Science.gov

Sample records for femoral trabecular bone

  1. Cortical Bone Morphological and Trabecular Bone Microarchitectural Changes in the Mandible and Femoral Neck of Ovariectomized Rats

    PubMed Central

    Hsu, Pei-Yu; Tsai, Ming-Tzu; Wang, Shun-Ping; Chen, Ying-Ju; Wu, Jay; Hsu, Jui-Ting

    2016-01-01

    Objective This study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats. Materials and Methods Twelve female Wister rats were divided into two groups: the control and ovariectomized groups. The rats in the ovariectomized group received ovariectomy at 8 weeks of age; all the rats were sacrificed at 20 weeks of age, and their mandibles and femurs were removed and scanned using micro-CT. Four microstructural trabecular bone parameters were measured for the region below the first mandibular molar and the femoral neck region: bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN). In addition, four cortical bone parameters were measured for the femoral neck region: total cross-sectional area (TtAr), cortical area (CtAr), cortical bone area fraction (CtAr/TtAr), and cortical thickness (CtTh). The CtTh at the masseteric ridge was used to assess the cortical bone morphology in the mandible. The trabecular bone microarchitecture and cortical bone morphology in the femoral necks and mandibles of the control group were compared with those of the ovariectomized group. Furthermore, Spearman’s correlation (rs) was conducted to analyze the correlation between the osteoporosis conditions of the mandible and femoral neck. Results Regarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group

  2. Trabecular eccentricity and bone adaptation.

    PubMed

    Fox, J C; Keaveny, T M

    2001-09-21

    It is well established that bones functionally adapt by mechanisms that control tissue density, whole bone geometry, and trabecular orientation. In this study, we propose the existence of another such powerful mechanism, namely, trabecular eccentricity, i.e. non-central placement of trabecular bone within a cortical envelope. In the human femoral neck, trabecular eccentricity results in a thicker cortical shell on the inferior than superior aspect. In an overall context of expanding understanding of bone adaptation, the goal of this study was to demonstrate the biomechanical significance of, and provide a mechanistic explanation for, the relationship between trabecular eccentricity and stresses in the human femoral neck. Using composite beam theory, we showed that the biomechanical effects of eccentricity during a habitual loading situation were to increase the stress at the superior aspect of the neck and decrease the stress at the inferior aspect, resulting in an overall protective effect. Further, increasing eccentricity had a stress-reducing effect equivalent to that of increasing cortical thickness or increasing trabecular modulus. We conclude that an asymmetric placement of trabecular bone within a cortical bone envelope represents yet another mechanism by which whole bones can adapt to mechanical demands.

  3. Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads

    SciTech Connect

    Chappard, Christine; Basillais, Armelle; Benhamou, Laurent; Bonassie, Alexandra; Brunet-Imbault, Barbara; Bonnet, Nicolas; Peyrin, Francoise

    2006-09-15

    Microcomputed tomography ({mu}CT) produces three-dimensional (3D) images of trabecular bone. We compared conventional {mu}CT (C{mu}CT) with a polychromatic x-ray cone beam to synchrotron radiation (SR) {mu}CT with a monochromatic parallel beam for assessing trabecular bone microarchitecture of 14 subchondral femoral head specimens from patients with osteoarthritis (n=10) or osteoporosis (n=4). SR{mu}CT images with a voxel size of 10.13 {mu}m were reconstructed from 900 2D radiographic projections (angular step, 0.2 deg. ). C{mu}CT images with a voxel size of 10.77 {mu}m were reconstructed from 205, 413, and 825 projections obtained using angular steps of 0.9 deg., 0.45 deg., and 0.23 deg., respectively. A single threshold was used to binarize the images. We computed bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular number (Tb.N), trabecular thickness (Tb.Th and Tb.Th*), trabecular spacing (Tb.Sp), degree of anisotropy (DA), and Euler density. With the 0.9 deg. angular step, all C{mu}CT values were significantly different from SR{mu}CT values. With the 0.23 deg. and 0.45 deg. rotation steps, BV/TV, Tb.Th, and BS/BV by C{mu}CT differed significantly from the values by SR{mu}CT. The error due to slice matching (visual site matching {+-}10 slices) was within 1% for most parameters. Compared to SR{mu}CT, BV/TV, Tb.Sp, and Tb.Th by C{mu}CT were underestimated, whereas Tb.N and Tb.Th* were overestimated. A Bland and Altman plot showed no bias for Tb.N or DA. Bias was -0.8{+-}1.0%, +5.0{+-}1.1 {mu}m, -5.9{+-}6.3 {mu}m, and -5.7{+-}29.1 {mu}m for BV/TV, Tb.Th*, Tb.Th, and Tb.Sp, respectively, and the differences did not vary over the range of values. Although systematic differences were noted between SR{mu}CT and C{mu}CT values, correlations between the techniques were high and the differences would probably not change the discrimination between study groups. C{mu}CT provides a reliable 3D assessment of human defatted bone when working at the 0

  4. Inhibiting myostatin signaling prevents femoral trabecular bone loss and microarchitecture deterioration in diet-induced obese rats

    PubMed Central

    Tang, Liang; Yang, Xiaoying; Gao, Xiaohang; Du, Haiping; Han, Yanqi; Zhang, Didi; Wang, Zhiyuan

    2015-01-01

    Besides resulting in a dramatic increase in skeletal muscle mass, myostatin (MSTN) deficiency has a positive effect on bone formation. However, the issue about whether blocking MSTN can inhibit obesity-induced bone loss has not been previously investigated. In the present study, we have evaluated the effects of MSTN blocking on bone quality in high-fat (HF), diet-induced obese rats using a prepared polyclonal antibody for MSTN (MsAb). Twenty-four rats were randomly assigned to the Control, HF and HF + MsAb groups. Rats in the HF + MsAb group were injected once a week with purified MsAb for eight weeks. The results showed that MsAb significantly reduced body and fat weight, and increased muscle mass and strength in the HF group. MicroCT analysis demonstrated that obesity-induced bone loss and architecture deterioration were significantly mitigated by MsAb treatment, as evidenced by increased bone mineral density, bone volume over total volume, trabecular number and thickness, and decreased trabecular separation and structure model index. However, neither HF diet nor MsAb treatment had an impact on femoral biomechanical properties including maximum load, stiffness, energy absorption and elastic modulus. Moreover, MsAb significantly increased adiponectin concentrations, and decreased TNF-α and IL-6 levels in diet-induced obese rats. Taken together, blocking MSTN by MsAb improves bone quality in diet-induced obese rats through a mechanotransduction pathway from skeletal muscle, and the accompanying changes occurring in the levels of circulating adipokines and pro-inflammatory cytokines may also be involved in this process. It indicates that the administration of MSTN antagonists may be a promising therapy for treating obesity and obesity-induced bone loss. PMID:26438721

  5. Femoral neck trabecular patterns predict osteoporotic fractures.

    PubMed

    Lee, Richard L; Dacre, Jane E; Hart, Deborah J; Spector, Tim D

    2002-07-01

    In this paper we show that texture analysis of femoral neck trabecular patterns can be used to predict osteoporotic fractures. The study is based on a sample of 123 women aged 44-66 years with and without fractures. We analyzed trabecular patterns using the Co-occurrence Matrix texture analysis algorithm and compared the predictive utility of the textural data with densitometry. Logistic regression was used to estimate the predictive utility, exp(B), of clinical and textural data per standard deviation. Reproducibility was also demonstrated using paired films at 1-year intervals (CoV=4.5%). Bone mass estimated by DEXA measurements of the spine and hip were the most predictive of fractures giving a two-fold increase in fractures per s.d. bone mass loss (95% CI: 1.2-3.1, p<0.005). Age was also highly predictive with fracture risk increasing by 1.07-fold per year (95% CI: 1.01-1.14, p<0.02). Trabecular texture was found to give a lower, but significant, prediction of fracture of 1.5-fold per s.d. trabecular pattern loss (95% CI: 0.96-2.31, p<0.05). Combining age, weight, and trabecular texture increased the fracture prediction to 1.78-fold per s.d. (95% CI: 1.19-2.67). Combining trabecular texture with densitometry increased the predictive ability to 2.06-fold per s.d. (95% CI: 1.32-3.22) and combined with age and weight as well increased exp(B) to 2.1-fold per s.d. (95% CI: 1.32-3.35). This shows that osteoporotic trabecular texture changes can be "measured." Moreover, the combination of age, weight, and trabecular texture is more predictive than either alone. We propose therefore that this trabecular texture analysis is both reproducible and clinically meaningful. The application of such methods could be used to improve the estimation of fracture risk in conjunction with other clinical data, or where densitometry data cannot be obtained (e.g., in retrospective studies). PMID:12148717

  6. Mathematical modelling of trabecular bone structure: the evaluation of analytical and quantified surface to volume relationships in the femoral head and iliac crest.

    PubMed

    Fazzalari, N L; Crisp, D J; Vernon-Roberts, B

    1989-01-01

    The three-dimensional architecture of trabecular bone has structural trends related to physical function as described by Wolff's law. Mathematical modelling provides a means of analysing these structures through the use of simplified representations. A single measure of mineralized bone volume per unit volume of structure (Vv) and the surface area of mineralized bone per unit volume of structure (Sv) does not identify a particular architecture in any detail; the way in which Sv changes in relation to Vv does provide this information as the structure remodels. A series of structures using the elements of plates and rods were created. The rates of change of Sv with respect to Vv for trabecular structures give insight into differences in such models. Structures in the femoral head and iliac crest were analysed by power curve regression. In the principal compressive region, just above the medial cortex, advanced osteoarthritis was associated with a preferential loss of rods from the normal trabecular structure, resulting in a more plate-like architecture. The iliac crest remodelling that takes place in the osteoporotic appears to be the result of a generalised bone loss with some of the thinner elements of the structure being removed completely, resulting in an increase in unit cell dimension. The consequence of changing unit cell size has a major impact on surface availability for osteoblastic and osteoclastic activity. The simple plate model as a basis for the stereological analysis of trabecular structures is therefore limited because of the mixed plate and rod nature of trabecular architecture.

  7. Age-related deterioration in trabecular bone mechanical properties at material level: nanoindentation study of the femoral neck in women by using AFM.

    PubMed

    Milovanovic, Petar; Potocnik, Jelena; Djonic, Danijela; Nikolic, Slobodan; Zivkovic, Vladimir; Djuric, Marija; Rakocevic, Zlatko

    2012-02-01

    Despite general belief that the mechanical properties of bone material contribute to whole bone strength, it is still obscure what the age effects are on mechanical behavior of the bone material, particularly in the case of the femoral neck trabeculae. In this study, atomic force microscopy was used for imaging and measuring the size of mineral grains, as well as nano-scale mechanical characterization (nanoindentation) of the bone mineralized matrix of trabeculae, with the aim to explore the age effects on bone elasticity and give new insight into age-related bone fragility. The bone samples in this study comprised trabecular bone specimens of the femoral neck region, collected from eight skeletal healthy women (five young adults: 27-38yrs., three elderly: 83-94yrs.) at autopsy. Bone trabeculae in the elderly displayed a higher modulus and nanohardness, signifying a decreased amount of energy that can be accommodated by the bone tissue during loading. Regression analysis revealed that nearly 65% of variability in the bone matrix elastic modulus can be statistically explained by the changes in size of the matrix mineral grains. This study revealed that the bone trabeculae of elderly women express less elastic behavior at the material level, which makes them more vulnerable to unusual impact loads originating from a fall. The observed age-related structural and mechanical alteration at the bone material level adds new evidence for understanding why hip fractures are more frequent in elderly women.

  8. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  9. Ultrasonic Evaluation of Deeply Located Trabecular Bones - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cieślik, Lucyna; Litniewski, Jerzy

    The analysis of ultrasonic signals scattered by soft tissues have been successfully applied for their characterization. Similarly, the trabecular bone backscattered signal contains information about the properties of the bone structure. Therefore scattering-based ultrasonic technique potentially enables the assessment of microstructure characteristics of a bone. The femoral neck fracture often occurs in the course of osteoporosis and can lead to severe complications. Therefore assessment of femoral bone microstructure and condition is important and essential for the diagnosis and treatment monitoring. As far most of the trabecular bone investigations have been performed in vitro. The only in vivo measurements were carried out in transmission and mostly concerned estimation of the attenuation in heel bone. We have built the ultrasonic scanner that could be useful in acquiring the RF (Radio Frequency) echoes backscattered by the trabecular bone in vivo. Moreover, the bone scanner provides data not only from heel bone but from deeply located bones as well (e.g. femoral bone). It can be also used for easily accessible bones like heel bone or breastbone. In this case a gel-pad is applied to assure focusing of ultrasound in trabecular bone (approximately 10 mm beneath the cortical bone). This study presents preliminary results of the attenuating properties evaluation of trabecular bone from the ultrasonic echoes backscattered by heel bone and femoral neck.

  10. Fatigue of bovine trabecular bone.

    PubMed

    Moore, Tara L; Gibson, Lorna J

    2003-12-01

    Fatigue loading of bone, from the activities of daily living in the elderly, or from prolonged exercise in the young, can lead to increased risk of fracture. Elderly patients with osteoporosis are particularly prone to fragility fractures of the vertebrae, where load is carried primarily by trabecular bone. In this study, specimens of bovine trabecular bone were loaded in compressive fatigue at four different normalized stresses to one of six maximum strains. The resulting change in modulus and residual strain accumulation were measured over the life of the fatigue test. The number of cycles to reach a given maximum compressive strain increased with decreasing normalized stress. Modulus reduction and specimen residual strain increased with increasing maximum compressive strain, but few differences were observed between specimens loaded to the same maximum strain at different normalized stresses.

  11. Trabecular bone ontogeny in the human proximal femur.

    PubMed

    Ryan, Timothy M; Krovitz, Gail E

    2006-12-01

    Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.

  12. Trabecular Plates and Rods Determine Elastic Modulus and Yield Strength of Human Trabecular Bone

    PubMed Central

    Wang, Ji; Zhou, Bin; Liu, X. Sherry; Fields, Aaron J.; Sanyal, Arnav; Shi, Xiutao; Adams, Mark; Keaveny, Tony M.; Guo, X. Edward

    2014-01-01

    The microstructure of trabecular bone is usually perceived as a collection of plate-like and rod-like trabeculae, which can be determined from the emerging high-resolution skeletal imaging modalities such as micro computed tomography (μCT) or clinical high-resolution peripheral quantitative CT (HR-pQCT) using the individual trabecula segmentation (ITS) technique. It has been shown that the ITS-based plate and rod parameters are highly correlated with elastic modulus and yield strength of human trabecular bone. In the current study, plate-rod (PR) finite element (FE) models were constructed completely based on ITS-identified individual trabecular plates and rods. We hypothesized that PR FE can accurately and efficiently predict elastic modulus and yield strength of human trabecular bone. Human trabecular bone cores from proximal tibia (PT), femoral neck (FN) and greater trochanter (GT) were scanned by micro computed tomography (μCT). Specimen-specific ITS-based PR FE models were generated for each μCT image and corresponding voxel-based FE models were also generated in comparison. Both types of specimen-specific models were subjected to nonlinear FE analysis to predict the apparent elastic modulus and yield strength using the same trabecular bone tissue properties. Then, mechanical tests were performed to experimentally measure the apparent modulus and yield strength. Strong linear correlations for both elastic modulus (r2=0.97) and yield strength (r2=0.96) were found between the PR FE model predictions and experimental measures, suggesting that trabecular plates and rods morphology adequately captures three-dimensional (3D) microarchitecture of human trabecular bone. In addition, the PR FE model predictions in both elastic modulus and yield strength were highly correlated with the voxel-based FE models (r2=0.99, r2=0.98, respectively), resulted from the original 3D images without the PR segmentation. In conclusion, the ITS-based PR models predicted accurately

  13. Dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in trabecular bone

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2014-06-01

    The present study aims to investigate the dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in 12 bovine femoral trabecular bone samples. The phase velocity and the attenuation coefficient of the fast wave measured at 0.5 MHz were found to decrease significantly with increasing angle and had their maximum values at 0°, i.e., for wave propagation in a direction parallel to the predominant trabecular alignment. The present study applied the angle-dependent Biot model by introducing anisotropy into the Biot model through the angle-dependent Young's, bulk, and shear moduli of the skeletal frame for trabecular bone to predict the measurements. Good agreement between the measurements and the prediction of the fast wave velocity suggests that the anisotropic fast wave velocity as a function of the propagation angle is mainly due to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment.

  14. The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization.

    PubMed

    Reznikov, Natalie; Chase, Hila; Brumfeld, Vlad; Shahar, Ron; Weiner, Steve

    2015-02-01

    Trabecular bone is morphologically and functionally different from compact bone at the tissue level, but both are composed of lamellae at the micrometer-scale level. We present a three-dimensional study of the collagenous network of human trabecular lamellar bone from the proximal femur using the FIB-SEM serial surface view method. The results are compared to human compact lamellar bone of the femoral shaft, studied by the same method. Both demineralized trabecular and compact lamellar bone display the same overall structural organization, namely the presence of ordered and disordered materials and the confinement of the canalicular network to the disordered material. However, in trabecular bone lamellae a significant proportion of the ordered collagen fibril arrays is aligned with the long axis of the trabecula and, unlike in compact bone, is not related to the anatomical axis of the whole femur. The remaining ordered collagen fibrils are offset from the axis of a trabecula either by about 30° or 70°. Interestingly, at the tissue scale of millimeters, the most abundant angles between any two connected trabeculae - the inter-trabecular angles - center around 30° and 70°. This implies that within a framework of interconnected trabeculae the same lamellar structure will always have a significant component of the fibrils aligned with the long axes of connected trabeculae. This structural complementarity at different hierarchical levels presumably reflects an adaptation of trabecular bone to function.

  15. Trabecular bone structure in the primate wrist.

    PubMed

    Schilling, Ann-Marie; Tofanelli, Sergio; Hublin, Jean-Jacques; Kivell, Tracy L

    2014-05-01

    Trabecular (or cancellous) bone has been shown to respond to mechanical loading throughout ontogeny and thus can provide unique insight into skeletal function and locomotion in comparative studies of living and fossil mammalian morphology. Trabecular bone of the hand may be particularly functionally informative because the hand has more direct contact with the substrate compared with the remainder of the forelimb during locomotion in quadrupedal mammals. This study investigates the trabecular structure within the wrist across a sample of haplorhine primates that vary in locomotor behaviour (and thus hand use) and body size. High-resolution microtomographic scans were collected of the lunate, scaphoid, and capitate in 41 individuals and eight genera (Homo, Gorilla, Pan, Papio, Pongo, Symphalangus, Hylobates, and Ateles). We predicted that particular trabecular parameters would 1) vary across suspensory, quadrupedal, and bipedal primates based on differences in hand use and load, and 2) scale with carpal size following similar allometric patterns found previously in other skeletal elements across a larger sample of mammals and primates. Analyses of variance (trabecular parameters analysed separately) and principal component analyses (trabecular parameters analysed together) revealed no clear functional signal in the trabecular structure of any of the three wrist bones. Instead, there was a large degree of variation within suspensory and quadrupedal locomotor groups, as well as high intrageneric variation within some taxa, particularly Pongo and Gorilla. However, as predicted, Homo sapiens, which rarely use their hands for locomotion and weight support, were unique in showing lower relative bone volume (BV/TV) compared with all other taxa. Furthermore, parameters used to quantify trabecular structure within the wrist scale with size generally following similar allometric patterns found in trabeculae of other mammalian skeletal elements. We discuss the challenges

  16. An Orientation Distribution Function for Trabecular Bone

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-10-08

    We describe a new method for quantifying the orientation of trabecular bone from three-dimensional images. Trabecular lattices from five human vertebrae were decomposed into individual trabecular elements, and the orientation, mass, and thickness of each element were recorded. Continuous functions that described the total mass (M({var_phi},{theta})) and mean thickness ({tau}({var_phi},{theta})) of all trabeculae as a function of orientation were derived. The results were compared with experimental measurements of the elastic modulus in the three principal anatomic directions. A power law scaling relationship between the anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 (R{sup 2} = 0.88). As expected, the preponderance of trabecular mass was oriented along the cranial-caudal direction; on average, there was 3.4 times more mass oriented vertically than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than the horizontal trabeculae. The vertical trabecular thickness was inversely related to the connectivity (R{sup 2} = 0.70; p = 0.07), suggesting a possible organization into either few, thick trabeculae or many thin trabeculae. The method, which accounts for the mechanical connectedness of the lattice, provides a rapid way to both visualize and quantify the three-dimensional organization of trabecular bone.

  17. Image-Based Modeling of Trabecular Bones

    NASA Astrophysics Data System (ADS)

    Rajapakse, Chamith; Gunaratne, Gemunu

    2004-10-01

    Osteoporosis is a major health problem in the U.S. today. The detection and treatment of osteoporosis is currently based on Bone Mineral Density (BMD) measurements. Recent evidence suggests that the low bone mass alone does not account for the entire risk of osteoporotic fractures. It is also been known that the trabecular regions of bones play a major role in the bone strength . Trabecular bone has a complex structure with substantial heterogeneity, anisotropy and asymmetry. Although these properties effect BMD, the role of architecture and tissue material remain uncertain. Computer modeling of trabecular bone can be used predict responses that cannot be obtained experimentally, and they can compute responses that cannot be measured in-vivo. Due to the complexity of the Trabecular Architecture (TA) a model system based on scanned digital images is introduced to get substantial insight of TA and to predict the failure behavior. It is assumed that the added insight provided by these studies will lead to improved diagnostics and treatments of patient-specific osteoporotic fractures.

  18. Material Properties of the Mandibular Trabecular Bone

    PubMed Central

    Lakatos, Éva; Magyar, Lóránt; Bojtár, Imre

    2014-01-01

    The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa. PMID:27006933

  19. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  20. An automated method for the analysis of trabecular bone structure.

    PubMed

    Aaron, J E; Johnson, D R; Kanis, J A; Oakley, B A; O'Higgins, P; Paxton, S K

    1992-02-01

    Trabecular structure as well as bone mass is important in studies of bone disease and fracture. An automated method for the direct analysis of two-dimensional trabecular micro-anatomy and its application to human iliac crest bone biopsies is described. Compared with established methods which require expensive equipment and complex software, costs have been reduced and availability increased by using an image analyzer driven by a microcomputer. Routine histological sections are accepted and an editing function enables the removal of artifacts. An elastic window allows field expansion for large specimens. The program enables the rapid assessment of the bone volume and trabecular surface from the intact image, followed by image skeletonization and the deduction of the trabecular length, number, character, and spacing together with the number of trabecular junctions and discontinuities; the trabecular width is calculated indirectly. Images may be stored to disk or printed as permanent records for diagnostic or research purposes.

  1. Curcumin reduces trabecular and cortical bone in naive and lewis lung carcinoma-bearing mice.

    PubMed

    Yan, Lin; Yee, John A; Cao, Jay

    2013-08-01

    The present study investigated the effects of curcumin on bone microstructure in non-tumor-bearing and Lewis lung carcinoma-(LLC)-bearing female C57BL/6 mice. Morphometric analysis showed that dietary supplementation with curcumin (2% or 4%) significantly reduced the bone volume to total volume ratio, connectivity density and trabecular number, and significantly increased the structure model index (an indicator of the plate- and rod-like geometry of trabecular structure) and trabecular separation in vertebral bodies compared to controls in both non-tumor-bearing and LLC-bearing mice. Similar changes in trabecular bone were observed in the femoral bone in curcumin-fed mice. Curcumin significantly reduced the cortical bone area to total area ratio and cortical thickness in femoral mid-shaft, but not in vertebral bodies, in both non-tumor-bearing and LLC-bearing mice. Curcumin feeding reduced plasma concentrations of osteocalcin and increased tartrate-resistant acid phosphate 5b in mice regardless of the presence of LLC, indicating that curcumin disrupts the balance of bone remodeling. Our results demonstrated that curcumin reduced the trabecular bone volume and cortical bone density. The skeleton is a favored site of metastasis for many types of cancers, and curcumin has been investigated in clinical trials in patients with cancer for its chemopreventive effects. Our results suggest the possibility of a combined effect of cancer-induced osteolysis and curcumin-stimulated bone loss in patients using curcumin. The assessment of bone structural changes should be considered for those who participate in curcumin clinical trials to determine its effects on skeleton health, particularly for those with advanced malignancies.

  2. Biomechanics and mechanobiology of trabecular bone: a review.

    PubMed

    Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength.

  3. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-10-01

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  4. Trabecular bone structural variation throughout the human lower limb.

    PubMed

    Saers, Jaap P P; Cazorla-Bak, Yasmin; Shaw, Colin N; Stock, Jay T; Ryan, Timothy M

    2016-08-01

    Trabecular bone is responsive to mechanical loading, and thus may be a useful tool for interpreting past behaviour from fossil morphology. However, the ability to meaningfully interpret variation in archaeological and hominin trabecular morphology depends on the extent to which trabecular bone properties are integrated throughout the postcranium or are locally variable in response to joint specific loading. We investigate both of these factors by comparing trabecular bone throughout the lower limb between a group of highly mobile foragers and two groups of sedentary agriculturalists. Trabecular bone structure is quantified in four volumes of interest placed within the proximal and distal joints of the femur and tibia. We determine how trabecular structures correspond to inferred behavioural differences between populations and whether the patterns are consistent throughout the limb. A significant correlation was found between inferred mobility level and trabecular bone structure in all volumes of interest along the lower limb. The greater terrestrial mobility of foragers is associated with higher bone volume fraction, and thicker and fewer trabeculae (lower connectivity density). In all populations, bone volume fraction decreases while anisotropy increases proximodistally throughout the lower limb. This observation mirrors reductions in cortical bone mass resulting from proximodistal limb tapering. The reduction in strength associated with reduced bone volume fraction may be compensated for by the increased anisotropy in the distal tibia. A similar pattern of trabecular structure is found throughout the lower limb in all populations, upon which a signal of terrestrial mobility appears to be superimposed. These results support the validity of using lower limb trabecular bone microstructure to reconstruct terrestrial mobility levels from the archaeological and fossil records. The results further indicate that care should be taken to appreciate variation resulting from

  5. Isolation of osteocytes from human trabecular bone.

    PubMed

    Prideaux, Matthew; Schutz, Christine; Wijenayaka, Asiri R; Findlay, David M; Campbell, David G; Solomon, Lucian B; Atkins, Gerald J

    2016-07-01

    Osteocytes are essential regulators of bone homeostasis. However, they are difficult to study due to their location within the bone mineralised matrix. Although several techniques have been published for the isolation of osteocytes from mouse bone, no such technique has been described for human osteocytes. We have therefore developed a protocol for the isolation of osteocytes from human trabecular bone samples acquired during surgery. The cells were digested from the bone matrix by sequential collagenase and ethylenediaminetetraacetic acid (EDTA) digestions and the cells from later digests displayed characteristic dendritic osteocyte morphology when cultured ex vivo. Furthermore, the cells expressed characteristic osteocyte marker genes, such as E11, dentin matrix protein 1 (DMP1), SOST, matrix extracellular phosphoglycoprotein (MEPE) and phosphate regulating endopeptidase homologue, X-linked (PHEX). In addition, genes associated with osteocyte perilacunar remodelling, including matrix metallopeptidase-13 (MMP13), cathepsin K (CTSK) and carbonic anhydrase 2 (CAR2) were expressed. The cells also responded to parathyroid hormone (PTH) by downregulating SOST mRNA expression and to 1α,25-dihydroxyvitamin D3 (1,25D) by upregulating fibroblast growth factor 23 (FGF23) mRNA expression. Therefore, the cells behave in a similar manner to osteocytes in vivo. These cells represent an important tool in enhancing current knowledge in human osteocyte biology. PMID:27109824

  6. Feasibility of bone assessment by using the nonlinear parameter in trabecular bone

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2013-04-01

    The purpose of the present study is to investigate the feasibility of assessing bone status and osteoporosis by using the nonlinear parameter B/A in bovine trabecular bone in vitro. The B/A values measured in 18 bovine femoral trabecular bone samples by using a finite-amplitude through-transmission method ranged from 63.3 to 122.6. The apparent bone density was highly correlated with the B/A and with the existing quantitative ultrasound parameters of the speed of sound (SOS) and the normalized broadband ultrasound attenuation (nBUA), with Pearson's correlation coefficients of r = 0.83 to 0.96. The best univariate predictor of the apparent bone density was the B/A, with an adjusted squared correlation coefficient of r 2 = 0.91. These results suggest that the B/A, in addition to the SOS and the nBUA, may have potential as an index for the assessment of bone status and osteoporosis.

  7. Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss.

    PubMed

    Wu, Yue; Tworkoski, Kathryn; Michaud, Michael; Madri, Joseph A

    2009-03-01

    In our investigations of the bone marrow (BM) of PECAM-1 null (knockout, KO) mice, we observed that the trabecular bone volume and number of trabeculae were significantly reduced in femoral and tibial long bones. Further studies in vitro revealed increased numbers and size of osteoclasts, enhanced bone resorption on dentin substrates, and hypersensitivity to macrophage CSF and receptor activator of NF-kappaB ligand in BM-derived osteoclast precursor cultures from KO mice. Associations among PECAM-1, Syk, and SHP-1 were found in wild-type BM monocyte derived osteoclast-like cells. The absence of PECAM-1 and SHP-1 interactions in the KO cells leads to the dysregulation of Syk kinases and/or phosphatases, possibly SHP-1. Indeed, KO derived osteoclast-like cells exhibited increased Syk tyrosine phosphorylation levels compared with WT cells. Lastly, WT mice engrafted with marrow from KO kindred showed loss of trabecular bone analogous to KO mice, consistent with increased osteoclastogenesis. PMID:19234161

  8. Cancellous bone repair using bovine trabecular bone matrix particulates.

    PubMed

    Mushipe, M T; Revell, P A; Shelton, J C

    2002-01-01

    At 5 and 15 weeks post-surgery, biomechanical and histological analyses of cancellous bone defects filled with the bovine trabecular bone matrix (BBM) and hydroxyapatite (Hap) particulates of dimensions 106-150 microm were investigated. It was observed that at 5 weeks post-surgery the stiffness properties of the BBM filled defects were significantly higher than those observed in the Hap filled defects (p < 0.01) but comparable to those recorded in intact cancellous bone from the same anatomical position. Histologically, no significant differences were observed in the percentage of new bone contact with the particles. The biomechanical properties of the Hap filled defects mirrored those in intact cancellous bone only at 15 weeks post-surgery. BBM particles thus appeared to accelerate the early healing of osteotomies. It is therefore suggested that particles of this bioceramic be the subject of intense research for more usage in both periodontal osseous defects and orthopaedic fractures.

  9. Modeling orthotropic elasticity, localized plasticity and fracture in trabecular bone

    NASA Astrophysics Data System (ADS)

    O'Connor, D. T.; Elkhodary, K. I.; Fouad, Y.; Greene, M. S.; Sabet, F. A.; Qian, J.; Zhang, Y.; Liu, W. K.; Jasiuk, I.

    2016-09-01

    This work develops a model for the mechanical response of trabecular bone including plasticity, damage and fracture. It features a resultant lamellar orientation that captures trabecular strut anisotropic elasticity, and introduces asymmetric J2 plasticity with isotropic hardening to capture evolving strut tensile and compressive dissipative properties. A continuum compatibility based damage and fracture criterion is also proposed to model fracture surface generation. We investigated fracture of a trabecular bone network under a compressive load, for which failure modes of both tension and compression were identified at the strut level. The predicted trabecular network response was found to fall within the range of experimental results reported in literature. We also investigated the response of idealized struts under compression, tension and bending using our model. Individual struts were found to exhibit micro-buckling under compression and micro-necking under tension. These instabilities are however masked by the multiplicity and complexity of strut orientations at the trabecular network level.

  10. Mechanical strength of trabecular bone at the knee.

    PubMed

    Hvid, I

    1988-08-01

    Interest in the biomechanical properties of trabecular bone has expanded in response to the problems related to total and partial joint replacement with the knee joint constituting a main focus of attention. This relatively recent development has left a number of fundamental problems unanswered, especially related to the machining, storage and testing of trabecular bone specimens. Nevertheless, these studies have contributed to the understanding of the mechanical function of trabecular bone. Regarding the role of trabecular bone at the knee joint, the following conclusions may be emphasized (conclusions drawn from the author's previous studies (I-X) are shown in italics): (1) Trabecular bone is almost exclusively responsible for the transmission of load at the proximal tibial epiphysis from the knee joint to the metaphysis. The peripheral shell surrounding the epiphysis is not composed of cortical bone and plays a negligible role in load transmission. (2) The compressive strength and stiffness of trabecular bone is primarily dependent upon the apparent density, trabecular architecture and the strength of the bone material. Direct and indirect sources suggest that the true material strength of trabecular bone is less than that of cortical bone. The epiphyseal trabecular architecture, featuring a marked polarity with alignment of primary trabeculae at right angles to the joint surface, is responsible for functional anisotropy which points to the axial compressive properties as the more important mechanical parameters. (3) Tensile and shear properties are of special relevance to mechanical loosening of implants. These properties may be derived from the apparent density, and a close empirical relation to the axial compressive strength and stiffness is suggested. (4) The foam-like structure of trabecular bone is the basis for the large energy absorptive capacity. (5) The pattern of axial compressive stiffness and strength at the normal proximal tibia differs little

  11. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    PubMed

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.

  12. Effects of spaceflight on trabecular bone in rats

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.

    1983-01-01

    Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.

  13. MRI of trabecular bone using a DDIF contrast imaging sequence

    PubMed Central

    Mintzopoulos, Dionyssios; Ackerman, Jerome L.; Song, Yi-Qiao

    2011-01-01

    Purpose To characterize the DDIF (Decay due to Diffusion in the Internal Field) method using intact animal trabecular bone specimens of varying trabecular structure and porosity, under ex vivo conditions closely resembling in vivo physiological conditions. The DDIF method provides a diffusion contrast which is related to the surface-to-volume ratio of the porous structure of bones. DDIF has previously been used successfully to study marrow-free trabecular bone, but the DDIF contrast hitherto had not been tested in intact specimens containing marrow and surrounded by soft tissue. Materials and Methods DDIF imaging was implemented on a 4.7 T small-bore, horizontal, animal scanner. Ex vivo results on fresh bone specimens containing marrow were obtained at body temperature. Control measurements were carried out in surrounding tissue and saline. Results Significant DDIF effect was observed for trabecular bone samples, while it was considerably smaller for soft tissue outside the bone and for lipids. Additionally, significant differences were observed between specimens of different trabecular structure. Conclusion The DDIF contrast is feasible despite the reduction of the diffusion constant and of T1 in such conditions, increasing our confidence that DDIF imaging in vivo may be clinically viable for bone characterization. PMID:21780229

  14. Comparative forefoot trabecular bone architecture in extant hominids.

    PubMed

    Griffin, Nicole L; D'Août, Kristiaan; Ryan, Timothy M; Richmond, Brian G; Ketcham, Richard A; Postnov, Andrei

    2010-08-01

    The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.

  15. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  16. Trabecular bone score in healthy ageing

    PubMed Central

    Bazzocchi, A; Ponti, F; Diano, D; Amadori, M; Albisinni, U; Battista, G

    2015-01-01

    Objective: The main aim of this work was to report on trabecular bone score (TBS) by dual-energy X-ray absorptiometry (DXA) of healthy Italian subjects to be used as a reference standard for future study in clinical and research settings. The secondary aim was to investigate the link between TBS and conventional parameters of bone and body composition by DXA. Methods: 250 individuals of 5 age bands (spanning from 18 to 70 years of age, equally distributed for both age and sex) were prospectively recruited. A lumbar spine (LS) DXA scan (Lunar iDXA™; GE Healthcare, Madison, WI) was acquired for each subject and then analysed with the latest version of TBS iNsight v. 2.1 (Med-Imaps, Pessac, France) software. LS bone mineral density (LS BMD), Z-score, T-score and TBS values were collected. Pearson's test was used to investigate the correlations between TBS and LS BMD and the influence of age, body mass index (BMI) and body composition on these parameters. Results: A significant decrease of TBS and LS BMD was observed with ageing in both males (TBS mean values from 1.486 to 1.374; LS BMD mean values from 1.219 to 1.187) and females (TBS mean values from 1.464 to 1.306; LS BMD mean values from 1.154 to 1.116). No statistically significant difference was achieved among males and females of the same age group for both TBS and LS BMD, with the exception of the fifth age group. A significant correlation was found between LS BMD and TBS values in both sexes (r  = 0.555–0.655, p < 0.0001). BMI influenced LS BMD but not TBS. TBS values were inversely correlated with some fat mass parameters, in particular with visceral adipose tissue (in males: r = −0.332, p < 0.001; in females: r = −0.348, p < 0.0001). No significant correlation was found between TBS and total lean mass, opposite to LS BMD (in males: r = 0.418; p < 0.0001; in females: r = −0.235; p < 0.001). Conclusion: This report is an attempt to start building a database for

  17. Limitations of global morphometry in predicting trabecular bone failure.

    PubMed

    Stauber, Martin; Nazarian, Ara; Müller, Ralph

    2014-01-01

    Efforts in finding independent measures for accurate and reliable prediction of trabecular bone failure have led to the development of a number of morphometric indices characterizing trabecular bone microstructure. Generally, these indices assume a high homogeneity within the bone specimen. However, in the present study we found that the variance in bone volume fraction (BV/TV) in a single bone specimen can be relatively large (CV = 9.07% to 28.23%). To assess the limitations of morphometric indices in the prediction of bone failure for specimens in which the assumption of homogeneity is not met, we harvested 13 cadaveric samples from a single human spine. We tested these cylindrical samples using image-guided failure assessment (IGFA), a technique combining stepwise microcompression and time-lapsed micro-computed tomography (µCT). Additionally, we computed morphometric indices for the entire sample as well as for 10 equal subregions along the anatomical axis. We found that ultimate strength was equally well predicted by BV/TV of the entire sample (R(2)  = 0.55) and BV/TV of the weakest subregion (R(2)  = 0.57). Investigating three-dimensional animations of structural bone failure, we showed that two main failure mechanisms determine the competence of trabecular bone samples; in homogeneous, isotropic trabecular bone samples, competence is determined by a whole set of trabecular elements, whereas in inhomogeneous, anisotropic bone samples a single or a missing trabeculae may induce catastrophic failure. The latter failure mechanism cannot be described by conventional morphometry, indicating the need for novel morphometric indices also applicable to the prediction of failure in inhomogeneous bone samples. PMID:23761214

  18. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  19. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  20. Relationships between tissue composition and viscoelastic properties in human trabecular bone.

    PubMed

    Ojanen, X; Isaksson, H; Töyräs, J; Turunen, M J; Malo, M K H; Halvari, A; Jurvelin, J S

    2015-01-21

    Trabecular bone is a metabolically active tissue with a high surface to volume ratio. It exhibits viscoelastic properties that may change during aging. Changes in bone properties due to altered metabolism are sensitively revealed in trabecular bone. However, the relationships between material composition and viscoelastic properties of bone, and their changes during aging have not yet been elucidated. In this study, trabecular bone samples from the femoral neck of male cadavers (n=21) aged 17-82 years were collected and the tissue level composition and its associations with the tissue viscoelastic properties were evaluated by using Raman microspectroscopy and nanoindentation, respectively. For composition, collagen content, mineralization, carbonate substitution and mineral crystallinity were evaluated. The calculated mechanical properties included reduced modulus (Er), hardness (H) and the creep parameters (E1, E2, η1and η2), as obtained by fitting the experimental data to the Burgers model. The results indicated that the creep parameters, E1, E2, η1and η2, were linearly correlated with mineral crystallinity (r=0.769-0.924, p<0.001). Creep time constant (η2/E2) tended to increase with crystallinity (r=0.422, p=0.057). With age, the mineralization decreased (r=-0.587, p=0.005) while the carbonate substitution increased (r=0.728, p<0.001). Age showed no significant associations with nanoindentation parameters. The present findings suggest that, at the tissue-level, the viscoelastic properties of trabecular bone are related to the changes in characteristics of bone mineral. This association may be independent of human age.

  1. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  2. Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample

    NASA Astrophysics Data System (ADS)

    Kasseck, Christoph; Kratz, Marita; Torcasio, Antonia; Gerhardt, Nils C.; van Lenthe, G. Harry; Gambichler, Thilo; Hoffmann, Klaus; Jones, David B.; Hofmann, Martin R.

    2010-07-01

    We investigate optical coherence tomography (OCT) as a method for imaging bone. The OCT images are compared directly to those of the standard methods of bone histology and microcomputed tomography (μCT) on a single, fixed human femoral trabecular bone sample. An advantage of OCT over bone histology is its noninvasive nature. OCT also images the lamellar structure of trabeculae at slightly higher contrast than normal bone histology. While μCT visualizes the trabecular framework of the whole sample, OCT can image additionally cells with a penetration depth limited approximately to 1 mm. The most significant advantage of OCT, however, is the absence of toxic effects (no ionizing radiation), i.e., continuous images may be made and individual cell tracking may be performed. The penetration depth of OCT, however, limits its use to small animal models and small bone organ cultures.

  3. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  4. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  5. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  6. Recent origin of low trabecular bone density in modern humans

    PubMed Central

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  7. [Bone and Calcium Research Update 2015. Recent advances in clinical assessment of trabecular bone architecture: trabecular bone score (TBS)].

    PubMed

    Sone, Teruki

    2015-01-01

    Although dual-energy X-ray absorptiometry (DXA) is regarded as the gold-standard technique for diagnosing osteoporosis, bone mineral density (BMD) alone by DXA is not sufficient for bone strength assessment. Trabecular bone score (TBS) is a texture analysis parameter that evaluates pixel gray-level variations in DXA images of the lumbar spine and allows to assess bone microarchitectural status that is one of the determinants of bone strength. Recent clinical evidences show that TBS is associated with fracture risk in primary and secondary osteoporosis, has a complementary role to lumbar spine BMD and responds to osteoporosis medications somewhat differently than BMD. Thus TBS has the potential to become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.

  8. [Vertebral trabecular bone in various age groups and in osteoporosis-- morphometry and bone matrix biochemistry].

    PubMed

    Diebold, J; Bätge, B; Stein, H; Müller, P K; Löhrs, U

    1990-01-01

    Vertebral trabecular bone was analysed by morphometry and bone matrix biochemistry. Trabecular bone volume (TBV) and mean trabecular plate thickness (MTPT) decreased with age. TBV was significantly correlated with MTPT and mean trabecular plate density (MTPD). The individual structure of trabecular bone could be described by both MTPT and MTPD together, but changes of these parameters, that were pathognomonic for osteopenia, were not found. By measuring TBV 3 cases of severe osteopenia were identified (TBV less than 2s of controls); 2 of them showed matrix abnormalities so far not described. In one case (a 67 year old woman without risk factors for osteoporosis) an abnormal high content of type III collagen was found, in the other case (a 44 year old woman with acromegaly) bone matrix analysis atypically revealed a significant fraction of type II collagen. Further studies will be needed to assess the pathogenetic or diagnostic importance of these new findings.

  9. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton

    PubMed Central

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm3) and axis vertebra (mean = 234.3 mg/cm3) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions. PMID:27148458

  10. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton.

    PubMed

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm(3)) and axis vertebra (mean = 234.3 mg/cm(3)) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions.

  11. Lattice strains and load partitioning in bovine trabecular bone.

    SciTech Connect

    Akhtar, R.; Daymond, M. R.; Almer, J. D.; Mummery, P. M.

    2012-02-01

    Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bone behaves like a plastically yielding foam

  12. Finite element dependence of stress evaluation for human trabecular bone.

    PubMed

    Depalle, B; Chapurlat, R; Walter-Le-Berre, H; Bou-Saïd, B; Follet, H

    2013-02-01

    Numerical simulation using finite element models (FEM) has become more and more suitable to estimate the mechanical properties of trabecular bone. The size and kind of elements involved in the models, however, may influence the results. The purpose of this study is to analyze the influence of hexahedral elements formulation on the evaluation of mechanical stress applied to trabeculae bone during a compression test simulation. Trabecular bone cores were extracted from 18 L2 vertebrae (12 women and 6 men, mean age: 76 ± 11, BV/TV=7.5 ± 1.9%). Samples were micro-CT scanned at 20 μm isotropic voxel size. Micro-CT images have been sub-sampled (20, 40 and 80 μm) to create 5.6 mm cubic FEM. For each sample, a compression test FEM has been created, using either 8-nodes linear hexahedral elements with full or reduced integration or 20-nodes quadratic hexahedral elements fully integrated, resulting in nine models per samples. Bone mechanical properties have been assumed isotropic, homogenous and to follow a linear elastic behavior law (Young modulus: 8 GPa, Poisson ratio: 0.3). Despite micro-architecture modifications (loss of connectivity, trabeculae thickening) due to voxel size increase, apparent mechanical properties calculated with low resolution models are significantly correlated with high resolution results, no matter the element formulation. However, stress distributions are more sensitive to both resolution and element formulation modifications. With linear elements, increasing voxel size leads to an alteration of stress concentration areas due to stiffening errors. On the opposite, the use of reduced integration induces severe smoothing and underestimation of stress fields resulting in stress raisers loss. Notwithstanding their high computational cost, quadratic elements are most appropriate for stress prediction in low resolution trabecular bone FEM. These observations are dependent on trabecular bone micro-architecture, and are more significant for low

  13. The role of fabric in the large strain compressive behavior of human trabecular bone.

    PubMed

    Charlebois, Mathieu; Pretterklieber, Michael; Zysset, Philippe K

    2010-12-01

    Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains

  14. Femoral Bone Plug in Total Knee Replacement.

    PubMed

    Vulcano, Ettore; Regazzola, Gianmarco M V; Murena, Luigi; Ronga, Mario; Cherubino, Paolo; Surace, Michele F

    2015-10-01

    The intramedullary alignment guides used in total knee replacement disrupt the intramedullary vessels, resulting in greater postoperative blood loss. The use of an autologous bone plug to seal the intramedullary femoral canal has been shown to be effective in reducing postoperative bleeding. The authors present a simple technique to create a bone plug from the anterior chamfer femoral cut to perfectly seal the intramedullary canal of the femur. PMID:26488774

  15. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load.

