Science.gov

Sample records for femoral trabecular bone

  1. Cortical Bone Morphological and Trabecular Bone Microarchitectural Changes in the Mandible and Femoral Neck of Ovariectomized Rats

    PubMed Central

    Hsu, Pei-Yu; Tsai, Ming-Tzu; Wang, Shun-Ping; Chen, Ying-Ju; Wu, Jay; Hsu, Jui-Ting

    2016-01-01

    Objective This study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats. Materials and Methods Twelve female Wister rats were divided into two groups: the control and ovariectomized groups. The rats in the ovariectomized group received ovariectomy at 8 weeks of age; all the rats were sacrificed at 20 weeks of age, and their mandibles and femurs were removed and scanned using micro-CT. Four microstructural trabecular bone parameters were measured for the region below the first mandibular molar and the femoral neck region: bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN). In addition, four cortical bone parameters were measured for the femoral neck region: total cross-sectional area (TtAr), cortical area (CtAr), cortical bone area fraction (CtAr/TtAr), and cortical thickness (CtTh). The CtTh at the masseteric ridge was used to assess the cortical bone morphology in the mandible. The trabecular bone microarchitecture and cortical bone morphology in the femoral necks and mandibles of the control group were compared with those of the ovariectomized group. Furthermore, Spearman’s correlation (rs) was conducted to analyze the correlation between the osteoporosis conditions of the mandible and femoral neck. Results Regarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group

  2. Microstructure and Nanomechanical Properties of Single Trabecular Bone in Different Regions of Osteonecrosis of the Femoral Head.

    PubMed

    Wang, Cheng; Wang, Yu; Meng, Haoye; Gou, Wenlong; Yuan, Xueling; Xu, Xiaolong; Wang, Aiyuan; Guo, Quanyi; Peng, Jiang; Lu, Shibi

    2016-03-01

    This study aimed to compare the microstructure and nanomechanical properties of single trabecular bone in different regions of osteonecrosis of the femoral head. Osteonecrotic femoral heads were taken from 20 patients undergoing total hip arthroplasties between 2011 and 2014. Following incision, resin was embedded and polished, and divided into four regions according to the type of pathologic change; i.e., subchondral bone, and necrotic, sclerotic, and healthy regions. Indents from a single trabecular bone of each region were randomly selected to undergo nanoindentation. The results are (1) The elastic modulus and degree of hardness were significantly elevated in the sclerotic region, but there were no differences in necrotic and subchondral bone regions compared with healthy regions. (2) The elastic modulus and hardness of the single trabecular bone were significantly greater in central versus edge regions (for all regions). The conclusions are (1) The mechanical properties of single bone trabeculae were not markedly altered in the necrotic region. (2) The elastic modulus and degree of hardness increased significantly between the edge and central regions, regardless of whether the bone was normal or osteonecrotic.

  3. Postmenopausal women with osteoarthritis and osteoporosis show different ultrastructural characteristics of trabecular bone of the femoral head

    PubMed Central

    Shen, Yun; Zhang, Zi-Ming; Jiang, Sheng-Dan; Jiang, Lei-Sheng; Dai, Li-Yang

    2009-01-01

    Background Osteoporosis (OP) and osteoarthritis (OA) are public health diseases affecting the quality of life of the elderly, and bring about a heavy burden to the society and family of patients. It has been debated whether or not there is an inverse relationship between these two disorders. Methods To compare the exact difference in bone tissue structure between osteoporosis and osteoarthritis, we observed the ultrastructure of trabecular bone from the femoral heads using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A total of 15 femoral head specimens from postmenopausal women were collected during the procedures of total or hemi hip replacement (OP, n = 8; OA, n = 7). The morphologic structure of the trabecular bone, collagen fibers, resorption lacuna and osteoblasts were observed. Results Under SEM, osteoporotic trabeculae appeared to be thinning, tapering, breaking and perforating. A number of resorption lacunae of various shapes were seen on the surface of the trabeculum. The collagen fibers of lacuna were resorbed. On occasion, naked granular bone crystals could be found. In the OA group, the trabecular bone looked thick with integrated structure. Reticular and granular new bone could be found. The trabeculum was covered by well-arranged collagen fibers around the resorption lacuna. In the OP group, under TEM, marginal collagen fibers were observed to be aligned loosely with enlarged spaces. A few inactive osteoblasts and no inflammatory cells were seen. In the OA group, the collagen fibers inside the trabeculum were arranged in a dense manner with many active osteoblasts and inflammatory cells infiltrating the matrix. Conclusion We found significant differences in the trabecular bone, collagen fibers, lacunae and osteoblasts between postmenopausal women with OP and OA. These findings support the hypothesis that there is an inverse relationship between OP and OA. PMID:19356253

  4. In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone

    PubMed Central

    Wu, Ziheng; LaNeve, Anthony J.; Niebur, Glen L.

