure. Discusses task variable measures, intervening variable measures, response variable measures, and methods of choosing an instrument. (JAC)

  5. Career Maturity: The Construct and its Measurement.

    ERIC Educational Resources Information Center

    Savickas, Mark L.

    1984-01-01

    Describes vocational maturity and assists counselors in identifying what the various career maturity instruments measure. Discusses task variable measures, intervening variable measures, response variable measures, and methods of choosing an instrument. (JAC)

  6. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV.

    PubMed

    de Vitry, Catherine

    2011-11-01

    Cytochromes of the c-type contain hemes covalently attached via one or, more generally, two thioether bonds between the vinyls of heme b and the thiols of cysteine residues of apocytochromes. This post-translational modification relies on membrane-associated specific biogenesis proteins, referred to as cytochrome c maturation systems. At least three different versions (i.e. Systems I-III) are found on the positive side of bioenergetic membranes in different organisms and compartments. The present minireview is concerned with systems on the negative side of the membranes. It describes System IV, also referred to as cofactor assembly on complex C subunit B, for heme binding on cytochrome b(6) through one thioether bond; this covalent heme is usually called c(i) . This system is found in all organisms with oxygenic photosynthesis but not in Firmicutes, although they also have a cytochrome b protein with an additional heme c(i) covalently attached via a single thioether bond.

  7. Temporary inactivation of plasma amine oxidase by alkylhydrazines. A combined enzyme/model study implicates cofactor reduction/reoxidation but cofactor deoxygenation and subsequent reoxygenation in the case of hydrazine itself.

    PubMed

    Lee, Y; Jeon, H B; Huang, H; Sayre, L M

    2001-03-23

    It has been known for some time that hydrazine and its methyl and 1,1-dimethyl analogues induce inactivation of the copper-containing quinone-dependent plasma amine oxidase but that the activity recovers over time, suggesting metabolism of all three inhibitors. However, the mechanism responsible for loss and regain of activity has not been investigated. In this study a combination of enzyme studies under a controlled atmosphere along with model studies using 5-tert-butyl-2-hydroxy-1,4-benzoquinone to mimic the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme suggest that regain of enzyme activity represents two different O(2)-dependent processes. In the case of methylhydrazine and 1,1-dimethylhydrazine, we propose that the inactive methylhydrazone/azo form of the enzyme slowly rehydrates and eliminates MeN=NH to give the triol cofactor form, which instantly reoxidizes to the catalytically active quinone form in the presence of O(2). Metabolism of methylhydrazine represents its conversion to CH(4) and N(2), and of 1,1-dimethylhydrazine to CH(2)=O, CH(4), and N(2). In the case of hydrazine itself, however, we propose that the inactive hydrazone/azo form of the enzyme instead undergoes a slow decomposition, probably facilitated by the active-site copper, to give N(2) and a novel 5-desoxy resorcinol form of the cofactor. The latter undergoes a rapid, but noninstantaneous reoxygenation at C5 to restore the active cofactor form, also probably mediated by the active-site copper.

  8. 7 CFR 51.1554 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Potatoes 1 Definitions § 51.1554 Mature. Mature means that the skins of the potatoes... 7 Agriculture 2 2011-01-01 2011-01-01 false Mature. 51.1554 Section 51.1554 Agriculture...-tenth of the skin missing or “feathered.” ...

  9. 7 CFR 51.1585 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Consumer Standards for Potatoes Definitions § 51.1585 Mature. Mature means that the outer skin (epidermis... 7 Agriculture 2 2011-01-01 2011-01-01 false Mature. 51.1585 Section 51.1585 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  10. 7 CFR 51.1585 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Consumer Standards for Potatoes Definitions § 51.1585 Mature. Mature means that the outer skin (epidermis... 7 Agriculture 2 2010-01-01 2010-01-01 false Mature. 51.1585 Section 51.1585 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...

  11. 7 CFR 51.1554 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Potatoes 1 Definitions § 51.1554 Mature. Mature means that the skins of the potatoes... 7 Agriculture 2 2010-01-01 2010-01-01 false Mature. 51.1554 Section 51.1554 Agriculture...-tenth of the skin missing or “feathered.” ...

  12. 25 CFR 101.14 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Maturity. 101.14 Section 101.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LOANS TO INDIANS FROM THE REVOLVING LOAN FUND § 101.14 Maturity. The maturity of any United States direct loan shall not exceed thirty years. Loans...