    PubMed

    Judex, Stefan; Boyd, Steve; Qin, Yi-Xian; Turner, Simon; Ye, Kenny; Müller, Ralph; Rubin, Clinton

    2003-01-01

    Extremely low magnitude mechanical stimuli (<10 microstrain) induced at high frequencies are anabolic to trabecular bone. Here, we used finite element (FE) modeling to investigate the mechanical implications of a one year mechanical intervention. Adult female sheep stood with their hindlimbs either on a vibrating plate (30 Hz, 0.3 g) for 20 min/d, 5 d/wk or on an inactive plate. Microcomputed tomography data of 1 cm bone cubes extracted from the medial femoral condyles were transformed into FE meshes. Simulated compressive loads applied to the trabecular meshes in the three orthogonal directions indicated that the low level mechanical intervention significantly increased the apparent trabecular tissue stiffness of the femoral condyle in the longitudinal (+17%, p<0.02), anterior-posterior (+29%, p<0.01), and medial-lateral (+37%, p<0.01) direction, thus reducing apparent strain magnitudes for a given applied load. For a given apparent input strain (or stress), the resultant stresses and strains within trabeculae were more uniformly distributed in the off-axis loading directions in cubes of mechanically loaded sheep. These data suggest that trabecular bone responds to low level mechanical loads with intricate adaptations beyond a simple reduction in apparent strain magnitude, producing a structure that is stiffer and less prone to fracture for a given load. PMID:12572652

  16. Assessment of the human trabecular bone structure using Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto; Bauer, Jan; Sidorenko, Irina; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Lochmüller, Eva-Maria; Zysset, Philippe; Räth, Christoph

    2009-02-01

    Osteoporosis is bone disease which leads to low bone mass and the deterioration of the bone micro-architecture. Rarefied bone structures are more susceptible to fractures which are the worst complications of osteoporosis. Bone mineral density is considered to be the standard technique for predicting the bone strength and the effects of drug therapy. However, other properties of the bone like the trabecular structure and connectivity may also contribute. Here, we analyze μ-CT tomographic images for a sample of 151 specimens taken from human vertebrae in vitro. Using the local structural characterization of the bone trabecular network given by isotropic and anisotropic scaling indices, we generate structural decompositions of the μ-CT image and quantify the resulting patterns applying topological measures, namely the Minkowski Functionals (MF). The values of the MF are then used to assess the biomechanical properties of trabecular bone via a correlation analysis. Biomechanical properties were quantified by the maximum compressive strength calculated in an uniaxial compression test. We compare our results with those obtained using standard global histomorphometric parameters and the bone fraction BV/TV . Results obtained using structural decompositions obtained from anisotropic scaling indices were superior to those given by isotropic scaling indices. The highest correlation coefficient (r = 0.72) was better than those obtained for the standard global histomorphometric parameters and only comparable with the one given by BV/TV. Our results suggest that plate-like and dense column-like structures aligned along the direction of the external force play a relevant role for the prediction of bone strength.

  17. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone

    SciTech Connect

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D; Marchadier, A.; Rachidi, M.; Benhamou, Cl.; Chappard, C.

    2011-01-15

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  18. Heme compounds in dinosaur trabecular bone.

    PubMed

    Schweitzer, M H; Marshall, M; Carron, K; Bohle, D S; Busse, S C; Arnold, E V; Barnard, D; Horner, J R; Starkey, J R

    1997-06-10

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex. These include signatures from nuclear magnetic resonance and electron spin resonance that indicate the presence of a paramagnetic compound consistent with heme. In addition, UV/visible spectroscopy and high performance liquid chromatography data are consistent with the Soret absorbance characteristic of this molecule. Resonance Raman profiles are also consistent with a modified heme structure. Finally, when dinosaurian tissues were extracted for protein fragments and were used to immunize rats, the resulting antisera reacted positively with purified avian and mammalian hemoglobins. The most parsimonious explanation of this evidence is the presence of blood-derived hemoglobin compounds preserved in the dinosaurian tissues.

  19. Effects of different types of jump impact on trabecular bone mass and microarchitecture in growing rats.

    PubMed

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Yamaguchi, Hidetaka; Fukunaga, Masao

    2014-01-01

    Substantial evidence from animal studies indicates that jumping increases bone mass and strength. However, most studies have focused on the take-off, rather than the landing phase of jumps. Thus, we compared the effects of landing and upward jump impact on trabecular bone mass and microarchitecture. Male Wistar rats aged 10 weeks were randomly assigned to the following groups: sedentary control (CON), 40-cm upward jumps (40UJ); 40-cm drop jumps (40DJ); and 60-cm drop jumps (60DJ) (n = 10 each). The upward jump protocol comprised 10 upward jumps/day, 5 days/week for 8 weeks to a height of 40 cm. The drop jump protocol comprised dropping rats from a height of 40 or 60 cm at the same frequency and time period as the 40UJ group. Trabecular bone mass, architecture, and mineralization at the distal femoral metaphysis were evaluated using microcomputed tomography. Ground reaction force (GRF) was measured using a force platform. Bone mass was significantly higher in the 40UJ group compared with the DJ groups (+49.1% and +28.3%, respectively), although peak GRF (-57.8% and -122.7%, respectively) and unit time force (-21.6% and -36.2%, respectively) were significantly lower in the 40UJ group. These results showed that trabecular bone mass in growing rats is increased more effectively by the take-off than by the landing phases of jumps and suggest that mechanical stress accompanied by muscle contraction would be more important than GRF as an osteogenic stimulus. However, the relevance of these findings to human bone physiology is unclear and requires further study. PMID:25233222

  20. Effects of Different Types of Jump Impact on Trabecular Bone Mass and Microarchitecture in Growing Rats

    PubMed Central

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Yamaguchi, Hidetaka; Fukunaga, Masao

    2014-01-01

    Substantial evidence from animal studies indicates that jumping increases bone mass and strength. However, most studies have focused on the take-off, rather than the landing phase of jumps. Thus, we compared the effects of landing and upward jump impact on trabecular bone mass and microarchitecture. Male Wistar rats aged 10 weeks were randomly assigned to the following groups: sedentary control (CON), 40-cm upward jumps (40UJ); 40-cm drop jumps (40DJ); and 60-cm drop jumps (60DJ) (n = 10 each). The upward jump protocol comprised 10 upward jumps/day, 5 days/week for 8 weeks to a height of 40 cm. The drop jump protocol comprised dropping rats from a height of 40 or 60 cm at the same frequency and time period as the 40UJ group. Trabecular bone mass, architecture, and mineralization at the distal femoral metaphysis were evaluated using microcomputed tomography. Ground reaction force (GRF) was measured using a force platform. Bone mass was significantly higher in the 40UJ group compared with the DJ groups (+49.1% and +28.3%, respectively), although peak GRF (−57.8% and −122.7%, respectively) and unit time force (−21.6% and −36.2%, respectively) were significantly lower in the 40UJ group. These results showed that trabecular bone mass in growing rats is increased more effectively by the take-off than by the landing phases of jumps and suggest that mechanical stress accompanied by muscle contraction would be more important than GRF as an osteogenic stimulus. However, the relevance of these findings to human bone physiology is unclear and requires further study. PMID:25233222

  1. Extraction of 3D Femur Neck Trabecular Bone Architecture from Clinical CT Images in Osteoporotic Evaluation: a Novel Framework.

    PubMed

    Sapthagirivasan, V; Anburajan, M; Janarthanam, S

    2015-08-01

    The early detection of osteoporosis risk enhances the lifespan and quality of life of an individual. A reasonable in-vivo assessment of trabecular bone strength at the proximal femur helps to evaluate the fracture risk and henceforth, to understand the associated structural dynamics on occurrence of osteoporosis. The main aim of our study was to develop a framework to automatically determine the trabecular bone strength from clinical femur CT images and thereby to estimate its correlation with BMD. All the 50 studied south Indian female subjects aged 30 to 80 years underwent CT and DXA measurements at right femur region. Initially, the original CT slices were intensified and active contour model was utilised for the extraction of the neck region. After processing through a novel process called trabecular enrichment approach (TEA), the three dimensional (3D) trabecular features were extracted. The extracted 3D trabecular features, such as volume fraction (VF), solidity of delta points (SDP) and boundness, demonstrated a significant correlation with femoral neck bone mineral density (r = 0.551, r = 0.432, r = 0.552 respectively) at p < 0.001. The higher area under the curve values of the extracted features (VF: 85.3 %; 95CI: 68.2-100 %, SDP: 82.1 %; 95CI: 65.1-98.9 % and boundness: 90.4 %; 95CI: 78.7-100 %) were observed. The findings suggest that the proposed framework with TEA method would be useful for spotting women vulnerable to osteoporotic risk.

  2. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  3. Topology optimization of trabecular bone in the human spine

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed

    2015-03-01

    It is widely believed in the realm of biology that the trabecular structure of long bones self-optimizes in response to mechanical loads, in accordance with Wolff's law. Here, we examine this idea by applying techniques from topology optimization the human spine. We consider different domain geometries as well as different load cases to account for the various loading conditions and changes in shape that take place within the spine during day-to-day activities and over the years. We show that the classical approach of minimizing compliance subject to a volume constraint does not yield a sponge-like architecture but results in only vertical trabeculae. Additional constraints/objective functions have to be considered simultaneously. We show that more realistic trabecular geometries may be produced by taking into consideration the function of trabecular bone as a reservoir for minerals and bone marrow production. By maximizing the surface area of the generated voids while minimizing the total volume of the trabeculae subject to a constraint on their buckling strength, we recover the sponge-like structure. Our results shed light on the optimizing conditions for bone structure beyond Wolff's law and provide guidelines for biomimetic material design.

  4. Trabecular bone response to injectable calcium phosphate (Ca-P) cement.

    PubMed

    Ooms, E M; Wolke, J G C; van der Waerden, J P C M; Jansen, J A

    2002-07-01

    The aim of this study was to investigate the physicochemical, biological, and handling properties of a new developed calcium phosphate (Ca-P) cement when implanted in trabecular bone. Ca-P cement consisting of a powder and a liquid phase was implanted as a paste into femoral trabecular bone of goats for 3 days and 2, 8, 16, and 24 weeks. The cement was tested using three clinically relevant liquid-to-powder ratios. Polymethylmethacrylate bone cement, routinely used in orthopedics, was used as a control. The Ca-P cement was easy to handle and was fast setting with good cohesion when in contact with body fluids. X-ray diffraction at the different implantation periods showed that the cement had set as an apatite and remained stable over time. Histological evaluation after 2 weeks, performed on 10 microm un-decalcified sections, showed abundant bone apposition on the cement surface without any inflammatory reaction or fibrous encapsulation. At later time points, the Ca-P cement implants were totally covered by a thin layer of bone. Osteoclast-like cells, as present at the interface, had resorbed parts of the cement mass. At locations where Ca-P cement was resorbed, new bone was formed without loss of integrity between the bone bed and the cement. This demonstrated the osteotransductive property of the cement, i.e., resorption of the material by osteoclast-like cells, directly followed by the formation of new bone. Histological and histomorphometrical evaluation did not show any significant differences between the Ca-P cement implanted at the three different liquid/powder ratios. The results indicate that the investigated Ca-P cement is biocompatible, osteoconductive, as well as osteotransductive and is a candidate material for use as a bone substitute.

  5. Microarchitecture Influences Microdamage Accumulation in Human Vertebral Trabecular Bone

    PubMed Central

    Arlot, Monique E; Burt-Pichat, Brigitte; Roux, Jean-Paul; Vashishth, Deepak; Bouxsein, Mary L; Delmas, Pierre D

    2008-01-01

    It has been suggested that accumulation of microdamage with age contributes to skeletal fragility. However, data on the age-related increase in microdamage and the association between microdamage and trabecular microarchitecture in human vertebral cancellous bone are limited. We quantified microdamage in cancellous bone from human lumbar (L2) vertebral bodies obtained from 23 donors 54–93 yr of age (8 men and 15 women). Damage was measured using histologic techniques of sequential labeling with chelating agents and was related to 3D microarchitecture, as assessed by high-resolution μCT. There were no significant differences between sexes, although women tended to have a higher microcrack density (Cr.Dn) than men. Cr.Dn increased exponentially with age (r = 0.65, p < 0.001) and was correlated with bone volume fraction (BV/TV; r = −0.55; p < 0.01), trabecular number (Tb.N; r = −0.56 p = 0.008), structure model index (SMI; r = 0.59; p = 0.005), and trabecular separation (Tb.Sp; r = 0.59; p < 0.009). All architecture parameters were strongly correlated with each other and with BV/TV. Stepwise regression showed that SMI was the best predictor of microdamage, explaining 35% of the variance in Cr.Dn and 20% of the variance in diffuse damage accumulation. In addition, microcrack length was significantly greater in the highest versus lowest tertiles of SMI. In conclusion, in human vertebral cancellous bone, microdamage increases with age and is associated with low BV/TV and a rod-like trabecular architecture. PMID:18518771

  6. Creep contributes to the fatigue behavior of bovine trabecular bone.

    PubMed

    Bowman, S M; Guo, X E; Cheng, D W; Keaveny, T M; Gibson, L J; Hayes, W C; McMahon, T A

    1998-10-01

    Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.

  7. Physical and mechanical properties of calf lumbosacral trabecular bone.

    PubMed

    Swartz, D E; Wittenberg, R H; Shea, M; White, A A; Hayes, W C

    1991-01-01

    The physical and mechanical properties of calf lumbar and sacral trabecular bone were determined and compared with those of human trabecular bone. The mean tissue density (1.66 +/- 0.12 g cm-3), equivalent mineral density (169 +/- 36 mg cm-3), apparent density (453 +/- 89 mg cm-3), ash density (194 +/- 59 mg cm-3), ash content (0.6 +/- 0.05%), compressive strength (7.1 +/- 3.0 MPa) and compressive modulus (173 +/- 97 MPa) of calf trabecular bone are similar to those of young human. There were moderate, positive linear correlations between apparent density and equivalent mineral density, ash density, and compressive strength; and between compressive strength and equivalent mineral density (R2 ranging from 0.35 to 0.48, p less than 0.001). Apparent density, ash density, and equivalent mineral density did not differ significantly in different regions. In contrast to humans, the compressive strength increased from posterior, near the facet, to the anterior vertebral body. These comparisons of physical and mechanical properties, as well as anatomical comparisons by others, indicate that the calf spine is a good model of the young non-osteoporotic human spine and thus useful for the testing of spinal instrumentation.

  8. Microdamage evaluation in human trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM).

    PubMed

    Zacharias, K; Balabanidou, E; Hatzokos, I; Rekanos, I T; Trochidis, A

    2009-03-26

    The primary aim of this work is to investigate the potential of nonlinear ultrasound for microdamage detection in human bone. Microdamage evaluation in human bone is of great importance, because it is considered a significant parameter for characterizing fracture risk. Experiments employing nonlinear acoustic vibro-modulation were carried out in human femoral trabecular specimens removed during surgery. A frequency mixing (inter-modulation) was observed between an ultrasound wave, propagating in the bone, and a low-frequency vibration applied directly to the bone specimens. The appearance of side frequencies, which are related to the vibrational excitation, around the fundamental ultrasound frequency manifests the modulation nonlinear phenomenon. Instead of inducing microdamage by mechanical fatigue loading, specimens with different degree of osteoporosis were used. The experiments demonstrated that osteoporotic bone exhibits stronger nonlinearity compared to healthy bone presenting significant increase of the modulation amplitude with increasing degree of osteoporosis. The obtained results indicate that, in contrast to conventional hysteretic nonlinearity, dissipative acoustic nonlinearity can be of significance in the generation of nonlinear modulation effects. In the proposed technique the size and the shape of samples are not crucial compared to nonlinear resonant ultrasound spectroscopy (NRUS). Furthermore, the method is sensitive to the presence of microdamage, non-invasive, easy to implement and most important, it can be proved valuable tool for in vivo bone damage characterization. PMID:19243780

  9. A model of trabecular bone and an application to osteoporosis

    NASA Astrophysics Data System (ADS)

    Gunaratne, Gemunu H.; Mohanty, Kishore K.; Wimalawansa, Sunil J.

    2002-11-01

    Large bones consists of an outer compact shaft and an inner porous segment, known as the trabecular architecture (TA). The TA is the principal load carrier in bones from older adults, and the aim of therapeutic interventions is to preserve their strength. It is argued that forms for broad-based diagnostic tools for osteoporosis can be identified through an analysis of simple model systems. A model based on elastic networks is introduced, and shows that weak networks can only utilize a small fraction of themselves for stress transmission. This observation is used to argue that the ratio of linear response of a network to DC and AC strain can be used as a surrogate for bone strength. We discuss the possibility of using this measure to identify osteoporotic bone and to monitor the efficacy of therapy.

  10. St. John's Wort (Hypericum perforatum) stimulates human osteoblastic MG-63 cell proliferation and attenuates trabecular bone loss induced by ovariectomy

    PubMed Central

    You, Mi-kyoung; Kim, Du-Woon; Jeong, Kyu-Shik; Bang, Mi-Ae; Kim, Hwan-Seon; Rhuy, Jin

    2015-01-01

    BACKGROUND/OBJECFTIVES The effect of St. John's Wort extract (SJW) on MG-63 cell proliferation and trabecular bone loss induced by ovariectomy was examined. MATERIALS/METHODS Proliferation, expression of estrogen receptor (ER) α and ER β, and gene expressions of osteoprotegerin (OPG), osteocalcin (OC) and alkaline phosphatase (ALP) were examined in MG-63 cells treated with or without SJW. Ovariectomized rats were treated with SJW at the dose of 100 or 200 mg/kg/day, β-estradiol-3-benzoate (E2), or vehicle only (OVX-C), and sham operated rats were treated with vehicle only (Sham-C). Serum ALP and C-telopeptide (CTX), and femoral trabecular bone loss were examined. RESULTS SJW increased MG-63 cell proliferation and expression of ER α and ER β, and positive effect was shown on gene expressions of ALP, OC and OPG. SJW also showed estrogen like effect on bone associated with slowing down in trabecular bone loss. Histopathology by H&E showed rats treated with SJW displayed denser structure in metaphyseal region of distal femur compared with rats in OVX-C. SJW was shown to reduce serum CTX in OVX rats. CONCLUSION The present study provides new insight in preventing estrogen deficiency induced bone loss of SJW and possibility for its application in bone health supplement. PMID:26425274

  11. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    PubMed

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  12. Discordant effects of vitamin D deficiency in trabecular and cortical bone architecture and strength in growing rodents.

    PubMed

    Lee, Alice M C; Anderson, Paul H; Sawyer, Rebecca K; Moore, Alison J; Forwood, Mark R; Steck, Roland; Morris, Howard A; O'Loughlin, Peter D

    2010-07-01

    We have previously shown that vitamin D deficiency in young male rats results in significant reduction in femoral trabecular bone volume (BV/TV). However, the effects of vitamin D deficiency and its impact on other relevant skeletal sites remain unclear. Ten week old male Sprague-Dawley rats were fed various levels of vitamin D3 (2, 4, 8, and 12 IU/day) with standard Ca (0.4%) until 30 weeks of age and achieved stable serum 25-hydroxyvitamin D3 (25D) levels between 16 and 117 nmol/L. At time of death, femora, L2 vertebrae and tibiae were processed for bone histomorphometric analyses and tibial cortical strength by 3-point mechanical testing. A significant association between serum 25D and trabecular bone occurred for both the distal femoral metaphysis (R2=0.34, P<0.05) and L2 vertebrae (R2=0.24, P<0.05). Tibia mid-shaft cortical bone was not, however, changed in terms of total volume, periosteal surface or endosteal surface as a function of vitamin D status. Furthermore, no changes to mechanical and intrinsic properties of the cortices were observed. We conclude that cortical bone is maintained under conditions of vitamin D deficiency in preference to cancellous bone in young growing rats.

  13. Vibrational testing of trabecular bone architectures using rapid prototype models.

    PubMed

    Mc Donnell, P; Liebschner, M A K; Tawackoli, Wafa; Mc Hugh, P E

    2009-01-01

    The purpose of this study was to investigate if standard analysis of the vibrational characteristics of trabecular architectures can be used to detect changes in the mechanical properties due to progressive bone loss. A cored trabecular specimen from a human lumbar vertebra was microCT scanned and a three-dimensional, virtual model in stereolithography (STL) format was generated. Uniform bone loss was simulated using a surface erosion algorithm. Rapid prototype (RP) replicas were manufactured from these virtualised models with 0%, 16% and 42% bone loss. Vibrational behaviour of the RP replicas was evaluated by performing a dynamic compression test through a frequency range using an electro-dynamic shaker. The acceleration and dynamic force responses were recorded and fast Fourier transform (FFT) analyses were performed to determine the response spectrum. Standard resonant frequency analysis and damping factor calculations were performed. The RP replicas were subsequently tested in compression beyond failure to determine their strength and modulus. It was found that the reductions in resonant frequency with increasing bone loss corresponded well with reductions in apparent stiffness and strength. This suggests that structural dynamics has the potential to be an alternative diagnostic technique for osteoporosis, although significant challenges must be overcome to determine the effect of the skin/soft tissue interface, the cortex and variabilities associated with in vivo testing. PMID:18555727

  14. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    PubMed

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning.

  15. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    PubMed

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations.

  16. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  17. Premenopausal Women with a Distal Radial Fracture Have Deteriorated Trabecular Bone Density and Morphology Compared with Controls without a Fracture

    PubMed Central

    Rozental, Tamara D.; Deschamps, Laura N.; Taylor, Alexander; Earp, Brandon; Zurakowski, David; Day, Charles S.; Bouxsein, Mary L.

    2013-01-01

    Background: Measurement of bone mineral density by dual x-ray absorptiometry combined with clinical risk factors is currently the gold standard in diagnosing osteoporosis. Advanced imaging has shown that older patients with fragility fractures have poor bone microarchitecture, often independent of low bone mineral density. We hypothesized that premenopausal women with a fracture of the distal end of the radius have similar bone mineral density but altered bone microarchitecture compared with control subjects without a fracture. Methods: Forty premenopausal women with a recent distal radial fracture were prospectively recruited and matched with eighty control subjects without a fracture. Primary outcome variables included trabecular and cortical microarchitecture at the distal end of the radius and tibia by high-resolution peripheral quantitative computed tomography. Bone mineral density at the wrist, hip, and lumbar spine was also measured by dual x-ray absorptiometry. Results: The fracture and control groups did not differ with regard to age, race, or body mass index. Bone mineral density was similar at the femoral neck, lumbar spine, and distal one-third of the radius, but tended to be lower in the fracture group at the hip and ultradistal part of the radius (p = 0.06). Trabecular microarchitecture was deteriorated in the fracture group compared with the control group at both the distal end of the radius and distal end of the tibia. At the distal end of the radius, the fracture group had lower total density and lower trabecular density, number, and thickness compared with the control group (–6% to –14%; p < 0.05 for all). At the distal end of the tibia, total density, trabecular density, trabecular thickness, and cortical thickness were lower in the fracture group than in the control group (–7% to –14%; p < 0.01). Conditional logistic regression showed that trabecular density, thickness, separation, and distribution of trabecular separation remained

  18. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life.

    PubMed

    Silva, Matthew J; Brodt, Michael D; Lynch, Michelle A; McKenzie, Jennifer A; Tanouye, Kristi M; Nyman, Jeffry S; Wang, Xiaodu

    2009-09-01

    People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague-Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4-8 wk in diabetic rats but continued to increase in controls. Postmortem muCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced approximately 30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were approximately 25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest ( approximately 10%) declines in yield stress for diabetic bone. These changes were associated with a approximately 50% increase in the nonenzymatic collagen cross-link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross-links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size.

  19. Utility of the trabecular bone score (TBS) in secondary osteoporosis.

    PubMed

    Ulivieri, Fabio M; Silva, Barbara C; Sardanelli, Francesco; Hans, Didier; Bilezikian, John P; Caudarella, Renata

    2014-11-01

    Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.

  20. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis.

    PubMed

    Karunanithi, R; Ganesan, S; Panicker, T M R; Korath, M Paul; Jagadeesan, K

    2007-10-01

    The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD) in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA), which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 premenopausal (mean age ± SD: 39.4 ± 3.8) and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9) women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA). For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI) of 256 × 256 pixels was selected, the run length matrix was computed for calculating seven parameters [Table 1] and the two dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD) was derived and the root mean square (RMS) value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density. PMID:21224926

  1. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    PubMed Central

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol® by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. Results: At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P < 0.01) while serum minerals and ALP concentrations showed no significant difference. The treatment group had dramatically decreased biomarkers and increased BMD than OVX group (P < 0.01). Histomorphometry analysis showed worse bone microarchitecture parameters in the OVX group compared with the SHAM group which were significantly improved in the treatment group compared with the OVX group (P < 0.01). Discussion and conclusion: Pycnogenol® (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention. PMID:26379883

  2. Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone

    PubMed Central

    Sandberg, Olof H; Aspenberg, Per

    2016-01-01

    Background and purpose Studies of fracture healing have mainly dealt with shaft fractures, both experimentally and clinically. In contrast, most patients have metaphyseal fractures. There is an increasing awareness that metaphyseal fractures heal partly through mechanisms specific to cancellous bone. Several new models for the study of cancellous bone healing have recently been presented. This review summarizes our current knowledge of cancellous fracture healing. Methods We performed a review of the literature after doing a systematic literature search. Results Cancellous bone appears to heal mainly via direct, membranous bone formation that occurs freely in the marrow, probably mostly arising from local stem cells. This mechanism appears to be specific for cancellous bone, and could be named inter-trabecular bone formation. This kind of bone formation is spatially restricted and does not extend more than a few mm outside the injured region. Usually no cartilage is seen, although external callus and cartilage formation can be induced in meta­physeal fractures by mechanical instability. Inter-trabecular bone formation seems to be less sensitive to anti-inflammatory treatment than shaft fractures. Interpretation The unique characteristics of inter-trabecular bone formation in metaphyseal fractures can lead to differences from shaft healing regarding the effects of age, loading, or drug treatment. This casts doubt on generalizations about fracture healing based solely on shaft fracture models. PMID:27357416

  3. Changes of trabecular bone under control of biologically mechanical mechanism

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  4. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice.

    PubMed

    Youngstrom, D W; Dishowitz, M I; Bales, C B; Carr, E; Mutyaba, P L; Kozloff, K M; Shitaye, H; Hankenson, K D; Loomes, K M

    2016-10-01

    Loss-of-function mutations in the Notch ligand, Jagged1 (Jag1), result in multi-system developmental pathologies associated with Alagille syndrome (ALGS). ALGS patients present with skeletal manifestations including hemi-vertebrae, reduced bone mass, increased fracture incidence and poor bone healing. However, it is not known whether the increased fracture risk is due to altered bone homeostasis (primary) or nutritional malabsorption due to chronic liver disease (secondary). To determine the significance of Jag1 loss in bone, we characterized the skeletal phenotype of two Jag1-floxed conditional knockout mouse models: Prx1-Cre;Jag1(f/f) to target osteoprogenitor cells and their progeny, and Col2.3-Cre;Jag1(f/f) to target mid-stage osteoblasts and their progeny. Knockout phenotypes were compared to wild-type (WT) controls using quantitative micro-computed tomography, gene expression profiling and mechanical testing. Expression of Jag1 and the Notch target genes Hes1 and Hey1 was downregulated in all Jag1 knockout mice. Osteoblast differentiation genes were downregulated in whole bone of both groups, but unchanged in Prx1-Cre;Jag1(f/f) cortical bone. Both knockout lines exhibited changes in femoral trabecular morphology including decreased bone volume fraction and increased trabecular spacing, with males presenting a more severe trabecular osteopenic phenotype. Prx1-Cre;Jag1(f/f) mice showed an increase in marrow mesenchymal progenitor cell number and, counterintuitively, developed increased cortical thickness resulting from periosteal expansion, translating to greater mechanical stiffness and strength. Similar alterations in femoral morphology were observed in mice with canonical Notch signaling disrupted using Prx1-Cre-regulatable dominant-negative mastermind like-protein (dnMAML). Taken together, we report that 1) Jag1 negatively regulates the marrow osteochondral progenitor pool, 2) Jag1 is required for normal trabecular bone formation and 3) Notch signaling

  5. Alteration of femoral bone morphology and density in COX-2−/− mice

    PubMed Central

    Robertson, Galen; Xie, Chao; Chen, Di; Awad, Hani; Schwarz, Edward M.; O’Keefe, Regis J.; Guldberg, Robert E.; Zhang, Xinping

    2009-01-01

    A role of COX-2 in pathological bone destruction and fracture repair has been established; however, few studies have been conducted to examine the involvement of COX-2 in maintaining bone mineral density and bone micro-architecture. In this study, we examined bone morphology in multiple trabecular and cortical regions within the distal and diaphyseal femur of 4-month-old wild-type and COX-2−/− mice using micro-computed tomography. Our results demonstrated that while COX-2−/− female mice had normal bone geometry and trabecular microarchitecture at 4 months of age, the male knockout mice displayed reduced bone volume fraction within the distal femoral metaphysis. Furthermore, male COX-2−/− mice had a significant reduction in cortical bone mineral density within the central cortical diaphysis and distal epiphysis and metaphysis. Consistent with the observed reduction in cortical mineral density, biomechanical testing via 4-point-bending showed that male COX-2−/− mice had a significant increase in postyield deformation, indicating a ductile bone phenotype in male COX-2−/− mice. In conclusion, our study suggests that genetic ablation of COX-2 may have a sex-related effect on cortical bone homeostasis and COX-2 plays a role in maintaining normal bone micro-architecture and density in mice. PMID:16731065

  6. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting.

  7. Orientation-weighted local Minkowski functionals in 3D for quantitative assessment of trabecular bone structure in the hip

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Bitterling, H.; Weber, C.; Kuhn, V.; Eckstein, F.; Reiser, M.

    2007-03-01

    Fragility fractures or pathologic fractures of the hip, i.e. fractures with no apparent trauma, represent the worst complication in osteoporosis with a mortality close to 25% during the first post-traumatic year. Over 90% of hip fractures result from falls from standing height. A substantial number of femoral fractures are initiated in the femoral neck or the trochanteric regions which contain an internal architecture of trabeculae that are functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Prediction of the mechanical strength of bone tissue can be achieved by dedicated texture analysis of data obtained by high resolution imaging modalities, e.g. computed tomography (CT) or magnetic resonance tomography (MRI). Since in the case of the proximal femur, the connectivity, regional distribution and - most of all - the preferred orientation of individual trabeculae change considerably within narrow spatial limits, it seems most reasonable to evaluate the femoral bone structure on an orientation-weighted, local scale. In past studies, we could demonstrate the advantages of topological analysis of bone structure using the Minkowski Functionals in 3D on a global and on a local scale. The current study was designed to test the hypothesis that the prediction of the mechanical competence of the proximal femur by a new algorithm considering orientational changes of topological properties in the trabecular architecture is feasible and better suited than conventional methods based on the measurement of the mineral density of bone tissue (BMD).

  8. Computer modelling of the structure of the cortical and trabecular bone tissue

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana

    2015-10-01

    The paper presents computer models of the structure of cortical and trabecular bone tissue. The model fragment of the cortical bone tissue was built based on a real image of the natural bone microstructure. The osteons and Haversian canals were directly taken into consideration. The Volkmann's canals and the orientation of the collagenous mineral fibers in the osteons and the surrounding matrix were considered indirectly. The model fragment of the trabecular bone tissue was built based on the data of structure of the real bone fragments, taking into account the orientation of the trabecules of bones, their length and thickness.

  9. Tamoxifen inhibits osteoclast-mediated resorption of trabecular bone in ovarian hormone-deficient rats.

    PubMed

    Turner, R T; Wakley, G K; Hannon, K S; Bell, N H

    1988-03-01

    The effects of the nonsteroidal antiestrogen tamoxifen were determined on trabecular bone mass in the proximal tibial metaphysis of intact and ovariectomized rats. Rats were ovariectomized at the beginning of the study. On day 7 of the study, 5-mg slow release pellets of tamoxifen or placebo were implanted sc. All of the rats were killed on day 28 of the experiment. Sections of the proximal tibial metaphysis were stained for acid phosphatase and evaluated histomorphometrically. Ovariectomy resulted in marked loss of bone. Compared to the values in sham-operated animals, the trabecular bone at a sampling site in the secondary spongiosa of ovariectomized rats was reduced by more than 60%, the length of trabecular bone surface covered by osteoclasts was increased by 563%, the percentage of trabecular bone surface covered by osteoclasts was increased by 567%, the mean osteoclast size was increased by 84%, and the number of nuclei per osteoclast was increased by 38%. In contrast, treatment of ovariectomized rats for 3 weeks with tamoxifen restored the histomorphometric measurements to values comparable to those in sham-operated animals. 17 beta-Estradiol increased trabecular bone fractional area in ovariectomized and sham-operated rats, and administration of tamoxifen to estrogen-treated, ovariectomized, and sham-operated animals produced a further increase in trabecular bone. In summary, 1) ovariectomy resulted in large increases in both the number and activity of osteoclasts, 2) the increased bone resorption associated with ovariectomy produced a net loss of trabecular bone, and 3) treatment of ovariectomized rats with tamoxifen prevented these skeletal changes. The results indicate that in the rat, tamoxifen mimics the effects of estrogen on trabecular bone at concentrations that are not uterotropic.

  10. Prediction of biomechanical trabecular bone properties with geometric features using MR imaging

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Lancianese, Sarah L.; Ikpot, Imoh; Nagarajan, Mahesh B.; Lerner, Amy L.; Wismüller, Axel

    2010-03-01

    Trabecular bone parameters extracted from magnetic resonance (MR) images are compared in their ability to predict biomechanical properties determined through mechanical testing. Trabecular bone density and structural changes throughout the proximal tibia are indicative of several musculoskeletal disorders of the knee joint involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging, most frequently applied in soft tissue imaging, also allows non-invasive 3-dimensional characterization of bone microstructure. Sophisticated MR image features that estimate local structural and geometric properties of the trabecular bone may improve the ability of MR imaging to determine local bone quality in vivo. The purpose of the current study is to use whole joint MR images to compare the performance of trabecular bone features extracted from the images in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. The regional apparent bone volume fraction (appBVF) and scaling index method (SIM) derived features were calculated; a Multilayer Radial Basis Functions Network was then optimized to calculate the prediction accuracy as measured by the root mean square error (RSME) for each bone feature. The best prediction result was obtained with a SIM feature with the lowest prediction error (RSME=0.246) and the highest coefficient of determination (R2 = 0.769). The current study demonstrates that the combination of sophisticated bone structure features and supervised learning techniques can improve MR imaging as an in vivo imaging tool in determining local trabecular bone quality.

  11. Spine bone texture assessed by trabecular bone score (TBS) to evaluate bone health in thalassemia major.

    PubMed

    Baldini, M; Ulivieri, F M; Forti, S; Serafino, S; Seghezzi, S; Marcon, A; Giarda, F; Messina, C; Cassinerio, E; Aubry-Rozier, B; Hans, D; Cappellini, M D

    2014-12-01

    Due to the increasing survival of thalassemic patients, osteopathy is a mounting clinical problem. Low bone mass alone cannot account for the high fracture risk described; impaired bone quality has been speculated but so far it cannot be demonstrated noninvasively. We studied bone quality in thalassemia major using trabecular bone score (TBS), a novel texture measurement extracted from spine dual-energy X-ray absorptiometry (DXA), proposed in postmenopausal and secondary osteoporosis as an indirect index of microarchitecture. TBS was evaluated in 124 adult thalassemics (age range 19-56 years), followed-up with optimal transfusional and therapeutical regimens, and in 65 non-thalassemic patients (22-52 years) undergoing DXA for different bone diseases. TBS was lower in thalassemic patients (1.04 ± 0.12 [range 0.80-1.30]) versus controls (1.34 ± 0.11 [1.06-1.52]) (p < 0.001), and correlated with BMD. TBS and BMD values correlated with age, indicating that thalassemia negatively affects both bone quality and quantity, especially as the patient gets older. TBS was 1.02 ± 0.11 [0.80-1.28] in the osteoporotic thalassemic patients, 1.08 ± 0.12 [0.82-1.30] in the osteopenic ones and 1.15 ± 0.10 [0.96-1.26] in those with normal BMD. No gender differences were found (males: 1.02 ± 0.13 [0.80-1.30], females 1.05 ± 0.11 [0.80-1.30]), nor between patients with and without endocrine-metabolic disorders affecting bone metabolism. Our findings from a large population with thalassemia major show that TBS is a valuable tool to assess noninvasively bone quality, and it may be related to fragility fracture risk in thalassemic osteopathy.

  12. Trabecular Bone Structure Correlates with Hand Posture and Use in Hominoids

    PubMed Central

    Tsegai, Zewdi J.; Kivell, Tracy L.; Gross, Thomas; Nguyen, N. Huynh; Pahr, Dieter H.; Smaers, Jeroen B.; Skinner, Matthew M.

    2013-01-01

    Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred

  13. Medieval trabecular bone architecture: the influence of age, sex, and lifestyle.

    PubMed

    Agarwal, S C; Dumitriu, M; Tomlinson, G A; Grynpas, M D

    2004-05-01

    Osteoporosis has become a growing health concern in developed countries and an extensive area of research in skeletal biology. Despite numerous paleopathological studies of bone mass, few studies have measured bone quality in past populations. In order to examine age- and sex-related changes in one aspect of bone quality in the past, a study was made of trabecular bone architecture in a British medieval skeletal sample. X-ray images of 5-mm-thick coronal lumbar vertebral bone sections were taken from a total of 54 adult individuals divided into three age categories (18-29, 30-49, and 50+ years), and examined using image analysis to evaluate parameters related to trabecular bone structure and connectivity. Significant age-related changes in trabecular bone structure (trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular separation (Tb.Sp), and anisotropic ratio (Tb.An)) were observed to occur primarily by middle age with significant differences between the youngest and two older age groups. Neither sex showed continuing change in trabecular structure between the middle and old age groups. Age-related changes in bone connectivity (number of nodes (N.Nd) and node-to-node strut length (Nd.Nd)) similarly indicated a change in bone connectivity only between the youngest and two older age groups. However, females showed no statistical differences among the age groups in bone connectivity. These patterns of trabecular bone loss and fragility contrast with those generally found in modern populations that typically report continuing loss of bone structure and connectivity between middle and old age, and suggest greater loss in females. The patterns of bone loss in the archaeological samples must be interpreted cautiously. We speculate that while nutritional factors may have initiated some bone loss in both sexes, physical activity could have conserved bone architecture in old age in both sexes, and reproductive factors such as high parity and extended periods

  14. Automated selection of trabecular bone regions in knee radiographs

    SciTech Connect

    Podsiadlo, P.; Wolski, M.; Stachowiak, G. W.

    2008-05-15

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the ''gold standard'' that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8x12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI)=0.83 (medial) and 0.81 (lateral) and the offset=[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions

  15. Ultrasonic wave propagation in trabecular bone predicted by the stratified model

    NASA Technical Reports Server (NTRS)

    Lin, W.; Qin, Y. X.; Rubin, C.

    2001-01-01

    The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.

  16. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice.

    PubMed

    Christiansen, Blaine A

    2016-12-01

    Micro-computed tomography (μCT) is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6-30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV) and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. PMID:27430011

  17. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice.

    PubMed

    Christiansen, Blaine A

    2016-12-01

    Micro-computed tomography (μCT) is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6-30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV) and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals.

  18. Application of the standard Hough-transform to high resolution MRI of human trabecular bone to predict mechanical strength

    NASA Astrophysics Data System (ADS)

    Bohm, Holger F.; Rath, Christoph; Monetti, Roberto A.; Muller, Dirk; Newitt, David; Majumdar, Sharmila; Rummeny, Ernst J.; Link, Thomas M.

    2003-05-01

    In this study we introduce two non-linear structural measures based on the Standard Hough-Transform (SHT) that are applied to high resolution MR-images of human trabecular bone specimens in order to predict biomechanical properties. The results are compared to bone mineral density (BMD) and linear morphometric parameters. Axial MR-images (voxel-size: 117x156x300 mm3) of 33 human femoral and 10 spinal specimens are obtained using a 3D-gradient-echo-sequence. After measurement of BMD by quantitative computed tomography (QCT) all specimens are tested destructively for maximum compressive strength (MCS). The SHT is applied to the binarized and Sobel-filtered images and the peak-value (maxH) and its corresponding bin (posH) of the normalized Hough-spectrum are determined as well as linear measures (apparent bone fraction (app.BV/TV), apparent trabecular separation (app.Tb.Sp), apparent trabecular perimeter per unit area (app.Tb.Perim)). For the spinal [femoral] specimens, R2 for MCS vs. maxH is 0.72 (p=0.004) [0.49 (p<0.001)], R2 for MCS vs. posH is 0.56 (p=0.013) [0.55 (p<0.001)], and R2 for MCS vs. BMD is 0.43 (p=0.041) [0.72 (p<0.001)]. Correlations of the conventional, linear morphometric parameters and MCS are lower than those for the SHT-based measures or BMD, ranging from 0.20 (p=0.003) for app.BV/TV to 0.46 (p<0.001) for app.Tb.Sp. Prediction of MCS by maxH, posH, or BMD alone is improved by combination with the linear morphometric parameters in a linear regressional model (R2 =0.79). In conclusion, the biomechanical strength of human trabecular bone in vitro can effectively be predicted from High-Resolution MR-images by structural measures based on SHT. In the vertebral specimens these are superior to BMD or conventional structural measures in predicting bone strength.

  19. Similarity in the fatigue behavior of trabecular bone across site and species.

    PubMed

    Haddock, Sean M; Yeh, Oscar C; Mummaneni, Praveen V; Rosenberg, William S; Keaveny, Tony M

    2004-02-01

    Within the context of improving knowledge of the structure-function relations for trabecular bone for cyclic loading, we hypothesized that the S-N curve for cyclic compressive loading of trabecular bone, after accounting for differences in monotonic strength behavior, does not depend on either site or species. Thirty-five cores of fresh-frozen elderly human vertebral trabecular bone, harvested from nine donors (mean+/-S.D., age=74+/-17 years), were biomechanically tested in compression at sigma/E(0) values (ratio of applied stress to pre-fatigue elastic modulus) ranging from 0.0026 to 0.0070, and compared against literature data (J. Biomech. Eng. 120 (1998) 647-654) for young bovine tibial trabecular bone (n=37). As reported for the bovine bone, the number of cycles to failure for the human vertebral bone was related to sigma/E(0) by a power-law relation (r(2)=0.54, n=35). Quantitative comparison of these data against those reported for the bovine bone supported our hypothesis. Namely, when the differences in mean monotonic yield strain between the two types of bone were accounted for, a single S-N curve worked well for the pooled data (r(2)=0.75, n=72). Since elderly human vertebral and young bovine tibial trabecular bone represent two very different types of trabecular bone in terms of volume fraction and architecture, these findings suggest that the dominant failure mechanisms in trabecular bone for cyclic loading occur at the ultrastructural level.

  20. Using anisotropic 3D Minkowski functionals for trabecular bone characterization and biomechanical strength prediction in proximal femur specimens

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2014-04-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk.

  1. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  2. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    SciTech Connect

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2

  3. Osteoblast-specific overexpression of amphiregulin leads to transient increase in femoral cancellous bone mass in mice.

    PubMed

    Vaidya, Mithila; Lehner, Diana; Handschuh, Stephan; Jay, Freya F; Erben, Reinhold G; Schneider, Marlon R

    2015-12-01

    The epidermal growth factor receptor ligand amphiregulin (AREG) has been implicated in bone physiology and in bone anabolism mediated by intermittent parathyroid hormone treatment. However, the functions of AREG in bone have been only incipiently evaluated in vivo. Here, we generated transgenic mice overexpressing AREG specifically in osteoblasts (Col1-Areg). pQCT analysis of the femoral metaphysis revealed increased trabecular bone mass at 4, 8, and 10weeks of age in Col1-Areg mice compared to control littermates. However, the high bone mass phenotype was transient and disappeared in older animals. Micro-CT analysis of the secondary spongiosa confirmed increased trabecular bone volume and trabecular number in the distal femur of 4-week-old AREG-tg mice compared to control littermates. Furthermore, μ-CT analysis of the primary spongiosa revealed unaltered production of new bone trabeculae in distal femora of Col1-Areg mice. Histomorphometric analysis revealed a reduced number of osteoclasts in 4-week-old Col1-Areg mice, but not at later time points. Cancellous bone formation rate remained unchanged in Col1-Areg mice at all time points. In addition, bone mass and bone turnover in lumbar vertebral bodies were similar in Col1-Areg and control mice at all ages examined. Proliferation and differentiation of osteoblasts isolated from neonatal calvariae did not differ between Col1-Areg and control mice. Taken together, these data suggest that AREG overexpression in osteoblasts induces a transient high bone mass phenotype in the trabecular compartment of the appendicular skeleton by a growth-related, non-cell autonomous mechanism, leading to a positive bone balance with unchanged bone formation and lowered bone resorption.