    2013-01-01

    Microdamage has been cited as an important element of trabecular bone quality and fracture risk, as materials with flaws have lower modulus and strength than equivalent undamaged materials. However, the magnitude of the effect of damage on failure properties depends on its tendency to propagate. Human femoral trabecular bone from the neck and greater trochanter was subjected to one of compressive, torsional, or combined compression and torsion. The in vivo, new, and propagating damage were then quantified in thick sections under epifluorescent microscopy. Multiaxial loading, which was intended to represent an off-axis load such as a fall or accident, caused much more damage than either simple compression or shear, and similarly caused the greatest stiffness loss. In all cases, initiation of new damage far exceeded the propagation of existing damage. This may reflect stress redistribution away from damaged trabeculae, resulting in new damage sites. However, the accumulation of new damage was positively correlated with the quantity of pre-existing damage in all loading modes, indicating that damaged bone is inherently more prone to further damage formation. Moreover, about 50% of in vivo microcracks propagated under each type of loading. Finally, damage formation was positively correlated to decreased compressive stiffness following both axial and shear loading. Taken together, these results demonstrate that damage in trabecular bone adversely affects its mechanical properties, and is indicative of bone that is more susceptible to further damage. PMID:23459314

  5. Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads

    SciTech Connect

    Chappard, Christine; Basillais, Armelle; Benhamou, Laurent; Bonassie, Alexandra; Brunet-Imbault, Barbara; Bonnet, Nicolas; Peyrin, Francoise

    2006-09-15

    Microcomputed tomography ({mu}CT) produces three-dimensional (3D) images of trabecular bone. We compared conventional {mu}CT (C{mu}CT) with a polychromatic x-ray cone beam to synchrotron radiation (SR) {mu}CT with a monochromatic parallel beam for assessing trabecular bone microarchitecture of 14 subchondral femoral head specimens from patients with osteoarthritis (n=10) or osteoporosis (n=4). SR{mu}CT images with a voxel size of 10.13 {mu}m were reconstructed from 900 2D radiographic projections (angular step, 0.2 deg. ). C{mu}CT images with a voxel size of 10.77 {mu}m were reconstructed from 205, 413, and 825 projections obtained using angular steps of 0.9 deg., 0.45 deg., and 0.23 deg., respectively. A single threshold was used to binarize the images. We computed bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular number (Tb.N), trabecular thickness (Tb.Th and Tb.Th*), trabecular spacing (Tb.Sp), degree of anisotropy (DA), and Euler density. With the 0.9 deg. angular step, all C{mu}CT values were significantly different from SR{mu}CT values. With the 0.23 deg. and 0.45 deg. rotation steps, BV/TV, Tb.Th, and BS/BV by C{mu}CT differed significantly from the values by SR{mu}CT. The error due to slice matching (visual site matching {+-}10 slices) was within 1% for most parameters. Compared to SR{mu}CT, BV/TV, Tb.Sp, and Tb.Th by C{mu}CT were underestimated, whereas Tb.N and Tb.Th* were overestimated. A Bland and Altman plot showed no bias for Tb.N or DA. Bias was -0.8{+-}1.0%, +5.0{+-}1.1 {mu}m, -5.9{+-}6.3 {mu}m, and -5.7{+-}29.1 {mu}m for BV/TV, Tb.Th*, Tb.Th, and Tb.Sp, respectively, and the differences did not vary over the range of values. Although systematic differences were noted between SR{mu}CT and C{mu}CT values, correlations between the techniques were high and the differences would probably not change the discrimination between study groups. C{mu}CT provides a reliable 3D assessment of human defatted bone when working at the 0

  6. Diet-induced Obesity Alters Bone Remodeling Leading to Decreased Femoral Trabecular Bone Mass in Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body mass derived from an obesity condition may be detrimental to bone health but the mechanism is unknown. This study was to examine changes in bone structure and serum cytokines related to bone metabolism in obese mice induced by a high-fat diet(HFD). Mice fed the HFD were obese and had higher ser...

  7. Comparison of the Lag Screw Placements for the Treatment of Stable and Unstable Intertrochanteric Femoral Fractures regarding Trabecular Bone Failure.

    PubMed

    Celik, Talip; Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin

    2016-01-01

    Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk.