  13. 7 CFR 906.11 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Maturity. 906.11 Section 906.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.11 Maturity. Maturity means...

  14. 13 CFR 120.933 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Maturity. 120.933 Section 120.933... Program (504) 504 Loans and Debentures § 120.933 Maturity. From time to time, SBA will publish in the Federal Register the available maturities for a 504 loan and the Debenture that funds it. Such available...

  15. 7 CFR 29.3039 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Maturity. 29.3039 Section 29.3039 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Maturity. The degree of ripeness. Tobacco is mature when it reaches its prime state of development. The...

  16. 25 CFR 101.14 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Maturity. 101.14 Section 101.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LOANS TO INDIANS FROM THE REVOLVING LOAN FUND § 101.14 Maturity. The maturity of any United States direct loan shall not exceed thirty years. Loans...

  17. 24 CFR 242.27 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Maturity. 242.27 Section 242.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... FOR HOSPITALS Mortgage Requirements § 242.27 Maturity. The mortgage shall have a maturity not to...

  18. 24 CFR 201.11 - Loan maturities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Loan maturities. 201.11 Section 201... PROPERTY IMPROVEMENT AND MANUFACTURED HOME LOANS Loan and Note Provisions § 201.11 Loan maturities. (a... the original loan to the final maturity of the refinanced loan shall not exceed: (i) In the case of a...

  19. 7 CFR 906.11 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Maturity. 906.11 Section 906.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.11 Maturity. Maturity means...

  20. 7 CFR 29.3039 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Maturity. 29.3039 Section 29.3039 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Maturity. The degree of ripeness. Tobacco is mature when it reaches its prime state of development. The...

  1. 7 CFR 29.3039 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Maturity. 29.3039 Section 29.3039 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Maturity. The degree of ripeness. Tobacco is mature when it reaches its prime state of development. The...

  2. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... Requirements for Existing Projects Mortgage Provisions § 200.82 Maturity. The mortgage shall have a maturity...

  3. 24 CFR 242.27 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Maturity. 242.27 Section 242.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... FOR HOSPITALS Mortgage Requirements § 242.27 Maturity. The mortgage shall have a maturity not to...

  4. 7 CFR 906.11 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Maturity. 906.11 Section 906.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.11 Maturity. Maturity means...

  5. 7 CFR 906.11 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Maturity. 906.11 Section 906.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.11 Maturity. Maturity means...

  6. 7 CFR 29.3039 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Maturity. 29.3039 Section 29.3039 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Maturity. The degree of ripeness. Tobacco is mature when it reaches its prime state of development. The...

  7. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... Requirements for Existing Projects Mortgage Provisions § 200.82 Maturity. The mortgage shall have a maturity...

  8. 13 CFR 120.933 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maturity. 120.933 Section 120.933... Program (504) 504 Loans and Debentures § 120.933 Maturity. From time to time, SBA will publish in the Federal Register the available maturities for a 504 loan and the Debenture that funds it. Such available...

  9. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... Requirements for Existing Projects Mortgage Provisions § 200.82 Maturity. The mortgage shall have a maturity...

  10. 24 CFR 242.27 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Maturity. 242.27 Section 242.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... FOR HOSPITALS Mortgage Requirements § 242.27 Maturity. The mortgage shall have a maturity not to...

  11. 7 CFR 1710.115 - Final maturity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Final maturity. 1710.115 Section 1710.115 Agriculture... Basic Policies § 1710.115 Final maturity. (a) RUS is authorized to make loans and loan guarantees with a final maturity of up to 35 years. The borrower may elect a repayment period for a loan not longer than...

  12. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... Requirements for Existing Projects Mortgage Provisions § 200.82 Maturity. The mortgage shall have a maturity...

  13. 13 CFR 120.933 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Maturity. 120.933 Section 120.933... Program (504) 504 Loans and Debentures § 120.933 Maturity. From time to time, SBA will publish in the Federal Register the available maturities for a 504 loan and the Debenture that funds it. Such available...

  14. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... Requirements for Existing Projects Mortgage Provisions § 200.82 Maturity. The mortgage shall have a maturity...

  15. 7 CFR 29.3039 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Maturity. 29.3039 Section 29.3039 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Maturity. The degree of ripeness. Tobacco is mature when it reaches its prime state of development. The...