  4. Manipulation of Ovarian Function Significantly Influenced Trabecular and Cortical Bone Volume, Architecture and Density in Mice at Death

    PubMed Central

    Mason, Jeffrey B.; Terry, Boston C.; Merchant, Samer S.; Mason, Holly M.; Nazokkarmaher, Mahdi

    2015-01-01

    Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-age mice increased life span and decreased cardiomyopathy at death. We anticipated that the same factors that increased life span and decreased cardiomyopathy could also influence the progression of orthopedic disease. At 11 months of age, prepubertally ovariectomized and ovary-intact mice (including reproductively cycling and acyclic mice) received new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed tomography. For qualitative analysis of osteophytosis, we also included mineralized connective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on bone volume, ovarian transplantation had the greatest influence on bone architecture and both treatments influenced bone density. Ovarian transplantation increased cortical, but not trabecular bone density and tended to increase osteophytosis and heterotopic mineralization, except in acyclic recipients. These effects may have been dictated by the timing of the treatments, with ovariectomy appearing to influence early development and ovarian transplantation limited to influencing only the postreproductive period. However, major differences observed between cycling, acyclic and ovariectomized recipients of new ovaries may have been, in part due to differences in the levels of hormone receptors present and the responsiveness of specific bone processes to hormone signaling. Changes that resulted from these treatments may represent a compensatory response to normal age-associated, negative, orthopedic changes. Alternatively, differences between treatments may simply be the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative, age-associated effects. These findings may suggest that in women, tailoring hormone replacement therapy to the patient's current

  5. Structure based classification of μ-CT images of human trabecular bone using local Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bauer, Jan; Sidorenko, Irina; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Lochmueller, Eva-Maria; Zysset, Philippe; Räth, Christoph

    2011-03-01

    We analyse μ-CT tomographic images of human trabecular bone in vitro. We consider a sample consisting of 201 bone specimens harvested from six different skeletal sites within a narrow range of bone fraction values. Using the characterization of the trabecular bone network given by local Minkowski Functionals, we apply classification algorithms in order to reveal structural similarities in the sample. Clusters show some interesting specific structural features, like compact, porous, and fragmented structures. The contribution of the different skeletal sites to these clusters indicate some variability due to intrinsic structural differences of the specific skeletal site.

  6. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  7. Acute changes in trabecular bone connectivity and osteoclast activity in the ovariectomized rat in vivo.

    PubMed

    Lane, N E; Thompson, J M; Haupt, D; Kimmel, D B; Modin, G; Kinney, J H

    1998-02-01

    Estrogen deficiency results in a loss of trabecular bone mass and structure that leads to an increased incidence of osteoporotic fractures. The purpose of this study was to determine the time course for trabecular structure deterioration and changes in bone turnover just after ovariectomy in the rat. Six-month-old female virgin Sprague-Dawley rats had their right proximal tibia scanned by X-ray tomographic microscopy (XTM) at baseline (day 0). Animals were then randomized into two groups, and in each group 9 were sham-operated and 11 were ovariectomized and had repeat XTM scans on days 5, 13, 29, and 42 postovariectomy in group 1 and on days 8, 13, 33, and 50 postovariectomy in group 2. Urine was collected for deoxypyridinoline (DPD) cross-link measurements 24 h before each XTM scan and analyzed by ELISA. Trabecular bone structural variables and bone turnover endpoints were calculated from XTM data and standard histomorphometry. Trabecular connectivity decreased 27% by days 5 and 8 postovariectomy (p < 0.01) and continued to decrease up to day 50 postovariectomy (p < 0.01). The trabecular bone volume decreased 25% by 8 days postovariectomy (p < 0.01), and it continued to decrease through day 50. DPD cross-link excretion had increased 37% on day 13 (p < 0.01) and by over 100% of baseline by day 50 postovariectomy. Trabecular bone connectivity and volume deteriorate rapidly while DPD cross-link excretion increased more slowly in acute estrogen deficiency. These data suggest that if an agent is to preserve fully trabecular bone structure, it must be instituted very early in the estrogen-deficient state. They also suggest that a lag time exists before DPD excretion properly mirrors newly induced conditions of high bone turnover in this rat model.

  8. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.

    PubMed

    Silva, M J; Gibson, L J

    1997-08-01

    Age-related reductions in the thickness and number of trabeculae in vertebral trabecular bone have been documented by several workers, yet the relative effects of these changes on mechanical properties are not known. We developed a two-dimensional model of human vertebral trabecular bone and investigated its mechanical behavior using finite element analysis. The stress-strain behavior, failure mode, and strain distributions predicted using the model were consistent with those observed for vertebral trabecular bone under compressive loading. Random reductions in the number of trabeculae reduced the modulus and strength of the models two to five times more than uniform reductions in the thickness of trabeculae that caused the same loss of bone volume. For example, randomly removing longitudinal trabeculae to achieve a reduction in density of 10% reduced the strength by approximately 70%, whereas removing the same amount of bone by uniformly reducing the thickness of the longitudinal trabeculae only reduced the strength by approximately 20%. For a simulation of aged bone, in which the thickness and number of trabeculae were reduced concurrently, the strength was 23% of its intact ("young") value. When the bone mass of the aged model was restored to its intact level by increasing the thickness but not the number of trabeculae, the strength increased by 60%, but was still only 37% of its intact value. These combined findings, based on a two-dimensional, idealized model of vertebral trabecular bone, illustrate the importance of maintaining trabecular number and suggest that it may not be possible to restore bone strength following a period of advanced bone loss if a substantial number of trabeculae have been resorbed. Thus, until treatments exist that can increase trabecular number, the most effective treatment strategy is to prevent the degradation of bone strength by maintaining the number of trabeculae at a healthy level.

  9. The variation of cancellous bones at lumbar vertebra, femoral neck, mandibular angle and rib in ovariectomized sheep.

    PubMed

    Zhang, Yongqiang; Li, Yongfeng; Gao, Qi; Shao, Bo; Xiao, Jianrui; Zhou, Hong; Niu, Qiang; Shen, Mingming; Liu, Baolin; Hu, Kaijin; Kong, Liang

    2014-07-01

    This study aimed to compare the variation of cancellous bones at four skeletal sites: lumbar vertebra, femoral neck, mandibular angle and rib in ovariectomized sheep. Sixteen adult sheep were randomly divided into two groups: eight sheep were ovariectomized served as experimental group; the other eight untreated sheep were served as control group. Bone mineral density was assessed by dual-energy X-ray absorptiometry on lumbar vertebrae at baseline and twelve months after ovariectomy. After 12 months, lumbar vertebrae L3 and L4, femoral necks, mandibular angles and the fourth ribs were harvested for micro-CT scanning, histological analysis and biomechanical test. The results showed that bone mineral density of lumbar vertebra decreased significantly in twelfth month (p<0.05). The results of micro-CT showed that the bone volume/total volume decreased by 45.6%, 36.1% 21.3% and 18.7% in lumbar vertebrae, femoral necks, mandibular angles and ribs in experimental group (p<0.05) respectively. The trabecular number showed the same downtrend (p<0.05). Histological analysis showed trabecular area/tissue area decreased by 32.1%, 23.2% and 20.7% in lumbar vertebrae, femoral necks and mandibular angles respectively (p<0.05), but no significant difference in ribs. Specimens elastic modulus from lumbar vertebra, femoral neck and mandibular angle were 952±76MPa (628±70MPa), 961±173MPa (610±72MPa) and 595±60MPa (444±31MPa) in control group (experimental group) respectively. These datum indicated that the sensibility of cancellous bones to oestrogen deficiency in ovariectomized sheep was site-specific on a pattern as follows: lumbar vertebra, femoral neck, mandibular angle and rib.

  10. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone

    PubMed Central

    Oftadeh, Ramin; Entezari, Vahid; Spörri, Guy; Villa-Camacho, Juan C.; Krigbaum, Henry; Strawich, Elsa; Graham, Lila; Rey, Christian; Chiu, Hank; Müller, Ralph; Hashemi, Hamid Nayeb; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    The aim of this study was to explore the hierarchical arrangement of structural properties in cortical and trabecular bone and to determine a mathematical model that accurately predicts the tissue's mechanical properties as a function of these indices. By using a variety of analytical techniques, we were able to characterize the structural and compositional properties of cortical and trabecular bones, as well as to determine the suitable mathematical model to predict the tissue's mechanical properties using a continuum micromechanics approach. Our hierarchical analysis demonstrated that the differences between cortical and trabecular bone reside mainly at the micro- and ultrastructural levels. By gaining a better appreciation of the similarities and differences between the two bone types, we would be able to provide a better assessment and understanding of their individual roles, as well as their contribution to bone health overall. PMID:25808343

  11. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  12. Can Deterministic Mechanical Size Effects Contribute to Fracture and Microdamage Accumulation in Trabecular Bone?

    PubMed Central

    Siegmund, Thomas; Allen, Matthew R.; Burr, David B.

    2010-01-01

    Failure of bone under monotonic and cyclic loading is related to the bone mineral density, the quality of the bone matrix and the evolution of microcracks. The theory of linear elastic fracture mechanics has commonly been applied to describe fracture in bone. Evidence is presented that bone failure can be described through a non-linear theory of fracture. Thereby, deterministic size effects are introduced. Concepts of a non-linear theory are applied to discern how the interaction among bone matrix constituents (collagen and mineral), microcrack characteristics, and trabecular architecture can create distinctively differences in the fracture resistance at the bone tissue level. The nonlinear model is applied to interpret pre-clinical data concerning the effects of anti-osteoporotic agents on bone properties. The results show that bisphosphonate (BP) treatments that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is reduced. Selective estrogen receptor modulators (SERMs) that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is increased. The consequences of these changes are reflected in bone mechanical response and predictions are consistent with experimental observations in the animal model which show that BP treatment is associated with more brittle fracture and microcracks without altering the average length of the cracks, whereas SERM treatments lead to a more ductile fracture and mainly increase crack length with a smaller increase in microcrack density. The model suggests that BPs may be more effective in cases in which bone mass is very low, whereas SERMS may be more effective when milder osteoporotic symptoms are present. PMID:20398678

  13. The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies

    PubMed Central

    Iolascon, Giovanni; Napolano, Rosa; Gioia, Margherita; Moretti, Antimo; Riccio, Ilaria; Gimigliano, Francesca

    2013-01-01

    Summary All materials undergo an aging process which is characterized essentially by changes of the rigidity (stiffness), of the ability to absorb the stresses (toughness) and then ultimately in the mechanical resistance (strength). Both cortical and trabecular bone undergo a continuous process of structural remodeling with the main aim to preserve their biomechanical properties. An imbalance in this process, which promotes bone resorption, results in a quantitative loss of bone tissue and in a qualitative alteration of the skeletal microarchitecture, as you can see in osteoporosis, rheumatoid arthritis or bone metastases. Cortical component has a prominent role on strength therefore loss of cortical bone that is prevalent in elderly may explain the higher frequency of fractures of bones composed mainly of cortical bone such as the proximal femur. Remodeling inhibition with denosumab improved structural strength without altering material properties, that can be primarily explained by the combined effects of increased trabecular and cortical bone mass, and reductions in trabecular eroded surfaces and particularly cortical porosity. Denosumab for its mechanism of action and pharmacokinetics results in a significant, early and continued increase in BMD with enhanced bone strength improving both cortical and trabecular bone. PMID:23858311

  14. Two different pathways for the maintenance of trabecular bone in adult male mice.

    PubMed

    Lindberg, Marie K; Movérare, Sofia; Skrtic, Stanko; Alatalo, Sari; Halleen, Jussi; Mohan, Subburaman; Gustafsson, J A; Ohlsson, Claes

    2002-04-01

    Androgens may regulate the male skeleton either directly via activation of the androgen receptor (AR) or indirectly via aromatization of androgens into estrogen and, thereafter, via activation of estrogen receptors (ERs). There are two known estrogen receptors, ER-alpha and ER-beta. The aim of this study was to investigate the relative roles of ER-alpha, ER-beta, and AR in the maintenance of trabecular bone in male mice. Seven-month-old male mice, lacking ER-alpha (ERKO), ER-beta (BERKO), or both receptors (DERKO), were orchidectomized (orx) and treated for 3 weeks with 0.7 microg/mouse per day of 17beta-estradiol or vehicle. No reduction in trabecular bone mineral density (BMD) was seen in ERKO, BERKO, or DERKO mice before orx, showing that neither ER-a nor ER-beta is required for the maintenance of a normal trabecular BMD in male mice. After orx, there was a pronounced decrease in trabecular BMD, similar for all groups, resulting in equal levels of trabecular BMD in all genotypes. This reduction was reversed completely in wild-type (WT) and BERKO mice treated with estrogen, and no significant effect of estrogen was found in ERKO or DERKO mice. In summary, the trabecular bone is preserved both by a testicular factor, presumably testosterone acting via AR and by an estrogen-induced activation of ER-alpha. These results indicate that AR and ER-alpha are redundant in the maintenance of the trabecular bone in male mice. In contrast, ER-beta is of no importance for the regulation of trabecular bone in male mice.

  15. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology.

  16. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Neria-Pérez, J. A.; Medina, L.; Garipov, R.; Rodríguez, A. O.

    2014-11-01

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot's model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot's waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  17. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    SciTech Connect

    Solis-Najera, S. E. E-mail: angel.perez@ciencias.unam.mx Neria-Pérez, J. A. E-mail: angel.perez@ciencias.unam.mx Medina, L. E-mail: angel.perez@ciencias.unam.mx; Garipov, R.; Rodríguez, A. O.

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  18. Optimization of a Cemented Femoral Prosthesis Considering Bone Remodeling.

    PubMed

    Corso, Leandro Luis; Spinelli, Leandro de Freitas; Schnaid, Fernando; Zanrosso, Crisley Dossin; Marczak, Rogério José

    2016-01-01

    The study presents a numerical methodology for minimizing the bone loss in human femur submitted to total hip replacement (THR) procedure with focus on cemented femoral stem. Three-dimensional computational models were used to describe the femoral bone behavior. An optimization procedure using the genetic algorithm (GA) method was applied in order to minimize the bone loss, considering the geometry and the material of the prosthesis as well as the design of the stem. Internal and external bone remodeling were analyzed numerically. The numerical method proposed here showed that the bone mass loss could be reduced by 24%, changing the design parameters. PMID:26540616

  19. [The changes of bone architecture in atypical femoral fracture].

    PubMed

    Yamamoto, Noriaki; Shimakura, Taketoshi; Takahash, Hideaki

    2013-07-01

    The feature of atypical femoral fracture is stress induced cortical bone reaction. It was considered to be the accumulation of microdamage which come from increasing of mechanical stress by femoral lateral bowing, and the decreased of ability of microdamage repair system. PMID:23811584

  20. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  1. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  2. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment

    PubMed Central

    Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  3. Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing.

    PubMed

    Ducher, Gaële; Prouteau, Stéphanie; Courteix, Daniel; Benhamou, Claude-Laurent

    2004-01-01

    Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 +/- 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 +/- 5.2% and 4.9 +/- 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 +/- 4.3% vs 11.7 +/- 6.8%; third-distal radius: 5.0 +/- 4.8% vs 8.4 +/- 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.

  4. Trabecular bone histomorphometric measurements and contrast-to-noise ratio in CBCT

    PubMed Central

    Smedby, Ö; Brismar, T B; Moreno, R

    2014-01-01

    Objectives: The aim of this study was to evaluate how imaging parameters at clinical dental CBCT affect the accuracy in quantifying trabecular bone structures, contrast-to-noise ratio (CNR) and radiation dose. Methods: 15 radius samples were examined using CBCT (Accuitomo FPD; J. Morita Mfg., Kyoto, Japan). Nine imaging protocols were used, differing in current, voltage, rotation degree, voxel size, imaging area and rotation time. Radiation doses were measured using a kerma area product-meter. After segmentation, six bone structure parameters and CNRs were quantified. Micro-CT (μCT) images with an isotropic resolution of 20 μm were used as a gold standard. Results: Structure parameters obtained by CBCT were strongly correlated to those by μCT, with correlation coefficients >0.90 for all studied parameters. Bone volume and trabecular thickness were not affected by changes in imaging parameters. Increased tube current from 5 to 8 mA, decreased isotropic voxel size from 125 to 80 μm and decreased rotation angle from 360° to 180° affected correlations for trabecular termini negatively. Decreasing rotation degree also weakened correlations for trabecular separation and trabecular number at 80 μm voxel size. Changes in the rotation degree and tube current affected CNR significantly. The radiation dose varied between 269 and 1153 mGy cm2. Conclusions: Trabecular bone structure can be accurately quantified by clinical dental CBCT in vitro, and the obtained structure parameters are strongly related to those obtained by μCT. A fair CNR and strong correlations can be obtained with a low radiation dose, indicating the possibility for monitoring trabecular bone structure also in vivo. PMID:25168811

  5. [Is there a relation between weight in rats, bone density, ash weight and histomorphometric indicators of trabecular volume and thickness in the bones of extremities?].

    PubMed

    Zák, J; Kapitola, J; Povýsil, C

    2003-01-01

    Authors deal with question, if there is possibility to infer bone histological structure (described by histomorphometric parameters of trabecular bone volume and trabecular thickness) from bone density, ash weight or even from weight of animal (rat). Both tibias of each of 30 intact male rats, 90 days old, were processed. Left tibia was utilized to the determination of histomorphometric parameters of undecalcified bone tissue patterns by automatic image analysis. Right tibia was used to the determination of values of bone density, using Archimedes' principle. Values of bone density, ash weight, ash weight related to bone volume and animal weight were correlated with histomorphometric parameters (trabecular bone volume, trabecular thickness) by Pearson's correlation test. One could presume the existence of relation between data, describing bone mass at the histological level (trabecular bone of tibia) and other data, describing mass of whole bone or even animal mass (weight). But no statistically significant correlation was found. The reason of the present results could be in the deviations of trabecular density in marrow of tibia. Because of higher trabecular bone density in metaphyseal and epiphyseal regions, the histomorphometric analysis of trabecular bone is preferentially done in these areas. It is possible, that this irregularity of trabecular tibial density could be the source of the deviations, which could influence the results of correlations determined. The values of bone density, ash weight and animal weight do not influence trabecular bone volume and vice versa: static histomorphometric parameters of trabecular bone do not reflect bone density, ash weight and weight of animal. PMID:15224536

  6. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats.

    PubMed

    Ahn, Hyejin; Seo, Dong-Hyun; Kim, Han Sung; Choue, Ryowon

    2014-08-01

    We hypothesized that calorie restriction (CR) and estrogen deficiency (ovariectomy [OVX]) would aggravate bone biomarkers and structural parameters in rats. Seven-week-old female Sprague-Dawley rats were randomized to sham-operated groups and fed either an ad libitum diet (SHAM-AL) or a CR diet (SHAM-CR); ovariectomy-operated groups were fed an ad libitum diet (OVX-AL) or a CR diet (OVX-CR). For 8 weeks, the OVX-AL and SHAM-AL groups were fed the same diet, whereas CR groups were fed a diet containing 50% fewer calories. Bone-related biomarkers and structural parameters (OC; deoxypyridinoline [DPD]; N-terminal telopeptide, NTx; architecture and mineralization; and microcomputed tomography images) were analyzed at the end of the experiment. The serum OC levels of calorie-restricted groups (SHAM-CR and OVX-CR) were significantly lower than those of the AL groups (SHAM-AL and OVX-AL) (P < .05). Urinary DPD levels of calorie-restricted and ovariectomized groups were higher than those of their counterparts (P < .05), whereas urinary NTx levels of calorie-restricted groups were higher than those of AL groups (P < .05). In regard to trabecular bone, the calorie-restricted and ovariectomized groups had lower values of bone volume to total volume, trabecular number, and bone mineral density, but higher values of trabecular separation than those of their counterparts (P < .05). Regarding cortical bone, the calorie-restricted groups had reduced values of bone volume, mean polar moment of inertia, and cortical thickness compared to the AL groups (P < .05). In conclusion, severe CR with or without OVX during the growth period in rats is equally detrimental to bone; CR has detrimental effects on trabecular and cortical bone; and estrogen deficiency only had an effect on trabecular bone.

  7. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.

    PubMed

    Ozcivici, Engin; Judex, Stefan

    2014-10-01

    Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced

  8. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.

    PubMed

    Ozcivici, Engin; Judex, Stefan

    2014-10-01

    Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced

  9. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone

    NASA Astrophysics Data System (ADS)

    Huiskes, Rik; Ruimerman, Ronald; van Lenthe, G. Harry; Janssen, Jan D.

    2000-06-01

    The architecture of trabecular bone, the porous bone found in the spine and at articulating joints, provides the requirements for optimal load transfer, by pairing suitable strength and stiffness to minimal weight according to rules of mathematical design. But, as it is unlikely that the architecture is fully pre-programmed in the genes, how are the bone cells informed about these rules, which so obviously dictate architecture? A relationship exists between bone architecture and mechanical usage-while strenuous exercise increases bone mass, disuse, as in microgravity and inactivity, reduces it. Bone resorption cells (osteoclasts) and bone formation cells (osteoblasts) normally balance bone mass in a coupled homeostatic process of remodelling, which renews some 25% of trabecular bone volume per year. Here we present a computational model of the metabolic process in bone that confirms that cell coupling is governed by feedback from mechanical load transfer.This model can explain the emergence and maintenance of trabecular architecture as an optimal mechanical structure, as well as its adaptation to alternative external loads.

  10. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    PubMed Central

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  11. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  12. Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur

    PubMed Central

    Reich, Tal; Gefen, Amit

    2006-01-01

    Background Osteoporotic hip fractures occur due to loss of cortical and trabecular bone mass and consequent degradation in whole bone strength. The direct cause of most fractures is a fall, and hence, characterizing the mechanical behavior of a whole osteopenic bone under impact is important. However, very little is known about the mechanical interactions between cortical and trabecular bone during impact, and it is specifically unclear to what extent epiphyseal trabecular bone contributes to impact resistance of whole bones. We hypothesized that trabecular bone serves as a structural support to the cortex during impact, and hence, loss of a critical mass of trabecular bone reduces internal constraining of the cortex, and, thereby, decreases the impact tolerance of the whole bone. Methods To test this hypothesis, we conducted cortical strain rate measurements in adult chicken's proximal femora subjected to a Charpy impact test, after removing different trabecular bone core masses to simulate different osteopenic severities. Results We found that removal of core trabecular bone decreased by ~10-fold the cortical strain rate at the side opposite to impact (p < 0.01), i.e. from 359,815 ± 1799 μm/m per second (mean ± standard error) for an intact (control) specimen down to 35,997 ± 180 μm/m per second where 67% of the total trabecular bone mass (~0.7 grams in adult chicken) were removed. After normalizing the strain rate by the initial weight of bone specimens, a sigmoid relation emerged between normalized strain rate and removed mass of trabecular bone, showing very little effect on the cortex strain rate if below 10% of the trabecular mass is removed, but most of the effect was already apparent for less than 30% trabecular bone loss. An analytical model of the experiments supported this behavior. Conclusion We conclude that in our in vitro avian model, loss of over 10% of core trabecular bone substantially altered the deformation response of whole bone to impact

  13. Dynamic Hydraulic Flow Stimulation on Mitigation of Trabecular Bone Loss in a Rat Functional Disuse Model

    PubMed Central

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-01-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generator to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS + static loading, and 5) HLS + DHS. Hydraulic flow stimulation was carried out daily on a “10 min on-5min off-10min on” loading regime, 5 days/week, for total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using µCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of -26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the µCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis. PMID:22820398

  14. Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT

    NASA Astrophysics Data System (ADS)

    Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew

    2015-03-01

    Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.

  15. Obesity alters cortical and trabecular bone density and geometry in women

    PubMed Central

    Sukumar, D.; Schlussel, Y.; Riedt, C. S.; Gordon, C.; Stahl, T.

    2010-01-01

    Summary The goal in this study was to determine the relationship between body mass index and trabecular and cortical bone using quantitative computed tomography. A higher body mass index (BMI) was positively associated with trabecular and cortical bone parameters, and serum parathyroid hormone, and negatively associated with cortical volumetric bone mineral density (vBMD) and serum 25-hydroxy-vitamin D. When BMI is greater than 35 kg/m2, adiposity affects vBMD and may explain the higher fracture risk in this population without low BMD. Introduction The influence of adult obesity on the trabecular and cortical bone, geometry, and strength has not been fully addressed. The goal in this study was to determine the relationship between body mass index and trabecular and cortical bone mass and geometry, over a wide range of body weights. Methods We examined 211 women (25–71 years; BMI 18–57 kg/m2) who were classified into three categories of BMI (kg/m2) including normal-weight (BMI<25), overweight and obese-class I (BMI 25–35) and obese-class II–III (BMI>35), and also by menopausal status. Volumetric bone mineral density (mg/cm3), trabecular, and cortical components as well as geometric characteristics at the 4%, 38%, and 66% from the distal tibia were measured by peripheral quantitative computed tomography, and serum was analyzed for parathyroid hormone (PTH) and 25-hydroxy-vitamin D (25OHD). Results Higher BMI was associated with greater values of trabecular bone and cortical BMC and area and PTH (r>0.39, p<0.001), but lower cortical vBMD and 25OHD (r>−0.27, p<0.001). When controlling for lower leg muscle area, fat area was inversely associated with cortical vBMD (r=−0.16, p<0.05). Premenopausal obese women with both higher BMI and PTH had lower cortical vBMD (r<−0.40, p<0.001). While age is a predictor for most bone variables, fat mass explains more variance for vBMD, and lean mass and 25OHD explain greater variance in geometric and strength indices (p<0

  16. Hip bone trabecular architecture shows uniquely distinctive locomotor behaviour in South African australopithecines.

    PubMed

    Macchiarelli, R; Bondioli, L; Galichon, V; Tobias, P V

    1999-02-01

    Cancellous bone retains structural and behavioural properties which are time and strain-rate dependent. As the orientation of the trabeculae (trajectories) follows the direction of the principal strains imposed by daily loadings, habitual postural and locomotor behaviours are responsible for a variety of trabecular architectures and site-specific textural arrangements of the pelvic cancellous network. With respect to the great ape condition, the human trabecular pattern is characterized by a distinctive ilioischial bundle, an undivided sacropubic bundle, and a full diagonal crossing (approximately 100 degrees) over the acetabulum between the ilioischial and the sacropubic bundles. Advanced digital image processing (DIP) of hip bone radiographs has revealed that adolescent and adult South African australopithecines retained an incompletely developed human-like trabecular pattern associated with gait-related features that are unique among the extant primates. PMID:10068067

  17. Hip bone trabecular architecture shows uniquely distinctive locomotor behaviour in South African australopithecines.

    PubMed

    Macchiarelli, R; Bondioli, L; Galichon, V; Tobias, P V

    1999-02-01

    Cancellous bone retains structural and behavioural properties which are time and strain-rate dependent. As the orientation of the trabeculae (trajectories) follows the direction of the principal strains imposed by daily loadings, habitual postural and locomotor behaviours are responsible for a variety of trabecular architectures and site-specific textural arrangements of the pelvic cancellous network. With respect to the great ape condition, the human trabecular pattern is characterized by a distinctive ilioischial bundle, an undivided sacropubic bundle, and a full diagonal crossing (approximately 100 degrees) over the acetabulum between the ilioischial and the sacropubic bundles. Advanced digital image processing (DIP) of hip bone radiographs has revealed that adolescent and adult South African australopithecines retained an incompletely developed human-like trabecular pattern associated with gait-related features that are unique among the extant primates.

  18. Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis

    PubMed Central

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Sharif, Mohammed

    2016-01-01

    Osteoarthritis (OA) is the most common joint disorder, characterised by focal loss of cartilage and increased subchondral bone remodelling at early OA stages of the disease. We have investigated the temporal and the spatial relationship between bone remodelling in subchondral bone plate (Sbp) and trabecular bone (Tb) in Dunkin Hartley (DH, develop OA early) and the Bristol Strain 2 (BS2, control which develop OA late) guinea pigs. Right tibias were dissected from six male animals of each strain, at 10, 16, 24 and 30 weeks of age. Micro-computed tomography was used to quantify the growth plate thickness (GpTh), subchondral bone plate thickness (SbpTh) and trabecular bone thickness (TbTh), and bone mineral density (BMD) in both Sbp and Tb. The rate of change was calculated for 10–16 weeks, 16–24 weeks and 24–30 weeks. The rate of changes in Sbp and Tb thickness at the earliest time interval (10–16 weeks) were significantly greater in DH guinea pigs than in the growth-matched control strain (BS2). The magnitude of these differences was greater in the medial side than the lateral side (DH: 22.7 and 14.75 µm/week, BS2: 5.63 and 6.67 µm/week, respectively). Similarly, changes in the BMD at the earliest time interval was greater in the DH strain than the BS2, again more pronounced in the disease prone medial compartment (DH: 0.0698 and 0.0372 g/cm3/week, BS2: 0.00457 and 0.00772 g/cm3/week, respectively). These changes observed preceded microscopic and cellular signs of disease as previously reported. The rapid early changes in SbpTh, TbTh, Sbp BMD and Tb BMD in the disease prone DH guinea pigs compared with the BS2 control strain suggest a link to early OA pathology. This is corroborated by the greater relative changes in subchondral bone in the medial compared with the lateral compartment. PMID:27618009

  19. Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis.

    PubMed

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Sharif, Mohammed

    2016-01-01

    Osteoarthritis (OA) is the most common joint disorder, characterised by focal loss of cartilage and increased subchondral bone remodelling at early OA stages of the disease. We have investigated the temporal and the spatial relationship between bone remodelling in subchondral bone plate (Sbp) and trabecular bone (Tb) in Dunkin Hartley (DH, develop OA early) and the Bristol Strain 2 (BS2, control which develop OA late) guinea pigs. Right tibias were dissected from six male animals of each strain, at 10, 16, 24 and 30 weeks of age. Micro-computed tomography was used to quantify the growth plate thickness (GpTh), subchondral bone plate thickness (SbpTh) and trabecular bone thickness (TbTh), and bone mineral density (BMD) in both Sbp and Tb. The rate of change was calculated for 10-16 weeks, 16-24 weeks and 24-30 weeks. The rate of changes in Sbp and Tb thickness at the earliest time interval (10-16 weeks) were significantly greater in DH guinea pigs than in the growth-matched control strain (BS2). The magnitude of these differences was greater in the medial side than the lateral side (DH: 22.7 and 14.75 µm/week, BS2: 5.63 and 6.67 µm/week, respectively). Similarly, changes in the BMD at the earliest time interval was greater in the DH strain than the BS2, again more pronounced in the disease prone medial compartment (DH: 0.0698 and 0.0372 g/cm³/week, BS2: 0.00457 and 0.00772 g/cm³/week, respectively). These changes observed preceded microscopic and cellular signs of disease as previously reported. The rapid early changes in SbpTh, TbTh, Sbp BMD and Tb BMD in the disease prone DH guinea pigs compared with the BS2 control strain suggest a link to early OA pathology. This is corroborated by the greater relative changes in subchondral bone in the medial compared with the lateral compartment. PMID:27618009

  20. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone

    PubMed Central

    Salmon, Phil L.; Ohlsson, Claes; Shefelbine, Sandra J.; Doube, Michael

    2015-01-01

    Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+) and negative (SMI−) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species’ femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155–0.700). SMI is unavoidably influenced by aberrations induced by SMI−, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds’ more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be

  1. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone.

    PubMed

    Salmon, Phil L; Ohlsson, Claes; Shefelbine, Sandra J; Doube, Michael

    2015-01-01

    Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI(+)) and negative (SMI(-)) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabecule and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155-0.700). SMI is unavoidably influenced by aberrations induced by SMI(-), which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabecule. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be

  2. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone.

    PubMed

    Salmon, Phil L; Ohlsson, Claes; Shefelbine, Sandra J; Doube, Michael

    2015-01-01

    Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI(+)) and negative (SMI(-)) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabecule and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155-0.700). SMI is unavoidably influenced by aberrations induced by SMI(-), which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabecule. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be

  3. Constitutive Modeling and Algorithmic Implementation of a Plasticity-like Model for Trabecular Bone Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Atul; Bayraktar, Harun H.; Fox, Julia C.; Keaveny, Tony M.; Papadopoulos, Panayiotis

    2007-06-01

    Trabecular bone is a highly porous orthotropic cellular solid material present inside human bones such as the femur (hip bone) and vertebra (spine). In this study, an infinitesimal plasticity-like model with isotropic/kinematic hardening is developed to describe yielding of trabecular bone at the continuum level. One of the unique features of this formulation is the development of the plasticity-like model in strain space for a yield envelope expressed in terms of principal strains having asymmetric yield behavior. An implicit return-mapping approach is adopted to obtain a symmetric algorithmic tangent modulus and a step-by-step procedure of algorithmic implementation is derived. To investigate the performance of this approach in a full-scale finite element simulation, the model is implemented in a non-linear finite element analysis program and several test problems including the simulation of loading of the human femur structures are analyzed. The results show good agreement with the experimental data.

  4. Assessment of Fat distribution and Bone quality with Trabecular Bone Score (TBS) in Healthy Chinese Men.

    PubMed

    Lv, Shan; Zhang, Aisen; Di, Wenjuan; Sheng, Yunlu; Cheng, Peng; Qi, Hanmei; Liu, Juan; Yu, Jing; Ding, Guoxian; Cai, Jinmei; Lai, Bin

    2016-04-26

    Whether fat is beneficial or detrimental to bones is still controversial, which may be due to inequivalence of the fat mass. Our objective is to define the effect of body fat and its distribution on bone quality in healthy Chinese men. A total of 228 men, aged from 38 to 89 years, were recruited. BMD, trabecular bone score (TBS), and body fat distribution were measured by dual-energy X-ray absorptiometry. Subcutaneous and visceral fat were assessed by MRI. In the Pearson correlation analysis, lumbar spine BMD exhibited positive associations with total and all regional fat depots, regardless of the fat distribution. However, the correlation disappeared with adjusted covariables of age, BMI, HDL-C, and HbA1c%. TBS was negatively correlated with fat mass. In multiple linear regression models, android fat (and not gynoid, trunk, or limbs fat) showed significant inverse association with TBS (β = -0.611, P < 0.001). Furthermore, visceral fat was described as a pathogenic fat harmful to TBS, even after adjusting for age and BMI (β = -0.280, P = 0.017). Our findings suggested that body fat mass, especially android fat and visceral fat, may have negative effects on bone microstructure; whereas body fat mass contributes to BMD through mechanical loading.

  5. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  6. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary. PMID:23254345

  7. Total Water, Phosphorus Relaxation and Inter-Atomic Organic to Inorganic Interface Are New Determinants of Trabecular Bone Integrity

    PubMed Central

    Rai, Ratan Kumar; Barbhuyan, Tarun; Singh, Chandan; Mittal, Monika; Khan, Mohd. Parvez; Sinha, Neeraj; Chattopadhyay, Naibedya

    2013-01-01

    Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining 1H NMR spectroscopy with 31P and 13C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression

  8. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity.

    PubMed

    Rai, Ratan Kumar; Barbhuyan, Tarun; Singh, Chandan; Mittal, Monika; Khan, Mohd Parvez; Sinha, Neeraj; Chattopadhyay, Naibedya

    2013-01-01

    Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining (1)H NMR spectroscopy with (31)P and (13)C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression

  9. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    PubMed Central

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  10. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats.

    PubMed

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of (25)Mg, (28)Si, (39)K, (47)Ti, (56)Fe, (59)Co, (77)Se, (88)Sr, (137)Ba, and (208)Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of (28)Si, (77)Se, (208)Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  11. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss.

  12. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss. PMID:27493246

  13. A phenomenological model for predicting fatigue life in bovine trabecular bone.

    PubMed

    Ganguly, P; Moore, T L A; Gibson, L J

    2004-06-01

    Cyclic loading of bone during daily activities can lead to fatigue degradation and increased risk of fracture in both the young and elderly population. Damage processes under cyclic loading in trabecular bone result in the reduction of the elastic modulus and accumulation of residual strain. These effects increase with increasing stress levels, leading to a progressive reduction in fatigue life. The present work analyzes the effect of stress and strain variation on the above damage processes in bovine trabecular bone, and develops a phenomenological model relating fatigue life to the imposed stress level. The elastic modulus reduction of the bone specimens was observed to depend on the maximum compressive strain, while the rate of residual strain accumulation was a function of the stress level. A model was developed for the upper and lower bounds of bone elastic modulus reduction with increasing number of cycles, at each stress range. The experimental observations were described well by the model. The model predicted the bounds of the fatigue life with change in fatigue stress. The decrease in the fatigue life with increasing stress was related to corresponding increases in the residual strain accumulation rates at the elevated stress levels. The model shows the validity of fatigue predictions from relatively few cyclic experiments, by combining trends observed in the monotonic and the cyclic tests. The model also presents a relatively simple procedure for predicting the endurance limit for bovine trabecular bone specimens.

  14. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture.

    PubMed

    Pothuaud, Laurent; Carceller, Pascal; Hans, Didier

    2008-04-01

    X-ray imaging remains a very cost-effective technique, with many applications in both medical and material science. However, the physical process of X-ray imaging transforms (e.g. projects) the 3-dimensional (3D) microarchitecture of the object or tissue being studied into a complex 2D grey-level texture. The 3D/2D projection process continues to be a difficult mathematical problem, and neither demonstrations nor well-established correlations have positioned 2D texture analysis-based measurement as a valid indirect evaluation of 3D microarchitecture. The trabecular bone score (TBS) is a new grey-level texture measurement which utilizes experimental variograms of 2D projection images. The aim of the present study was to determine the level of correlation between the 3D characteristics of trabecular bone microarchitecture, as evaluated using muCT reconstruction, and TBS, as evaluated using 2D projection images derived directly from 3D muCT reconstruction. Analyses were performed using sets of human cadaver bone samples from different anatomical sites (lumbar spine, femoral neck, and distal radius). Significant correlations were established via standard multiple regression analysis, and via the use of a generic mathematical 3D/2D relationship. In both instances, the correlations established a significant relationship between TBS and two 3D characteristics of bone microarchitecture: bone volume fraction and mean bone thickness. In particular, it appears that TBS permits to accurately differentiate between two 3D microarchitectures that exhibit the same amount of bone, but different trabecular characteristics. These results demonstrate the existence of a robust and generic relationship, taking into consideration a simplified model of a 2D projection image. Ultimately, this may lead to using TBS measurements directly on DXA images obtained in routine clinical practice.

  15. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  16. Implant design and its effects on osseointegration over time within cortical and trabecular bone.

    PubMed

    Beutel, Bryan G; Danna, Natalie R; Granato, Rodrigo; Bonfante, Estevam A; Marin, Charles; Tovar, Nick; Suzuki, Marcelo; Coelho, Paulo G

    2016-08-01

    Healing chambers present at the interface between implant and bone have become a target for improving osseointegration. The objective of the present study was to compare osseointegration of several implant healing chamber configurations at early time points and regions of interest within bone using an in vivo animal femur model. Six implants, each with a different healing chamber configuration, were surgically implanted into each femur of six skeletally mature beagle dogs (n = 12 implants per dog, total n = 72). The implants were harvested at 3 and 5 weeks post-implantation, non-decalcified processed to slides, and underwent histomorphometry with measurement of bone-to-implant contact (BIC) and bone area fraction occupied (BAFO) within healing chambers at both cortical and trabecular bone sites. Microscopy demonstrated predominantly woven bone at 3 weeks and initial replacement of woven bone by lamellar bone by 5 weeks. BIC and BAFO were both significantly increased by 5 weeks (p < 0.001), and significantly higher in cortical than trabecular bone (p < 0.001). The trapezoidal healing chamber design demonstrated a higher BIC than other configurations. Overall, a strong temporal and region-specific dependence of implant osseointegration in femurs was noted. Moreover, the findings suggest that a trapezoidal healing chamber configuration may facilitate the best osseointegration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1091-1097, 2016.

  17. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  18. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis. PMID:19703606

  19. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    PubMed Central

    Mitchell, Kathryn A.; Lunny, Megan

    2016-01-01

    Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  20. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model.

    PubMed

    Yingling, Vanessa R; Mitchell, Kathryn A; Lunny, Megan

    2016-01-01

    Background. Osteoporosis is "a pediatric disease with geriatric consequences." Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  1. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    PubMed

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other

  2. Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis.

    PubMed

    Kelly, Andrea; Schall, Joan; Stallings, Virginia A; Zemel, Babette S

    2016-09-01

    Osteopenia and increased fracture rates are well-recognized in adults with CF, but neither the specific contributions of cortical and trabecular bone deficits to bone fragility nor their presence in youth with CF are well-characterized. This study sought to characterize cortical and trabecular volumetric bone mineral density (vBMD), geometry, and biomechanical competence in children with CF and determine their relationship to growth, body composition, and disease severity. Peripheral quantitative computerized tomography (pQCT) measures of total, cortical, and trabecular vBMD, cortical, muscle, and fat cross-sectional areas (CSA), periosteal and endosteal circumferences, and the polar unweighted section modulus (Zp) of the tibia were converted to age- and tibial length-adjusted Z-scores in 97 CF and 199 healthy children (aged 8-21y). Effects of body composition and pulmonary function (forced expiratory volume in 1s, FEV1) upon pQCT outcomes were determined using linear regression. Children with CF (FEV1%-predicted: 84.4+19.7) had lower weight-, height-, BMI-, and whole body lean mass (LBM)-Z and tibial length. Females with CF had lower (p<0.01) total and trabecular vBMD; cortical, muscle, and fat CSA; Zp and periosteal circumference than females in the healthy reference group. These bone differences persisted after adjustment for BMI-Z and to a great extent following adjustment for muscle CSA. Males with CF had lower (p<0.01) cortical, muscle, and fat CSA and their trabecular vBMD deficit approached significance (p=0.069). Deficits were attenuated by adjustment for BMI-Z and to a greater extent adjustment for muscle CSA-Z. The relationship between FEV1%-predicted and pQCT outcomes persisted only in males following adjustment for age and BMI-Z. The CF cohort had lower tibial muscle CSA than expected for their LBM. In this relatively healthy, young CF cohort, deficits in trabecular and multiple cortical bone parameters were present. In females, deficits were greater

  3. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    PubMed Central

    Aw, Moom Sinn; Khalid, Kamarul A; Gulati, Karan; Atkins, Gerald J; Pivonka, Peter; Findlay, David M; Losic, Dusan

    2012-01-01

    Purpose The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti) wires generated with titania nanotube (TNT) arrays as drug-releasing implants for local drug delivery Methods Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B) was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm) and horizontal (0–10 mm) distances from the implant surface were obtained at a range of release times from 1 hour to 5 days. Results Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex vivo showed a consistent gradual release of model drug from the TNT–Ti implants, with a characteristic three-dimensional distribution into the surrounding bone, over a period of 5 days. The parameters including the flow rate of bone culture medium, differences in trabecular microarchitecture between bone samples, and mechanical loading were found to have the most significant influence on drug distribution in the bone. Conclusion These results demonstrate the utility of the Zetos™ system for ex vivo drug-release studies in bone, which can be applied to

  4. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

    PubMed

    Chirchir, Habiba

    2015-05-01

    Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running.

  5. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  6. Mechanical properties of porcine femoral cortical bone measured by nanoindentation.

    PubMed

    Feng, Liang; Chittenden, Michael; Schirer, Jeffrey; Dickinson, Michelle; Jasiuk, Iwona

    2012-06-26

    This study uses a nanoindentation technique to examine variations in the local mechanical properties of porcine femoral cortical bone under hydrated conditions. Bone specimens from three age groups (6, 12 and 42 months), representing developing bone, ranging from young to mature animals, were tested on the longitudinal and transverse cross-sectional surfaces. Elastic modulus and hardness of individual lamellae within bone's microstructure: laminar bone, interstitial bone, and osteons, were measured. Both the elastic modulus and hardness increased with age. However, the magnitudes of these increases were different for each microstructural component. The longitudinal moduli were higher than the transverse moduli. Dehydrated samples were also tested to allow a comparison with hydrated samples and these resulted in higher moduli and hardness than the hydrated samples. Again, the degree of variation was different for each microstructural component. These results indicate that the developmental changes in bone have different rates of mechanical change within each microstructural component.

  7. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  8. Validation of composite finite elements efficiently simulating elasticity of trabecular bone.

    PubMed

    Schwen, Lars Ole; Wolfram, Uwe

    2014-01-01

    Patient-specific analyses of the mechanical properties of bones become increasingly important for the management of patients with osteoporosis. The potential of composite finite elements (CFEs), a novel FE technique, to assess the apparent stiffness of vertebral trabecular bone is investigated in this study. Segmented volumes of cylindrical specimens of trabecular bone are compared to measured volumes. Elasticity under uniaxial loading conditions is simulated; apparent stiffnesses are compared to experimentally determined values. Computational efficiency is assessed and recommendations for simulation parameters are given. Validating apparent uniaxial stiffnesses results in concordance correlation coefficients 0.69 ≤ r(c) ≤ 0.92 for resolutions finer than 168 μm, and an average error of 5.8% between experimental and numerical results at 24 μm resolution. As an application, the code was used to compute local, macroscopic stiffness tensors for the trabecular structure of a lumbar vertebra. The presented technique allows for computing stiffness using smooth FE meshes at resolutions that are well achievable in peripheral high resolution quantitative CT. Therefore, CFEs could be a valuable tool for the patient-specific assessment of bone stiffness.

  9. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  10. Trabecular bone response to mechanical loading in ovariectomized Sprague-Dawley rats depends on baseline bone quantity.

    PubMed

    Ko, Chang-Yong; Jung, Young Jin; Park, Ji Hyung; Seo, Donghyun; Han, Paul; Bae, Kiho; Schreiber, Jürgen; Kim, Han Sung

    2012-07-26

    Mechanical loading is one of the determining factors for bone modulation, and is therefore frequently used to treat or prevent bone loss; however, there appears to be no data on the effects of baseline bone quantity on this response. This study aimed to verify whether baseline bone quantity affects osteoporotic trabecular bone adaptive response to mechanical stimulation. Twenty-four female Sprague-Dawley (SD) rats were ovariectomized (OVX). After 3 weeks of OVX, rats were divided into a high bone quantity and a low bone quantity group, and rats in each group were then subdivided into 4 groups that were exposed to different loading strategies. In the loading groups, tibiae were stimulated through axial loading at 2000με of strain, for 1500 cycles each of 75s, 150s, or 250s. The sham treatment groups received no loading. Changes in BV/TV for trabecular bone in the tibia were measured at the baseline (before loading), and at 3 weeks and 6 weeks after loading. BV/TVs in loading groups of the low baseline bone quantity group were significantly increased at 6 weeks, compared with those in the no-loading groups (p<0.05), while those in the high quantity groups were not increased (p>0.05). A significant negative correlation was observed between baseline BV/TV and its relative variations at 3 weeks or 6 weeks (p<0.05). These results indicate that adaptive responses of osteoporotic trabecular bone to mechanical loading depend on baseline bone quantity. PMID:22663762

  11. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.

    PubMed

    Treece, G M; Gee, A H

    2015-02-01

    The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects of various interventions aimed at reducing that risk, are associated with cortical properties focused in particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than 3mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our previous work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by assuming a fixed value of the cortical density for each hip. However, although cortical density varies much less over the proximal femur than thickness, what little variation there is leads to errors in thickness measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates of imaging blur to correct the global density estimate, thus providing a local density estimate as well as more accurate estimates of thickness. We also consider measurement of cortical mass surface density and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT scans of the same bones. We demonstrate superior estimation of thickness than is possible with alternative techniques (accuracy 0.12 ± 0.39 mm for cortices in the range 1-3mm), and that local cortical density estimation is feasible for densities >800 mg/cm(3).

  12. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone.

    PubMed

    Volk, Susan W; Shah, Shalin R; Cohen, Arthur J; Wang, Yanjian; Brisson, Becky K; Vogel, Laurie K; Hankenson, Kurt D; Adams, Sherrill L

    2014-06-01

    Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers-Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6-8 weeks) and middle-aged (>1 year) control (Col3(+/+)) and haploinsufficient (Col3(+/-)) mice, as well as young null (Col3(-/-)) mice by microcomputed tomography (μCT). Although Col3(+/-) mice did not have significant craniofacial abnormalities based upon cranial morphometrics, μCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3(+/-) mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3(-/-) embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3(+/-) mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3(+/-) compared to Col3(+/+) bones. Taken together, these findings indicate that Col3 plays a

  13. Metrology applied to ultrasound characterization of trabecular bones using the AIB parameter

    NASA Astrophysics Data System (ADS)

    Braz, D. S.; Silva, C. E.; Alvarenga, A. V.; Junior, D. S.; Costa-Félix, R. P. B.

    2016-07-01

    Apparent Integrated Backscattering (AIB) presents correlation between Apparent Backscatter Transfer Function and the transducer bandwidth. Replicas of trabecular bones (cubes of 20 mm side length) created by 3D printing technique were characterized using AIB with a 2.25 MHz center frequency transducer. A mechanical scanning system was used to acquire multiple backscatter signals. An uncertainty model in measurement was proposed based on the Guide to the Expression of Uncertainty in Measurement. Initial AIB results are not metrologically reliable, presenting high measurement uncertainties (sample: 5_0.2032/AIB: -15.1 dB ± 13.9 dB). It is noteworthy that the uncertainty model proposed contributes as unprecedented way for metrological assessment of trabecular bone characterization using AIB.

  14. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone.

    PubMed

    Waters, Kendall R; Hoffmeister, Brent K

    2005-12-01

    A restricted-bandwidth form of the Kramers-Kronig dispersion relations is applied to in vitro measurements of ultrasonic attenuation and dispersion properties of trabecular bone specimens from bovine tibia. The Kramers-Kronig analysis utilizes only experimentally measured properties and avoids extrapolation of ultrasonic properties beyond the known bandwidth. Compensation for the portions of the Kramers-Kronig integrals over the unknown bandwidth is partially achieved by the method of subtractions, where a subtraction frequency acts as an adjustable parameter. Good agreement is found between experimentally measured and Kramers-Kronig reconstructed dispersions. The restricted-bandwidth approach improves upon other forms of the Kramers-Kronig relations and may provide further insight into how ultrasound interacts with trabecular bone.

  15. Anisotropic analysis of trabecular architecture in human femur bone radiographs using quaternion wavelet transforms.

    PubMed

    Sangeetha, S; Sujatha, C M; Manamalli, D

    2014-01-01

    In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples. PMID:25571265

  16. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.

    PubMed

    Nazemi, S Majid; Cooper, David M L; Johnston, James D

    2016-09-01

    Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT. PMID:27372175

  17. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.

    PubMed

    Nazemi, S Majid; Cooper, David M L; Johnston, James D

    2016-09-01

    Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.

  18. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei.

    PubMed

    Skedros, John G; Knight, Alex N; Farnsworth, Ryan W; Bloebaum, Roy D

    2012-03-01

    Calcanei of mature mule deer have the largest mineral content (percent ash) difference between their dorsal 'compression' and plantar 'tension' cortices of any bone that has been studied. The opposing trabecular tracts, which are contiguous with the cortices, might also show important mineral content differences and microscopic mineralization heterogeneity (reflecting increased hemi-osteonal renewal) that optimize mechanical behaviors in tension vs. compression. Support for these hypotheses could reveal a largely unrecognized capacity for phenotypic plasticity - the adaptability of trabecular bone material as a means for differentially enhancing mechanical properties for local strain environments produced by habitual bending. Fifteen skeletally mature and 15 immature deer calcanei were cut transversely into two segments (40% and 50% shaft length), and cores were removed to determine mineral (ash) content from 'tension' and 'compression' trabecular tracts and their adjacent cortices. Seven bones/group were analyzed for differences between tracts in: first, microscopic trabecular bone packets and mineralization heterogeneity (backscattered electron imaging, BSE); and second, trabecular architecture (micro-computed tomography). Among the eight architectural characteristics evaluated [including bone volume fraction (BVF) and structural model index (SMI)]: first, only the 'tension' tract of immature bones showed significantly greater BVF and more negative SMI (i.e. increased honeycomb morphology) than the 'compression' tract of immature bones; and second, the 'compression' tracts of both groups showed significantly greater structural order/alignment than the corresponding 'tension' tracts. Although mineralization heterogeneity differed between the tracts in only the immature group, in both groups the mineral content derived from BSE images was significantly greater (P < 0.01), and bulk mineral (ash) content tended to be greater in the 'compression' tracts (immature 3

  19. A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice.

    PubMed

    Doucette, Casey R; Horowitz, Mark C; Berry, Ryan; MacDougald, Ormond A; Anunciado-Koza, Rea; Koza, Robert A; Rosen, Clifford J

    2015-09-01

    Obesity has been associated with high bone mineral density (BMD) but a greater propensity to fracture. Some obese individuals have increased marrow adipose tissue (MAT), but the impact of MAT on bone turnover remains controversial, as do changes in BMD associated with a high fat diet (HFD). In this study we hypothesized that MAT volume would increase in response to HFD but would be independent of changes in BMD. Hence, we fed C57BL/6J (B6) male mice at 3 weeks of age either a high fat diet (60 kcal %) or regular diet (10 kcal %) for 12 weeks (n = 10/group). We measured MAT volume by osmium staining and micro-CT (µCT) as well as bone parameters by µCT, histomorphometry, and dual-energy X-ray absorptiometry. We also performed a short-term pilot study using 13-week-old B6 males and females fed a HFD (58 kcal %) for 2 weeks (n = 3/sex). Both long- and short-term HFD feedings were associated with high MAT volume, however, femoral trabecular bone volume fraction (BV/TV), bone formation rate and cortical bone mass were not altered in the long-term study. In the short-term pilot study, areal BMD was unchanged after 2 weeks of HFD. We conclude that, for B6 mice fed a HFD starting at wean or 13 weeks of age, MAT increases whereas bone mass is not altered. More studies are needed to define the mechanism responsible for the rapid storage of energy in the marrow and its distinction from other adipose depots. PMID:25663195

  20. The micro-structure of bone trabecular fracture: an inter-site study.

    PubMed

    Tassani, Simone; Matsopoulos, George K

    2014-03-01

    Trabecular bone fracture represents a major health problem, therefore the improvement of its assessment is mandatory for the reduction of the economic and social burden. The micro-structure of the trabecular bone was found to have an important effect on trabecular mechanical behavior. Nonetheless, the high variability of the trabecular micro-structure suggests a search for the local characteristics leading to the fracture. This work concerns the study of the local trabecular fracture zone and its morphometrical characterization, aiming to prediction of the probable fracture zone. Ninety micro-CT datasets acquired before and after the mechanical compression of 45 trabecular specimens were analyzed. Specimens were extracted from the lower limbs of two donors: 4 femora and 4 tibiae. A previously validated tool for the identification of the 3D fracture zone was applied and the local fracture zone was identified and analyzed in all the specimens. Fifteen morphometrical parameters were extracted for each local fracture zone. Standard statistical non-parametric analysis was performed to compare fractured and un-fractured zones together with a classification analysis for the prediction of the fracture zone. The statistical analysis showed strong statistical difference in the micro-structure of the trabecular fractured zone compared to the un-fractured one. Ten out of 15 measured parameters, like SMI, Tb.Th, BV/TV, off-axis angle, BS/BV and others, showed a statistical difference between full 3D fractured and un-fractured zones. Nonetheless, a satisfactory classification of the fractured zone was possible with none of the identified parameters. On the other hand, a total classification accuracy of 95.5% was presented by the application of a linear classifier based on a combination of the most representative parameters, like BS/BV and the off-axis angle. The study points out the local essence and peculiar characteristics of the fracture zone, it highlights the weakness of

  1. Production of New Trabecular Bone in Osteopenic Ovariectomized Rats by Prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Mori, S.; Jee, W. S. S.; Li, X. J.

    1992-01-01

    Serum chemistry and bone morphometry of the proximal tibial metaphysis were performed in 3 month-old double fluorescent-labeled, female Sprague-Dawley rats subjected to bilateral ovariectomy or sham surgery for 4 months prior to treatment with 0, 0.3, 1,3, or 6 mg of prostaglandin E2 (PGE2)/kg/day subcutaneously for 30 days. The 4 month postovariectomized rats possessed an osteopenic proximal tibial metaphysis with 7% trabecular area compared with controls (19%). PGE2 treatment elevated osteocalcin levels and augmented proximal tibial metaphyseal bone area in ovariectomized and sham-operated rats. Osteopenic, ovariectomized rats treated with 6 mg (PGE2)/kg/day for 30 days restored bone area to levels of agematched sham-operated rats. Morphometric analyses showed increased woven and lamellar bone area, fluorescent-labeled perimeter (osteoblastic recruitment), mineral apposition rate (osteoblastic activity), bone formation rate (BFR/BV), and longitudinal bone growth. These dramatic bone changes were all significantly increased at the doseresponse manner. This study showed that in vivo PGE2 is a powerful activator of bone remodeling, it increases both bone resorption and bone formation, and produces an anabolic effect by shifting bone balance to the positive direction. Furthermore, PGE2-induced augmentation of metaphyseal bone area in ovariectomized rats was at least two times greater than in sham-operated rats.

  2. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  3. Long-Duration Spaceflight During the Bion-M1 Spaceflight Experiment Resulted in Significant Bone Loss in the Femoral Head and Alterations in Stem Cell Differentiation Potential in Male Mice

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Almeida, Eduardo; Grigoryan, Eleonora; Globus, Ruth

    Scientific understanding of the effects of microgravity on mammalian physiology has been limited to short duration spaceflight experiments (10-15 days). As long duration and inter-planetary missions are being initiated, there is a great need to understand the long-term effects of spaceflight on various physiological processes, including stem cell-based tissue regeneration. Bion-M1, for the first time, enabled the possibility of studying the effects of 30-days of microgravity exposure on a mouse model with sufficient sample size to enable statistical analysis. In this experiment, we hypothesized that microgravity negatively impacts stem cell based tissue regeneration, such as bone remodeling and regeneration from hematopoietic and mesenchymal precursors, thereby resulting in tissue degeneration in mice exposed to spaceflight. To test this hypothesis we collected the pelvis and proximal femur from space-flown mice and asynchronous ground controls and analyzed bone and bone marrow using techniques including Microcomputed Tomography (MicroCT), and in-vitro differentiation and differentiating cell motility assays. To determine the effects of 30-days spaceflight on bone tissue mass, we used MicroCT to analyze the trabecular bone of the femoral head and the cortical bone of the femoral neck and mid-shaft. We found that spaceflight caused a 45% decrease in bone volume ratio, a 17% decrease in trabecular thickness, a 25% decrease in trabecular number, and a 17% increase in trabecular spacing of trabecular bone. Furthermore, structural model index and trabecular pattern factor were increased by 32% and 82% respectively indicating that 30-days spaceflight resulted not only in a large loss of trabecular bone but also in a decrease of bone strength indicators. Analysis of the femoral neck cortical bone showed an increase in marrow area and cortical porosity indicating an overall widening of the femoral neck. Interestingly, no significant alterations were found in the cortical

  4. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    PubMed

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility.

  5. Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures.

    PubMed

    Wang, Ji; Stein, Emily M; Zhou, Bin; Nishiyama, Kyle K; Yu, Y Eric; Shane, Elizabeth; Guo, X Edward

    2016-07-01

    Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in postmenopausal women with vertebral fractures. HR-pQCT images of distal radius and tibia were acquired from 45 women with vertebral fractures and 45 control subjects without fractures. Trabecular and cortical compartments were separated by an automatic segmentation algorithm and subjected to individual trabecula segmentation (ITS) analysis for measuring trabecular plate and rod morphology and cortical bone evaluation for measuring cortical thickness and porosity, respectively. Whole bone and trabecular bone stiffness were estimated by finite element analysis. Fracture and control subjects did not differ according to age, race, body mass index, osteoporosis risk factors, or medication use. Women with vertebral fractures had thinner cortices, and larger trabecular area compared to the control group. By ITS analysis, fracture subjects had fewer trabecular plates, less axially aligned trabeculae and less trabecular connectivity at both the radius and the tibia. Fewer trabecular rods were observed at the radius. Whole bone stiffness and trabecular bone stiffness were 18% and 22% lower in women with vertebral fractures at the radius, and 19% and 16% lower at the tibia, compared with controls. The estimated failure load of the radius and tibia were also reduced in the fracture subjects by 13% and 14%, respectively. In summary, postmenopausal women with vertebral fractures had both trabecular and cortical microstructural deterioration at the peripheral skeleton, with a preferential loss of trabecular plates and cortical thinning. These microstructural deficits translated into lower

  6. Premenopausal Trabecular Bone Loss is Associated with a Family History of Fragility Fracture

    PubMed Central

    Prior, J. C.; Hitchcock, C. L.; Vigna, Y. M.; Seifert-Klauss, V.

    2016-01-01

    Introduction: Although a fragility fracture family history (FFFH+) has repeatedly been shown to be associated with lower bone mineral density (BMD), its relationship to human BMD change is unclear. Animal research, however, documented that different purebred strains within rodent species have wide ranges in rates of bone acquisition during growth as well as in change post-ovariectomy. Our objective was to compare the rate of premenopausal spinal trabecular BMD change between women with and without a general family history of fragility fracture. Participants and Methods: Healthy premenopausal community women participated in prospective observational studies at two academic medical research centres: Vancouver, Canada (n = 66) and Munich, Germany (n = 20). The primary outcome was annual spinal BMD change, measured by quantitative computed tomography (QCT). The two studies employed similar methodologies for assessing QCT and FFFH. Results: Volunteer community participants had a mean age of 36.0 (SD, 6.9) years, body mass index 22.5 (2.4) and baseline QCT of 150.2 (22.5) mg/cm3 trabecular bone. The rates of BMD change were similar in both cities: − 3.5 (5.1)/year Vancouver, − 2.0 (3.4)/year Munich (95 % CI of difference: − 3.9, 0.9). Over a third of the women (31 of the 86, 36 %) reported FFFH+. Those with and without a FFFH were similar in demographics, nutrition, exercise, menstrual cycle and luteal phase lengths and physiological measures (serum calcium, osteocalcin and estradiol). However, women with FFFH+ lost trabecular BMD more rapidly: FFFH+, − 4.9 (5.0), FFFH−, − 2.2 (4.4) mg/cm3/year (95 % CI diff − 0.7 to − 4.8, F1.83 = 7.88, p = 0.006). FFFH+ explained 7.7 % of the variance in QCT volumetric trabecular spinal bone change/year in these healthy premenopausal women. Conclusion: This study shows for the first time that having a history of a fragility fracture in a family member is associated with a greater

  7. Assessment of global morphological and topological changes in trabecular structure under the bone resorption process

    NASA Astrophysics Data System (ADS)

    Sidorenko, Irina N.; Bauer, Jan; Monetti, Roberto; Baum, Thomas; Rummeny, Ernst J.; Eckstein, Felix; Matsuura, Maiko; Lochmueller, Eva-Maria; Zysset, Philippe K.; Raeth, Christoph W.

    2012-03-01

    Osteoporosis is a frequent skeletal disease characterised both by loss of bone mineral mass and deterioration of cancellous bone micro-architecture. It can be caused by mechanical disuse, estrogen deficiency or natural age-related resorption process. Numerical analysis of high-resolution images of the trabecular network is recognised as a powerful tool for assessment of structural characteristics. Using μCT images of 73 thoracic and 78 lumbar human vertebral specimens in vitro with isotropic resolution of 26μm we simulate bone atrophy as random resorption of bone surface voxels. Global morphological and topological characteristics provided by four Minkowski Functionals (MF) are calculated for two numerical resorption models with and without conservation of global topological connectivity of the trabecular network, which simulates different types of bone loss in osteoporosis, as it has been described in males and females. Diagnostic performance of morphological and topological characteristics as a function of relative bone loss is evaluated by a correlation analysis with respect to experimentally measured Maximum Compressive Strength (MCS). In both resorption models the second MF, which coincides with bone surface fraction BS/TV, demonstrates almost constant value of Pearson's correlation coefficient with respect to the relative bone loss ▵BV/TV. This morphological characteristic does not vary considerably under age-related random resorption and can be used for predicting bone strength in the elderly. The third and fourth MF demonstrate an increasing correlation coefficients with MCS after applying random bone surface thinning without preserving topological connectivity, what can be used for improvement of evaluation of the current state of the structure.

  8. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence.

    PubMed

    Kelly, Nicola; Harrison, Noel M; McDonnell, Pat; McGarry, J Patrick

    2013-08-01

    Interbody fusion device subsidence has been reported clinically. An enhanced understanding of the mechanical behaviour of the surrounding bone would allow for accurate predictions of vertebral subsidence. The multiaxial inelastic behaviour of trabecular bone is investigated at a microscale and macroscale level. The post-yield behaviour of trabecular bone under hydrostatic and confined compression is investigated using microcomputed tomography-derived microstructural models, elucidating a mechanism of pressure-dependent yielding at the macroscopic level. Specifically, microstructural trabecular simulations predict a distinctive yield point in the apparent stress-strain curve under uniaxial, confined and hydrostatic compression. Such distinctive apparent stress-strain behaviour results from localised stress concentrations and material yielding in the trabecular microstructure. This phenomenon is shown to be independent of the plasticity formulation employed at a trabecular level. The distinctive response can be accurately captured by a continuum model using a crushable foam plasticity formulation in which pressure-dependent yielding occurs. Vertebral device subsidence experiments are also performed, providing measurements of the trabecular plastic zone. It is demonstrated that a pressure-dependent plasticity formulation must be used for continuum level macroscale models of trabecular bone in order to replicate the experimental observations, further supporting the microscale investigations. Using a crushable foam plasticity formulation in the simulation of vertebral subsidence, it is shown that the predicted subsidence force and plastic zone size correspond closely with the experimental measurements. In contrast, the use of von Mises, Drucker-Prager and Hill plasticity formulations for continuum trabecular bone models lead to over prediction of the subsidence force and plastic zone.

  9. Differing effects of denosumab and alendronate on cortical and trabecular bone.

    PubMed

    Zebaze, Roger M; Libanati, Cesar; Austin, Matthew; Ghasem-Zadeh, Ali; Hanley, David A; Zanchetta, Jose R; Thomas, Thierry; Boutroy, Stephanie; Bogado, Cesar E; Bilezikian, John P; Seeman, Ego

    2014-02-01

    Vertebral fractures and trabecular bone loss are hallmarks of osteoporosis. However, 80% of fractures are non-vertebral and 70% of all bone loss is cortical and is produced by intracortical remodeling. The resulting cortical porosity increases bone fragility exponentially. Denosumab, a fully human anti-RANKL antibody, reduces the rate of bone remodeling more than alendronate. The aim of this study was to quantify the effects of denosumab and alendronate on cortical and trabecular bone. Postmenopausal women, mean age 61years (range 50 to 70), were randomized double blind to placebo (n=82), alendronate 70mg weekly (n=82), or denosumab 60mg every 6months (n=83) for 12months. Porosity of the compact-appearing cortex (CC), outer and inner cortical transitional zones (OTZ, ITZ), and trabecular bone volume/total volume (BV/TV) of distal radius were quantified in vivo from high-resolution peripheral quantitative computed tomography scans. Denosumab reduced remodeling more rapidly and completely than alendronate, reduced porosity of the three cortical regions at 6months, more so by 12months relative to baseline and controls, and 1.5- to 2-fold more so than alendronate. The respective changes at 12months were [mean (95% CI)]; CC: -1.26% (-1.61, -0.91) versus -0.48% (-0.96, 0.00), p=0.012; OTZ: -1.97% (-2.37, -1.56) versus -0.81% (-1.45, -0.17), p=0.003; and ITZ: -1.17% (-1.38, -0.97) versus -0.78% (-1.04, -0.52), p=0.021. Alendronate reduced porosity of the three cortical regions at 6months relative to baseline and controls but further decreased porosity of only the ITZ at 12months. By 12months, CC porosity was no different than baseline or controls, OTZ porosity was reduced only relative to baseline, not controls, while ITZ porosity was reduced relative to baseline and 6months, but not controls. Each treatment increased trabecular BV/TV volume similarly: 0.25% (0.19, 0.30) versus 0.19% (0.13, 0.30), p=0.208. The greater reduction in cortical porosity by denosumab may be due

  10. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    SciTech Connect

    Gotman, Irena Gutmanas, Elazar Y.; Zaretzky, Asaph; Psakhie, Sergey G.

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  11. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Zaretzky, Asaph; Psakhie, Sergey G.; Gutmanas, Elazar Y.

    2015-10-01

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength "trabecular Nitinol" scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1-1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  12. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  13. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    PubMed

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424

  14. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog

    PubMed Central

    Liao, Sheng-hui; Zhu, Xing-hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424

  15. Scaling in Theropod Dinosaurs: Femoral Bone Dimensions

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.

    2014-05-01

    Finding topics that inspire students is an important aspect of any physics course. Virtually everyone is fascinated by Tyrannosaurus rex, and the excitement of the class is palpable when we explore scaling effects in T. rex and other bipedal theropod dinosaurs as part of our discussion of mechanics and elasticity. In this paper, we explore the role of longitudinal stress in the femur bones due to the weight of the dinosaur in determining how the geometry of the femur changes with size of the theropod. This is one area of allometry the study of how different biological characteristics scale with size.

  16. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    PubMed

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  17. Bone marrow ablation demonstrates that excess endogenous parathyroid hormone plays distinct roles in trabecular and cortical bone.

    PubMed

    Yan, Jun; Sun, Weiwei; Zhang, Jing; Goltzman, David; Miao, Dengshun

    2012-07-01

    Mice null for Cyp27b1, which encodes the 25-hydroxyvitamin D-1α-hydroxylase [1α(OH)ase(-/-) mice], lack 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and have hypocalcemia and high parathyroid hormone (PTH) secretion. Intermittent, exogenous PTH is anabolic for bone. To determine the effect of the chronic excess endogenous PTH on osteogenesis and bone turnover, bone marrow ablations (BMX) were performed in tibiae and femurs of 6-week-old 1α(OH)ase(-/-) mice and in wild-type (WT) controls. Newly formed bone tissue was analyzed at 1, 2, and 3 weeks after BMX. BMX did not alter the higher levels of PTH in 1α(OH)ase(-/-) mice. In the marrow cavity, trabecular volume, osteoblast number, alkaline phosphatase-positive areas, type I collagen-positive areas, bone formation-related genes, and protein expression levels all increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. Osteoclast numbers and surface and ratio of RANKL/OPG-relative mRNA levels decreased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. In the cortex, alkaline phosphatase-positive osteoblasts and osteoclast numbers increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. These results demonstrate that chronic excess endogenous PTH exerts an anabolic role in trabecular bone by stimulating osteogenic cells and reducing bone resorption, but plays a catabolic role in cortical bone by enhancing bone turnover with an increase in resorption. PMID:22640808

  18. The Fate and Distribution of Autologous Bone Marrow Mesenchymal Stem Cells with Intra-Arterial Infusion in Osteonecrosis of the Femoral Head in Dogs

    PubMed Central

    Jin, Hongting; Xu, Taotao; Chen, Qiqing; Wu, Chengliang; Wang, Pinger; Mao, Qiang; Zhang, Shanxing; Shen, Jiayi; Tong, Peijian

    2016-01-01

    This study aimed to investigate if autologous bone marrow mesenchymal stem cells (MSCs) could treat osteonecrosis of the femoral head (ONFH) and what the fate and distribution of the cells are in dogs. Twelve Beagle dogs were randomly divided into two groups: MSCs group and SHAM operated group. After three weeks, dogs in MSCs group and SHAM operated group were intra-arterially injected with autologous MSCs and 0.9% normal saline, respectively. Eight weeks after treatment, the necrotic volume of the femoral heads was significantly reduced in MSCs group. Moreover, the trabecular bone volume was increased and the empty lacunae rate was decreased in MSCs group. In addition, the BrdU-positive MSCs were unevenly distributed in femoral heads and various vital organs. But no obvious abnormalities were observed. Furthermore, most of BrdU-positive MSCs in necrotic region expressed osteocalcin in MSCs group and a few expressed peroxisome proliferator-activated receptor-γ (PPAR-γ). Taken together, these data indicated that intra-arterially infused MSCs could migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. It suggests that intra-arterial infusion of autologous MSCs might be a feasible and relatively safe method for the treatment of femoral head necrosis. PMID:26779265

  19. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

    PubMed Central

    Lima, Eric G.; Chao, Pen-hsiu Grace; Ateshian, Gerard A.; Bal, B. Sonny; Cook, James L.; Vunjak-Novakovic, Gordana; Hung, Clark T.

    2008-01-01

    In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Young's modulus (EY) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (EY = 87 ± 12 kPa, GAG = 1.9 ± 0.8%ww) compared to the gel-alone group (EY = 642 ± 97 kPa, GAG = 4.6 ± 1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell–bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (EY = 730 ± 65 kPa, GAG = 5.2 ± 0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts. PMID:18718655

  20. Increased bone mineral content and bone size in the femoral neck of men with hip osteoarthritis

    PubMed Central

    Arokoski, J; Arokoski, M; Jurvelin, J; Helminen, H; Niemitukia, L; Kroger, H

    2002-01-01

    Objectives: Even though clinical findings support the idea that hip osteoarthritis (OA) is associated with increased bone mineral density (BMD), the subject remains controversial. This study was therefore initiated to investigate the relation between the severity of hip OA and femoral and calcaneal BMD. Methods: On the basis of the American College of Rheumatology criteria on classification of OA of the hip, 27 men (aged 47–64 years) with unilateral or bilateral hip OA and 30 age matched randomly selected healthy men were studied. Plain radiographs were graded using Li's scale from 0 (no OA) to 4 (severe OA). According to the side of the highest radiographic score from the patients with clinical hip OA, 29.6% had grade 1, 29.6% grade 2, and 40.8% grade 3 OA. Bone mineral content (BMC), areal BMD (BMDareal), and bone dimensions (area and width) were measured by dual x ray absorptiometry at the proximal femur. BMDareal of the calcaneus was measured from the central area of the bone. Volumetric measurements from magnetic resonance images of the femoral neck were used to create a BMD measure that was corrected for the femoral neck volume (BMDmri). Results: There were no differences in weight, or body mass index between the study groups. There were no significant BMDareal differences in any of the subregions of the proximal femur (femoral neck and trochanter) or calcaneus between the OA and control groups. Neither did the BMDmri of the femoral neck differ between the groups. However, the BMC of the femoral neck was 18% higher (p<0.01) in patients with OA than in controls. Similarly femoral neck bone width and volume were 9% and 18% respectively higher (p<0.001) in patients with OA. Conclusions: The results suggest that men with hip OA have larger femoral neck size and consequently higher BMC than healthy controls matched for age and sex. There is no significant difference in femoral neck BMD (BMDareal or BMDmri) between the groups. Furthermore, increased BMDareal was

  1. Modeling of the dielectric properties of trabecular bone samples at microwave frequency.

    PubMed

    Irastorza, Ramiro M; Blangino, Eugenia; Carlevaro, Carlos M; Vericat, Fernando

    2014-05-01

    In this paper, the dielectric properties of human trabecular bone are evaluated under physiological condition in the microwave range. Assuming a two components medium, simulation and experimental data are presented and discussed. A special experimental setup is developed in order to deal with inhomogeneous samples. Simulation data are obtained using finite difference time domain from a realistic sample. The bone mineral density of the samples are also measured. The simulation and experimental results of the present study suggest that there is a negative relation between bone volume fraction (BV/TV) and permittivity/conductivity: the higher the BV/TV, the lower the permittivity/conductivity. This is in agreement with the recently published in vivo data.

  2. On the relationship of ultrasonic properties to density and architecture in trabecular bone

    NASA Astrophysics Data System (ADS)

    Nicholson, Patrick; Bouxsein, Mary

    2002-05-01

    As previously reported elsewhere, we have made ultrasonic measurements in human trabecular bone and have explored relationships with microstructural properties, the latter derived from microcomputed tomography. However, multicollinearity in these data means that conventional regression analysis cannot reliably identify the underlying causal relationships. In an effort to move beyond such limitations, we used our experimental data to test some models of possible interactions between ultrasound and bone. In particular, we compared several models for predicting acoustic velocity in two-phase media as a function of the bone volume fraction. We found good agreement only with the theory of Kuster and Toksoz [Geophysics 39, 587 (1974)] based on scattering by an effective medium. Turning our attention to attenuation, we examined relationships with trabecular thickness (Tb.Th) and the number of trabeculae per unit volume (Tb.N). The exponent relating attenuation to Tb.Th was 3.2, lower than the value of 4 predicted for long wavelength inelastic scattering by cylinders. This may be due to multiple scattering, since restricting the analysis to specimens with relatively low Tb.N yielded an exponent of 3.9. The exponent relating attenuation to Tb.N was 1.3, higher than the expected value of unity, which may again reflect the influence of multiple scattering.

  3. Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry.

    PubMed

    Xu, H; Watkins, B A; Seifert, M F

    1995-10-01

    The effects of dietary vitamin E (VIT E) and lipids on tissue peroxidation and fatty acid composition, epiphyseal growth plate cartilage development, and trabecular bone formation were evaluated in chicks. A 2 x 2 factorial design was followed using two levels (30 and 90 IU/kg of diet) of dl-alpha-tocopheryl acetate and two different dietary lipids. The basal semipurified diet contained one of the following lipid treatments: anhydrous butter oil (40 g/kg) + soybean oil (60 g/kg), [BSO], or soybean oil (100 g/kg), [SBO]. After 14 days of feeding, the level of alpha tocopheryl in plasma was higher and thiobarbituric acid reactive substances (TBARS) were less in plasma and liver of chicks supplemented with 90 IU of VIT E compared with those given 30 IU of VIT E. Body weights and tibiotarsal bone lengths were not affected by the dietary treatments. Saturated fatty acids (14:0, 15:0, 16:0, 17:0, and 18:0) were increased in the tibiotarsal bone of chicks fed the BSO diet. In contrast, total polyunsaturated fatty acids and the ratio unsaturated fatty acids/saturated fatty acids were higher is plasma of chicks fed SBO compared with the values from chicks fed BSO. The thickness of the entire growth plate cartilage and the lower hypertrophic chondrocyte zone was significantly greater in chicks fed 90 IU/kg of VIT E. Kinetic parameters on bone histomorphometry indicated that mineral apposition rate was higher in chicks fed 90 IU of VIT E. The interaction effect between the VIT E and BSO treatments led to the highest trabecular bone formation rate among the groups. These data suggest that VIT E protects against cellular lipid peroxidation in cartilage to sustain normal bone growth and modeling.

  4. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis.

    PubMed

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Haut Donahue, Tammy L

    2015-12-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans.

  5. Periprosthetic bone density around fully hydroxyapatite coated femoral stem.

    PubMed

    Trevisan, C; Bigoni, M; Randelli, G; Marinoni, E C; Peretti, G; Ortolani, S

    1997-07-01

    In this study, periprosthetic bone mineral density was measured at scheduled time intervals after surgery by dual energy x-ray absorptiometry in 21 patients to assess the history of bone density redistribution after femoral stem insertion. Measurements of changes in bone density with time were obtained for the regions of the greater trochanter, the lateral cortex, the tip, the medial cortex, and the calcar. In all regions, bone density decreased during the first 3 months after surgery; this was followed by a prolonged period of 18 to 30 months of bone gain, a subsequent period of steady state, and the final resumption of bone aging processes after the third postoperative year. The greatest loss was observed in the calcar region after 6 months (greater than 50%). The characteristic pattern of time related bone density changes obtained in this study may make it possible to compare other pathologic, design, or stiffness related patterns. This could have clinical relevance in the early diagnosis of pathologic processes and as a means of evaluating prosthetic designs.

  6. Decreased Bone Volume and Bone Mineral Density in the Tibial Trabecular Bone Is Associated with Per2 Gene by 405 nm Laser Stimulation

    PubMed Central

    Yoo, Yeong-Min; Lee, Myung-Han; Park, Ji Hyung; Seo, Dong-Hyun; Lee, Sangyeob; Jung, Byungjo; Kim, Han Sung; Bae, Kiho

    2015-01-01

    Low-level laser therapy/treatment (LLLT) using a minimally invasive laser needle system (MILNS) might enhance bone formation and suppress bone resorption. In this study, the use of 405 nm LLLT led to decreases in bone volume and bone mineral density (BMD) of tibial trabecular bone in wild-type (WT) and Per2 knockout (KO) mice. Bone volume and bone mineral density of tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase (ALP) and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2 KO mice compared to the non-irradiated left tibia (p < 0.001). Per2 mRNA expression in WT mice was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated left tibia (p < 0.001). To identify the decrease in tibial bone mediated by the Per2 gene, levels of runt-related transcription factor 2 (Runx2) and ALP mRNAs were determined in non-irradiated WT and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice (p < 0.001). Therefore, the reduction in tibial trabecular bone resulting from 405 nm LLLT using MILNS might be associated with Per2 gene expression. PMID:26580614

  7. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques.

    PubMed

    Turner, C H; Rho, J; Takano, Y; Tsui, T Y; Pharr, G M

    1999-04-01

    Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.

  8. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  9. Injectable Biocomposites for Bone Healing in Rabbit Femoral Condyle Defects

    PubMed Central

    Liu, Zhengsheng; Wang, Xiumei; Cui, Fuzhai; Guo, Wenguang; Mao, Keya; Yang, Shuying

    2013-01-01

    A novel biomimetic bone scaffold was successfully prepared in this study, which was composed of calcium sulfate hemihydrate (CSH), collagen and nano-hydroxyapatite (nHAC). CSH/nHAC was prepared and observed with scanning electron microscope and rhBMP-2 was introduced into CSH/nHAC. The released protein content from the scaffold was detected using high performance liquid chromatography at predetermined time interval. In vivo bone formation capacity was investigated by means of implanting the scaffolds with rhBMP-2 or without rhBMP-2 respectively into a critical size defect model in the femoral condyle of rabbit. The releasing character of rhBMP-2 was that an initial burst release (37.5%) was observed in the first day, followed by a sustained release and reached 100% at the end of day 20. The CSH/nHAC showed a gradual decrease in degradation with the content of nHAC increase. The results of X-rays, Micro CT and histological observation indicated that more new bone was formed in rhBMP-2 group. The results implied that this new injectable bone scaffold should be very promising for bone repair and has a great potential in bone tissue engineering. PMID:24146770

  10. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    PubMed

    Lu, Hongbin; Zheng, Cheng; Wang, Zhanwen; Chen, Can; Chen, Huabin; Hu, Jianzhong

    2015-01-01

    This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week) and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point). The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate the

  11. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    PubMed

    Lu, Hongbin; Zheng, Cheng; Wang, Zhanwen; Chen, Can; Chen, Huabin; Hu, Jianzhong

    2015-01-01

    This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week) and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point). The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate the

  12. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

  13. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice

    PubMed Central

    Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M-L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; Reginster, J-Y.; Rizzoli, R.; Kanis, J.A.

    2015-01-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g. diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  14. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX. PMID:25988660

  15. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  16. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.

    PubMed

    Goda, Ibrahim; Ganghoffer, Jean-François

    2015-11-01

    The purpose of this paper is to develop a homogeneous, orthotropic couple-stress continuum model as a substitute of the 3D periodic heterogeneous cellular solid model of vertebral trabecular bone. Vertebral trabecular bone is modeled as a porous material with an idealized periodic structure made of 3D open cubic cells, which is effectively orthotropic. The chosen architecture is based on studies of samples taken from the central part of vertebral bodies. The effective properties are obtained based on the response of the representative volume element under prescribed boundary conditions. Mixed boundary conditions comprising both traction and displacement boundary conditions are applied on the structure boundaries. In this contribution, the effective mechanical constants of the effective couple-stress continuum are deduced by an equivalent strain energy method. The characteristic lengths for bending and torsion are identified from the resulting homogenized orthotropic moduli. We conduct this study computationally using a finite element approach. Vertebral trabecular bone is modeled either as a cellular solid or as a two-phase material consisting of bone tissue (stiff phase) forming a trabecular network, and a surrounding soft tissue referring to the bone marrow present in the pores. Both the bone tissue forming the network and the pores are assumed to be homogeneous linear elastic, and isotropic media. The scale effects on the predicted couple stress moduli of these networks are investigated by varying the size of the bone specimens over which the boundary conditions are applied. The analysis using mixed boundary conditions gives results that are independent of unit cell size when computing the first couple stress tensor, while it is dependent on the cell size as to the second couple stress tensor moduli. This study provides overall guidance on how the size of the trabecular specimen influence couple stresses elastic moduli of cellular materials, with focus on bones

  17. Fracture properties of growth plate cartilage compared to cortical and trabecular bone in ovine femora.

    PubMed

    Tschegg, E K; Celarek, A; Fischerauer, S F; Stanzl-Tschegg, S; Weinberg, A M

    2012-10-01

    Fracture mechanical parameters (notch tensile strength, specific fracture energy/crack resistance and specific crack initiation energy) of epiphyseal plate cartilage, trabecular bone (metaphysis) and cortical bone (diaphysis) were determined on ovine femur specimens. The fracture behaviour before and after crack initiation was recorded in force-displacement diagrams from wedge splitting tests. Crack propagation was stable both during and after the formation of a principal crack. This is the main advantage of the wedge-splitting method by Tschegg in comparison with tensile tests. Microscopy of the epiphyseal plate during fracture showed fibre elongation and tearing in the crack tip region. The results of this study can help to understand the mechanics of epiphyseal plate injuries and the obtained values can be used for computational simulations and models. PMID:23022566

  18. Ex vivo human trabecular bone model for biocompatibility evaluation of calcium phosphate composites modified with spray dried biodegradable microspheres.

    PubMed

    Schnieders, Julia; Gbureck, Uwe; Germershaus, Oliver; Kratz, Marita; Jones, David B; Kissel, Thomas

    2013-10-01

    Our aim was to study the suitability of the ex-vivo human trabecular bone bioreactor ZetOS to test the biocompatibility of calcium phosphate bone cement composites modified with spray dried, drug loaded microspheres. We hypothesized, that this bone bioreactor could be a promising alternative to in vivo assessment of biocompatibility in living human bone over a defined time period. Composites consisting of tetracycline loaded poly(lactic-co-glycolic acid) microspheres and calcium phosphate bone cement, were inserted into in vitro cultured human femora head trabecular bone and incubated over 30 days at 37°C in the incubation system. Different biocompatibility parameters, such as lactate dehydrogenase activity, alkaline phosphatase release and the expression of relevant cytokines, IL-1β, IL-6, and TNF-α, were measured in the incubation medium. No significant differences in alkaline phosphatase, osteocalcin, and lactate dehydrogenase activity were measured compared to control samples. Tetracycline was released from the microspheres, delivered and incorporated into newly formed bone. In this study we demonstrated that ex vivo biocompatibility testing using human trabecular bone in a bioreactor is a potential alternative to animal experiments since bone metabolism is still maintained in a physiological environment ex vivo.

  19. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  20. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  1. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique.

    PubMed

    Beck, J D; Canfield, B L; Haddock, S M; Chen, T J; Kothari, M; Keaveny, T M

    1997-09-01

    Although various techniques exist for high-resolution, three-dimensional imaging of trabecular bone, a common limitation is that resolution depends on specimen size. Most techniques also have limited availability due to their expense and complexity. We therefore developed a simple, accurate technique that has a resolution that is independent of specimen size. Thin layers are serially removed from an embedded bone specimen using a computer numerically controlled (CNC) milling machine, and each exposed cross section is imaged using a low-magnification digital camera. Precise positioning of the specimen under the camera is achieved using the programmable feature of the CNC milling machine. Large specimens are imaged without loss of resolution by moving the specimen under the camera such that an array of field-of-views spans the full cross section. The images from each field-of-view are easily assembled and registered in the postprocessing. High-contrast sections are achieved by staining the bone black with silver nitrate and embedding it in whitened methylmethacrylate. Due to the high contrast nature and high resolution of the images, thresholding at a single value yielded excellent predictions of morphological parameters such as bone volume fraction (mean +/- SD percent error = 0.70 +/- 4.28%). The main limitations of this fully automated "CNC milling technique" are that the specimen is destroyed and the process is relatively slow. However, because of its accuracy, independence of image resolution from specimen size, and ease of implementation, this new technique is an excellent method for ex situ imaging of trabecular architecture, particularly when high resolution is required.

  2. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse chromosome 4 that shares linkage homology to human chromosome 1p36.

    PubMed

    Beamer, Wesley G; Shultz, Kathryn L; Coombs, Harold F; Horton, Lindsay G; Donahue, Leah Rae; Rosen, Clifford J

    2012-01-01

    The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a quantitative trait locus (QTL) with strong regulatory effect on volumetric bone mineral density (vBMD). The intent of this study is to utilize nested congenic strains to decompose the genetic complexity of this gene-rich region. Adult females and males from 18 nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular bone volume (BV), tissue volume (TV), trabecular number (Trab.no), and trabecular thickness (Trab.thk) by MicroCT 40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and MicroCT 40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the MicroCT 40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions II to X are syntenic with human 1p36, containing from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in Genome Wide Association Studies (GWAS) linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and MicroCT 40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology and offer models for testing hypotheses about gene-gene and gene

  3. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse chromosome 4 that shares linkage homology to human chromosome 1p36.

    PubMed

    Beamer, Wesley G; Shultz, Kathryn L; Coombs, Harold F; Horton, Lindsay G; Donahue, Leah Rae; Rosen, Clifford J

    2012-01-01

    The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a quantitative trait locus (QTL) with strong regulatory effect on volumetric bone mineral density (vBMD). The intent of this study is to utilize nested congenic strains to decompose the genetic complexity of this gene-rich region. Adult females and males from 18 nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular bone volume (BV), tissue volume (TV), trabecular number (Trab.no), and trabecular thickness (Trab.thk) by MicroCT 40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and MicroCT 40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the MicroCT 40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions II to X are syntenic with human 1p36, containing from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in Genome Wide Association Studies (GWAS) linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and MicroCT 40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology and offer models for testing hypotheses about gene-gene and gene

  4. Bone impregnated hip screw in femoral neck fracture: Clinicoradiological results

    PubMed Central

    Sundar Raj, PK; Nuuman, Jiju A; Pattathil, Amish Sunder

    2015-01-01

    Background: Femoral neck fractures are treated either by internal fixation or arthroplasty. Usually, cannulated cancellous screws are used for osteosynthesis of fracture neck of femur. The bone impregnated hip screw (BIHS) is an alternative implant, where osteosyntehsis is required in femoral neck fracture. Materials and Methods: The BIHS is a hollow screw with thread diameter 8.3 mm, shank diameter 6.5 mm and wall thickness 2.2 mm and holes in the shaft of the screw with diameter 2 mm, placed in a staggered fashion. Biomechanical and animal experimental studies were done. Clinical study was done in two phases: Phase 1 in a group of volunteers, only with BIHS was used in a pilot study and phase 2 comparative study was done in a group with AO cannulated screws and the other group treated with BIHS. Results: In the phase 1 study, out of 15 patients, only one patient had delayed union. In phase 2, there were 78 patients, 44 patients in BIHS showed early union, compared to the rest 34 cases of AO cannulated screws Out of 44 patients with BIHS, 41 patients had an excellent outcome, 2 had nonunions and one implant breakage was noted. Conclusions: Bone impregnated hip screw has shown to provide early solid union since it incorporates the biomechanical principles and also increases the osteogenic potential and hence, found superior to conventional cannulated cancellous screw. PMID:26015608

  5. Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) vertebrae.