  16. 25 CFR 101.14 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Maturity. 101.14 Section 101.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LOANS TO INDIANS FROM THE REVOLVING LOAN FUND § 101.14 Maturity. The maturity of any United States direct loan shall not exceed thirty years. Loans...

  17. 7 CFR 906.11 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Maturity. 906.11 Section 906.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.11 Maturity. Maturity means...

  18. 24 CFR 242.27 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Maturity. 242.27 Section 242.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... FOR HOSPITALS Mortgage Requirements § 242.27 Maturity. The mortgage shall have a maturity not to...

  19. 13 CFR 120.933 - Maturity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Maturity. 120.933 Section 120.933... Program (504) 504 Loans and Debentures § 120.933 Maturity. From time to time, SBA will publish in the Federal Register the available maturities for a 504 loan and the Debenture that funds it. Such available...

  20. 25 CFR 101.14 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Maturity. 101.14 Section 101.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LOANS TO INDIANS FROM THE REVOLVING LOAN FUND § 101.14 Maturity. The maturity of any United States direct loan shall not exceed thirty years. Loans...

  1. 25 CFR 101.14 - Maturity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Maturity. 101.14 Section 101.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LOANS TO INDIANS FROM THE REVOLVING LOAN FUND § 101.14 Maturity. The maturity of any United States direct loan shall not exceed thirty years. Loans...

  2. 24 CFR 242.27 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Maturity. 242.27 Section 242.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF... FOR HOSPITALS Mortgage Requirements § 242.27 Maturity. The mortgage shall have a maturity not to...

  3. 13 CFR 120.933 - Maturity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Maturity. 120.933 Section 120.933... Program (504) 504 Loans and Debentures § 120.933 Maturity. From time to time, SBA will publish in the Federal Register the available maturities for a 504 loan and the Debenture that funds it. Such available...

  4. 7 CFR 51.1158 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 51.1158 Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These orange maturity requirements are contained in the Florida Citrus Code, Chapter...

  5. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These tangerine maturity requirements are contained in the Florida Citrus Code, Chapter...

  6. 7 CFR 51.1158 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 51.1158 Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These orange maturity requirements are contained in the Florida Citrus Code, Chapter...

  7. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These tangerine maturity requirements are contained in the Florida Citrus Code, Chapter...

  8. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These grapefruit maturity requirements are contained in the Florida Citrus Code, Chapter...

  9. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These grapefruit maturity requirements are contained in the Florida Citrus Code, Chapter...

  10. Career Maturity in High School Age Females.

    ERIC Educational Resources Information Center

    Pedro, Joan Daniels

    1982-01-01

    Examined career maturity in high school females by using a set of general career-maturity and gender-specific, career-related measures, and an alternate career-maturity criterion measure, career-planning involvement. Results indicated significant relationships between achievement orientation and occupational information and knowledge of women's…

  11. 7 CFR 51.1351 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Mature. 51.1351 Section 51.1351 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Pears for Canning Definitions § 51.1351 Mature. Mature means that the pear has reached the...

  12. 7 CFR 51.1238 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.1238 Section 51.1238 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1238 Mature. Mature means that the shells are firm and well developed. ...

  13. 7 CFR 51.1238 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mature. 51.1238 Section 51.1238 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.1238 Mature. Mature means that the shells are firm and well developed. ...

  14. 7 CFR 51.1554 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.1554 Section 51.1554 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1554 Mature. Mature means that the skins of the potatoes are generally firmly set and not more than 5 percent of the...

  15. 7 CFR 51.1351 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mature. 51.1351 Section 51.1351 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1351 Mature. Mature...

  16. 7 CFR 51.1238 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mature. 51.1238 Section 51.1238 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Cleaned Virginia Type Peanuts in the Shell Definitions § 51.1238 Mature. Mature means that the...

  17. 7 CFR 51.1351 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.1351 Section 51.1351 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., CERTIFICATION, AND STANDARDS) United States Standards for Pears for Canning Definitions § 51.1351 Mature. Mature...

  18. 7 CFR 51.1554 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Mature. 51.1554 Section 51.1554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Potatoes 1 Definitions § 51.1554 Mature. Mature means that the skins of the potatoes...

  19. 7 CFR 51.1585 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mature. 51.1585 Section 51.1585 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., CERTIFICATION, AND STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1585 Mature. Mature...

  20. 7 CFR 51.3203 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mature. 51.3203 Section 51.3203 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.3203 Mature. Mature means that the onion is fairly well cured, and at least fairly firm. ...