    PubMed

    Krossøy, Christel; Ornsrud, Robin; Wargelius, Anna

    2009-12-01

    The tissue-specific gene expression of the vitamin K-dependent proteins bone gamma-carboxyglutamate-protein (BGP) and matrix gamma-carboxyglutamate-protein (MGP) in Atlantic salmon (Salmo salar L.) was investigated. In previous studies, BGP, the most abundant non-collagenous protein of bone, was almost exclusively associated with bone, whereas the non-structural protein MGP has a more widespread tissue distribution. In-situ hybridization of juvenile Atlantic salmon ( approximately 40 g, fresh water) vertebrae demonstrated expression of bgp and mgp mRNA in osteoblasts lining the trabecular bone, whereas no staining was observed in the compact bone. By separating the trabecular and compact bone of both juvenile ( approximately 40 g, fresh water) and adult ( approximately 1000 g, sea water) Atlantic salmon, we observed that the two vertebral bone compartments displayed different levels of bgp, whereas no such differences were seen for mgp. Measurements of the mineral content and Ca/P molar ratio in adult salmon revealed no significant differences between trabecular and compact bone. In conclusion, the osteoblasts covering the salmon vertebrae have unique gene expression patterns and levels of bgp and mgp. Further, the study confirms the presence of mRNA from the vitamin K-dependent proteins BGP and MGP in the vertebrae, fin and gills of Atlantic salmon.

  6. Numerical simulation on the adaptation of forms in trabecular bone to mechanical disuse and basic multi-cellular unit activation threshold at menopause

    NASA Astrophysics Data System (ADS)

    Gong, He; Fan, Yubo; Zhang, Ming

    2008-04-01

    The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.

  7. Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls

    PubMed Central

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-01-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933

  8. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  9. Quantitative assessment of trabecular bone micro-architecture of the wrist via 7 Tesla MRI: preliminary results

    PubMed Central

    Wang, Ligong; Liang, Guoyuan; Babb, James S.; Wiggins, Graham C.; Saha, Punam K.; Regatte, Ravinder R.

    2013-01-01

    Object The goal of this study was to determine the feasibility of performing quantitative 7T magnetic resonance imaging (MRI) assessment of trabecular bone micro-architecture of the wrist, a common fracture site. Materials and methods The wrists of 4 healthy subjects (1 woman, 3 men, 28±8.9 years) were scanned on a 7T whole body MR scanner using a 3D fast low-angle shot (FLASH) sequence (TR/TE = 20/4.5ms, 0.169 × 0.169 × 0.5mm). Trabecular bone was segmented and divided into 4 or 8 angular subregions. Total bone volume (TBV), bone volume fraction (BVF), surface-curve ratio (SC), and erosion index (EI) were computed. Subjects were scanned twice to assess measurement reproducibility. Results Group mean subregional values for TBV, BVF, SC, and EI (8 subregion analysis) were as follows: 8489 ± 3686, 0.27 ± 0.045, 9.61 ± 6.52; and 1.43 ± 1.25. Within each individual, there was subregional variation in TBV, SC, and EI (>5%), but not BVF (<5%). Intersubject variation (≥12%) existed for all parameters. Within-subject coefficients of variation were ≤10%. Conclusion This is the first study to perform quantitative 7T MRI assessment of trabecular bone micro-architecture of the wrist. This method could be utilized to study perturbations in bone structure in subjects with osteoporosis or other bone disorders. PMID:21544680

  10. Multiobjective topology optimization of trabecular Bone Structure in the spine and the femur: Implications for biomimcry

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed; Peetz, Darin

    Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.

  11. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull.

    PubMed

    Wydra, A; Maev, R Gr

    2013-11-21

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  12. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  13. Development of trabecular bone surrogates for kyphoplasty-balloon dilatation training.

    PubMed

    Hollensteiner, Marianne; Samrykit, Markus; Hess, Michael; Fuerst, David; Schrempf, Andreas

    2015-01-01

    Vertebral compression fractures can limit quality of life. Cement augmentation techniques show good results in attaining pain relief. Kyphoplasty enables a better restoration of vertebra height due to a dilatable balloon tamp, which is inflated in the fractured vertebra. Surgical training of vertebral cement augmentation techniques is currently performed on patients or specimens. To enable another training possibility for surgical residents, a new hybrid patient simulator was developed. Artificial vertebrae allocate a realistic haptic feedback during needle insertion. Based on these results, new polyurethane foam recipes were developed to either enable a realistic needle insertion as well as a balloon tamp dilatation. Needle insertion forces of the newly developed foams were compared against commercially available artificial trabecular bone material and balloon tamp dilatations were performed in manufactured materials. Based on the matching needle insertion forces, two suitable material compositions for needle insertion and balloon dilatation training were found. This investigation is considered as a prior study before evaluation on human specimen. PMID:26737440

  14. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    PubMed

    Yang, Wuchen; Guo, Dayong; Harris, Marie A; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S; Edwards, James R; Mundy, Gregory R; Lichtler, Alex; Kream, Barbara E; Rowe, David W; Kalajzic, Ivo; David, Val; Quarles, Darryl L; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S; Martin, James F; Mishina, Yuji; Harris, Stephen E

    2013-09-15

    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.

  15. Predicting trabecular bone elastic properties from measures of bone volume fraction and fabric on the basis of micromagnetic resonance images.

    PubMed

    Wald, Michael J; Magland, Jeremy F; Rajapakse, Chamith S; Bhagat, Yusuf A; Wehrli, Felix W

    2012-08-01

    The relationship between fabric (a measure of structural anisotropy) and elastic properties of trabecular bone was examined by invoking morphology and homogenization theory on the basis of micromagnetic resonance images from the distal tibia in specimens (N = 30) and human subjects (N = 16) acquired at a 160 × 160 × 160 μm(3) voxel size. The fabric tensor was mapped in 7.5 × 7.5 × 7.5 mm(3) cubic subvolumes by a three-dimensional mean-intercept-length method. Elastic constants (three Young's and three shear moduli) were derived from linear microfinite element simulations of three-dimensional grayscale bone volume fraction-mapped images. In the specimen data, moduli fit power laws of bone volume fraction (bone volume/total volume) for all three test directions and subvolumes (R(2) = 0.92-0.98) with exponents ranging from 1.3 to 1.8. Weaker linear relationships were found for the in vivo data because of a narrower range in bone volume/total volume. When pooling the data for all test directions and subvolumes, bone volume/total volume predicted elastic moduli less well in the specimens (mean R(2) = 0.74) and not at all in vivo. A model of bone volume/total volume and fabric was highly predictive of microfinite element-derived Young's moduli: mean R(2) s of 0.98 and 0.82 (in vivo). The results show that fabric, an important predictor of bone mechanical properties, can be assessed in the limited resolution and signal-to-noise ratio regime of micromagnetic resonance images.

  16. Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats.

    PubMed

    Schlaubitz, Silke; Derkaoui, Sidi Mohammed; Marosa, Lydia; Miraux, Sylvain; Renard, Martine; Catros, Sylvain; Le Visage, Catherine; Letourneur, Didier; Amédée, Joëlle; Fricain, Jean-Christophe

    2014-01-01

    The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300-500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site.

  17. Pullulan/dextran/nHA Macroporous Composite Beads for Bone Repair in a Femoral Condyle Defect in Rats

    PubMed Central

    Schlaubitz, Silke; Derkaoui, Sidi Mohammed; Marosa, Lydia; Miraux, Sylvain; Renard, Martine; Catros, Sylvain; Le Visage, Catherine; Letourneur, Didier; Amédée, Joëlle; Fricain, Jean-Christophe

    2014-01-01

    The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300–500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site. PMID:25330002

  18. Fractal lacunarity of trabecular bone and magnetic resonance imaging: New perspectives for osteoporotic fracture risk assessment

    PubMed Central

    Zaia, Annamaria

    2015-01-01

    Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest

  19. Heparin modulates intracellular cyclic AMP in human trabecular bone cells and adherent rheumatoid synovial cells.

    PubMed Central

    Crisp, A J; Roelke, M S; Goldring, S R; Krane, S M

    1984-01-01

    Cells were cultured from explants of human trabecular bone excised from eight patients and incubated usually for 20 minutes with bovine parathyroid hormone, salmon calcitonin, prostaglandin E2, or heparin. The intracellular content of cyclic AMP was measured by radioimmunoassay and was significantly increased by parathyroid hormone in four, by calcitonin in two, by prostaglandin E2 in eight, and by heparin in seven out of eight cultures. In the two cultures containing calcitonin-responsive cells heparin inhibited the cyclic AMP response induced by calcitonin. Heparin did not affect the cyclic AMP response to parathyroid hormone or prostaglandin E2. Heparin also increased the cyclic AMP content of cultured adherent rheumatoid synovial cells. It is proposed that, in certain situations of focal pathological bone resorption, although concentrations of circulating hormones may be normal, the local release of products such as heparin may modify the effect of hormones which regulate connective tissue homoeostasis. local changes in hormone responses could contribute to the enhanced bone resorption associated with inflammatory processes such as rheumatoid arthritis. Images PMID:6089675

  20. Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients

    NASA Astrophysics Data System (ADS)

    Lü, Linwei; Meng, Guangwei; Gong, He; Zhu, Dong; Gao, Jiazi; Fan, Yubo

    2015-04-01

    This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head, as well as to determine the relationship between trabecular morphological and mechanical parameters. Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system. Each femoral head was divided into 12 sub-regions according to the trabecular orientation. One trabecular cubic model was reconstructed from each sub-region. A total of 81 trabecular models were reconstructed, except three destroyed sub-regions from two femoral heads during the surgery. Trabecular morphological parameters, i.e. trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), specific bone surface (BS/BV), bone volume fraction (BV/TV), structural model index (SMI), and degree of anisotropy (DA) were measured. Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1 % compressive strain along three orthogonal directions, respectively. Results revealed significant regional variations in the morphological parameters (). Young's moduli along the trabecular orientation were significantly higher than those along the other two directions. In general, trabecular mechanical properties in the medial region were lower than those in the lateral region. Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV, BV/TV, Tb.Th, and DA. In this study, regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level. The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.

  1. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation.

    PubMed

    Garman, Russell; Gaudette, Glenn; Donahue, Leah-Rae; Rubin, Clinton; Judex, Stefan

    2007-06-01

    High-frequency whole body vibrations can be osteogenic, but their efficacy appears limited to skeletal segments that are weight bearing and thus subject to the induced load. To determine the anabolic component of this signal, we investigated whether low-level oscillatory displacements, in the absence of weight bearing, are anabolic to skeletal tissue. A loading apparatus, developed to shake specific segments of the murine skeleton without the direct application of deformations to the tissue, was used to subject the left tibia of eight anesthesized adult female C57BL/6J mice to small (0.3 g or 0.6 g) 45 Hz sinusoidal accelerations for 10 min/day, while the right tibia served as an internal control. Video and strain analysis revealed that motions of the apparatus and tibia were well coupled, inducing dynamic cortical deformations of less than three microstrain. After 3 weeks, trabecular metaphyseal bone formation rates and the percentage of mineralizing surfaces (MS/BS) were 88% and 64% greater (p < 0.05) in tibiae accelerated at 0.3 g than in their contralateral controls. At 0.6 g, bone formation rates and mineral apposition rates were 66% and 22% greater (p < 0.05) in accelerated tibiae. Changes in bone morphology were evident only in the epiphysis, where stimulated tibiae displayed significantly greater cortical area (+8%) and thickness (+8%). These results suggest that tiny acceleratory motions--independent of direct loading of the matrix--can influence bone formation and bone morphology. If confirmed by clinical studies, the unique nature of the signal may ultimately facilitate the stimulation of skeletal regions that are prone to osteoporosis even in patients that are suffering from confinement to wheelchairs, bed rest, or space travel.

  2. Microdistribution and retention of injected /sup 239/Pu on trabecular bone surfaces of the beagle: implications for the induction of osteosarcoma

    SciTech Connect

    Wronski, T.J.; Smith, J.M.; Jee, W.S.S.

    1980-07-01

    A study was initiated to investigate the relationship between skeletal remodeling and the microdistribution and retention of /sup 239/Pu on trabecular bone surfaces of the beagle, and the contribution of these parameters to the nonuniform skeletal distribution of /sup 239/Pu-induced osteosarcomas. Young adult beagles were administered single iv injections of approx. 0.016 ..mu..Ci/kg monomeric /sup 239/Pu citrate and sacrificed at various times to 1 year after injection. The /sup 239/Pu concentration on trabecular bone surfaces was determined by counting fission fragment tracks in neutron-induced autoradiographs produced from thick (approx. 400 ..mu..m) bone sections. The rate of trabecular bone formation was calculated from an ultraviolet microscopic analysis of fluorescent tetracycline labels. The lumbar vertebra, pelvis, and proximal humerus, each of which exhibits a high incidence of /sup 239/Pu-induced osteosarcoma, were found to have a high intial concentration of /sup 239/Pu on their trabecular surfaces (approx. 7-8 pCi/cm/sup 2/) and a relatively high rate of trabecular bone formation. The /sup 239/Pu concentration at these sites decreased to approx. 2-3 pCi/cm/sup 2/ at the end of the first year. On the other hand, the proximal ulna and distal humerus, skeletal sites with a low tumor incidence, had a low intial concentration of /sup 239/Pu on their trabecular surfaces(approx. 1-2 pCi/cm/sup 2/) and a significantly lower rate of trabecular bone formation (P < 0.01). The /sup 239/Pu concentration at these sites remained nearly constant throughout the experimental period. These data suggest that the degree of the initial deposition of /sup 239/Pu on trabecular bone surfaces and the rate of trabecular bone turnover may play a role in the genesis of /sup 239/Pu-induced osteosarcomas.

  3. Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling.

    PubMed

    Basaruddin, Khairul Salleh; Takano, Naoki; Nakano, Takayoshi

    2015-01-01

    An assessment of the mechanical properties of trabecular bone is important in determining the fracture risk of human bones. Many uncertainty factors contribute to the dispersion of the estimated mechanical properties of trabecular bone. This study was undertaken in order to propose a computational scheme that will be able to predict the effective apparent elastic moduli of trabecular bone considering the uncertainties that are primarily caused by image-based modelling and trabecular stiffness orientation. The effect of image-based modelling which focused on the connectivity was also investigated. A stochastic multi-scale method using a first-order perturbation-based and asymptotic homogenisation theory was applied to formulate the stochastically apparent elastic properties of trabecular bone. The effective apparent elastic modulus was predicted with the introduction of a coefficient factor to represent the variation of bone characteristics due to inter-individual differences. The mean value of the predicted effective apparent Young's modulus in principal axis was found at approximately 460 MPa for respective 15.24% of bone volume fraction, and this is in good agreement with other experimental results. The proposed method may provide a reference for the reliable evaluation of the prediction of the apparent elastic properties of trabecular bone.

  4. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain.

    PubMed

    Motyl, Katherine J; Dick-de-Paula, Ingrid; Maloney, Ann E; Lotinun, Sutada; Bornstein, Sheila; de Paula, Francisco J A; Baron, Roland; Houseknecht, Karen L; Rosen, Clifford J

    2012-02-01

    Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that

  5. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  6. NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice

    PubMed Central

    Shi, Yan-Chuan; Lin, Shu; Wong, Iris P. L.; Baldock, Paul A.; Aljanova, Aygul; Enriquez, Ronaldo F.; Castillo, Lesley; Mitchell, Natalie F.; Ye, Ji-Ming; Zhang, Lei; Macia, Laurence; Yulyaningsih, Ernie; Nguyen, Amy D.; Riepler, Sabrina J.

    2010-01-01

    Background Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. Methodology/Principal Findings We thus generated two conditional knockout mouse models, Y2lox/lox and NPYCre/+;Y2lox/lox, in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver cartinine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. Conclusions/Significance Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus

  7. Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium.

    PubMed

    Rianthavorn, Pornpimol; Ettenger, Robert B; Salusky, Isidro B; Kuizon, Beatriz D

    2010-11-01

    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats.

  8. Stanozolol Decreases Bone Turnover Markers, Increases Mineralization, and Alters Femoral Geometry in Male Rats.

    PubMed

    Nebot, E; Aparicio, V A; Camiletti-Moirón, D; Martinez, R; Erben, R G; Kapravelou, G; Sánchez-González, C; De Teresa, C; Porres, J M; López-Jurado, M; Aranda, P; Pietschmann, P

    2016-06-01

    Stanozonol (ST) is a synthetic derivative of testosterone; it has anabolic/androgenic activity, increasing both the turnover of trabecular bone and the endocortical apposition of bone. The present study aimed to examine the effects of ST on bone status in rats by bone mineral content, markers of formation and resorption, bone density, and structural and microarchitectural parameters. Twenty male Wistar rats were randomly distributed into two experimental groups corresponding to placebo or ST administration, which consisted of weekly intramuscular injections of 10 mg/kg body weight of ST. Plasma parameters were analyzed by immunoassay. Bone mineral content was determined by spectrophotometry. Bone mineral density (BMD) and structural parameters were measured by peripheral quantitative computed tomography, and trabecular and cortical microarchitecture by micro-computed tomography. Plasma Ca, Mg, and alkaline phosphatase were higher, and urinary Ca excretion, corticosterone, and testosterone concentrations lower in the ST group. Femur Ca content was higher and P content was lower in the ST, whereas osteocalcin, aminoterminal propeptides of type I procollagen, and C-terminal telopeptides of type I collagen were lower. Total cross-sectional, trabecular, and cortical/subcortical areas were lower in the ST. No differences were observed on BMD and area parameters of the diaphysis as well as on trabecular and cortical microarchitecture. The use of ST increases bone mineralization, ash percentage, and Ca and Mg content in femur. In spite of an absence of changes in BMD, geometric metaphyseal changes were observed. We conclude that ST alters bone geometry, leads to low bone turnover, and thus may impair bone quality. PMID:26801156

  9. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study.

    PubMed

    Engelke, Klaus; Nagase, Shinichi; Fuerst, Thomas; Small, Maria; Kuwayama, Tomohiro; Deacon, Stephen; Eastell, Richard; Genant, Harry K

    2014-03-01

    ONO-5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO-5334. The clinical study was a randomized, double-blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55-75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO-5334 50 mg twice per day (BID); ONO-5334 100 mg once daily (QD); ONO-5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO-5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO-5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO-5334. Integral volume did not demonstrate statistically significant changes under ONO-5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO-5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO-5334 300 mg QD. Over 2

  10. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing.

    PubMed

    Li, Bing; Sankaran, Jeyantt Srinivas; Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton's susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing-in contrast to the insignificant response previously demonstrated in female

  11. Directional fractal signature methods for trabecular bone texture in hand radiographs: Data from the Osteoarthritis Initiative

    SciTech Connect

    Wolski, M. Podsiadlo, P.; Stachowiak, G. W.

    2014-08-15

    Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early

  12. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer

    PubMed Central

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae

    2015-01-01

    Objectives The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. Methods We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Results Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. Conclusions These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important. PMID:26279958

  13. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    PubMed

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  14. Protection of Trabecular Bone in Ovariectomized Rats by Turmeric (Curcuma longa L.) is Dependent on Extract Composition

    PubMed Central

    Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.

    2010-01-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490

  15. Enhanced Individual Trabecular Repair and Its Mechanical Implications in Parathyroid Hormone and Alendronate Treated Rat Tibial Bone

    PubMed Central

    Altman, Allison R.; de Bakker, Chantal M. J.; Tseng, Wei-Ju; Chandra, Abhishek; Qin, Ling; Sherry Liu, X.

    2015-01-01

    Combined parathyroid hormone (PTH) and bisphosphonate (alendronate—ALN) therapy has recently been shown to increase bone volume fraction and plate-like trabecular structure beyond either monotherapy. To identify the mechanism through which plate-like structure was enhanced, we used in vivo microcomputed tomography (μCT) of the proximal tibia metaphysis and individual trabecular dynamics (ITD) analysis to quantify connectivity repair (incidences of rod connection and plate perforation filling) and deterioration (incidences of rod disconnection and plate perforation). Three-month-old female, intact rats were scanned before and after a 12 day treatment period of vehicle (Veh, n = 5), ALN (n = 6), PTH (n = 6), and combined (PTH+ALN, n = 6) therapy. Additionally, we used computational simulation and finite element (FE) analysis to delineate the contributions of connectivity repair or trabecular thickening to trabecular bone stiffness. Our results showed that the combined therapy group had greater connectivity repair (5.8 ± 0.5% connected rods and 2.0 ± 0.3% filled plates) beyond that of the Veh group, resulting in the greatest net gain in connectivity. For all treatment groups, increases in bone volume due to thickening (5–31%) were far greater than those due to connectivity repair (2–3%). Newly formed bone contributing only to trabecular thickening caused a 10%, 41%, and 69% increase in stiffness in the ALN, PTH, and PTH+ALN groups, respectively. Moreover, newly formed bone that led to connectivity repair resulted in an additional improvement in stiffness, with the highest in PTH+ALN (by an additional 12%), which was significantly greater than either PTH (5.6%) or ALN (4.5%). An efficiency ratio was calculated as the mean percent increase in stiffness divided by mean percent increase in BV for either thickening or connectivity repair in each treatment. For all treatments, the efficiency ratio of connectivity repair (ALN: 2.9; PTH: 3

  16. Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium.

    PubMed

    Boruah, Sourabh; Paskoff, Glenn R; Shender, Barry S; Subit, Damien L; Salzar, Robert S; Crandall, Jeff R

    2015-08-01

    The human calvarium is a sandwich structure with two dense layers of cortical bone separated by porous cancellous bone. The variation of the three dimensional geometry, including the layer thicknesses and the volume fraction of the cancellous layer across the population, is unavailable in the current literature. This information is of particular importance to mathematical models of the human head used to simulate mechanical response. Although the target geometry for these models is the median geometry of the population, the best attempt so far has been the scaling of a unique geometry based on a few median anthropometric measurements of the head. However, this method does not represent the median geometry. This paper reports the average three dimensional geometry of the calvarium from X-ray computed tomography (CT) imaging and layer thickness and trabecular volume fraction from micro CT (μCT) imaging of ten adult male post-mortem human surrogates (PMHS). Skull bone samples have been obtained and μCT imaging was done at a resolution of 30 μm. Monte Carlo simulation was done to estimate the variance in these measurements due to the uncertainty in image segmentation. The layer thickness data has been averaged over areas of 5mm(2). The outer cortical layer was found to be significantly (p < 0.01; Student's t test) thicker than the inner layer (median of thickness ratio 1.68). Although there was significant location to location difference in all the layer thicknesses and volume fraction measurements, there was no trend. Average distribution and the variance of these metrics on the calvarium have been shown. The findings have been reported as colormaps on a 2D projection of the cranial vault. PMID:25920690

  17. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing

    PubMed Central

    Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton’s susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing—in contrast to the insignificant response previously demonstrated in

  18. Quantifying trabecular orientation in the pelvic cancellous bone of modern humans, chimpanzees, and the Kebara 2 Neanderthal.

    PubMed

    Martinón-Torres, María

    2003-01-01

    The adaptive nature of bone lies in its ability to respond to the environment by conforming and reshaping itself constantly to accommodate life-time stresses experienced throughout daily activities. In order to keep strains within the bone as uniform and isotropic as possible, the trabecular orientation is determined by forces acting on the bone through adaptive remodeling. Hence, the preserved structure of bones may contain direct information about the forces they may have undergone. Some authors (Correnti [1952], Atti Acc Naz Lincei 12:518-523, [1955] Riv Antrop 42:289-336; Macchiarelli et al. [1999] J Hum Evol 36:211-232, [2001] Cambridge, UK: Cambridge University Press) have described in detail the trabecular systems of the hip bone in different primate species and have identified a gait-related system above the acetabulum with substantial differences across species (Macchiarelli et al. [1999]; Rook et al. [1999] Proc Natl Acad Sci USA 96:8875-8879). The aim of this study was to quantify trabecular orientation above the acetabulum to test the hypothesis that hominoid biomechanical behavior is recorded in the cancellous bone. The pelvic bones of 23 archaeological adult modern humans (12 females, 11 males), 20 adult Pan troglodytes (10 females, 10 males), and one adult male Neanderthal were radiographed and digitized. Fast Fourier transforms (FFTs) of the regions of interest in the corpus of the ilium were performed, with the angular distribution of the trabeculae quantified. All species displayed a constant and periodic orthogonal arrangement in the trabeculae with differences in the pattern of dominance between the arcades oriented along the 0 degrees or the 90 degrees axes. The variation in the FFT spectrum between species is discussed in the light of distinctive biomechanical features. PMID:12953177

  19. Improving the textural characterization of trabecular bone structure to quantify its changes: the locally adapted scaling vector method

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Mueller, Dirk; Boehm, Holger F.; Rummeny, Ernst J.; Link, Thomas M.; Monetti, Roberto

    2005-04-01

    We extend the recently introduced scaling vector method (SVM) to improve the textural characterization of oriented trabecular bone structures in the context of osteoporosis. Using the concept of scaling vectors one obtains non-linear structural information from data sets, which can account for global anisotropies. In this work we present a method which allows us to determine the local directionalities in images by using scaling vectors. Thus it becomes possible to better account for local anisotropies and to implement this knowledge in the calculation of the scaling properties of the image. By applying this adaptive technique, a refined quantification of the image structure is possible: we test and evaluate our new method using realistic two-dimensional simulations of bone structures, which model the effect of osteoblasts and osteoclasts on the local change of relative bone density. The partial differential equations involved in the model are solved numerically using cellular automata (CA). Different realizations with slightly varying control parameters are considered. Our results show that even small changes in the trabecular structures, which are induced by variation of a control parameters of the system, become discernible by applying the locally adapted scaling vector method. The results are superior to those obtained by isotropic and/or bulk measures. These findings may be especially important for monitoring the treatment of patients, where the early recognition of (drug-induced) changes in the trabecular structure is crucial.

  20. Microcomputed tomographic analysis of human condyles in unilateral condylar hyperplasia: increased cortical porosity and trabecular bone volume fraction with reduced mineralisation.

    PubMed

    Karssemakers, L H E; Nolte, J W; Tuinzing, D B; Langenbach, G E J; Raijmakers, P G; Becking, A G

    2014-12-01

    Unilateral condylar hyperplasia or hyperactivity is a disorder of growth that affects the mandible, and our aim was to visualise the 3-dimensional bony microstructure of resected mandibular condyles of affected patients. We prospectively studied 17 patients with a clinical presentation of progressive mandibular asymmetry and an abnormal single-photon emission computed tomographic (SPECT) scan. All patients were treated by condylectomy to arrest progression. The resected condyles were scanned with micro-CT (18 μm resolution). Rectangular volumes of interest were selected in 4 quadrants (lateromedial and superoinferior) of the trabecular bone of each condyle. Variables of bone architecture (volume fraction, trabecular number, thickness, and separation, degree of mineralisation, and degree of structural anisotrophy) were calculated with routine morphometric software. Eight of the 17 resected condyles showed clear destruction of the subchondral layer of cortical bone. There was a significant superoinferior gradient for all trabecular variables. Mean (SD) bone volume fraction (25.1 (6) %), trabecular number (1.69 (0.26) mm(-1)), trabecular thickness (0.17 (0.03) mm), and degree of mineralisation (695.39 (39.83) mg HA/cm(3)) were higher in the superior region. Trabecular separation (0.6 (0.16) mm) and structural anisotropy (1.84 (0.28)) were higher in the inferior region. The micro-CT analysis showed increased cortical porosity in many of the condyles studied. It also showed a higher bone volume fraction, greater trabecular thickness and trabecular separation, greater trabecular number, and less mineralisation in the condyles of the 17 patients compared with the known architecture of unaffected mandibular condyles. PMID:25219775

  1. Correlates of trabecular and cortical volumetric bone mineral density of the radius and tibia in older men: the Osteoporotic Fractures in Men Study.

    PubMed

    Barbour, Kamil E; Zmuda, Joseph M; Strotmeyer, Elsa S; Horwitz, Mara J; Boudreau, Robert; Evans, Rhobert W; Ensrud, Kristine E; Petit, Moira A; Gordon, Christopher L; Cauley, Jane A

    2010-05-01

    Quantitative computed tomography (QCT) can estimate volumetric bone mineral density (vBMD) and distinguish trabecular from cortical bone. Few comprehensive studies have examined correlates of vBMD in older men. This study evaluated the impact of demographic, anthropometric, lifestyle, and medical factors on vBMD in 1172 men aged 69 to 97 years and enrolled in the Osteoporotic Fractures in Men Study (MrOS). Peripheral quantitative computed tomography (pQCT) was used to measure vBMD of the radius and tibia. The multivariable linear regression models explained up to 10% of the variance in trabecular vBMD and up to 9% of the variance in cortical vBMD. Age was not correlated with radial trabecular vBMD. Correlates associated with both cortical and trabecular vBMD were age (-), caffeine intake (-), total calcium intake (+), nontrauma fracture (-), and hypertension (+). Higher body weight was related to greater trabecular vBMD and lower cortical vBMD. Height (-), education (+), diabetes with thiazolidinedione (TZD) use (+), rheumatoid arthritis (+), using arms to stand from a chair (-), and antiandrogen use (-) were associated only with trabecular vBMD. Factors associated only with cortical vBMD included clinic site (-), androgen use (+), grip strength (+), past smoker (-), and time to complete five chair stands (-). Certain correlates of trabecular and cortical vBMD differed among older men. An ascertainment of potential risk factors associated with trabecular and cortical vBMD may lead to better understanding and preventive efforts for osteoporosis in men.

  2. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    PubMed

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  3. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian

    2015-06-01

    Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications.

  4. Scaling relations between bone volume and bone structure as found using 3D µCT images of the trabecular bone taken from different skeletal sites

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K.; Bauer, Jan

    2010-03-01

    According to Wolff's law bone remodels in response to the mechanical stresses it experiences so as to produce a minimal-weight structure that is adapted to its applied stresses. Here, we investigate the relations between bone volume and structure for the trabecular bone using 3D μCT images taken from different skeletal sites in vitro, namely from the distal radii (96 specimens), thoracic (73 specimens) and lumbar vertebrae (78 specimens). We determine the local structure of the trabecular network by calculating isotropic and anisotropic scaling indices (α, αz). These measures have been proven to be able to discriminate rod- from sheet-like structures and to quantify the alignment of structures with respect to a preferential direction as given by the direction of the external force. Comparing global structure measures derived from the scaling indices (mean, standard deviation) with the bone mass (BV/TV) we find that all correlations obey very accurately power laws with scaling exponents of 0.14, 0.12, 0.15 (<α>~), -0.2, -017, -0.17 (σ(αz)), 0.09, 0.05, 0.07 (<~αz>~) and -0.20, -0.11 ,-0.13 (σ(αz)) distal radius, thoracic vertebra and lumbar vertebra respectively. Thus, these relations turn out to be site-independent, albeit the mechanical stresses to which the bones of the forearm and the spine are exposed, are quite different. The similar alignment might not be in agreement with a universal validity of Wolff's law. On the other hand, such universal power law relations may allow to develop additional diagnostic means to better assess healthy and osteoporotic bone.

  5. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  6. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 3A: Trabecular spacing and orientation in the long bones

    NASA Technical Reports Server (NTRS)

    Judy, M. M.

    1981-01-01

    Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.

  7. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.

  8. Deletion of Estrogen Receptor Beta in Osteoprogenitor Cells Increases Trabecular but Not Cortical Bone Mass in Female Mice

    PubMed Central

    Nicks, Kristy M.; Fujita, Koji; Fraser, Daniel; McGregor, Ulrike; Drake, Matthew T.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.; Monroe, David G.; Khosla, Sundeep

    2016-01-01

    Although the role of ERα in regulating bone metabolism has been extensively studied, ERβ has been largely dismissed as a relevant modulator of bone mass. Previous studies examining ERβ utilized a germline knockout mouse expressing transcript variants of ERβ and displaying systemic hormonal changes that confounded interpretation of the skeletal phenotype. Thus, we used a conditional ERβ mouse model to achieve deletion of ERβ specifically in early osteoprogenitor cells using the Prx1-Cre driver. We observed marked increases in the trabecular bone volume fraction (of 58% [p <0.003] and 93% [p <0.0003] in 6- and 12-week-old female ERβPrx1–CKO mice, respectively) but no changes in cortical bone. Serum estradiol and IGF-I levels were unaltered in ERβPrx1–CKO mice. Bone formation and resorption indices by histomorphometry and serum assays were unchanged in these mice, suggesting that alterations in bone turnover may have occurred early in development. However, the ratio of colony-forming unit-osteoblasts (CFU-OBs) to CFU-fibroblasts (CFU-Fs) was increased in bone marrow cultures from ERβPrx1–CKO compared with control mice, indicating increased differentiation of osteoblast precursor cells into osteoblasts in ERβPrx1–CKO mice. Detailed quantitative polymerase chain reaction analyses of 128 genes in 16 prespecified pathways revealed significant downregulation of 11 pathways in ERβPrx1–CKO mice. Thus, deletion of ERβ specifically in osteoblast lineage cells, in the absence of all splice variants, increases trabecular bone mass and modulates multiple pathways related to bone metabolism. These findings suggest that pharmacological inhibition of ERβ in bone may provide a novel approach to treat osteoporosis. PMID:26418452

  9. Comparison of contamination of femoral heads and pre-processed bone chips during hip revision arthroplasty.

    PubMed

    Mathijssen, N M C; Sturm, P D; Pilot, P; Bloem, R M; Buma, P; Petit, P L; Schreurs, B W

    2013-12-01

    With bone impaction grafting, cancellous bone chips made from allograft femoral heads are impacted in a bone defect, which introduces an additional source of infection. The potential benefit of the use of pre-processed bone chips was investigated by comparing the bacterial contamination of bone chips prepared intraoperatively with the bacterial contamination of pre-processed bone chips at different stages in the surgical procedure. To investigate baseline contamination of the bone grafts, specimens were collected during 88 procedures before actual use or preparation of the bone chips: in 44 procedures intraoperatively prepared chips were used (Group A) and in the other 44 procedures pre-processed bone chips were used (Group B). In 64 of these procedures (32 using locally prepared bone chips and 32 using pre-processed bone chips) specimens were also collected later in the procedure to investigate contamination after use and preparation of the bone chips. In total, 8 procedures had one or more positive specimen(s) (12.5 %). Contamination rates were not significantly different between bone chips prepared at the operating theatre and pre-processed bone chips. In conclusion, there was no difference in bacterial contamination between bone chips prepared from whole femoral heads in the operating room and pre-processed bone chips, and therefore, both types of bone allografts are comparable with respect to risk of infection.

  10. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.

    PubMed

    Patel, Priyesh V; Eckstein, Felix; Carballido-Gamio, Julio; Phan, Catherine; Matsuura, Maiko; Lochmüller, Eva-Maria; Majumdar, Sharmila; Link, Thomas M

    2007-10-01

    Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [A(Z)] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD

  11. An investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty.

    PubMed

    Kelly, N; Cawley, D T; Shannon, F J; McGarry, J P

    2013-11-01

    The stress distribution and plastic deformation of peri-prosthetic trabecular bone during press-fit tibial component implantation in total knee arthroplasty is investigated using experimental and finite element techniques. It is revealed that the computed stress distribution, implantation force and plastic deformation in the trabecular bone is highly dependent on the plasticity formulation implemented. By incorporating pressure dependent yielding using a crushable foam plasticity formulation to simulate the trabecular bone during implantation, highly localised stress concentrations and plastic deformation are computed at the bone-implant interface. If the pressure dependent yield is neglected using a traditional von Mises plasticity formulation, a significantly different stress distribution and implantation force is computed in the peri-prosthetic trabecular bone. The results of the study highlight the importance of: (i) simulating the insertion process of press-fit stem implantation; (ii) implementing a pressure dependent plasticity formulation, such as the crushable foam plasticity formulation, for the trabecular bone; (iii) incorporating friction at the implant-bone interface during stem insertion. Simulation of the press-fit implantation process with an appropriate pressure dependent plasticity formulation should be implemented in the design and assessment of arthroplasty prostheses.

  12. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.

    PubMed

    Janovic, Aleksa; Saveljic, Igor; Vukicevic, Arso; Nikolic, Dalibor; Rakocevic, Zoran; Jovicic, Gordana; Filipovic, Nenad; Djuric, Marija

    2015-01-01

    Understanding of the occlusal load distribution through the mid-facial skeleton in natural dentition is essential because alterations in magnitude and/or direction of occlusal forces may cause remarkable changes in cortical and trabecular bone structure. Previous analyses by strain gauge technique, photoelastic and, more recently, finite element (FE) methods provided no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Therefore, we developed an improved three-dimensional FE model of the human skull in order to clarify the distribution of occlusal forces through the cortical and trabecular bone during habitual masticatory activities. Particular focus was placed on the load transfer through the anterior and posterior maxilla. The results were presented in von Mises stress (VMS) and the maximum principal stress, and compared to the reported FE and strain gauge data. Our qualitative stress analysis indicates that occlusal forces distribute through the mid-facial skeleton along five vertical and two horizontal buttresses. We demonstrated that cortical bone has a priority in the transfer of occlusal load in the anterior maxilla, whereas both cortical and trabecular bone in the posterior maxilla are equally involved in performing this task. Observed site dependence of the occlusal load distribution may help clinicians in creating strategies for implantology and orthodontic treatments. Additionally, the magnitude of VMS in our model was significantly lower in comparison to previous FE models composed only of cortical bone. This finding suggests that both cortical and trabecular bone should be modeled whenever stress will be quantitatively analyzed.

  13. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    SciTech Connect

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-11-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process.

  14. A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform

    PubMed Central

    Brunet-Imbault, Barbara; Lemineur, Gerald; Chappard, Christine; Harba, Rachid; Benhamou, Claude-Laurent

    2005-01-01

    Background The degree of anisotropy (DA) on radiographs is related to bone structure, we present a new index to assess DA. Methods In a region of interest from calcaneus radiographs, we applied a Fast Fourier Transform (FFT). All the FFT spectra involve the horizontal and vertical components corresponding respectively to longitudinal and transversal trabeculae. By visual inspection, we measured the spreading angles: Dispersion Longitudinal Index (DLI) and Dispersion Transverse Index (DTI) and calculated DA = 180/(DLI+DTI). To test the reliability of DA assessment, we synthesized images simulating radiological projections of periodic structures with elements more or less disoriented. Results Firstly, we tested synthetic images which comprised a large variety of structures from highly anisotropic structure to the almost isotropic, DA was ranging from 1.3 to 3.8 respectively. The analysis of the FFT spectra was performed by two observers, the Coefficients of Variation were 1.5% and 3.1 % for intra-and inter-observer reproducibility, respectively. In 22 post-menopausal women with osteoporotic fracture cases and 44 age-matched controls, DA values were respectively 1.87 ± 0.15 versus 1.72 ± 0.18 (p = 0.001). From the ROC analysis, the Area Under Curve (AUC) were respectively 0.65, 0.62, 0.64, 0.77 for lumbar spine, femoral neck, total femoral BMD and DA. Conclusion The highest DA values in fracture cases suggest that the structure is more anisotropic in osteoporosis due to preferential deletion of trabeculae in some directions. PMID:15927072

  15. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT.

    PubMed

    Manske, Sarah L; Zhu, Ying; Sandino, Clara; Boyd, Steven K

    2015-10-01

    The second generation HR-pQCT scanner (XtremeCTII, Scanco Medical) can assess human bone microarchitecture of peripheral limbs with a 61 μm nominal isotropic voxel size. This is a marked improvement from the first generation HR-pQCT that had a nominal isotropic voxel size of 82 μm, which is at the limit to accurately determine the thickness of individual human trabeculae. We sought to determine the accuracy of a direct morphometric approach to measure trabecular bone microarchitecture with three-dimensional morphological techniques using second generation HR-pQCT, and to compare this with the approach currently applied by the first generation HR-pQCT scanner based on derived indices using ex vivo scans of human cadaveric radii. We also compared images acquired and resampled to mimic the first generation HR-pQCT with those obtained directly from the first generation HR-pQCT. We evaluated 20 human cadaveric radii and a micro-CT performance phantom using the first (XtremeCT, Scanco Medical) and second generation HR-pQCT scanner (XtremeCTII) and compared a patient evaluation (XCTII, 61 μm) with a high resolution ex vivo protocol (HR, 30μm). We generated 82 μm scans of the same specimens to mimic a first-generation HR-pQCT evaluation (XCTIM, 82 μm) and compared these with a first-generation patient evaluation (XCTI, 82 μm). A standard structural extraction approach was applied to both XCTII and HR evaluations for assessment of bone volume fraction (BV/TV), and a distance transform was used to assess trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). For XCTI and XCTIM evaluations we followed the manufacturer's standard procedure and assessed bone mineral density (BMD), Tb.N with a distance transform, and then derived bone volume ratio (BV/TV(d)), trabecular thickness (Tb.Th(d)) and separation (Tb.Sp(d)). The spatial resolution (10% MTF) was 142.2 μm for XCTI, 108.9 μm for XCTIM, 95.2μm for XCTII, and 55.9 μm for HR. XCTI

  16. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  17. Bone microarchitecture at muscle attachment sites: The relationship between macroscopic scores of entheses and their cortical and trabecular microstructural design.

    PubMed

    Djukic, Ksenija; Milovanovic, Petar; Hahn, Michael; Busse, Björn; Amling, Michael; Djuric, Marija

    2015-05-01

    The studies of entheses in bioarchaeology attempted to reconstruct the habitual physical activities of past populations. However, the studies of microarchitecture of the underlying bone are still lacking despite well-known potential of bone internal microarchitecture to reflect mechanical loading. It is unknown whether different morphological expressions of entheseal changes (ECs) correlate with the microstructural characteristics of the underlining bone. This study analyzed bone microstructural characteristics at the entheses. Our focus was on examining the possible successive nature of the three-stage scale of entheseal macroscopic changes by comparing EC scores with the microarchitectural features at the attachment sites. The study was based on the hypothesis that mechanical loading influences the microarchitecture of the bone at the attachment site. The bone samples were taken from 24 adult male skeletons from medieval cemeteries in Serbia, with different macroscopic expression score of EC. We evaluated the macroscopic and microscopic appearance of four entheses of the lower limbs (origin of the soleus muscle and the insertions of the adductor magnus, gluteus maximus, and iliopsoas muscles). The specimens were scanned using microcomputed tomography (Scanco µCT 40). Our data showed a lack of consistent correlation between stages of the macroscopic scoring systems with microarchitecture at the entheses, only cortical thickness was significantly different between EC stages. Analyzing relationship between trabecular and cortical bone microstructure we found correlations between cortical and trabecular variables only in Stage C. Results of our study suggest that macroscopic EC might not represent distinct successive phases in bone adaptation to mechanical loading. PMID:25546406

  18. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity.

    PubMed

    Chappard, D; Legrand, E; Haettich, B; Chalès, G; Auvinet, B; Eschard, J P; Hamelin, J P; Baslé, M F; Audran, M

    2001-11-01

    Trabecular bone has been reported as having two-dimensional (2-D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski-Bouligand, and mass-radius fractal dimensions. The relationships with histomorphometric descriptors of the 2-D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter-connectivity index, and Euler-Poincaré number were computed. The box-counting method was used to obtain the Kolmogorov dimension (D(k)), the dilatation method for the Minkowski-Bouligand dimension (D(MB)), and the sandbox for the mass-radius dimension (D(MR)) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with D(MR) and the lowest with D(MB). Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2-D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods.

  19. In vivo CT quantification of trabecular bone dynamics in mice after sciatic neurectomy using monochromatic synchrotron radiation.

    PubMed

    Matsumoto, Takeshi; Nishikawa, Ken; Tanaka, Masao; Uesugi, Kentaro

    2011-05-01

    We demonstrated the capability of in vivo synchrotron radiation CT (SRCT) in analyzing short-term changes in trabecular bone architecture (TBA) and the degree of bone mineralization (DBM) in small animals. Mice underwent unilateral sciatic neurectomy (SN) and sham operation on the contralateral side (SO) at 13 weeks of age. In vivo SRCT scans (11.7-μm cubic voxel) were made of both knees 7 and 17 days (group 1, n = 7) or only 17 days (group 2, n = 6) after surgery. In three mice in group 2, one knee was scanned twice on the same day in different orientations for reproducibility testing. Two scan data sets of the tibial proximal metaphysis acquired at different time points (group 1) or at the same time point (group 2) were registered for detecting differences in volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D), and mean DBM (mDBM). The reproducibility test showed small errors of <2.5% in the TBA indexes and <3.0% in mDBM, while mismatched bone regions amounted to >25%. In group 1, Tb.Th increased but Tb.N and Conn.D decreased in both SN and SO; BV/TV and mDBM increased only in SO; accordingly, BV/TV, Tb.Th, and mDBM became lower in SN than in SO. No significant interaction between SN and irradiation was found; the SN effects on TBA and DBM were similar between groups 1 and 2, although synchrotron irradiation led to higher Tb.Th and lower Tb.N in group 1. In conclusion, in vivo SRCT has potential use for detecting short-term bone dynamics of small animals. PMID:21359625

  20. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity.

    PubMed

    Chappard, D; Legrand, E; Haettich, B; Chalès, G; Auvinet, B; Eschard, J P; Hamelin, J P; Baslé, M F; Audran, M

    2001-11-01

    Trabecular bone has been reported as having two-dimensional (2-D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski-Bouligand, and mass-radius fractal dimensions. The relationships with histomorphometric descriptors of the 2-D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter-connectivity index, and Euler-Poincaré number were computed. The box-counting method was used to obtain the Kolmogorov dimension (D(k)), the dilatation method for the Minkowski-Bouligand dimension (D(MB)), and the sandbox for the mass-radius dimension (D(MR)) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with D(MR) and the lowest with D(MB). Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2-D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods. PMID:11745685

  1. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: Findings from a pQCT case–control study☆

    PubMed Central

    Gregson, Celia L.; Sayers, Adrian; Lazar, Victor; Steel, Sue; Dennison, Elaine M.; Cooper, Cyrus; Smith, George Davey; Rittweger, Jörn; Tobias, Jon H.

    2013-01-01

    High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm3), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p < 0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p < 0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p < 0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p < 0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p < 0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β − 0.01 [− 0.02, 0.01], p = 0.41), but declined in family controls (− 0.05 [− 0.03, − 0.07], p < 0.001) interaction p = 0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and

  2. Assessing the biomechanical strength of trabecular bone in vitro using 3D anisotropic nonlinear texture measures: the scaling vector method

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bohm, Holger F.; Muller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Rath, Christoph W.

    2004-05-01

    We introduce the scaling vector method (SVM): a technique to obtain local non-linear structural information from data sets suitable in cases where anisotropy plays an important role. We apply the SVM to High Resolution Magnetic Resonance Images (HRMRI) of human proximal femur specimens IN VITRO which contain a large portion of bone tissue forming a complex network of mineralized trabeculae oriented along the major stress lines. By means of the SVM, we extract a 3D non-linear local anisotropic texture measure which we use to compare with similar isotropic texture measures, bone mineral density (BMD) and standard isotropic 2D (linear) morphometric parameters in the prediction of the biomechanical properties of the trabecular bone. Our results show that structural non-linear anisotropic texture measures which account for the preferential direction of the trabeculae are superior to isotropic and bulk measures in the prediction of the mechanical properties of the human proximal femur in vitro.

  3. ENDPLATE DEFLECTION IS A DEFINING FEATURE OF VERTEBRAL FRACTURE AND IS ASSOCIATED WITH PROPERTIES OF THE UNDERLYING TRABECULAR BONE

    PubMed Central

    Jackman, Timothy M; Hussein, Amira I; Adams, Alexander M; Makhnejia, Kamil K; Morgan, Elise F

    2015-01-01

    Endplate deflection frequently occurs with vertebral failure, but the relationship between the two remains poorly defined. This study examined associations between endplate deflection under compressive loading and characteristics of the neighboring subchondral bone and intervertebral disc (IVD). Ten L1 vertebrae with adjacent IVDs were dissected, compressed axially in a stepwise manner to failure, and imaged with micro-computed tomography before each loading step. From the images, deflection was measured across the surface of each endplate at each step. Trabecular microstructure and endplate volume fraction were evaluated in 5mm regions just under the superior endplate. IVDs were assessed using computed tomography and histology. A marked increase in superior endplate deflection coincided with a drop in the load-displacement curve. Endplate deflection was higher in regions with less robust bone microstructure (p<0.009), though these associations tended to weaken as loading progressed. Immediately following the ultimate point, endplate deflection was higher in regions underlying the nucleus pulposus vs. annulus fibrosus (p=0.035), irrespective of disc grade (p=0.346). These results indicate that a sudden increase in endplate deflection signals that the mechanical competence of the vertebra has been compromised. The mechanisms of endplate failure likely relate to anatomical features of the endplate, neighboring trabecular bone, and IVD. PMID:24700382

  4. Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses.

    PubMed

    Lespessailles, Eric; Hambli, Ridha; Ferrari, Serge

    2016-01-01

    With the development of new non-invasive analytical techniques and particularly the advent of high-resolution peripheral quantitative computed tomography (HRpQCT) it is possible to assess cortical and trabecular bone changes under the effects of ageing, diseases and treatments. In the present study, we reviewed the treatment-related effects on bone parameters assessed by HRpQCT imaging. We identified 12 full-length articles published in peer-reviewed journals describing treatment-induced changes assessed by HRpQCT. The design of these studies varied a lot in terms of duration and methodology: some of them were open-labelled, others were double-blind, placebo-controlled or double-blind, double-dummy, active controlled. In addition, the sample size in these studies ranged from 11 to 324 patients. Motion artifacts occurring during data acquisition were sometimes a real challenge particularly at the radius leading sometimes to exclude the analysis at the radius due to the uninterpretability of microstructural parameters. Responses to therapies were treatment-specific and divergent effects in cortical and trabecular bone with antiresorptive or anabolic agents were observed. Standardization of bone microarchitecture parameters (including porosity) and bone strength estimates by finite element analysis (FEA) are mandatory. The additional value of microarchitecture and FEA estimates changes with therapies in terms of improvement in fracture outcomes which have to be adequately assessed in clinical trials with fracture end point. Data from these reviewed studies advance our understanding of the microstructural consequences of osteoporosis and highlight potential differences in bone quality outcomes within therapies. PMID:27617082

  5. Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease.

    PubMed

    Sharma, Gulshan B; Robertson, Douglas D; Laney, Dawn A; Gambello, Michael J; Terk, Michael

    2016-06-14

    Type 1 Gaucher disease (GD) is an autosomal recessive lysosomal storage disease, affecting bone metabolism, structure and strength. Current bone assessment methods are not ideal. Semi-quantitative MRI scoring is unreliable, not standardized, and only evaluates bone marrow. DXA BMD is also used but is a limited predictor of bone fragility/fracture risk. Our purpose was to measure trabecular bone microarchitecture, as a biomarker of bone disease severity, in type 1 GD individuals with different GD genotypes and to apply machine learning based analytics to discriminate between GD patients and healthy individuals. Micro-MR imaging of the distal radius was performed on 20 type 1 GD patients and 10 healthy controls (HC). Fifteen stereological and textural measures (STM) were calculated from the MR images. General linear models demonstrated significant differences between GD and HC, and GD genotypes. Stereological measures, main contributors to the first two principal components (PCs), explained ~50% of data variation and were significantly different between males and females. Subsequent PCs textural measures were significantly different between GD patients and HC individuals. Textural measures also significantly differed between GD genotypes, and distinguished between GD patients with normal and pathologic DXA scores. PCA and SVM predictive analyses discriminated between GD and HC with maximum accuracy of 73% and area under ROC curve of 0.79. Trabecular STM differences can be quantified between GD patients and HC, and GD sub-types using micro-MRI and machine learning based analytics. Work is underway to expand this approach to evaluate GD disease burden and treatment efficacy. PMID:27109052

  6. Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease.

    PubMed

    Sharma, Gulshan B; Robertson, Douglas D; Laney, Dawn A; Gambello, Michael J; Terk, Michael

    2016-06-14

    Type 1 Gaucher disease (GD) is an autosomal recessive lysosomal storage disease, affecting bone metabolism, structure and strength. Current bone assessment methods are not ideal. Semi-quantitative MRI scoring is unreliable, not standardized, and only evaluates bone marrow. DXA BMD is also used but is a limited predictor of bone fragility/fracture risk. Our purpose was to measure trabecular bone microarchitecture, as a biomarker of bone disease severity, in type 1 GD individuals with different GD genotypes and to apply machine learning based analytics to discriminate between GD patients and healthy individuals. Micro-MR imaging of the distal radius was performed on 20 type 1 GD patients and 10 healthy controls (HC). Fifteen stereological and textural measures (STM) were calculated from the MR images. General linear models demonstrated significant differences between GD and HC, and GD genotypes. Stereological measures, main contributors to the first two principal components (PCs), explained ~50% of data variation and were significantly different between males and females. Subsequent PCs textural measures were significantly different between GD patients and HC individuals. Textural measures also significantly differed between GD genotypes, and distinguished between GD patients with normal and pathologic DXA scores. PCA and SVM predictive analyses discriminated between GD and HC with maximum accuracy of 73% and area under ROC curve of 0.79. Trabecular STM differences can be quantified between GD patients and HC, and GD sub-types using micro-MRI and machine learning based analytics. Work is underway to expand this approach to evaluate GD disease burden and treatment efficacy.

  7. Trabecular mineral content of the spine in women with hip fracture: CT measurement

    SciTech Connect

    Firooznia, H.; Rafii, M.; Golimbu, C.; Schwartz, M.S.; Ort, P.

    1986-06-01

    The trabecular bone mineral content (BMC) of the spine was measured by computed tomography in 185 women aged 47-84 years with vertebral fracture (n = 74), hip fracture (n = 83), and both vertebral and hip fracture (n = 28). Eighty-seven percent of vertebral-fracture patients, 38% of hip-fracture patients, and 82% of vertebral- and hip-fracture patients had spinal BMC values below the fifth percentile for healthy premenopausal women and values 64%, 9%, and 68% below the fifth percentile for age-matched control subjects. No significant loss of spinal trabecular bone was seen in patients with hip fracture. If it is assumed that the rate of trabecular bone loss is the same in the spine and femoral neck, then hip fracture (unlike osteoporotic vertebral fracture) is not associated with disproportionate loss of trabecular bone. Hip fracture occurs secondary to weakening of bone and increased incidence of falls. Bone weakening may be due to disproportionate loss of trabecular or cortical bone, proportionate loss of both, or other as yet undetermined qualitative changes in bone.

  8. Study of Different Involutive Changes in Bone Mineral Density Measured in Ward's Triangle and Trabecular Volume Measured in Iliac Crest in Relation to Age

    PubMed Central

    Castillo, RF; Gallegos, RF

    2015-01-01

    ABSTRACT Background: The ageing process causes changes in the bone structure, in bone mineral density, and musculoskeletal disorders. Aims: The purpose of this study is to evaluate and compare involutive changes in bone structure that occur in relation to age in men and women through the study of bone mineral density at the Ward's triangle and trabecular volume. Subjects and Methods: In this study, we analysed bone mineral density at Ward's triangle in 70 people (38 men and 32 women) and did a histomorphometric study of trabecular volume at the right iliac crest in 66 samples (42 males and 24 females) obtained from autopsies of court cases, aged between 13 and 83 years. Results: The results show significant correlations between measurements of bone mineral density, trabecular volume values and anthropometric measures of age, gender and body mass index. Conclusions: This study shows involutional changes that occur in the bone mineral density and Ward's triangle in the bone structure during the process of ageing. In addition, both weight and height have a great influence on bone mineral density and changes in bone that occur; and body mass index is a very important determinant of bone mineral density. PMID:26360671

  9. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    SciTech Connect

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M.

    2010-05-15

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78

  10. The effects of sex steroids on thyroid C cells and trabecular bone structure in the rat model of male osteoporosis

    PubMed Central

    Filipović, Branko; Šošić-Jurjević, Branka; Ajdžanović, Vladimir; Pantelić, Jasmina; Nestorović, Nataša; Milošević, Verica; Sekulić, Milka

    2013-01-01

    Androgen deficiency is one of the major factors leading to the development of osteoporosis in men. Since calcitonin (CT) is a potent antiresorptive agent, in the present study we investigated the effects of androgen deficiency and subsequent testosterone and estradiol treatment on CT-producing thyroid C cells, skeletal and hormonal changes in middle-aged orchidectomized (Orx) rats. Fifteen-month-old male Wistar rats were either Orx or sham-operated (SO). One group of Orx rats received 5 mg kg−1 b.w. testosterone propionate (TP) subcutaneously, while another group was injected with 0.06 mg kg−1 b.w. estradiol dipropionate (EDP) once a day for 3 weeks. A peroxidase–antiperoxidase method was applied for localization of CT in the C cells. The studies included ultrastructural microscopic observation of these cells. The metaphyseal region of the proximal tibia was measured histomorphometrically using an imagej public domain image processing program. TP or EDP treatment significantly increased C cell volume (Vc), volume densities (Vv) and serum CT concentration compared with the Orx animals. Administration of both TP and EDP significantly enhanced cancellous bone area (B.Ar), trabecular thickness (Tb.Th) and trabecular number (Tb.N) and reduced trabecular separation (Tb.Sp). Serum osteocalcin (OC) and urinary Ca concentrations were significantly lower after these treatments in comparison with Orx rats. These data suggest that testosterone and estradiol treatment in Orx middle-aged rats affect calcitonin-producing thyroid C cells, which may contribute to the bone protective effects of sex hormones in the rat model of male osteoporosis. PMID:23171170

  11. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  12. Effects of architecture, density and connectivity on the properties of trabecular bone: a two-dimensional, Voronoi cell based model study

    NASA Astrophysics Data System (ADS)

    Ruiz, Osvaldo; Schouwenaars, Rafael; Ramírez, Edgar I.; Jacobo, Víctor H.; Ortiz, Armando

    2011-10-01

    Trabecular bone, rather than being considered as a homogeneous material, must be analysed as a structure of interconnected beam and plate-like elements. The arrangement and morphology of these elements depend on the specific tissue studied as well as on the physiology of the individual. It is therefore impossible to define the mechanical properties trabecular bone in general. To estimate the properties of an individual structure, flexible numerical models must be developed, which allow the calculation of elastic constants and resistance of tissue previously characterised by non-destructive observation. Voxel-based modelling of structures observed by X-ray microtomography is computation intensive. Here, synthetic 2D-microstructures are analysed, constructed as a collection of Voronoi-cells obtained from the observation of plane sections of cancellous bone. The effect of architecture (vertebra and femur), bone density and loss of trabecular connectivity was researched. The study confirms findings of earlier experimental and numerical studies relating to the effect of these parameters; the technique is efficient in terms of experimental effort and numerical analysis. Consequently, the use of synthetic microstructures based on a Voronoi-cell approximation of the real bone architecture may be a promising approach for the prediction of the mechanical properties of trabecular bone.

  13. Osteosynthesis of ununited femoral neck fracture by internal fixation combined with iliac crest bone chips and muscle pedicle bone grafting

    PubMed Central

    Baksi, D D; Pal, A K; Baksi, D P

    2016-01-01

    Background: Ununited femoral neck fracture is seen commonly in developing countries due to delayed presentation or failure of primary internal fixation. Such fractures, commonly present with partial or total absorption of femoral neck, osteonecrosis of femoral head in 8–30% cases with upward migration of trochanter posing problem for osteosynthesis, especially in younger individuals. Several techniques for treatment of such conditions are described like osteotomies or nonvascularied cortical or cancellous bone grafting provided varying degrees of success in terms of fracture union but unsatisfactory long term results occurred due to varying incidence of avascular necrosis (AVN) of femoral head. Moreover, in presence of AVN of femoral head neither free fibular graft nor cancellous bone graft is satisfactory. The vascularied bone grafting by deep circumflex iliac artery based on iliac crest bone grafting, free vascularied fibular grafting and muscle pedicle periosteal grafting showed high incidence of success rate. Osteosynthesis is the preferred treatment of choice in ununited femoral neck fracture in younger individuals. Materials and Methods: Of the 293 patients operated during the period from June 1977 to June 2009, 42 were lost to followup. Seven patients with gluteus medius muscle pedicle bone grafting (MPBG) were excluded. Thus, out of 244 patients, 208 (85.3%) untreated nonunion and 36 (14.7%) following failure of primary internal fixation were available for studies. Time interval between the date of injury and operation in untreated nonunion cases was mean 6.5 months and in failed internal fixation cases was mean 11.2 months. Ages of the patients varied from 16 to 55 years. Seventy patients had partial and 174 had subtotal absorption of the femoral neck. Evidence of avascular necrosis (AVN) femoral head was found histologically in 135 (54.3%) and radiologically in 48 (19.7%) patients. The patients were operated by open reduction of fracture, cannulated hip

  14. A semi-automatic method for positioning a femoral bone reconstruction for strict view generation.

    PubMed

    Milano, Federico; Ritacco, Lucas; Gomez, Adrian; Gonzalez Bernaldo de Quiros, Fernan; Risk, Marcelo

    2010-01-01

    In this paper we present a semi-automatic method for femoral bone positioning after 3D image reconstruction from Computed Tomography images. This serves as grounding for the definition of strict axial, longitudinal and anterior-posterior views, overcoming the problem of patient positioning biases in 2D femoral bone measuring methods. After the bone reconstruction is aligned to a standard reference frame, new tomographic slices can be generated, on which unbiased measures may be taken. This could allow not only accurate inter-patient comparisons but also intra-patient comparisons, i.e., comparisons of images of the same patient taken at different times. This method could enable medical doctors to diagnose and follow up several bone deformities more easily. PMID:21096490

  15. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  16. Effects of phase cancellation and receiver aperture size on broadband ultrasonic attenuation for trabecular bone in vitro.

    PubMed

    Cheng, Jiqi; Serra-Hsu, Frederick; Tian, Yuan; Lin, Wei; Qin, Yi-Xian

    2011-12-01

    Phase cancellation in ultrasound due to large receiver size has been proposed as a contributing factor to the inaccuracy of estimating broadband ultrasound attenuation (BUA), which is used to characterize bone quality. Transducers with aperture size ranging from 2 to 5 mm have been used in previous attempts to study the effect of phase cancellation. However, these receivers themselves are susceptible to phase cancellation because aperture size is close to one center wavelength (about 3 mm at 500 KHz in water). This study uses an ultra small receiver (aperture size: 0.2 mm) in conjunction with a newly developed two-dimensional (2-D) synthetic array system to investigate the effects of phase cancellation and receiver aperture size on BUA estimations of bone tissue. In vitro ultrasound measurements were conducted on 54 trabecular bone samples (harvested from sheep femurs) in a confocal configuration with a focused transmitter and synthesized focused receivers of different aperture sizes. Phase sensitive (PS) and phase insensitive (PI) detections were performed. The results show that phase cancellation does have a significant effect on BUA. The normalized BUA (nBUA) with PS is 8.1% higher than PI nBUA while PI BUA is well correlated with PS BUA. Receiver aperture size also influences the BUA reading for both PI and PS detection and smaller receiver aperture tends to result in higher BUA readings. The results also indicate that the receiver aperture size used in the confocal configuration with PI detection should at least equal the aperture of the transmitter to capture most of the energy redistributed by the interference and diffraction from the trabecular bone.

  17. Medial femoral condyle fracture following traumatic allogenic bone transfer – A case report

    PubMed Central

    Kondreddi, Vamsi; Roy, Kishore; Yalamanchili, Ranjith Kumar

    2015-01-01

    Open fractures can cause an “out-in” injury, wherein a foreign body can penetrate the skin causing fracture. There are few reports of allogenic bone getting embedded in soft tissue, but one causing fracture to the host bone has not been reported till date. We present a case, wherein a large cortical bony fragment from one individual penetrated the thigh of another person causing fracture of medial femoral condyle during a head-on collision involving two motorbikes. PMID:26155058

  18. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth

    PubMed Central

    Vicente-Rodriguez, G; Ara, I; Perez-Gomez, J; Dorado, C; Calbet, J

    2005-01-01

    Objectives: To investigate to what extent bone mass accrual is determined by physical activity and changes in lean, fat, and total body mass during growth. Methods: Twenty six physically active and 16 age matched control boys were followed up for three years. All subjects were prepubertal at the start of the survey (mean (SEM) age 9.4 (0.3) years). The weekly physical activity of the active boys included compulsory physical education sessions (80–90 minutes a week), three hours a week of extracurricular sports participation, and occasional sports competitions at weekends. The physical activity of the control group was limited to the compulsory physical education curriculum. Bone mineral content (BMC) and areal density (BMD), lean mass, and fat mass were measured by dual energy x ray absorptiometry. Results: The effect of sports participation on femoral bone mass accrual was remarkable. Femoral BMC and BMD increased twice as much in the active group as in the controls over the three year period (p<0.05). The greatest correlation was found between the increment in femoral bone mass and the increment in lean mass (BMC r = 0.67 and BMD r = 0.69, both p<0.001). Multiple regression analysis revealed enhancement in lean mass as the best predictor of the increment in femoral bone BMC (R = 0.65) and BMD (R = 0.69). Conclusions: Long term sports participation during early adolescence results in greater accrual of bone mass. Enhancement of lean mass seems to be the best predictor of this bone mass accumulation. However, for a given muscle mass, a greater level of physical activity is associated with greater bone mass and density in peripubertal boys. PMID:16118297

  19. Serum FGF-21 levels are associated with worsened radial trabecular bone microarchitecture and decreased radial bone strength in women with anorexia nervosa

    PubMed Central

    Fazeli, Pouneh K.; Faje, Alexander T.; Cross, Ela J.; Lee, Hang; Rosen, Clifford J.; Bouxsein, Mary L.; Klibanski, Anne

    2015-01-01

    BACKGROUND Anorexia nervosa (AN) is a psychiatric disorder characterized by self-induced starvation and low body weight. Women with AN have impaired bone formation, low bone mass and an increased risk of fracture. FGF-21 is a hormone secreted by the liver in starvation and FGF-21 transgenic mice have significant bone loss due to an uncoupling of bone resorption and bone formation. We hypothesized that FGF-21 may contribute to the low bone mass state of AN. SUBJECTS AND METHODS We studied 46 women: 20 with AN (median age [interquartile range]: 27.5 [25, 30.75] years) and 26 normal-weight controls (NWC) of similar age (25 [24, 28.5] years). We investigated associations between serum FGF-21 and 1) aBMD measured by dual energy X-ray absorptiometry, 2) parameters of bone microarchitecture in the distal radius and tibia measured by high-resolution peripheral quantitative CT and 3) bone strength, estimated by microfinite element analysis. RESULTS FGF-21 levels were similar in AN and NWC (AN: 33.1 [18.1, 117.0] pg/ml vs NWC: 57.4 [23.8, 107.1] pg/ml; p=0.54). There was a significant inverse association between log FGF-21 and trabecular number in the radius in both AN (R= -0.57, p<0.01) and NWC (R= -0.53, p<0.01) and a significant positive association between log FGF-21 and trabecular separation in the radius in AN (R=0.50, p<0.03) and NWC (R=0.52, p<0.01). Estimates of radial bone strength were inversely associated with log FGF-21 in AN (R= -0.50, p<0.03 for both stiffness and failure load). There were no associations between FGF-21 and aBMD, cortical parameters or tibial parameters in the AN or NWC groups. CONCLUSIONS FGF-21 may be an important determinant of trabecular skeletal homeostasis in AN. PMID:25868802

  20. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  1. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    PubMed

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.

  2. Radiation dose to trabecular bone marrow stem cells from 3H, 14C and selected α-emitters incorporated in a bone remodeling compartment

    NASA Astrophysics Data System (ADS)

    Nie, Huiling; Richardson, Richard B.

    2009-02-01

    A Monte Carlo simulation of repeated cubic units representing trabecular bone cavities in adult bone was employed to determine absorbed dose fractions evaluated for 3H, 14C and a set of α-emitters incorporated within a bone remodeling compartment (BRC). The BRC consists of a well-oxygenated vascular microenvironment located within a canopy of bone-lining cells. The International Commission on Radiological Protection (ICRP) considers that an important target for radiation-induced bone cancer is the endosteum marrow layer adjacent to bone surface where quiescent bone stem cells reside. It is proposed that the active stem cells and progenitor cells located above the BRC canopy, the 'BRC stem cell niche', is a more important radiation-induced cancer target volume. Simulation results from a static model, where no remodeling occurs, indicate that the mean dose from bone and bone surface to the 50 µm quiescent bone stem cell niche, the current ICRP target, was substantially lower (two to three times lower) than that to the narrower and hypoxic 10 µm endosteum for 3H, 14C and α-particles with energy range 0.5-10 MeV. The results from a dynamic model indicate that the temporal α-radiation dose to active stem/progenitor cells located in the BRC stem cell niche from the material incorporated in and buried by forming bone was 9- to 111-fold greater than the dose to the quiescent bone stem cell niche. This work indicates that the remodeling portion of the bone surface, rather than the quiescent (endosteal) surface, has the greatest risk of radiation-induced bone cancer, particularly from short-range radiation, due to the elevated dose and the radiosensitizing oxygen effect.

  3. Assessment of femoral bone quality using co-occurrence matrices and adaptive regions of interest

    NASA Astrophysics Data System (ADS)

    Fritscher, Karl David; Schuler, Benedikt; Grünerbl, Agnes; Hänni, Markus; Schwieger, Karsten; Suhm, Norbert; Schubert, Rainer

    2007-03-01

    The surgical treatment of femur fractures, which often result from osteoporosis, is highly dependent on the quality of the femoral bone. Unsatisfying results of surgical interventions like early loosening of implants may be one result of altered bone quality. However, clinical diagnostic techniques to quantify local bone quality are limited and often highly observer dependent. Therefore, the development of tools, which automatically and reproducibly place regions of interest (ROI) and asses the local quality of the femoral bone in these ROIs would be of great help for clinicians. For this purpose, a method to position and deform ROIs automatically and reproducibly depending on the size and shape of the femur will be presented. Moreover, an approach to asses the femur quality, which is based on calculating texture features using co-occurrence matrices and these adaptive regions, will be proposed. For testing purposes, 15 CT-datasets of anatomical specimen of human femora are used. The correlation between the texture features and biomechanical properties of the proximal femoral bone is calculated. First results are very promising and show high correlation between the calculated features and biomechanical properties. Testing the method on a larger data pool and refining the algorithms to further increase its sensitivity for altered bone quality will be the next steps in this project.

  4. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium

    PubMed Central

    2013-01-01

    Background The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Methods Twenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. Results The body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons. Conclusions Se negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone. PMID:23369508

  5. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.

    PubMed

    Thomsen, Jesper Skovhus; Niklassen, Andreas Steenholt; Ebbesen, Ebbe Nils; Brüel, Annemarie

    2013-11-01

    The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory

  6. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.

    PubMed

    Lammentausta, E; Silvast, T S; Närväinen, J; Jurvelin, J S; Nieminen, M T; Gröhn, O H J

    2008-02-01

    Magnetic resonance imaging (MRI) techniques have been developed for non-invasive assessment of the structural properties of trabecular bone. These measurements, however, suffer from relatively long acquisition times and low resolution compared to the trabecular size. Spectroscopic measurement of relaxation times could be applied for more detailed and faster assessment of relaxation properties of bone marrow and also provide surrogate information on trabecular structure. In the present study, bovine trabecular bone was investigated with spectroscopic NMR (nuclear magnetic resonance) methods to determine the relationship between structural parameters as measured with micro-CT and T(2), Carr-Purcell T(2) and T(1rho) relaxation times of fat and water. To compare bone with a sample matrix with magnetic susceptibility interfaces, phantoms consisting of glass beads with different diameters in oil or water were used. The behavior of T(2) measured with different sequences and T(1rho) at different magnitudes of spin-lock fields were characterized, and relaxation times were correlated with structural parameters. T(2) and T(1rho) showed significant associations with structural bone parameters. Strongest linear correlations (r = 0.81, p < 0.01) were established between R(1rho) (1/T(1rho)) of fat component and structural model index. For glass beads, the behavior of T(2) and T(1rho) was similar to that of the water compartment of bone marrow. The present results suggest feasibility of spectroscopic NMR measurements to assess trabecular structure. However, further studies are required to determine the sensitivity of this approach to fat content of bone marrow and to lower the field strengths used in clinical devices.

  7. T2, Carr Purcell T2 and T1ρ of fat and water as surrogate markers of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Lammentausta, E.; Silvast, T. S.; Närväinen, J.; Jurvelin, J. S.; Nieminen, M. T.; Gröhn, O. H. J.

    2008-02-01

    Magnetic resonance imaging (MRI) techniques have been developed for non-invasive assessment of the structural properties of trabecular bone. These measurements, however, suffer from relatively long acquisition times and low resolution compared to the trabecular size. Spectroscopic measurement of relaxation times could be applied for more detailed and faster assessment of relaxation properties of bone marrow and also provide surrogate information on trabecular structure. In the present study, bovine trabecular bone was investigated with spectroscopic NMR (nuclear magnetic resonance) methods to determine the relationship between structural parameters as measured with micro-CT and T2, Carr-Purcell T2 and T1ρ relaxation times of fat and water. To compare bone with a sample matrix with magnetic susceptibility interfaces, phantoms consisting of glass beads with different diameters in oil or water were used. The behavior of T2 measured with different sequences and T1ρ at different magnitudes of spin-lock fields were characterized, and relaxation times were correlated with structural parameters. T2 and T1ρ showed significant associations with structural bone parameters. Strongest linear correlations (r = 0.81, p < 0.01) were established between R1ρ (1/T1ρ) of fat component and structural model index. For glass beads, the behavior of T2 and T1ρ was similar to that of the water compartment of bone marrow. The present results suggest feasibility of spectroscopic NMR measurements to assess trabecular structure. However, further studies are required to determine the sensitivity of this approach to fat content of bone marrow and to lower the field strengths used in clinical devices.

  8. Effects of a single intraperitoneal administration of cadmium on femoral bone structure in male rats

    PubMed Central

    2011-01-01

    Background Exposure to cadmium (Cd) is considered a risk factor for various bone diseases in humans and experimental animals. This study investigated the acute effects of Cd on femoral bone structure of adult male rats after a single intraperitoneal administration. Methods Ten 4-month-old male Wistar rats were injected intraperitoneally with a single dose of 2 mg CdCl2/kg body weight and killed 36 h after the Cd had been injected. Ten 4-month-old males served as a control group. Differences in body weight, femoral weight, femoral length and histological structure of the femur were evaluated between the two groups of rats. The unpaired Student's t-test was used for establishment of statistical significance. Results A single intraperitoneal administration of Cd had no significant effect on the body weight, femoral weight or femoral length. On the other hand, histological changes were significant. Rats exposed to Cd had significantly higher values of area, perimeter, maximum and minimum diameters of the primary osteons' vascular canals and Haversian canals. In contrast, a significant decrease in all variables of the secondary osteons was observed in these rats. Conclusions The results indicate that, as expected, a single intraperitoneal administration of 2 mg CdCl2/kg body weight had no impact on macroscopic structure of rat's femora; however, it affected the size of vascular canals of primary osteons, Haversian canals, and secondary osteons. PMID:21884588

  9. Secure fixation of femoral bone plug with a suspensory button in anatomical anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft

    PubMed Central

    TAKETOMI, SHUJI; INUI, HIROSHI; NAKAMURA, KENSUKE; YAMAGAMI, RYOTA; TAHARA, KEITARO; SANADA, TAKAKI; MASUDA, HIRONARI; TANAKA, SAKAE; NAKAGAWA, TAKUMI

    2015-01-01

    Purpose the efficacy and safety of using a suspensory button for femoral fixation in anatomical anterior cruciate ligament (ACL) reconstruction with bone-patellar tendon-bone (BPTB) graft have not been established. The purpose of the current study was to evaluate bone plug integration onto the femoral socket and migration of the bone plug and the EndoButton (EB) (Smith & Nephew, Andover, MA, USA) after rectangular tunnel ACL reconstruction with BPTB autograft. Methods thirty-four patients who underwent anatomical rectangular ACL reconstruction with BPTB graft using EB for femoral fixation and in whom three-dimensional (3D) computed tomography (CT) was performed one week and one year after surgery were included in this study. Bone plug integration onto the femoral socket, bone plug migration, soft tissue interposition, EB migration and EB rotation were evaluated on 3D CT. The clinical outcome was also assessed and correlated with the imaging outcomes. Results the bone plug was integrated onto the femoral socket in all cases. The incidence of bone plug migration, soft tissue interposition, EB migration and EB rotation was 15, 15, 9 and 56%, respectively. No significant association was observed between the imaging outcomes. The postoperative mean Lysholm score was 97.1 ± 5.0 points. The postoperative side-to-side difference, evaluated using a KT-2000 arthrometer, averaged 0.5 ± 1.3 mm. There were no complications associated with EB use. Imaging outcomes did not affect the postoperative KT side-to-side difference. Conclusions the EB is considered a reliable device for femoral fixation in anatomical rectangular tunnel ACL reconstruction with BPTB autograft. Level of evidence Level IV, therapeutic case series. PMID:26889465

  10. A tissue engineering strategy for the treatment of avascular necrosis of the femoral head

    PubMed Central

    Aarvold, A.; Smith, J.O.; Tayton, E.R.; Jones, A.M.H.; Dawson, J.I.; Lanham, S.; Briscoe, A.; Dunlop, D.G.; Oreffo, R.O.C.

    2013-01-01

    Background & purpose Skeletal stem cells (SSCs) and impaction bone grafting (IBG) can be combined to produce a mechanically stable living bone composite. This novel strategy has been translated to the treatment of avascular necrosis of the femoral head. Surgical technique, clinical follow-up and retrieval analysis data of this translational case series is presented. Methods SSCs and milled allograft were impacted into necrotic bone in five femoral heads of four patients. Cell viability was confirmed by parallel in vitro culture of the cell-graft constructs. Patient follow-up was by serial clinical and radiological examination. Tissue engineered bone was retrieved from two retrieved femoral heads and was analysed by histology, microcomputed tomography (μCT) and mechanical testing. Results Three patients remain asymptomatic at 22- to 44-month follow-up. One patient (both hips) required total hip replacement due to widespread residual necrosis. Retrieved tissue engineered bone demonstrated a mature trabecular micro-architecture histologically and on μCT. Bone density and axial compression strength were comparable to trabecular bone. Conclusions Clinical follow-up shows this to be an effective new treatment for focal early stage avascular necrosis of the femoral head. Unique retrieval analysis of clinically translated tissue engineered bone has demonstrated regeneration of tissue that is both structurally and functionally analogous to normal trabecular bone. PMID:23540814

  11. Immediate placement of a porous-tantalum, trabecular metal-enhanced titanium dental implant with demineralized bone matrix into a socket with deficient buccal bone: A clinical report

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Hosseini, Bashir

    2014-01-01

    A missing or deficient buccal alveolar bone plate is often an important limiting factor for immediate implant placement. Titanium dental implants enhanced with porous, tantalum-based trabecular metal material (PTTM) are designed for osseoincorporation, a combination of vascularized bone ingrowth and osseointegration (bone on-growth). Demineralized bone matrix (DBM) contains growth factors with good handling characteristics. However, the combination of these 2 materials in facial alveolar bone regeneration associated with immediate implant therapy has not been reported. A 65-year-old Asian woman presented with a failing central incisor. Most of the buccal alveolar bone plate of the socket was missing. A PTTM enhanced implant was immediately placed with DBM. Cone beam CT scans 12 months after the insertion of the definitive restoration showed regeneration of buccal alveolar bone. A combination of a PTTM enhanced implant, DBM, and a custom healing abutment may have an advantage in retaining biologically active molecules and form a scaffold for neovascularization and osteogenesis. This treatment protocol may be a viable option for immediate implant therapy in a failed tooth with deficient buccal alveolar bone. PMID:25702965

  12. Immediate placement of a porous-tantalum, trabecular metal-enhanced titanium dental implant with demineralized bone matrix into a socket with deficient buccal bone: a clinical report.

    PubMed

    Bencharit, Sompop; Byrd, Warren C; Hosseini, Bashir

    2015-04-01

    A missing or deficient buccal alveolar bone plate is often an important limiting factor for immediate implant placement. Titanium dental implants enhanced with porous tantalum-based trabecular metal material (PTTM) are designed for osseoincorporation, a combination of vascularized bone ingrowth and osseointegration (bone on-growth). Demineralized bone matrix (DBM) contains growth factors with good handling characteristics. However, the combination of these 2 materials in facial alveolar bone regeneration associated with immediate implant therapy has not been reported. A 65-year-old Asian woman presented with a failing central incisor. Most of the buccal alveolar bone plate of the socket was missing. A PTTM enhanced implant was immediately placed with DBM. Cone beam computed tomography scans 12 months after the insertion of the definitive restoration showed regeneration of buccal alveolar bone. A combination of a PTTM enhanced implant, DBM, and a custom healing abutment may have an advantage in retaining biologically active molecules and form a scaffold for neovascularization and osteogenesis. This treatment protocol may be a viable option for immediate implant therapy in a failed tooth with deficient buccal alveolar bone.

  13. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis.

    PubMed

    Wen, Xin-Xin; Xu, Chao; Zong, Chun-Lin; Feng, Ya-Fei; Ma, Xiang-Yu; Wang, Fa-Qi; Yan, Ya-Bo; Lei, Wei

    2016-07-01

    Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E.

  14. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis

    PubMed Central

    Moreno, Rodrigo; Brismar, Torkel B.; Pahr, Dieter H.; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young’s modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  15. Age- and direction-related adaptations of lumbar vertebral trabecular bone with respect to apparent stiffness and tissue level stress distribution

    NASA Astrophysics Data System (ADS)

    Gong, He; Fan, Yubo; Zhang, Ming; Qin, Ling

    2009-02-01

    The objective of this study was to study the age-related adaptation of lumbar vertebral trabecular bone at the apparent level, as well as the tissue level in three orthogonal directions. Ninety trabecular specimens were obtained from six normal L4 vertebral bodies of six male cadavers in two age groups, three aged 62 years and three aged 69 years, and were scanned using a high-resolution micro-computed tomography (micro-CT) system, then converted to micro-finite element models to do micro-finite element analyses. The relationship between apparent stiffness and bone volume fraction, and the tissue level von Mises stress distribution for each trabecular specimen when compressed separately in the longitudinal direction, medial-lateral and anterior-posterior directions (transverse directions) were derived and compared between two age groups. The results showed that at the apparent level, trabecular bones from 69-year group had stiffer bone structure relative to their volume fractions in all three directions, and in both age groups, changes in bone volume fraction could explain more variations in apparent stiffness in the longitudinal direction than the transverse directions; at the tissue level, aging had little effect on the tissue von Mises stress distributions for the compressions in all the three directions. The novelty of the present study was that it provided quantitative assessments on the age and direction-related adaptation of Chinese male lumbar vertebral trabecular bone from two different levels: stiffness at the apparent level and stress distribution at the tissue level. It may help to understand the failure mechanisms and fracture risks of vertebral body associated with aging and direction for the prevention of fracture risks in elder individuals.

  16. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis.

    PubMed

    Klintström, Eva; Klintström, Benjamin; Moreno, Rodrigo; Brismar, Torkel B; Pahr, Dieter H; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young's modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  17. [Femoral bone morphogenesis in human fetuses in the area of environmental fluoride pollution].

    PubMed

    Shalina, T I; Vasil'eva, L S

    2010-01-01

    The aim of this study was to determine the peculiarities of femoral bone osteogenesis in human fetuses in the areas with different levels of environmental pollution with fluoride compounds (the city of Irkutsk and the town of Shelekhov). The histological structure of femoral bones was studied in 70 fetuses aged 15-16, 19-20, 22-25 and 27-29 gestational weeks. Morphometric methods were used to evaluate the number of blood vessels per total area of epiphysis, the length of endochondral trabeculae, the thickness of hypertrophic and columnar cartilage zones, diaphysis wall and its trabeculae thickness, the thickness of endochondral trabeculae merging with the diaphysis wall, and of the bone growing on the epiphysis. It was found that in the city of Irkutzk, relatively remote from the pollution source, the processes of osteogenesis and osteoresorption are balanced and are characterized by the prevalence of osteoblastic activity over osteoclastic activity, ensuring the active bone growth. During weeks 15-22, the bones are actively growing in length, while during weeks 22-29 they grow mainly in width. In the town of Shelekhov, located closely to the pollution source, the growth of bones in both length and width, is delayed. The bone growth was active till week 16, however, during weeks 18-29, osteoresorption prevailed over the osteosynthesis, the bone thickness decreased, while the activity of their growth in length remained reduced. PMID:20593589

  18. Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system.

    PubMed

    Bell, K L; Garrahan, N; Kneissel, M; Loveridge, N; Grau, E; Stanton, M; Reeve, J

    1996-11-01

    An interactive image analysis package was developed to examine whole cross-sections from the femoral neck. The package quantifies cortical width (Ct.Wi), cortical porosity (Ct.Po), and proportions of cortical, cancellous bone as a percentage of bone plus marrow area. Segmental analysis was used to quantify circumferential variations in bone distribution within the femoral cross-section. To evaluate reproducibility of data four independent operators analyzed previously prepared femoral neck sections from a 2000 BC population. Differences in total and circumferential distributions of cortical and cancellous bone with respect to gender and age of samples were demonstrated. Reproducibility was assessed using coefficients of variation (CV). Analysis of sections using a variable magnification, giving largest possible image size, rather than a set magnification reduced variation between operators for all measurements. Use of a calculated threshold significantly decreased variation between operators for the proportions of cortical and cancellous bone (p < or = 0.026). Dividing the image into 8 rather than 16 segments also improved reproducibility. There was little agreement between operators in the determination of cortical porosity. The mean CV for the other quantitative indices such as cortical width and proportions of cortical and cancellous bone ranged from 4.87% to 13.52%. The genders showed similar patterns in circumferential distribution of bone. Cortical width was significantly greater in the inferior region compared to the other areas, whereas percent cortical bone was lowest at the superior region. The center of mass (COM) for the younger age group was located anteriorly, whereas in the older samples the COM was located posteriorly of the center of area (p = 0.041). Basic data relating to cortical and cancellous bone of acceptable reproducibility in comparison with current standards in iliac histomorphometry can now be provided at modest cost in operator time and

  19. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  20. An in silico parametric model of vertebrae trabecular bone based on density and microstructural parameters to assess risk of fracture in osteoporosis.

    PubMed

    Amjadi Kashani, Mohammad Reza; Nikkhoo, Mohammad; Khalaf, Kinda; Firoozbakhsh, Keikhosrow; Arjmand, Navid; Razmjoo, Arash; Parnianpour, Mohamad

    2014-12-01

    Osteoporosis is a progressive bone disease characterized by deterioration in the quantity and quality of bone, leading to inferior mechanical properties and an increased risk of fracture. Current assessment of osteoporosis is typically based on bone densitometry tools such as Quantitative Computed Tomography (QCT) and Dual Energy X-ray absorptiometry (DEXA). These assessment modalities mainly rely on estimating the bone mineral density (BMD). Hence present densitometry tools describe only the deterioration of the quantity of bone associated with the disease and not the affected morphology or microstructural changes, resulting in potential incomplete assessment, many undetected patients, and unexplained fractures. In this study, an in-silico parametric model of vertebral trabecular bone incorporating both material and microstructural parameters was developed towards the accurate assessment of osteoporosis and the consequent risk of bone fracture. The model confirms that the mechanical properties such as strength and stiffness of vertebral trabecular tissue are highly influenced by material properties as well as morphology characteristics such as connectivity, which reflects the quality of connected inter-trabecular parts. The FE cellular solid model presented here provides a holistic approach that incorporates both material and microstructural elements associated with the degenerative process, and hence has the potential to provide clinical practitioners and researchers with more accurate assessment method for the degenerative changes leading to inferior mechanical properties and increased fracture risk associated with age and/or disease such as Osteoporosis. PMID:25515229

  1. Bivariate Genome-Wide Linkage Analysis of Femoral Bone Traits and Leg Lean Mass: Framingham Study

    PubMed Central

    Karasik, David; Zhou, Yanhua; Cupples, L Adrienne; Hannan, Marian T; Kiel, Douglas P; Demissie, Serkalem

    2009-01-01

    The risk of osteoporotic fracture is a function of both applied muscle mass and bone tissue distribution. Leg lean mass (LLM) and femoral bone geometry are both known to have substantial genetic components. Therefore, we estimated shared heritability (h2) and performed linkage analysis to identify chromosomal regions governing both LLM and bone geometry. A genome-wide scan (using 636 microsatellite markers) for linkage analyses was performed on 1346 adults from 327 extended families of the Framingham study. DXA measures were LLM, femoral neck length, neck-shaft angle (NSA), subperiosteal width, cross-sectional area (CSA), and section modulus (Z) at the femoral narrow neck and shaft (S) regions. Variance component linkage analysis was performed on normalized residuals (adjusted for age, height, BMI, and estrogen status in women). The results indicated substantial h2 for LLM (0.42 ± 0.07) that was comparable to bone geometry traits. Phenotypic correlations between LLM and bone geometry phenotypes ranged from 0.033 with NSA (p > 0.05) to 0.251 with S_Z (p < 0.001); genetic correlations ranged from 0.087 (NSA, p > 0.05) to 0.454 (S_Z, p < 0.001). Univariate linkage analysis of covariate-adjusted LLM identified no chromosomal regions with LOD scores ≥2.0; however, bivariate analysis identified two loci with LOD scores >3.0, shared by LLM with S_CSA on chromosome 12p12.3–12p13.2, and with NSA, on 14q21.3–22.1. In conclusion, we identified chromosomal regions potentially linked to both LLM and femoral bone geometry. Identification and subsequent characterization of these shared loci may further elucidate the genetic contributions to both osteoporosis and sarcopenia. PMID:19063671

  2. Volumetric topological analysis: a novel method for trabecular bone characterization on the continuum between plates and rods

    NASA Astrophysics Data System (ADS)

    Saha, Punam K.; Xu, Yan; Liang, Guoyuan; Duan, Hong

    2009-02-01

    Trabecular bone (TB) is a complex quasi-random network of interconnected struts and plates. TB constantly remodels to adapt dynamically to the stresses to which it is subjected (Wolff's Law). In osteoporosis, this dynamic equilibrium between bone formation and resorption is perturbed, leading to bone loss and structural deterioration, both increasing fracture risk. Bone's mechanical competence can only be partly explained by variations in bone mineral density, which led to the notion of bone structural quality. Previously, we developed digital topological analysis or DTA which classifies plates, rods, profiles, edges and junctions in a TB skeletal representation. Although the method has become quite popular, a major limitation is that DTA produces hard classifications only, failing to distinguish between narrow and wide plates. Here, we present a new method called volumetric topological analysis or VTA for quantification of regional topology in complex quasi-random TB networks. At each TB voxel, the method uniquely classifies the topology on the continuum between perfect plates and rods. Therefore, the method is capable of detecting early alterations of trabeculae from plates to rods according to the known etiology of osteoporotic bone loss. Here, novel ideas of geodesic distance transform, geodesic scale and feature propagation have been introduced and combined with DTA and fuzzy distance transform methods conceiving the new VTA technology. The method has been applied to MDCT and μCT images of a cadaveric distal tibia specimen and the results have been quantitatively evaluated. Specifically, intra- and inter-modality reproducibility of the method has been examined and the results are found very promising.

  3. Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride.

    PubMed

    Pemmer, Bernhard; Hofstaetter, Jochen G; Meirer, Florian; Smolek, Stephan; Wobrauschek, Peter; Simon, Rolf; Fuchs, Robyn K; Allen, Matthew R; Condon, Keith W; Reinwald, Susan; Phipps, Roger J; Burr, David B; Paschalis, Eleftherios P; Klaushofer, Klaus; Streli, Christina; Roschger, Paul

    2011-11-01

    Based on clinical trials showing the efficacy to reduce vertebral and non-vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr administration, SrR versus strontium chloride (SrCl(2)). Three-month-old ovariectomized rats were treated for 90 days with doses of 25 mg kg(-1) d(-1) and 150 mg kg(-1) d(-1) of SrR or SrCl(2) at low (0.1% Ca) or normal (1.19% Ca) Ca diet. Vertebral bone tissue was analysed by confocal synchrotron-radiation-induced micro X-ray fluorescence and by backscattered electron imaging. Principal component analysis and k-means clustering of the acquired elemental maps of Ca and Sr revealed that the newly formed bone exhibited the highest Sr fractions and that low Ca diet increased the Sr uptake by a factor of three to four. Furthermore, Sr uptake in bone of the SrCl(2)-treated animals was generally lower compared with SrR. The study clearly shows that inadequate nutritional calcium intake significantly increases uptake of Sr in serum as well as in trabecular bone matrix. This indicates that nutritional calcium intake as well as serum Ca levels are important regulators of any Sr treatment.

  4. Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts

    PubMed Central

    Iura, Ayaka; McNerny, Erin Gatenby; Zhang, Yanshuai; Kamiya, Nobuhiro; Tantillo, Margaret; Lynch, Michelle; Kohn, David H.; Mishina, Yuji

    2015-01-01

    Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO) of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs), in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties. PMID:26489086

  5. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean

    2014-01-01

    Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted

  6. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-02-01

    In our first article1 on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find that this effect is important for the geometry of the bone. We find that larger theropods (including Tyrannosaurus rex) were less athletic than smaller theropods.

  7. Spontaneous and bilateral necrosis of the femoral head in a young experimental beagle dog.

    PubMed

    Kobayashi, Ryosuke; Kurotaki, Tetsuro; Yamada, Naoaki; Kumabe, Shino; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru

    2015-04-01

    This report describes the pathological characterizations of a rare case of necrosis of the femoral head that was spontaneous, bilateral, avascular and nontraumatic. A 14-month-old beagle dog was presented with pain in the hind limbs. At necropsy, the articular surface in the bilateral femoral head was markedly irregular. There were no gross abnormalities other than in the hip joints. Microscopically, a wide range of trabecular bone necrosis localized in the subchondral area was observed in both femoral heads. In the right femoral head, fibrosis and proliferative vessels were noted in the subchondral area. The articular cartilage was thickened irregularly, but there was no evidence of cartilage necrosis. The bone marrow adjacent to the affected area showed severe depression. In the metaphysis, atrophic bone marrow, but not bone necrosis, was observed. This was a rare case of spontaneous necrosis of the femoral head in an experimental beagle dog. PMID:26028821

  8. Spontaneous and bilateral necrosis of the femoral head in a young experimental beagle dog

    PubMed Central

    Kobayashi, Ryosuke; Kurotaki, Tetsuro; Yamada, Naoaki; Kumabe, Shino; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru

    2015-01-01

    This report describes the pathological characterizations of a rare case of necrosis of the femoral head that was spontaneous, bilateral, avascular and nontraumatic. A 14-month-old beagle dog was presented with pain in the hind limbs. At necropsy, the articular surface in the bilateral femoral head was markedly irregular. There were no gross abnormalities other than in the hip joints. Microscopically, a wide range of trabecular bone necrosis localized in the subchondral area was observed in both femoral heads. In the right femoral head, fibrosis and proliferative vessels were noted in the subchondral area. The articular cartilage was thickened irregularly, but there was no evidence of cartilage necrosis. The bone marrow adjacent to the affected area showed severe depression. In the metaphysis, atrophic bone marrow, but not bone necrosis, was observed. This was a rare case of spontaneous necrosis of the femoral head in an experimental beagle dog. PMID:26028821

  9. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement.

    PubMed

    Stankewich, C J; Swiontkowski, M F; Tencer, A F; Yetkinler, D N; Poser, R D

    1996-09-01

    The first goal of this study was to determine if augmentation with an injectable, in situ setting, calcium-phosphate cement that is capable of being remodeled and was designed to mimic bone mineral significantly improved the strength and stiffness of fixation in a cadaveric femoral neck fracture model. The second goal was to determine if greater increases in fixation strength were achieved as the bone density of the specimen decreased. Sixteen pairs of fresh cadaveric human femora with a mean age of 70.9 years (SD = 17.2 years) were utilized. The bone density of the femoral neck was measured with dual-energy x-ray absorptiometry. The femoral head was impacted vertically with the femoral shaft fixed in 12 degrees of adduction using a materials testing machine to create a fully displaced fracture. Following fracture, 30% inferior comminution was created in each specimen. One randomly chosen femur from each pair underwent anatomic reduction and fixation with three cannulated cancellous bone screws, 7 mm in diameter, in an inverted triangle configuration. The contralateral femur underwent the same fixation augmented with calcium-phosphate cement. Specimens were preconditioned followed by 1.000 cycles to one body weight (611.6 N) at 0.5 Hz to simulate single-limb stance loading. The stiffness in the first cycle was observed to be significantly greater in cement-augmented specimens compared with unaugmented controls (p < 0.05). After cycling, each specimen was loaded at 10 mm/min until complete displacement of the fracture surface and failure of fixation occurred. Specimens augmented with bone mineral cement failed at a mean of 4,573 N (SD = 1,243 N); this was significantly greater (p < 0.01) than the mean for controls (3,092 N, SD = 1,258 N). The relative improvement in fixation strength (augmented/control x 100%) was not inversely correlated to femoral neck bone density (p = 0.25, R2 = 0.09), was weakly correlated to the volume of cement injected (p = 0.07, R2 = 0

  10. Enhanced stability of uncemented canine femoral components by bone ingrowth into the porous coatings.

    PubMed

    Jasty, M; Bragdon, C R; Zalenski, E; O'Connor, D; Page, A; Harris, W H

    1997-01-01

    The following questions were answered in this study: (1) What is the initial stability of proximally porous-coated canine femoral components? (2) Does bone ingrowth occur under these conditions? (3) Is the stability enhanced by tissue ingrowth in vivo? The stability of proximally porous-coated femoral components of canine total hip arthroplasties after 6 months to 2 years of in vivo service in dogs was measured in vitro using displacement transducers under loads simulating canine midstance. This was compared with the stability of identical components under the same loading conditions immediately after implantation in vitro in the contralateral femurs. The femurs were then sectioned and bone ingrowth into the porous coatings was quantified. The results showed that immediately after implantation the implants can move as much as 50 microns, but that the bone ingrowth into porous coatings of canine femoral components can occur even under such conditions. These data also suggested that the relative motion existing at the time of insertion can be reduced to very small amounts (< 10 microns) by bone ingrowth. PMID:9021510

  11. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    PubMed Central

    Lambert, Laura J.; Challa, Anil K.; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S.; Nagy, Tim R.; Eberhardt, Alan W.; Estep, Patrick N.; Kesterson, Robert A.

    2016-01-01

    ABSTRACT Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. PMID:27483347

  12. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-03-01

    In the second paper1 of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod locomotion. In this paper, our model calculation of Ref. 1 is extended to incorporate the fact that larger animals run with straighter legs. As in Ref. 1, students use geometric data for the femora of theropod dinosaurs to analyze their locomotion abilities. This can either be an in-class activity or given as a homework problem. Larger theropods are found to be less athletic in their movements than smaller theropods since the stresses in the femora of large theropods are closer to breaking their legs than smaller theropods.

  13. Ex Vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain.

    PubMed

    David, Valentin; Guignandon, Alain; Martin, Aline; Malaval, Luc; Lafage-Proust, Marie-Hélène; Rattner, Aline; Mann, Val; Noble, Brendon; Jones, David B; Vico, Laurence

    2008-01-01

    Our aim was to test cell and trabecular responses to mechanical loading in vitro in a tissue bone explant culture model. We used a new three-dimensional culture model, the ZetOS system, which provides the ability to exert cyclic compression on cancellous bone cylinders (bovine sternum) cultured in forced flow circumfusion chambers, and allows to assess mechanical parameters of the cultivated samples. We evaluated bone cellular parameters through osteocyte viability test, gene and protein expression, and histomorphometric bone formation rate, in nonloaded versus loaded samples. The microarchitecture of bone cores was appraised by in vivo micro-CT imaging. After 3 weeks, the samples receiving daily cyclic compression exhibited increased osteoblast differentiation and activity associated with thicker, more plate-like-shaped trabeculae and higher Young's modulus and ultimate force as compared to unloaded samples. Osteoclast activity was not affected by mechanical strain, although it was responsive to drug treatments (retinoic acid and bisphosphonate) during the first 2 weeks of culture. Thus, in the ZetOS apparatus, we reproduce in vitro the osteogenic effects of mechanical strain known in vivo, making this system a unique and an essential laboratory aid for ex vivo testing of lamellar bone remodeling.

  14. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  15. Fracture mechanics of human cortical bone: The relationship of geometry, microstructure and composition with the fracture of the tibia, femoral shaft and the femoral neck

    NASA Astrophysics Data System (ADS)

    Yeni, Yener Nail

    Bone fracture is a major health problem in old population with its complications leading to mortality and morbidity. Therapies mostly involve preventing bone mass loss. Individuals with high bone mass, however, may still suffer fractures suggesting that additional components such as bone microstructure and composition may be responsible for increased fracture risk in the elderly. The relationship of bone constituents with bone fragility, however, is not well-understood. A better understanding of these relationships will help improving therapies by controlling the relevant biological processes. Bone is a composite material with many constituents such as osteons embedded with vascular channels, collagen fibers, mineral crystals, etc. The nature of interfacing between these constituents makes bone a more complex material. Bone also has a structure that adapts itself, both internally and externally, to better fit its needs. This suggested that, unlike man-made materials, a relationship between material properties and structural properties may exist. Because bone has some similarities with engineering composite materials and also experiences microcracks, a fracture mechanics approach would be more appropriate for investigating its fragility. Choosing mode I and mode II fracture toughness (Gsb{Ic} and Gnsb{IIc}, respectively) as indicators of bone fragility, their relationship with bone microstructure (porosity, osteon morphology, mineral crystal imperfection and microdamage), composition (density, mineral, organic, water and collagen content) and macrostructure (thickness, diameter and moment of inertia of the shaft and angle between the femoral neck and femoral shaft from different views) was investigated. Use of x-ray radiogrammetry for detecting the latter was tested. Differences among the femoral shaft, femoral neck and the tibia were investigated for an age range of 22-94 years. In general, fracture toughness increased with increasing bone quantity. However, the

  16. Treatment of osteonecrosis of the femoral head with vascularized bone grafting.

    PubMed

    Millikan, Patrick D; Karas, Vasili; Wellman, Samuel S

    2015-09-01

    Osteonecrosis of the femoral head (ONFH) is a challenging diagnosis for the patient and treating surgeon. Though its cause is poorly understood, several methods of surgical treatment exist and are performed with variable success. Vascularized bone grafting is one such treatment that attempts to restore viable bone, structural support, and blood supply to the avascular portion of the femoral head. This review summarizes the various approaches to this technique that have been proposed and put into practice. The cost effectiveness of these procedures, both in time and resources, has been evaluated and found to be favorable. The use of revascularization procedures, along with the introduction of other potentiating factors, may signal an exciting future for this debilitating disease process.

  17. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.

    PubMed

    Gross, Thomas; Pahr, Dieter H; Zysset, Philippe K

    2013-08-01

    With improving clinical CT scanning technology, the accuracy of CT-based finite element (FE) models of the human skeleton may be ameliorated by an enhanced description of apparent level bone mechanical properties. Micro-finite element (μFE) modeling can be used to study the apparent elastic behavior of human cancellous bone. In this study, samples from the femur, radius and vertebral body were investigated to evaluate the predictive power of morphology-elasticity relationships and to compare them across different anatomical regions. μFE models of 701 trabecular bone cubes with a side length of 5.3 mm were analyzed using kinematic boundary conditions. Based on the FE results, four morphology-elasticity models using bone volume fraction as well as full, limited or no fabric information were calibrated for each anatomical region. The 5 parameter Zysset-Curnier model using full fabric information showed excellent predictive power with coefficients of determination ([Formula: see text]) of 0.98, 0.95 and 0.94 of the femur, radius and vertebra data, respectively, with mean total norm errors between 14 and 20%. A constant orthotropy model and a constant transverse isotropy model, where the elastic anisotropy is defined by the model parameters, yielded coefficients of determination between 0.90 and 0.98 with total norm errors between 16 and 25%. Neglecting fabric information and using an isotropic model led to [Formula: see text] between 0.73 and 0.92 with total norm errors between 38 and 49%. A comparison of the model regressions revealed minor but significant (p<0.01) differences for the fabric-elasticity model parameters calibrated for the different anatomical regions. The proposed models and identified parameters can be used in future studies to compute the apparent elastic properties of human cancellous bone for homogenized FE models.

  18. A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI.

    PubMed

    Vasilic, Branimir; Wehrli, Felix W

    2005-12-01

    Recent advances in micro-magnetic resonance imaging have shown the possibility of in vivo assessment of trabecular bone architecture. However, the small feature size and relatively low signal-to-noise ratio (SNR) achievable in vivo cause the intensity histogram to be unimodal. The critical first step in the processing of these images is the extraction of bone volume fraction for each voxel. Here, we propose a local threshold algorithm (LTA) that determines the marrow intensity value in the neighborhood of each voxel based on nearest-neighbor statistics. Using the local marrow intensities we threshold the image and scale the intensities of voxels partially occupied by bone to produce a marrow volume fraction map of the trabecular bone region. We show that structural parameters derived with the LTA are highly correlated with those obtained with the previously published histogram deconvolution algorithm (HDA) and that the LTA is robust to image noise corruption. The LTA is found to correctly identify trabeculae with a significantly higher reliability than HDA. Finally, we demonstrate that the LTA is superior in preserving connectivity by showing for 75 in vivo images that the genus of the trabecular bone surface is always higher than when processed with the HDA.

  19. bone mineral densities and mechanical properties of retrieved femoral bone samples in relation to bone mineral densities measured in the respective patients.

    PubMed

    Haba, Yvonne; Skripitz, Ralf; Lindner, Tobias; Köckerling, Martin; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The bone mineral density (BMD) of retrieved cancellous bone samples is compared to the BMD measured in vivo in the respective osteoarthritic patients. Furthermore, mechanical properties, in terms of structural modulus (E(s)) and ultimate compression strength (σ(max)) of the bone samples, are correlated to BMD data. Human femoral heads were retrieved from 13 osteoarthritic patients undergoing total hip replacement. Subsequently, the BMD of each bone sample was analysed using dual energy X-ray absorptiometry (DXA) as well as ashing. Furthermore, BMDs of the proximal femur were analysed preoperatively in the respective patients by DXA. BMDs of the femoral neck and head showed a wide variation, from 1016 ± 166 mg/cm(2) to 1376 ± 404 mg/cm(2). BMDs of the bone samples measured by DXA and ashing yielded values of 315 ± 199 mg/cm(2) and 347 ± 113 mg/cm(3), respectively. E(s) and σ(max) amounted to 232 ± 151 N/mm(2) and 6.4 ± 3.7 N/mm(2). Significant correlation was found between the DXA and ashing data on the bone samples and the DXA data from the patients at the femoral head (r = 0.85 and 0.79, resp.). E(s) correlated significantly with BMD in the patients and bone samples as well as the ashing data (r = 0.79, r = 0.82, and r = 0.8, resp.).

  20. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.

    PubMed

    Borah, B; Dufresne, T E; Cockman, M D; Gross, G J; Sod, E W; Myers, W R; Combs, K S; Higgins, R E; Pierce, S A; Stevens, M L

    2000-09-01

    The study objective was to analyze the three-dimensional (3D) trabecular architecture and mechanical properties in vertebral specimens of young and mature Sinclair minipigs to assess the relative contribution of architecture to bone strength. We used 3D magnetic resonance microimaging (MRmicroI) and direct image analysis to evaluate a set of standard structural measurements and new architectural descriptors of trabecular bone in biopsy specimens from L2, L3, and L4 vertebrae (n = 16 in each group) from young (mean age, 1.2 years) and mature (mean age, 4.8 years) minipigs. The measurements included bone volume/tissue volume (BV/TV), marrow star volume (Ma.St.V), connectivity density (ConnD), and two new parameters, percent platelike trabeculae (% plate) and percent bone in the load direction (% boneLD). The % plate, calculated from surface curvature, allowed the delineation of plates from rods. The % boneLD quantified the percentage of bone oriented along the long axis of the vertebral body. We showed that 3D MRmicroI can detect the subtle changes in trabecular architecture between the two age groups. ConnD, star volume, % plate, % boneLD, and BV/TV were found to be more effective than the model-based, derived indices (trabecular thickness [Tb.Th], trabecular separation [Tb.Sp], and trabecular number [Tb.N]) in differentiating the structural changes. BV/TV, % plate, and % boneLD significantly increased (p < 0.05) in all three vertebral sites of the mature minipigs. The significant decrease in ConnD and star volume in the mature vertebra was consistent with the concurrent increase of platelike trabecular bone (p < 0.05). Overall, ConnD, star volume, % plate, and % boneLD provided a coherent picture of the architectural changes between the two age groups. Apparent modulus and maximum stress were determined experimentally on biopsy specimens from L2 vertebrae (n = 16). When apparent modulus was predicted using 3D MRmicroI data sets as input for finite element modeling

  1. Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Jin, Dakai; Liu, Yinxiao; Wehrli, Felix W.; Chang, Gregory; Snyder, Peter J.; Regatte, Ravinder R.; Saha, Punam K.

    2016-09-01

    Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The method’s ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p  =  0.06), 7.2% (p  =  0.07) and 16.2% (p  =  0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.

  2. Tensile testing of rodlike trabeculae excised from bovine femoral bone.

    PubMed

    Ryan, S D; Williams, J L

    1989-01-01

    Individual trabeculae, rodlike in form, were excised from bovine femora and tested in tension to obtain stress-strain plots. Tensile grips were constructed to permit such small specimens to be tested and to avoid slippage during the test. Data were collected for 38 specimens. The results of these tests show that rodlike trabeculae obtained from the femora of young bovine animals have an average Young's modulus in tension of approximately 1 GPa. This value is an order of magnitude lower than the corresponding value for cortical bone in the diaphysis of the femur.

  3. Analysis of mechanical strength to fixing the femoral neck fracture in synthetic bone type Asnis

    PubMed Central

    Freitas, Anderson; Lula, Welder Fernandes; de Oliveira, Jonathan Sampaio; Maciel, Rafael Almeida; Souto, Diogo Ranier de Macedo; Godinho, Patrick Fernandes

    2014-01-01

    OBJECTIVE: To analyze the results of biomechanical assays of fixation of Pauwels type III femoral neck fracture in synthetic bone, using 7.5mm cannulated screws in inverted triangle formation, in relation to the control group. METHODS: Ten synthetic bones were used, from a domestic brand, divided into two groups: test and control. In the test group, a 70° tilt osteotomy of the femoral neck was fixated using three cannulated screws in inverted triangle formation. The resistance of this fixation and its rotational deviation were analyzed at 5mm displacement (phase 1) and 10mm displacement (phase 2). The control group was tested in its integrity until the fracture of the femoral neck occurred. The Mann-Whitney test was used for group analysis and comparison. RESULTS: The values in the test group in phase 1, in samples 1-5, showed a mean of 579N and SD =77N. Rotational deviations showed a mean of 3.33°, SD = 2.63°. In phase 2, the mean was 696N and SD =106N. The values of the maximum load in the control group had a mean of 1329N and SD=177N. CONCLUSION: The analysis of mechanical strength between the groups determined a statistically significant lower value in the test group. Level of Evidence III, Control Case. PMID:25246851

  4. Progressive femoral cortical and cancellous bone density loss after uncemented tapered-design stem fixation

    PubMed Central

    Nowak, Tobias E; Haeberle, Lothar; Mueller, Lars P; Kress, Alexander; Voelk, Michael; Pfander, David; Forst, Raimund; Schmidt, Rainer

    2010-01-01

    Background Aseptic implant loosening and periprosthetic bone loss are major problems after total hip arthroplasty (THA). We present an in vivo method of computed tomography (CT) assisted osteodensitometry after THA that differentiates between cortical and cancellous bone density (BD) and area around the femoral component. Method Cortical and cancellous periprosthetic femoral BD (mg CaHA/mL), area (mm2) and contact area between the prothesis and cortical bone were determined prospectively in 31 patients 10 days, 1 year, and 6 years after uncemented THA (mean age at implantation: 55 years) using CT-osteodensitometry. Results 6 years postoperatively, cancellous BD had decreased by as much as 41% and cortical BD by up to 27% at the metaphyseal portion of the femur; this decrease was progressive between the 1-year and 6-year examinations. Mild cortical hypertrophy was observed along the entire length of the diaphysis. No statistically significant changes in cortical BD were observed along the diaphysis of the stem. Interpretation Periprosthetic CT-assisted osteodensitometry has the technical ability to discriminate between cortical and cancellous bone structures with respect to strain-adapted remodeling. Continuous loss of cortical and cancellous BD at the femoral metaphysis, a homeostatic cortical strain configuration, and mild cortical hypertrophy along the diaphysis suggest a diaphyseal fixation of the implanted stem. CT-assisted osteodensitometry has the potential to become an effective instrument for quality control in THA by means of in vivo determination of periprosthetic BD, which may be a causal factor in implant loosening after THA. PMID:20180716

  5. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius.

    PubMed

    Ducher, Gaële; Tournaire, Nicolas; Meddahi-Pellé, Anne; Benhamou, Claude-Laurent; Courteix, Daniel

    2006-01-01

    Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 +/- 1.4 years old) and 47 adult tennis players (22.3 +/- 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.

  6. Development of femoral bone fracture model simulating muscular contraction force by pneumatic rubber actuator.

    PubMed

    Sen, Shin; Ando, Takehiro; Kobayashi, Etsuko; Miyamoto, Hideaki; Ohashi, Satoru; Tanaka, Sakae; Joung, Sanghyun; Park, Il-Hyung; Sakuma, Ichiro

    2014-01-01

    In femoral fracture reduction, orthopedic surgeons must pull distal bone fragments with great traction force and return them to their correct positions, by referring to 2D-fluoroscopic images. Since this method is physically burdensome, the introduction of robotic assistance is desirable. While such robots have been developed, adequate control methods have not yet been established because of the lack of experimental data. It is difficult to obtain accurate data using cadavers or animals because they are different from the living human body's muscle characteristics and anatomy. Therefore, an experimental model for simulating human femoral characteristics is required. In this research, human muscles are reproduced using a McKibben-type pneumatic rubber actuator (artificial muscle) to develop a model that simulates typical femur muscles using artificial muscles.

  7. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.

  8. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. PMID:26894840

  9. Subchondral Insufficiency Fracture of the Femoral Head treated with Core Decompression and Bone Void Filler Support

    PubMed Central

    Patel, Hiren; Kamath, Atul F.

    2016-01-01

    Subchondral insufficiency fracture of the femoral head (SIFFH) is characterized by acute onset hip pain without overt trauma. It appears as a low intensity band with bone marrow edema on T1-weighted MRI. The most common course of treatment is protected weight bearing for a period of several weeks. Total hip arthroplasty (THA) has been commonly used if the patient does not respond to the initial protected weight bearing treatment. We present a case of a 48-year-old male with SIFFH who was treated with core hip decompression and bone void filler as a hip-preserving alternative to THA. The patient has an excellent clinical and radiographic result at final follow up. Core hip decompression with bone void filler is a less invasive alternative to THA, and may be a preferred initial treatment strategy for SIFFH in the young and active patient who has failed conservative measures. PMID:27517074

  10. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level.

    PubMed

    Carretta, Roberto; Luisier, Benoit; Bernoulli, Daniel; Stüssi, Edgar; Müller, Ralph; Lorenzetti, Silvio

    2013-04-01

    Tissue level mechanics is a key factor to be investigated to improve the knowledge of how the overall trabecular structure reacts to loading and overloading. The aim of this study was to develop a new device for measuring the mechanical competence of single trabeculae in the post-yield region for both tensile and bending tests, characterized by high accuracy and precision, and to assess the effect of testing mode, donor age and material composition. A novel approach for measuring the displacement and deformation was developed (accuracy error of 0.3% and a precision of 2.7%). A total of 30 samples from two bovine femora of different ages (from <3-year-old and 14-year-old cows) were tested in tension or bending, while average material properties have been acquired by means of Raman spectroscopy. A group of trabeculae was tested in bending after treatment for collagen degradation. As a result, a complete set of post-yield properties has been reported. The results highlight significant differences between tensile and bending groups, with higher values for the bending test mode for yield strain, ultimate strain and post-yield work and lower for the elastic modulus. Significant higher values were found for the old donor (differences in the range of 30-60%) for elastic modulus, yield stress and ultimate stress as well as for material properties measured by Raman spectroscopy. We quantified that changes in materials properties induced by collagen degradation corresponded to a substantial decrease (up to 120% for post-yield work) of mechanical competence, both in the elastic and inelastic region. PMID:23455157

  11. A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX.

    PubMed

    McCloskey, Eugene V; Odén, Anders; Harvey, Nicholas C; Leslie, William D; Hans, Didier; Johansson, Helena; Barkmann, Reinhard; Boutroy, Stephanie; Brown, Jacques; Chapurlat, Roland; Elders, Petra Jm; Fujita, Yuki; Glüer, Claus-C; Goltzman, David; Iki, Masayuki; Karlsson, Magnus; Kindmark, Andreas; Kotowicz, Mark; Kurumatani, Norio; Kwok, Timothy; Lamy, Oliver; Leung, Jason; Lippuner, Kurt; Ljunggren, Östen; Lorentzon, Mattias; Mellström, Dan; Merlijn, Thomas; Oei, Ling; Ohlsson, Claes; Pasco, Julie A; Rivadeneira, Fernando; Rosengren, Björn; Sornay-Rendu, Elisabeth; Szulc, Pawel; Tamaki, Junko; Kanis, John A

    2016-05-01

    Trabecular bone score (TBS) is a gray-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual-level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow-up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65-1.87 versus 1.70, 95% CI 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical

  12. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa

    2014-01-01

    Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between

  13. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects.

    PubMed

    Bousson, V; Bergot, C; Sutter, B; Levitz, P; Cortet, B

    2012-05-01

    The diagnosis of osteoporosis rests on areal bone mineral density (BMD) measurement using DXA. Cancellous bone microarchitecture is a key determinant of bone strength but cannot be measured using DXA. To meet the need for a clinical tool capable of assessing bone microarchitecture, the TBS was developed. The TBS is a texture parameter that evaluates pixel gray-level variations in DXA images of the lumbar spine. The TBS variations may reflect bone microarchitecture. We explain the general principles used to compute the TBS, and we report the correlations between TBS and microarchitectural parameters. Several limitations of the TBS as it is used now are pointed out. We discuss data from currently available clinical studies on the ability of the TBS to identify patients with fractures and to evaluate the fracture risk. We conclude that this new index emphasizes the failure of the BMD T-score to fully capture the fragility fracture risk. However, although microarchitecture may influence the TBS, today, to the best of our understanding, there is no sufficient evidence that a TBS measurement provides reliable information on the status of the bone microarchitecture for a given patient. The TBS depends on gray-level variations and in a projectional image obtained in vivo, these variations can have many causes. Nevertheless, as clinical studies suggest that the TBS predicts the risk of fracture even after adjustment for BMD, we are encouraged to learn more about this score. Additional studies will have to be performed to assess the advantages and limitations of the TBS, in order to ensure that it is used appropriately in clinical practice.

  14. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.

  15. Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy.

    PubMed

    Hernández, José L; López-Mejías, Raquel; Blanco, Ricardo; Pina, Trinitario; Ruiz, Sheila; Sierra, Isabel; Ubilla, Begoña; Mijares, Verónica; González-López, Marcos A; Armesto, Susana; Corrales, Alfonso; Pons, Enar; Fuentevilla, Patricia; González-Vela, Carmen; González-Gay, Miguel Á

    2016-01-01

    Studies on trabecular bone score (TBS) in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6 months of therapy, a negative correlation between TBS and insulin resistance (p = 0.02) and leptin (p = 0.01) and a positive correlation with adiponectin were found (p = 0.01). The best set of predictors for TBS values at baseline were female sex (p = 0.015), age (p = 0.05), and BMI (p = 0.001). The best set of predictors for TBS following 6 months of biologic therapy were age (p = 0.001), BMI (p < 0.0001), and serum adiponectin levels (p = 0.027). In conclusion, in nondiabetic patients with moderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation. This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy.

  16. Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy.

    PubMed

    Hernández, José L; López-Mejías, Raquel; Blanco, Ricardo; Pina, Trinitario; Ruiz, Sheila; Sierra, Isabel; Ubilla, Begoña; Mijares, Verónica; González-López, Marcos A; Armesto, Susana; Corrales, Alfonso; Pons, Enar; Fuentevilla, Patricia; González-Vela, Carmen; González-Gay, Miguel Á

    2016-01-01

    Studies on trabecular bone score (TBS) in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6 months of therapy, a negative correlation between TBS and insulin resistance (p = 0.02) and leptin (p = 0.01) and a positive correlation with adiponectin were found (p = 0.01). The best set of predictors for TBS values at baseline were female sex (p = 0.015), age (p = 0.05), and BMI (p = 0.001). The best set of predictors for TBS following 6 months of biologic therapy were age (p = 0.001), BMI (p < 0.0001), and serum adiponectin levels (p = 0.027). In conclusion, in nondiabetic patients with moderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation. This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy. PMID:27293954

  17. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  18. Curcumin deteriorates trabecular and cortical bone in mice bearing metastatic Lewis lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone is a major target of metastasis for many malignancies; curcumin has been studied for its role in cancer prevention including early phase clinical trials for its efficacy and safe use with cancer patients. The present study investigated the effects of dietary supplementation with curcumin (2% a...

  19. Microstructures and properties of cancellous bone of avascular necrosis of femoral heads

    NASA Astrophysics Data System (ADS)

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun; Yeh, Hsien Yang

    2010-03-01

    The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroid-injection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional structures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.

  20. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.

    PubMed

    Newitt, D C; Majumdar, S; van Rietbergen, B; von Ingersleben, G; Harris, S T; Genant, H K; Chesnut, C; Garnero, P; MacDonald, B

    2002-01-01

    Measurement of microstructural parameters of trabecular bone noninvasively in vivo is possible with high-resolution magnetic resonance (MR) imaging. These measurements may prove useful in the determination of bone strength and fracture risk, but must be related to other measures of bone properties. In this study in vivo MR imaging was used to derive trabecular bone structure measures and combined with micro-finite element analysis (microFE) to determine the effects of trabecular bone microarchitecture on bone mechanical properties in the distal radius. The subjects were studied in two groups: (I) postmenopausal women with normal bone mineral density (BMD) (n = 22, mean age 58 +/- 7 years) and (II) postmenopausal women with spine or femur BMD -1 SD to -2.5 SD below young normal (n = 37, mean age 62 +/- 11 years). MR images of the distal radius were obtained at 1.5 T, and measures such as apparent trabecular bone volume fraction (App BV/TV), spacing, number and thickness (App TbSp, TbN, TbTh) were derived in regions of interest extending from the joint line to the radial shaft. The high-resolution images were also used in a micro-finite element model to derive the directional Young's moduli (E1, E2 and E3), shear moduli (G12, G23 and G13) and anisotropy ratios such as E1/E3. BMD at the distal radius, lumbar spine and hip were assessed using dual-energy X-ray absorptiometry (DXA). Bone formation was assessed by serum osteocalcin and bone resorption by serum type I collagen C-terminal telopeptide breakdown products (serum CTX) and urinary CTX biochemical markers. The trabecular architecture displayed considerable anisotropy. Measures of BMD such as the ultradistal radial BMD were lower in the osteopenic group (p<0.01). Biochemical markers between the two groups were comparable in value and showed no significant difference between the two groups. App BV/TV, TbTh and TbN were higher, and App TbSp lower, in the normal group than the osteopenic group. All three directional

  1. Tantalum trabecular metal - addition of human skeletal cells to enhance bone implant interface strength and clinical application.

    PubMed

    Smith, J O; Sengers, B G; Aarvold, A; Tayton, E R; Dunlop, D G; Oreffo, R O C

    2014-04-01

    The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous human bone marrow stromal cells (HBMSCs). Limitations in the use of allograft have prompted the investigation of tantalum trabecular metal (TTM) as a potential alternative. TTM is already in widespread orthopaedic use, although in applications where there is poor initial stability, or when TTM is used in conjunction with bone grafting, initial implant loading may need to be limited. The aim of this study was to evaluate the osteo-regenerative potential of TTM with HBMSCs, in direct comparison to human allograft and autograft. HBMSCs were cultured on blocks of TTM, allograft or autograft in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy (SEM) and biochemical assays were used to characterize cell adherence, proliferation and phenotype. Mechanical testing was used to define the tensile characteristics of the constructs. HBMSCs displayed adherence and proliferation throughout TTM, evidenced by immunocytochemistry and SEM, with significant cellular ingrowth and matrix production through TTM. In contrast to cells cultured with allograft, cell proliferation assays showed significantly higher activity with TTM (p < 0.001), although molecular profiling confirmed no significant difference in expression of osteogenic genes. In contrast to acellular constructs, mechanical testing of cell-TTM constructs showed enhanced tensile characteristics, which compared favourably to cell-allograft constructs. These studies demonstrated the ability of TTM to support HBMSC growth and osteogenic differentiation comparable to allograft. Thus, TTM represents an alternative to allograft for osteo-regenerative strategies, extending its clinical applications as a substitute for allograft.

  2. Treatment of the benign bone tumors including femoral neck lesion using compression hip screw and synthetic bone graft

    PubMed Central

    Nakamura, Tomoki; Matsumine, Akihiko; Asanuma, Kunihiro; Matsubara, Takao; Sudo, Akihiro

    2015-01-01

    Purpose: The proximal femur is one of the most common locations for benign bone tumors and tumor like conditions. We describe the clinical outcomes of the surgical treatment of benign lesions of the proximal femur including femoral neck using compression hip screw and synthetic bone graft. Methods: Thirteen patients with benign bone tumors or tumor like conditions of the proximal femur including femoral neck were surgically treated. Their average age at the time of presentation was 35 years and the average follow-up time was 76 months. Results: The average intraoperative blood loss was 1088 mL and intraoperative blood transfusion was required in eight patients. The average operative time was 167 minutes. All patients required one week and 12 weeks after surgery before full weight-bearing was allowed. All patients had regained full physical function without pain by the final follow-up. No patient sustained a pathological fracture of the femur following the procedure. All patients achieved partial or complete radiographic consolidation of the lesion within one year except one patient who developed a local tumor recurrence in 11 months. Post-operative superficial wound infection was observed in one patient, which resolved with intravenous antibiotics. Chronic hip pain was observed in one patient due to the irritation of tensor fascia lata muscle by the tube plate. Conclusion: We suggest that the treatment of benign bone lesion of the proximal femur using compression hip screw and synthetic bone graft is a safe and effective method. PMID:27163071

  3. Atypical Femoral Fracture: 2015 Position Statement of the Korean Society for Bone and Mineral Research.

    PubMed

    Yang, Kyu Hyun; Min, Byung Woo; Ha, Yong-Chan

    2015-08-01

    Bisphosphonate (BP) is a useful anti-resorptive agent which decreases the risk of osteoporotic fracture by about 50%. However, recent evidences have shown its strong correlation with the occurrence of atypical femoral fracture (AFF). The longer the patient takes BP, the higher the risk of AFF. Also, the higher the drug adherence, the higher the risk of AFF. It is necessary to ask the patients who are taking BP for more than 3 years about the prodromal symptoms such as dull thigh pain. Simple radiography, bone scan, and magnetic resonance imaging (MRI) are good tools for the diagnosis of AFF. The pre-fracture lesion depicted on the hip dual energy X-ray absorptiometry (DXA) images should not be missed. BP should be stopped immediately after AFF is diagnosed and calcium and vitamin D (1,000 to 2,000 IU) should be administered. The patient should be advised not to put full weight on the injured limb. Daily subcutaneous injection of recombinant human parathyroid hormone (PTH; 1-34) is recommended if the patient can afford it. Prophylactic femoral nailing is indicated when the dreaded black line is visible in the lateral femoral cortex, especially in the subtrochanteric area. PMID:26389082

  4. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep.

    PubMed

    Borsari, Veronica; Fini, Milena; Giavaresi, Gianluca; Rimondini, Lia; Consolo, Ugo; Chiusoli, Loris; Salito, Armando; Volpert, Andreas; Chiesa, Roberto; Giardino, Roberto

    2007-09-01

    The osteointegration rate of titanium (Ti; TI01) and duplex Ti plus HA (HT01) coating systems with high surface roughness was investigated in healthy, aged, and oestrogen-deficient sheep. After having evaluated the bone quality, TI01 and HT01 rods were implanted in the tibial diaphyses (two implants for each tibia) and epiphyses (1 implant for each tibia) of five young (YOUNG), five aged (AGED), and five aged and ovariectomized (OVX) sheep. The iliac crest trabecular bone volume (BV/TV) and number (Tb.N) in OVX sheep were respectively 33.5% and 28.5% lower than in YOUNG sheep (p < 0.005) and lower than in the AGED group (BV/TV, -17%; Tb.N, -13.5%; not significant); in the OVX group the trabecular separation was 77.9% higher than in YOUNG (p < 0.05) and 30.9% higher than in AGED animals. Lumbar vertebrae L5 bone mineral density was significantly lower in AGED (8.9%, p < 0.05) and OVX sheep (19.3%, p < 0.0005) when compared with YOUNG animals. Five samples of five sheep from each group were analyzed for each observation. At 3 months, in cortical bone both affinity index and pushout test results showed no significant differences between the two materials in each group of animals. In trabecular bone, the affinity index of HT01 was significantly higher than that of TI01 in each group of animals (YOUNG, 90.7%; AGED, 76.9%; OVX, 49.9%) with no significant differences between groups. In conclusion, the performance of TI01 and HT01 surfaces was high not only in YOUNG, but also in OVX animals and, therefore, they might be useful for aged and osteoporotic patients.

  5. Radiological evaluation of the femoral component fixed with interface bioactive bone cement in revision total hip arthroplasty.

    PubMed

    Fujita, Hiroshi; Oonishi, Hironobu; Ito, Shigeru; Kim, Seok Cheol; Doukawa, Hirofumi

    2008-08-01

    Thirty cases whose femoral side was operated with interface bioactive bone cement technique in revision total hip arthroplasty for aseptic loosening and followed for more than 6 years were evaluated. The present study includes 2 men and 28 women with an average age at operation of 60 years. Mean postoperative follow-up period was 9 years. Rerevision of femoral component was not found. Possible loosening was observed in 1 case, using the criteria of Harris. Among 21 cases whose cementing grade was assessed as B or C in postoperative x-ray, radiolucent line at bone-cement interface has disappeared before last follow-up in 11 cases. The present study revealed that the good result was obtained using the interface bioactive bone cement technique for reconstruction of aseptic femoral loosening.

  6. The effect of a short-term delay of puberty on trabecular bone mass and structure in female rats: A texture-based and histomorphometric analysis.

    PubMed Central

    Yingling, Vanessa R; Xiang, Yongqing; Raphan, Theodore; Schaffler, Mitchell; Koser, Karen; Malique, Rumena

    2007-01-01

    Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of “catch up” growth. It remains unclear if deficits in bone mass associated with delayed puberty have long term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague Dawley rats (25 days) were randomly assigned to one of four groups; 1) short-term control (C-ST), 2) long-term control (C-LT), 3) short-term GnRH antagonist (G-ST) and 4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 μg/day) (Cetrotide™, Serono, Inc) were given intraperitoneally for 18 days (day 35–42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased number of trabecula and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (MDensity) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0° orientation (−13

  7. A large amount of microdamages in the cortical bone around fracture site in a patient of atypical femoral fracture after long-term bisphosphonate therapy.

    PubMed

    Iwata, Ken; Mashiba, Tasuku; Hitora, Toshiaki; Yamagami, Yoshiki; Yamamoto, Tetsuji

    2014-07-01

    A breast cancer patient developed an atypical femoral fracture after 9 years of bisphosphonate therapy for the treatment of multiple bone metastases. We histopathologically analyzed the femoral cortical bone at the fracture site and the iliac cancellous bone. Four months prior to the fracture, the patient had experienced pain in the right femur and underwent plain radiography and bone scintigraphy which revealed cortical thickening and radioisotope accumulation at each site, respectively. The patient had also experienced a non-traumatic fracture at the same site on the contralateral side 2 years earlier. Based on these findings, atypical femoral fracture was diagnosed and intramedullary nailing performed. A cortical bone specimen taken from near the fracture site during surgery showed marked microdamages, and analysis of the iliac cancellous bone specimen revealed severely suppressed bone turnover. These findings suggest that microdamage and severely suppressed bone turnover are associated with atypical femoral fracture reported in this patient with long-term bisphosphonate therapy.

  8. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head.

    PubMed

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head.

  9. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  10. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.

    PubMed

    Brown, T D; Vrahas, M S

    1984-01-01

    An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone. PMID:6491796

  11. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head.

    PubMed

    Brown, T D; Vrahas, M S

    1984-01-01

    An experiment was undertaken to obtain approximate values for the intrinsic elastic modulus of subchondral bone. Shallow spherical caps, with uniform and incrementally controlled thickness, were machined from subchondral bone in the weight-bearing regions of 11 fresh-frozen normal femoral head autopsy specimens. Under application of polar point loads, the measured deflections were compared with a corresponding analytical shell solution, thus allowing back-calculation of the apparent modulus. Analogous tests were performed on similarly shaped specimens of stock Plexiglas of known modulus in order to estimate the precision of the testing method. The aggregate results for subchondral bone showed that its intrinsic stiffness correlated inversely with nominal shell thickness, but even the thinnest (1.0 mm thick) of these shells had an apparent modulus (mean = 1.372 GN/m2, SD = 414 MN/m2) well below that generally accepted for "pure" cortical bone (about 14 GN/m2). This stiffness deficit was very likely due to the presence of histologically evident marrow spaces. However, the low apparent modulus values measured in this study may not be fully representative of complex in vivo behavior, because in the testing of excised shells there is no radial compressive stress transfer to underlying cancellous bone.

  12. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  13. Bone ingrowth through porous titanium granulate around a femoral stem: histological assessment in a six-month canine hemiarthroplasty model.

    PubMed

    Turner, Thomas M; Urban, Robert M; Hall, Deborah J; Andersson, Gunnar B J

    2007-01-01

    The procedure of using of porous titanium granules for cementless fixation of a hip replacement femoral stem was studied in a hemiarthroplasty model in 10 canines for 6 months. A vibrating instrument was used to facilitate both the delivery and distribution of the irregularly shaped porous titanium granules into the femoral canal as well as the subsequent insertion of a titanium alloy stem into the intramedullary bed of granules. Histological examination revealed lamellar bone formation through the mantle of porous titanium granules in continuity with the surrounding cortex resulting in the formation of an integrated mantle of bone and titanium granulate around the prosthesis. PMID:17578819

  14. CT analysis of the upper end of the femur: The asterisk sign and ischaemic bone necrosis of the femoral head

    SciTech Connect

    Dihlmann, W.

    1982-08-01

    In computed tomography (CT) of the head of the femur, a star-shaped structure can be seen which we refer to as the asterisk or asterisk sign. The asterisk is formed by thickened weight-bearing bone trabeculae. It can be shown by CT that the asterisk exhibits a characteristic change in ischaemic bone necrosis of the femoral head, even when the disease is in an early stage. CT of the hip joint is therefore an important examination for early diagnosis of ischaemic diesease of the femoral head.

  15. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. PMID:25937546

  16. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.

    PubMed

    Bouzakis, K D; Mitsi, S; Michailidis, N; Mirisidis, I; Mesomeris, G; Maliaris, G; Korlos, A; Kapetanos, G; Antonarakos, P; Anagnostidis, K

    2004-06-01

    The mechanical strength properties of lumbar spine vertebrae are of great importance in a wide range of applications. Herein, through nanoindentations and appropriate evaluation of the corresponding results, trabecular bone struts stress-strain characteristics can be determined. In the frame of the present paper, an L2 fresh cadaveric vertebra, from which posterior elements were removed, was subjected to compression. With the aid of developed finite elements method based algorithms, the cortical shell and the cancellous core bulk elasticity moduli and stresses were determined, whereas the tested vertebra geometrical model used in these algorithms was considered as having a compound structure, consisting of the cancellous bone surrounded by the cortical shell. Moreover nanoindentations were conducted and an appropriate evaluation method of the obtained results was applied to extract stress-strain curves of individual lumbar spine vertebra trabecular bone struts. These data were used in the mathematical description of the vertebrae compression test. The vertebral cancellous bone structure was simulated by a beam elements network, possessing an equivalent porosity and different stiffnesses in vertical and horizontal direction. Thus, the measured course of the compression load versus the occurring specimen deformation was verified.

  17. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model.

    PubMed

    Monteiro, Lucas Oliveira; Macedo, Ana Paula; Shimano, Roberta Carminati; Shimano, Antônio Carlos; Yanagihara, Gabriela Rezende; Ramos, Junia; Paulini, Marina Ribeiro; Tocchini de Figueiredo, Fellipe Augusto; Gonzaga, Miliane Gonçalves; Issa, João Paulo Mardegan

    2016-08-01

    The objective of this study was to evaluate the microarchitecture and trabecular bone strength at the distal region of the femur, and its biomechanical properties with simvastatin administration with two different doses in ovariectomized (OVX) rats. Ninety rats were divided into six groups to evaluate treatment with the simvastatin drug (n = 15): SH (Sham surgery), SH-5 (5 mg simvastatin), SH-20 (20 mg simvastatin), OVX, OVX-5, and OVX-20. Euthanasia was performed at three different times, five animals per period: 7, 14, and 28 days. The effectiveness of the treatments was evaluated by mechanical testing and histomorphometric analysis of the femurs. The results of analysis by the linear model of mixed effects showed 20 mg of simvastatin results in increased trabecular bone after 14 days (P = 0.039) of ingestion in ovariectomized animals. However, ingestion of 5 mg of simvastatin is able to sensitize the trabecular bone only at 28 days (P = 0.005) of ingestion. In the mechanical tests stiffness improves within 28 days (P = 0.003). Regarding maximum strength, no statistical differences were observed. According to these results, it can be concluded that for a decrease in oral intake, longer treatment times are required. Microsc. Res. Tech. 79:684-690, 2016. © 2016 Wiley Periodicals, Inc.

  18. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model.

    PubMed

    Monteiro, Lucas Oliveira; Macedo, Ana Paula; Shimano, Roberta Carminati; Shimano, Antônio Carlos; Yanagihara, Gabriela Rezende; Ramos, Junia; Paulini, Marina Ribeiro; Tocchini de Figueiredo, Fellipe Augusto; Gonzaga, Miliane Gonçalves; Issa, João Paulo Mardegan

    2016-08-01

    The objective of this study was to evaluate the microarchitecture and trabecular bone strength at the distal region of the femur, and its biomechanical properties with simvastatin administration with two different doses in ovariectomized (OVX) rats. Ninety rats were divided into six groups to evaluate treatment with the simvastatin drug (n = 15): SH (Sham surgery), SH-5 (5 mg simvastatin), SH-20 (20 mg simvastatin), OVX, OVX-5, and OVX-20. Euthanasia was performed at three different times, five animals per period: 7, 14, and 28 days. The effectiveness of the treatments was evaluated by mechanical testing and histomorphometric analysis of the femurs. The results of analysis by the linear model of mixed effects showed 20 mg of simvastatin results in increased trabecular bone after 14 days (P = 0.039) of ingestion in ovariectomized animals. However, ingestion of 5 mg of simvastatin is able to sensitize the trabecular bone only at 28 days (P = 0.005) of ingestion. In the mechanical tests stiffness improves within 28 days (P = 0.003). Regarding maximum strength, no statistical differences were observed. According to these results, it can be concluded that for a decrease in oral intake, longer treatment times are required. Microsc. Res. Tech. 79:684-690, 2016. © 2016 Wiley Periodicals, Inc. PMID:27186631

  19. The Role of TGF-β2 and Bone Morphogenetic Proteins in the Trabecular Meshwork and Glaucoma

    PubMed Central

    Sharma, Tasneem; Clark, Abbot F.

    2014-01-01

    Abstract Primary open-angle glaucoma (POAG) is the second leading cause of blindness worldwide. Elevated intraocular pressure (IOP) is a primary risk factor associated with POAG. Increased aqueous humor (AH) outflow resistance through the trabecular meshwork (TM) results in elevated IOP in POAG patients. Resistance to AH outflow is associated with increased accumulation of extracellular matrix (ECM) proteins in the TM. In addition, levels of transforming growth factor-beta2 (TGF-β2) are elevated in the AH and TM tissue of POAG patients. Elevated levels of TGF-β2 in other tissues have been associated with fibrosis and increased tissue stiffness. However, locally produced effectors that maintain homeostatic relationships must also be present. Bone morphogenetic proteins (BMPs) serve this purpose in the TM as they inhibit TGF-β2-induced ECM changes in TM cells. This review article first describes the TGF-β superfamily of growth factors including BMPs and their canonical and noncanonical signaling pathways. The article then addresses the role of TGF-β2 in the pathophysiology of POAG as related to the ECM and ECM crosslinking enzymes. This is followed by a discussion of potential homeostatic control mechanisms of TGF-β2 signaling in the TM including the inhibitory role of BMP-4 and BMP-7. We then describe the relationship of TGF-β2 and BMPs in TM fibrosis including the role of antagonists. Lastly, in future directions, we identify potential future studies that explore new and unique cellular interactions within the TM for potential therapeutic interventions. PMID:24517218

  20. On the Significance of Motion Degradation in High-Resolution 3D μMRI of Trabecular Bone

    PubMed Central

    Bhagat, Yusuf A.; Rajapakse, Chamith S.; Magland, Jeremy F.; Wald, Michael J.; Song, Hee Kwon; Leonard, Mary B.; Wehrli, Felix W.

    2011-01-01

    Rationale and Objectives Subtle subject movement during high-resolution 3D μMR imaging of trabecular bone (TB) causes blurring, thereby rendering the data unreliable for quantitative analysis. In this work, the effects of translational and rotational motion displacements have been evaluated qualitatively and quantitatively. Materials and Methods In Experiment I, motion was induced by applying various simulated and previously observed in vivo trajectories as phase shifts to k-space or rotation angles to k-space segments of a virtually motion-free data set. In Experiment II, images that were visually free of motion artifacts from two groups of 10 healthy individuals, differing in age, were selected for probing the effects of motion on TB parameters. In both experiments, images were rated for motion severity and the scores were compared to a focus criterion, the normalized gradient squared (NGS). Results Strong correlations were observed between the motion quality scores and the corresponding NGS values (R2= 0.52–0.64; p<0.01). The results from Experiment I demonstrated consistently lower image quality and alterations in structural parameters of 9–45% with increased amplitude of displacements. In Experiment II, the significant differences in structural parameter group means of the motion-free images were lost upon motion degradation. Autofocusing, a post-processing correction method, partially recovered the sharpness of the original motion-free images in 13/20 subjects. Conclusion Quantitative TB structural measures are highly sensitive to subtle motion-induced degradation which adversely affects precision and statistical power. The results underscore the influence of subject movement in high-resolution 3D μMRI and its correction for TB structure analysis. PMID:21816638

  1. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy.

    PubMed

    Porter, Alexandra E; Taak, Punam; Hobbs, Linn W; Coathup, Melanie J; Blunn, Gordon W; Spector, Myron

    2004-09-01

    The success of clinical results obtained with many hydroxyapatite (HA)-coated prosthetic designs has deflected attention from the need to extend the life of the HA coating on the device. In the current study the percentages of HA and titanium surfaces to which bone was bonded, on HA-coated and non-coated titanium femoral stems retrieved from human subjects, were evaluated. Plasma-sprayed hydroxyapatite (PSHA)-coated devices demonstrated wide variability in the percentage of the PSHA coating remaining on the stems. The coating was missing from a substantial portion of a stem after only about 6 months of implantation. The percentage of revealed metal to which bone was bonded was significantly less than the percentage of the HA coating demonstrating such bonding. The revealed metal to which bone was bonded was comparable to the same value for a separate group of non-PSHA-coated titanium stems. If HA-coatings degrade over time precipitous decline in performance may occur even after several functional years. Many ultrastructural features of the bone bonded to the HA coatings on these implants from human subjects were comparable to those found on HA-coated devices implanted in a canine model. PMID:15109844

  2. Effects of osteoprotegerin, RANK and RANKL on bone destruction and collapse in avascular necrosis femoral head.

    PubMed

    Xiong, Ming-Yue; Liu, Li-Qiang; Liu, Shi-Qiong; Liu, Zhen-Hui; Gao, Hang-Fei

    2016-01-01

    Avascular necrosis of femoral head (AVFH) is a clinically recalcitrant disease of hip that leads to joint destruction. Osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B (RANK) and RANK ligand (RANKL) regulates the balance, maturation and function of osteoclast and bone remodeling. This study aims to investigate molecular pathways which leads to AVN by studying expression profile of OPG, RANK and RANKL genes. Quantitative Real Time-PCR is used to evaluate mRNA expression of OPG, RANK and RANKL. mRNA and protein level in normal and necrotic tissue from 42 samples of ANFH specimens were analyzed. OPG and RANKL protein levels are estimated by western blotting. The results indicated that OPG mRNA levels are higher but not significantly different in necrotic tissue than that in normal tissue (P>0.05). Although expression of RANK and RANKL is significantly lower than that of OPG, RANK and RANKL mRNA levels are higher in necrotic tissue than normal tissue (P<0.05). Protein levels of OPG and RANKL show no significant difference. In conclusion, OPG, RANK and RANKL play important role in progress of bone remodeling in necrotic area and in disturbance of bone homeostasis, which might have an effect on bone destruction and subsequent collapse of hip joint. PMID:27508034

  3. Fibular Allograft and Demineralized Bone Matrix for the Treatment of Slipped Capital Femoral Epiphysis.

    PubMed

    Murray, Travis; Morscher, Melanie A; Krahe, Amy M; Adamczyk, Mark J; Weiner, Dennis S

    2016-05-01

    Previous studies documented the use of fibular allograft in the treatment of slipped capital femoral epiphysis (SCFE) with bone graft epiphysiodesis (BGE). This study describes the results of using a 10-mm diameter premilled fibular allograft packed with demineralized bone matrix placed across the physis in an open surgical approach under image intensification. A review identified 45 cases of BGE using fibular allograft and demineralized bone matrix in 34 patients with a diagnosis of SCFE performed by a single surgeon during an 8-year period. Thirty-four cases (25 patients) had at least 1 year of follow-up and were included in the study. Medical records were reviewed for complications, subsequent surgeries, and time to physeal closure. Of the 34 cases included, there were no cases of acute chondrolysis. Complications included 1 case of bone graft extrusion that required surgical replacement and 1 re-slip requiring surgical stabilization. Five cases of avascular necrosis (AVN) were encountered (1 unstable slip with total head AVN, and 4 stable slips with 3 total head and 1 partial head AVN). In 1 patient, small loose bony fragments were noted on postoperative radiographs that appeared outside of the articular surface of the hip and were asymptomatic. Two patients encountered wound healing issues that resolved with appropriate wound care. In light of the occurrence of AVN in stable cases, BGE with autogenous corticocancellous graft is preferable to BGE with autologous fibular graft for the treatment of SCFE. [Orthopedics. 2016; 39(3):e519-e525.].

  4. Effects of osteoprotegerin, RANK and RANKL on bone destruction and collapse in avascular necrosis femoral head

    PubMed Central

    Xiong, Ming-Yue; Liu, Li-Qiang; Liu, Shi-Qiong; Liu, Zhen-Hui; Gao, Hang-Fei

    2016-01-01

    Avascular necrosis of femoral head (AVFH) is a clinically recalcitrant disease of hip that leads to joint destruction. Osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B (RANK) and RANK ligand (RANKL) regulates the balance, maturation and function of osteoclast and bone remodeling. This study aims to investigate molecular pathways which leads to AVN by studying expression profile of OPG, RANK and RANKL genes. Quantitative Real Time-PCR is used to evaluate mRNA expression of OPG, RANK and RANKL. mRNA and protein level in normal and necrotic tissue from 42 samples of ANFH specimens were analyzed. OPG and RANKL protein levels are estimated by western blotting. The results indicated that OPG mRNA levels are higher but not significantly different in necrotic tissue than that in normal tissue (P>0.05). Although expression of RANK and RANKL is significantly lower than that of OPG, RANK and RANKL mRNA levels are higher in necrotic tissue than normal tissue (P<0.05). Protein levels of OPG and RANKL show no significant difference. In conclusion, OPG, RANK and RANKL play important role in progress of bone remodeling in necrotic area and in disturbance of bone homeostasis, which might have an effect on bone destruction and subsequent collapse of hip joint. PMID:27508034

  5. No effect of risedronate on femoral periprosthetic bone loss following total hip arthroplasty

    PubMed Central

    Muren, Olle; Akbarian, Ehsan; Salemyr, Mats; Bodén, Henrik; Eisler, Thomas; Stark, André

    2015-01-01

    Background and purpose We have previously shown that during the first 2 years after total hip arthroplasty (THA), periprosthetic bone resorption can be prevented by 6 months of risedronate therapy. This follow-up study investigated this effect at 4 years. Patients and methods A single-center, double-blind, randomized placebo-controlled trial was carried out from 2006 to 2010 in 73 patients with osteoarthritis of the hip who were scheduled to undergo THA. The patients were randomly assigned to receive either 35 mg risedronate or placebo orally, once a week, for 6 months postoperatively. The primary outcome was the percentage change in bone mineral density (BMD) in Gruen zones 1 and 7 in the proximal part of the femur at follow-up. Secondary outcomes included migration of the femoral stem and clinical outcome scores. Results 61 of the 73 patients participated in this 4-year (3.9- to 4.1-year) follow-up study. BMD was similar in the risedronate group (n = 30) and the placebo group (n = 31). The mean difference was −1.8% in zone 1 and 0.5% in zone 7. Migration of the femoral stem, the clinical outcome, and the frequency of adverse events were similar in the 2 groups. Interpretation Although risedronate prevents periprosthetic bone loss postoperatively, a decrease in periprosthetic BMD accelerates when therapy is discontinued, and no effect is seen at 4 years. We do not recommend the use of risedronate following THA for osteoarthritis of the hip. PMID:25885280

  6. Differential patterns of osteoblast dysfunction in trabecular bone in patients with established osteoporosis.

    PubMed Central

    Byers, R J; Denton, J; Hoyland, J A; Freemont, A J

    1997-01-01

    AIMS: To analyse osteoblast function in 153 cases of established osteoporosis as previous work has indicated that osteoporosis is a heterogeneous condition characterised by different patterns of osteoclast and osteoblast dysfunction. METHODS: Histomorphometric data from 153 cases with established osteoporosis was used to analyse osteoblast function, using the following parameters: osteoblast number was assessed using the ratio of osteoblast surface to bone surface (ObS:BS); the percentage of active osteoblasts was assessed by using mineralising surface as a proportion of osteoid surface (sLS + dLS/OS); and the efficiency of active osteoblasts was assessed using the ratio of double to total labelled surface (dLS:tLS). The values of each parameter were standardised using age and sex matched control data and a three dimensional matrix was used to identify groups of patients with similar patterns of altered function. RESULTS: The largest group (60 cases) showed a reduction in all three parameters, while a small group (9 cases) had normal osteoblast function. However, one group showed reduction in osteoblast number only (23 cases), while another group showed a normal number of osteoblasts but both reduced percentage and efficiency of activity (14 cases). The results also suggest that efficiency of activity falls first and that this eventually leads to exit from the active pool. CONCLUSIONS: These results demonstrate the presence of heterogeneity of osteoblast dysfunction in osteoporosis, indicating that the disease is caused by interference at a variety of target sites along the pathway of osteoblast proliferation, differentiation, and activation. Greater understanding of this pathway and of the variety of alterations in the pathway that can occur in osteoporosis may allow more focused therapy for different patient groups identified on the basis of histomorphometric analysis. Images PMID:9389977

  7. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while

  8. Scaling index method: a novel nonlinear technique for the analysis of high-resolution MRI of human bones

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bohm, Holger; Muller, Dirk; Newitt, David; Majumdar, Sharmila; Rummeny, Ernst; Link, Thomas M.; Rath, Christoph

    2003-05-01

    The scaling index method (SIM) is a novel non-linear technique to extract structural information from arbitrary data sets. The tomographic images of a three dimensional object can be interpreted as a pixel distribution in a four dimensional space. The SIM provides a distribution of pointwise dimensions which characterizes the structural information of images. The SIM is applied to high resolution magnetic resonance images of human spinal and femoral bone specimens IN VITRO in order to derive a 3d non-linear texture measure which is compared to standard 2d morphometric parameters and bone mineral density in the prediction of biomechanical strength of trabecular bone. Our results show that structural non-linear parameters associated with the trabecular substructure of the bone can effectively predict the mechanical properties of trabecular bone in vitro. This indicates that the trabecular architecture contributes substantially to the biomechanical properties of the bone.

  9. Performance of linear and nonlinear texture measures in 2D and 3D for monitoring architectural changes in osteoporosis using computer-generated models of trabecular bone

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.

    2005-04-01

    Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling

  10. Using Magnetic Resonance for Predicting Femoral Strength: Added Value with respect to Bone Densitometry

    PubMed Central

    Louis, Olivia; Fierens, Yves; Strantza, Maria; Luypaert, Robert; de Mey, Johan; Cattrysse, Erik

    2015-01-01

    Background and Purpose. To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength. Material and Methods. Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load. Simple and multiple linear regression were used with failure load as the dependent variable. Results. Simple linear regression allowed a prediction of failure load with either pQCT, DXA, or MRI in an r2 range of 0.41–0.48. Multiple linear regression with pQCT, DXA, and MRI yielded the best prediction (r2 = 0.68). Conclusions. The accuracy of MRI, using UTE and MicroView software, to predict femoral strength compares well with that of pQCT or DXA. Furthermore, the inclusion of MRI in a multiple-regression model yields the best prediction. PMID:26413544

  11. Three Point Bending Test of Human Femoral Tissue: An Essay in Ancient and Modern Bones

    NASA Astrophysics Data System (ADS)

    González-Bárcenas, L. A.; Trejo-Camacho, H.; Suárez-Estrella, I.; Heredia, A.; Magaña, C.; Bucio, L.; Orozco, E.

    2003-09-01

    Some procedures for characterising the mechanical properties of femur diaphysis are reviewed here. We have used the three point bending test to measure the relative rupture modulus of ancient healthy human tissues (1250, 800, 614, and 185 years BP) as well as recent bones. The maximum resistance to fracture was measured applying a force (by a wedge) over the femoral inner surface. The maximum rupture strength was about 150 MPa for recent bone and decreased as the antiquity increased. The typical anisotropy that is observed in this kind of tissues is due to the anisotropical orientation of fibres as well as the textured orientation of the apatite crystals over the collagen fibres. Therefore we found that ancient bones show less fracture strength probably due to an abiotic crystal growth phenomenon during the diagenesis process. By LVSEM analysis we have found that in recent samples the fracture surface is irregular due to the crosslinking interactions between the collagen molecules, in comparison with the ancient samples, where a smooth surface is clearly appreciated as the antiquity of the sample increases. The results reported here strongly suggest that these composites should contain a fibrillar phase as a matrix constituted mainly by a natural polymer (i.e. collagen, cellulose, etc.). Moreover, this composite must have a minimum rupture strength of about 150 MPa.

  12. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.

    PubMed

    Vaughan, T J; McCarthy, C T; McNamara, L M

    2012-08-01

    Bone is an exceptional material that is lightweight for efficient movement but also exhibits excellent strength and stiffness imparted by a composite material of organic proteins and mineral crystals that are intricately organised on many scales. Experimental and computational studies have sought to understand the role of bone composition and organisation in regulating the biomechanical behaviour of bone. However, due to the complex hierarchical arrangement of the constituent materials, the reported experimental values for the elastic modulus of trabecular and cortical tissue have conflicted greatly. Furthermore, finite element studies of bone have largely made the simplifying assumption that material behaviour was homogeneous or that tissue variability only occurred at the microscale, based on grey values from micro-CT scans. Thus, it remains that the precise role of nanoscale tissue constituents and microscale tissue organisation is not fully understood and more importantly that these have never been incorporated together to predict bone fracture or implant outcome in a multiscale finite element framework. In this paper, a three-scale finite element homogenisation scheme is presented which enables the prediction of homogenised effective properties of tissue level bone from its fundamental nanoscale constituents of hydroxyapatite mineral crystals and organic collagen proteins. Two independent homogenisation steps are performed on representative volume elements which describe the local morphological arrangement of both the nanostructural and microstructural levels. This three-scale homogenisation scheme predicts differences in the tissue level properties of bone as a function of mineral volume fraction, mineral aspect ratio and lamellar orientation. These parameters were chosen to lie within normal tissue ranges derived from experimental studies, and it was found that the predicted stiffness properties at the lamellar level correlate well with experimental

  13. Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level.

    PubMed

    Wolfram, Uwe; Wilke, Hans-Joachim; Zysset, Philippe K

    2010-02-01

    For understanding the fracture risk of vertebral bodies the macroscopic mechanical properties of the cancellous core are of major interest. Due to the hierarchical nature of bone, these depend in turn on the micromechanical properties of bone extracellular matrix which is at least linear elastic transverse isotropic. The experimental determination of local elastic properties of bone ex vivo necessitates a high spatial resolution which can be provided by depth-sensing indentation techniques. Using microindentation, this study investigated the effects of rehydration on the transverse isotropic elastic properties of vertebral trabecular bone matrix obtained from two orthogonal directions with a view to microanatomical location, age, gender, vertebral level and anatomic direction in a conjoint statistics. Biopsies were gained from 104 human vertebrae (T1-L3) with a median age of 65 years (21-94). Wet elastic moduli were 29% lower (p<0.05) than dry elastic moduli. For wet indentation the ratio of mean elastic moduli tested in axial to those tested in transverse indentation direction were 1.13 to 1.23 times higher than for dry indentation. The ratio of elastic moduli tested in the core to those tested in the periphery of trabeculae was 1.05 to 1.16 times higher when testing wet. Age and gender did not show any influence on the elastic moduli for wet and dry measurements. The correlation between vertebral level and elastic moduli became weaker after rehydration (p(wet)<0.09, r(wet)(2)=0.14) and (p(dry)<0.01, r(wet)(2)=0.38). Elastic and dissipated energies were similarly affected by rehydration compared to the elastic modulus. No significant difference in the energies could be found for gender (p>0.05). Significant differences in the energies were found for age (p<0.05) after rehydration. Qualitative and quantitative insights into the transverse isotropic elastic properties of trabecular bone matrix under two testing conditions over a broad spectrum of vertebrae could be

  14. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures.

    PubMed

    Leib, E; Winzenrieth, R; Lamy, O; Hans, D

    2014-09-01

    Several cross-sectional studies have shown the ability of the TBS to discriminate between those with and without fractures in European populations. The aim of this study was to assess the ability of TBS to discriminate between those with and without fractures in a large female Caucasian population in the USA. This was a case-control study of 2,165 Caucasian American women aged 40 and older. Patients with illness or taking medications known to affect bone metabolism were excluded. Those in the fracture group (n = 289) had at least one low-energy fracture. BMD was measured at L1-L4, TBS calculated directly from the same DXA image. Descriptive statistics and inferential tests for difference were used. Univariate and multivariate logistic regression models were created to investigate possible association between independent variables and the status of fracture. Odds ratios per standard deviation decrease (OR) and areas under the ROC curve were calculated for discriminating parameters. Weak correlations were observed between TBS and BMD and between TBS and BMI (r = 0.33 and -0.17, respectively, p < 0.01). Mean age, weight, BMD and TBS were significantly different between control and fracture groups (all p ≤ 0.05), whereas no difference was noted for BMI or height. After adjusting for age, weight, BMD, smoking, and maternal and family history of fracture, TBS (but not BMD) remained a significant predictor of fracture: OR 1.28[1.13-1.46] even after adjustment. In a US female population, TBS again was able to discriminate between those with and those without fractures, even after adjusting for other clinical risk factors.

  15. Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study

    PubMed Central

    Malouf, Jorge; Laiz, Ana; Marin, Ana; Herrera, Silvia; Farrerons, Jordi; Soria, Jose Manuel; Casademont, Jordi

    2016-01-01

    Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The “Genetic Analysis of Osteoporosis (GAO) Project” involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis. PMID:27163365

  16. Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study.

    PubMed

    Hernandez-de Sosa, Nerea; Athanasiadis, Georgios; Malouf, Jorge; Laiz, Ana; Marin, Ana; Herrera, Silvia; Farrerons, Jordi; Soria, Jose Manuel; Casademont, Jordi

    2016-01-01

    Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The "Genetic Analysis of Osteoporosis (GAO) Project" involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis. PMID:27163365

  17. Short-term physical activity intervention decreases femoral bone marrow adipose tissue in young children: a pilot study

    PubMed Central

    Casazza, K; Hanks, LJ; Hidalgo, B; Hu, HH; Affuso, O

    2011-01-01

    Mechanical stimulation is necessary for maximization of geometrical properties of bone mineralization contributing to long-term strength. The amount of mineralization in bones has been reciprocally related to volume of bone marrow adipose tissue and this relationship is suggested to be an independent predictor of fracture. Physical activity represents an extrinsic factor that impacts both mineralization and marrow volume exerting permissive capacity of the growing skeleton to achieve its full genetic potential. Because geometry- and shape-determining processes primarily manifest during the linear growth period, the accelerated structural changes accompanying early childhood (ages 3 to 6 y) may have profound impact on lifelong bone health. The objective of this pilot study was to determine if a short-term physical activity intervention in young children would result in augmentation of geometric properties of bone. Three days per week the intervention group (n=10) participated in 30 minutes of moderate intensity physical activity, such as jumping, hopping and running, and stretching activities, whereas controls (n=10) underwent usual activities during the 10-week intervention period. Femoral bone marrow adipose tissue volume and total body composition were assessed by magnetic resonance imaging and dual-energy X-ray absorptiometry, respectively, at baseline and after ten weeks. Although after 10-weeks, intergroup differences were not observed, a significant decrease in femoral marrow adipose tissue volume was observed in those participating in physical activity intervention. Our findings suggest physical activity may improve bone quality via antagonistic effects on femoral bone marrow adipose tissue and possibly long-term agonistic effects on bone mineralization. PMID:21939791

  18. Use of MR-based trabecular bone microstructure analysis at the distal radius for osteoporosis diagnostics: a study in post-menopausal women with breast cancer and treated with aromatase inhibitor

    PubMed Central

    Baum, Thomas; Karampinos, Dimitrios C.; Seifert-Klauss, Vanadin; Pencheva, Tsvetelina D.; Jungmann, Pia M.; Rummeny, Ernst J.; Müller, Dirk; Bauer, Jan S.

    2016-01-01

    Summary Purpose Treatment with aromatase inhibitor (AI) is recommended for post-menopausal women with hormone-receptor positive breast cancer. However, AI therapy is known to induce bone loss leading to osteoporosis with an increased risk for fragility fractures. The purpose of this study was to investigate whether changes of magnetic resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarker can already be detected in subjects with AI intake but still without evidence for osteoporosis according to dual energy X-ray absorptiometry (DXA)-based bone mineral density (BMD) measurements as current clinical gold standard. Methods Twenty-one postmenopausal women (62±6 years of age) with hormone-receptor positive breast cancer, ongoing treatment with aromatase inhibitor for 23±15 months, and no evidence for osteoporosis (current DXA T-score greater than −2.5) were recruited for this study. Eight young, healthy women (24±2 years of age) were included as controls. All subjects underwent 3 Tesla magnetic resonance imaging (MRI) of the distal radius to assess the trabecular bone microstructure. Results Trabecular bone microstructure parameters were not significantly (p>0.05) different between subjects with AI intake and controls, including apparent bone fraction (0.42±0.03 vs. 0.42±0.05), trabecular number (1.95±0.10 mm−1 vs 1.89±0.15 mm−1), trabecular separation (0.30±0.03 mm vs 0.31±0.06 mm), trabecular thickness (0.21±0.01 mm vs 0.22±0.02 mm), and fractal dimension (1.70±0.02 vs. 1.70±0.03). Conclusion These findings suggest that the initial deterioration of trabecular bone microstructure as measured by MRI and BMD loss as measured by DXA occur not sequentially but rather simultaneously. Thus, the use of MR-based trabecular bone microstructure assessment is limited as early diagnostic biomarker in this clinical setting. PMID:27252740

  19. Changes in proximal femur bone properties following ovariectomy and their association with resistance to fracture.

    PubMed

    Fonseca, Hélder; Moreira-Gonçalves, Daniel; Vaz, Mário; Fernandes, Maria Helena; Ferreira, Rita; Amado, Francisco; Mota, Maria Paula; Duarte, José Alberto

    2012-05-01

    Bone strength depends on several material and structural properties, but findings concerning the best predictors of bone mechanical performance are conflicting. The aim of this study was to investigate how a broad set of bone properties in the proximal femur are influenced by age and hormonal status, and how these properties together determine bone strength. Twenty-five Wistar rats were ovariectomized (OVX, n = 13) or sham operated (SHAM, n = 12) at 5 months of age, and killed after 9 months. Another group of rats was killed at 5 months as baseline control (BSL, n = 7). At sacrifice, serum 17β-estradiol and bone turnover marker concentrations were determined in the serum. Both femurs were collected for assessment of trabecular microarchitecture, femoral neck geometry, radiographic absorptiometry, calcium and phosphate content, and biomechanical properties. While stiffness was mostly associated with proximal femur trabecular microarchitecture and mineralization degree, bone strength was mostly linked to bone size and femoral neck geometry, which predicted almost 50% of its variance. Despite the decrease in cortical and trabecular bone as well as in mineralization degree following estrogen loss, bone strength was not reduced in OVX animals compared to BSL or sham-operated rats. This was due to a change in femoral neck geometry as well as to an increase in femur size in OVX, which apparently compensated their lower bone volume and mineral content, thereby preserving bone strength. Estrogen loss leads to a deterioration of bone tissue quality, but bone strength was preserved at the expense of geometric adaptations.

  20. Osteochondral lesion located at the lateral femoral condyle reconstructed by the transplantation of tissue-engineered cartilage in combination with a periosteum with bone block: a case report.

    PubMed

    Adachi, Nobuo; Ochi, Mitsuo; Uchio, Yuji; Iwasa, Junji; Furukawa, Seiji; Deie, Masataka

    2004-09-01

    We report herein the successful treatment of a patient with an osteochondral defect extending to the edge of the lateral femoral condyle by transplantation of tissue-engineered cartilage made ex vivo using atelocollagen gel covered by periosteum with a bone block to reconstruct the normal contour of the femoral condyle.

  1. Investigating Clinical Failure of Bone Grafting through a Window at the Femoral Head Neck Junction Surgery for the Treatment of Osteonecrosis of the Femoral Head

    PubMed Central

    Sun, Wei; Zhao, Dingyan; Gao, Fuqiang; Su, Yangming; Li, Zirong

    2016-01-01

    Aims This study aimed to analyze the clinical factors related to the failure of bone grafting through a window at the femoral head-neck junction. Methods In total, 119 patients (158 hips) underwent bone grafting for treatment of avascular necrosis of the femoral head. The patients were classified by their ARCO staging and CJFH classification. All patients were clinically and radiographically followed up every three months during the first year and every six months in the following year. The clinical follow-up comprised determination of pre- and postoperative Harris hip scores, while serial AP, frog lateral radiographs, and CT scan were used for the radiographic follow-up. Results The clinical failure of bone grafting was observed in 40 patients. The clinical failure rates in patients belonging to ARCO stage II period, IIIa, and III (b + c) were 25.9%, 16.2%, and 61.5%, respectively, while those in patients belonging to (C + M + L1) type and L2, L3 type disease groups were 1.7%, 38.9%, and 39%, respectively. The clinical failure rates in patients aged below 40 and those aged 40 and over were 20.5% and 39.0%, respectively (all P < 0.05). Conclusion Disease type, disease stage, and patient age are risk factors for failure of bone graft surgery. Patients belonging to ARCO stage II and IIIa showed a good overall response rate, while patients belonging to ARCO stage IIIb and IIIc and those with necrotic lesions involving the lateral pillar (L2 and L3 type) showed high surgical failure rates. PMID:27285821

  2. Analysis of bone mineralization on uncemented femoral stems by [18F]-fluoride-PET

    PubMed Central

    2013-01-01

    Purpose We present the first study using fluoride-positron emission CT (F-PET/CT) to analyze mineralization of bone in the femur adjacent to uncemented stems following total hip arthroplasty (THA). We studied patients who were operated bilaterally for osteoarthritis with 2 different stems during the same surgical session. Patients and methods THA was performed bilaterally during the same surgical session in 8 patients with bilateral osteoarthritis of the hip. An SL-PLUS stem was inserted in one hip and a BetaCone stem was inserted in the contralateral hip, with randomization of side and sequence. A second group of 12 individuals with a normal healthy hip was used as reference for normal bone metabolism. Clinical and radiographic evaluation was performed preoperatively, postoperatively, and at 2 years. We used [18F]-fluoride-PET/CT to analyze bone mineralization adjacent to the stems 1 week, 4 months, and 12 months after surgery. We modified the Polar Map system to fit the upper femur for analysis and presentation of the PET results from 12 regions of interest adjacent to the whole stem. Results The clinical results were good at 2 years. By radiography, all stems were stable. At PET analyses 1 week after surgery, the activity was higher for the SL-PLUS group than for the BetaCone group. The activity was statistically significantly higher for both stems than the reference values at 4 months, and was most pronounced in the upper femur. At one year, the activity had declined more for the BC group than for the SL group. Interpretation The bone mineralization activity varied between different regions for the same stem and between different time periods for each group. F-PET/CT is a novel and valuable tool for analysis of bone mineralization patterns around uncemented femoral stems in detail. The combination of PET/CT analysis and the modified Polar Map system may provide a useful tool for future studies of metabolic bone responses to prosthetic implants. PMID:23506163

  3. Inflammatory focal bone destruction in femoral heads with end-stage haemophilic arthropathy: a study on clinic samples with micro-CT and histological analyses

    PubMed Central

    ZHANG, S.; LU, C.; YING, J.; WANG, P.; XU, T.; CHEN, D.; JIN, H.; TONG, P.

    2015-01-01

    Introduction Focal bone destruction has a high prevalence in haemophilic arthropathy (HA) affected joints, but the mechanism remains unclear. Aim We undertook this study on clinic samples to explore the focal bone destruction in femoral heads suffered with end-stage HA. Methods Twenty-one femoral heads from HA patients and 19 femoral heads from rheumatoid arthritis (RA) patients were scanned by micro-CT. Histological analysis, including TRAP staining of subchondral bone were performed to evaluate the bone destruction and osteoclasts activity. RANKL, OPG as well as pro-inflammatory cytokines, such as TNF-α and IL-1β in subchondral bone were detected by immunohistochemistry (IHC) method. Results Severe focal lesion was observed in all the HA and RA femoral heads by micro-CT imaging and histological analysis. The mean percentage of lesion volume to total volume of the femoral heads from HA patients was significantly higher than those from RA patients. There was no significant difference in osteoclasts numbers in subchondral bone between HA and RA groups. By IHC analysis, high expression of RANKL, TNF-α, IL-1β and low expression of OPG and RANK were observed in subchondral bone, and there were no significant differences in the expression of RANKL, OPG, RANK, TNF-α and IL-1β in femoral heads derived from HA and RA patients. Conclusion Our findings demonstrated the focal bone destruction coupled with inflammatory osteoclastogenesis at subchondral bone in femoral heads from patients with end-stage HA, and that was similar to the changes in the femoral heads of RA patients. PMID:26388304

  4. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats.

    PubMed

    Shen, Chwan-Li; Cao, Jay J; Dagda, Raul Y; Tenner, Thomas E; Chyu, Ming-Chien; Yeh, James K

    2011-06-01

    Recent studies show that green tea polyphenols (GTPs) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. This study evaluated the efficacy of GTPs at mitigating bone loss and microstructure deterioration along with related mechanisms in androgen-deficient aged rats, a model of male osteoporosis. A 2 (sham vs. orchidectomy) × 2 (no GTP and 0.5% GTP in drinking water) factorial design was studied for 16 weeks using 40 aged male rats. An additional 10 rats (baseline group) were killed at the beginning of study to provide baseline parameters. There was no difference in femoral mineral density between baseline and the sham only group. Orchidectomy suppressed serum testosterone and tartrate-resistant acid phosphatase concentrations, liver glutathione peroxidase activity, bone mineral density, and bone strength. Orchidectomy also decreased trabecular bone volume, number, and thickness in the distal femur and proximal tibia and bone-formation rate in trabecular bone of proximal tibia but increased serum osteocalcin concentrations and bone-formation rates in the endocortical tibial shaft. GTP supplementation resulted in increased serum osteocalcin concentrations, bone mineral density, and trabecular volume, number, and strength of femur; increased trabecular volume and thickness and bone formation in both the proximal tibia and periosteal tibial shaft; decreased eroded surface in the proximal tibia and endocortical tibial shaft; and increased liver glutathione peroxidase activity. We conclude that GTP supplementation attenuates trabecular and cortical bone loss through increasing bone formation while suppressing bone resorption due to its antioxidant capacity.

  5. Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets.

    PubMed

    Eklou-Kalonji, E; Zerath, E; Colin, C; Lacroix, C; Holy, X; Denis, I; Pointillart, A

    1999-01-01

    Studies on calcium nutrition in appropriate large animal models can be directly relevant to humans. We have examined the effect of dietary Ca deficiency on various bone and bone-related variables, including plasma markers, histomorphometry, mineral content and breaking strength in pigs. Three groups of eight 38-d-old female pigs were fed adequate (0.9%; control), low (0.4%; LCa) or very low (0.1%; VLCa) Ca diets for 32 d. Plasma Ca significantly decreased over time only in the VLCa-deficient pigs. The concentrations of the parathyroid hormones (PTH) and calcitriol increased as Ca deficiency developed, and the plasma PTH and calcitriol levels varied inversely with dietary Ca. The total bone ash contents, bending moments, trabecular bone volume and the mineral apposition rate all decreased as the calcium intake decreased. The osteoclast surface areas were greater than those of controls in both Ca-deficient groups, whereas the osteoblast surface areas were greater only in the VLCa group. The plasma osteoblast-related markers (alkaline phosphatase, carboxy-terminal propeptide of type I procollagen and osteocalcin) were either greater or unaffected in the Ca-deficient pigs. The results indicate that deficient bone mineralization combined with an increased bone resorption led to bone loss and fragility. The differences in the changes in bone cells (number and activity) between LCa and VLCa groups might be due to differences (time and extent) of circulating PTH and calcitriol. The defective mineralization in both Ca-depleted groups resulted mainly from the lack of Ca because their osteoblast activity was either maintained or stimulated. The results also underline the progressive sensitivity of pigs to Ca supply and the usefulness of this model. PMID:9915898

  6. Magnetic resonance imaging of the calcaneus: preliminary assessment of trabecular bone-dependent regional variations in marrow relaxation time compared with dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.

    1996-01-01

    RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.

  7. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis

    PubMed Central

    LI, BAOHUA; MARSHALL, DEBORAH; ROE, MARTIN; ASPDEN, RICHARD M.

    1999-01-01

    The subchondral bone plate supports the articular cartilage in diarthrodial joints. It has a significant mechanical function in transmitting loads from the cartilage into the underlying cancellous bone and has been implicated in the destruction of cartilage in osteoarthritis (OA) and its sparing in osteoporosis (OP), but little is known of its composition, structure or material properties. This study investigated the microscopic appearance and mineral composition of the subchondral bone plate in femoral heads from patients with OA or OP to determine how these correspond to changes in composition and stiffness found in other studies. Freeze-fractured full-depth samples of the subchondral bone plate from the femoral heads of patients with osteoarthritis, osteoporosis or a matched control group were examined using back scattered and secondary emission scanning electron microscopy. Other samples were embedded and polished and examined using back-scattered electron microscopy and electron probe microanalysis. The appearances of the samples from the normal and osteoporotic patients were very similar, with the subchondral bone plate overlayed by a layer of calcified cartilage. Osteoporotic samples presented a more uniform fracture surface and the relative thicknesses of the layers appeared to be different. In contrast, the OA bone plate appeared to be porous and have a much more textured surface. There were occasional sites of microtrabecular bone formation between the trabeculae of the underlying cancellous bone, which were not seen in the other groups, and more numerous osteoclast resorption pits. The calcified cartilage layer was almost absent and the bone plate was apparently thickened. The appearance of the osteoarthritic subchondral bone plate was, therefore, considerably different from both the normal and the osteoporotic, strongly indicative of abnormal cellular activity. PMID:10473297

  8. The use of femoral struts and impacted cancellous bone allograft in patients with severe femoral bone loss who undergo revision total hip replacement: a three- to nine-year follow-up.

    PubMed

    Buttaro, M A; Costantini, J; Comba, F; Piccaluga, F

    2012-02-01

    We determined the midterm survival, incidence of peri-prosthetic fracture and the enhancement of the width of the femur when combining struts and impacted bone allografts in 24 patients (25 hips) with severe femoral bone loss who underwent revision hip surgery. The pre-operative diagnosis was aseptic loosening in 16 hips, second-stage reconstruction in seven, peri-prosthetic fracture in one and stem fracture in one hip. A total of 14 hips presented with an Endoklinik grade 4 defect and 11 hips a grade 3 defect. The mean pre-operative Merle D'Aubigné and Postel score was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at a mean of 54.5 months (36 to 109). The mean functional score was 17.3 points (16 to 18). One patient in which the strut did not completely bypass the femoral defect was further revised using a long cemented stem due to peri-prosthetic fracture at six months post-operatively. The mean subsidence of the stem was 1.6 mm (1 to 3). There was no evidence of osteolysis, resorption or radiolucencies during follow-up in any hip. Femoral width was enhanced by a mean of 41% (19% to 82%). A total of 24 hips had partial or complete bridging of the strut allografts. This combined biological method was associated with a favourable survivorship, a low incidence of peri-prosthetic fracture and enhancement of the width of the femur in revision total hip replacement in patients with severe proximal femoral bone loss.

  9. Trabecular architecture analysis in femur radiographic images using fractals.

    PubMed

    Udhayakumar, G; Sujatha, C M; Ramakrishnan, S

    2013-04-01

    Trabecular bone is a highly complex anisotropic material that exhibits varying magnitudes of strength in compression and tension. Analysis of the trabecular architectural alteration that manifest as loss of trabecular plates and connection has been shown to yield better estimation of bone strength. In this work, an attempt has been made toward the development of an automated system for investigation of trabecular femur bone architecture using fractal analysis. Conventional radiographic femur bone images recorded using standard protocols are used in this study. The compressive and tensile regions in the images are delineated using preprocessing procedures. The delineated images are analyzed using Higuchi's fractal method to quantify pattern heterogeneity and anisotropy of trabecular bone structure. The results show that the extracted fractal features are distinct for compressive and tensile regions of normal and abnormal human femur bone. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  10. Changes in bone mineral density around the femoral stem after total hip replacement: a preliminary report.

    PubMed

    Szpunar, Jacek; Gaździk, Tadeusz Szymon

    2006-02-28

    Background. Degenerative changes in the hip, accompanied by clinically significant pain, decrease the range of motion in physical examination and give characteristic changes in X-ray images. Total hip replacement is most often indicated. The most important factor affecting the usable life of implants is the adaptive rebuilding of osseous tissue in this region. A typical radiological examination showing the hip prosthesis and surrounding osseous tissue gives only late, qualitative indications of possible loosening of the prosthesis. Examination of bone mineral density (DEXA) gives quantitative data on changes occurring in the immediate region of the hip prosthesis, enabling early assessment of prothesis endurance. The aim of our study was to compare proportional changes in the BMD of the proximal femur after cemented and cementless total hip replacement. Material and methods. Densitometry of osseous tissue was done with a LUNAR device, using the Orthopedic computer program, in two groups of female patients after total hip replacement. BMD changes were analyzed occurring around the femoral stem 3 months after surgery using autoanalysis in the 7 Gruen zones. Examinations were done across different types of hip prosthesis. Results. In both groups our preliminary data point to a proportional decrease in BMD in all the analyzed zones. The greatest decreases occurred in zones 1 and 7, the least in zone 4. Conclusions. DEXA allows for quantitative monitoring of changes in osseous tissue in the region around the prosthesis. PMID:17603460

  11. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength.

    PubMed

    Maquer, Ghislain; Lu, Yongtao; Dall'Ara, Enrico; Chevalier, Yan; Krause, Matthias; Yang, Lang; Eastell, Richard; Lippuner, Kurt; Zysset, Philippe K

    2016-02-01

    Trabecular bone score (TBS) rests on the textural analysis of dual-energy X-ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation ("full vertebra"); 2) via the classical endplate embedding ("vertebral body"); or 3) via a ball joint to induce anterior wedge failure ("vertebral section"). High-resolution peripheral quantitative computed tomography (HR-pQCT) scans acquired from prior test