  8. Comparison of the Lag Screw Placements for the Treatment of Stable and Unstable Intertrochanteric Femoral Fractures regarding Trabecular Bone Failure

    PubMed Central

    Mutlu, Ibrahim; Ozkan, Arif; Kisioglu, Yasin

    2016-01-01

    Background. In this study, the cut-out risk of Dynamic Hip Screw (DHS) was investigated in nine different positions of the lag screw for two fracture types by using Finite Element Analysis (FEA). Methods. Two types of fractures (31-A1.1 and A2.1 in AO classification) were generated in the femur model obtained from Computerized Tomography images. The DHS model was placed into the fractured femur model in nine different positions. Tip-Apex Distances were measured using SolidWorks. In FEA, the force applied to the femoral head was determined according to the maximum value being observed during walking. Results. The highest volume percentage exceeding the yield strength of trabecular bone was obtained in posterior-inferior region in both fracture types. The best placement region for the lag screw was found in the middle of both fracture types. There are compatible results between Tip-Apex Distances and the cut-out risk except for posterior-superior and superior region of 31-A2.1 fracture type. Conclusion. The position of the lag screw affects the risk of cut-out significantly. Also, Tip-Apex Distance is a good predictor of the cut-out risk. All in all, we can supposedly say that the density distribution of the trabecular bone is a more efficient factor compared to the positions of lag screw in the cut-out risk. PMID:27995133

  9. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  10. Cortical and trabecular load sharing in the human femoral neck.

    PubMed

    Nawathe, Shashank; Nguyen, Bich Phuong; Barzanian, Nasim; Akhlaghpour, Hosna; Bouxsein, Mary L; Keaveny, Tony M

    2015-03-18

    The relative role of the cortical vs trabecular bone in the load-carrying capacity of the proximal femur-a fundamental issue in both basic-science and clinical biomechanics-remains unclear. To gain insight into this issue, we performed micro-CT-based, linear elastic finite element analysis (61.5-micron-sized elements; ~280 million elements per model) on 18 proximal femurs (5M, 13F, ages 61-93 years) to quantify the fraction of frontal-plane bending moment shared by the cortical vs trabecular bone in the femoral neck, as well as the associated spatial distributions of stress. Analyses were performed separately for a sideways fall and stance loading. For both loading modes and across all 18 bones, we found consistent patterns of load-sharing in the neck: most proximally, the trabecular bone took most of the load; moving distally, the cortical bone took increasingly more of the load; and more distally, there was a region of uniform load-sharing, the cortical bone taking the majority of the load. This distal region of uniform load-sharing extended more for fall than stance loading (77 ± 8% vs 51 ± 6% of the neck length for fall vs. stance; mean ± SD) but the fraction of total load taken by the cortical bone in that region was greater for stance loading (88 ± 5% vs. 64 ± 9% for stance vs. fall). Locally, maximum stress levels occurred in the cortical bone distally, but in the trabecular bone proximally. Although the distal cortex showed qualitative stress distributions consistent with the behavior of an Euler-type beam, quantitatively beam theory did not apply. We conclude that consistent and well-delineated regions of uniform load-sharing and load-transfer between the cortical and trabecular bone exist within the femoral neck, the details of which depend on the external loading conditions.

  11. Ultrasonic Evaluation of Deeply Located Trabecular Bones - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cieślik, Lucyna; Litniewski, Jerzy

    The analysis of ultrasonic signals scattered by soft tissues have been successfully applied for their characterization. Similarly, the trabecular bone backscattered signal contains information about the properties of the bone structure. Therefore scattering-based ultrasonic technique potentially enables the assessment of microstructure characteristics of a bone. The femoral neck fracture often occurs in the course of osteoporosis and can lead to severe complications. Therefore assessment of femoral bone microstructure and condition is important and essential for the diagnosis and treatment monitoring. As far most of the trabecular bone investigations have been performed in vitro. The only in vivo measurements were carried out in transmission and mostly concerned estimation of the attenuation in heel bone. We have built the ultrasonic scanner that could be useful in acquiring the RF (Radio Frequency) echoes backscattered by the trabecular bone in vivo. Moreover, the bone scanner provides data not only from heel bone but from deeply located bones as well (e.g. femoral bone). It can be also used for easily accessible bones like heel bone or breastbone. In this case a gel-pad is applied to assure focusing of ultrasound in trabecular bone (approximately 10 mm beneath the cortical bone). This study presents preliminary results of the attenuating properties evaluation of trabecular bone from the ultrasonic echoes backscattered by heel bone and femoral neck.

  12. Radiographic Trabecular 2D and 3D Parameters of Proximal Femoral Bone Cores Correlate with Each Other and with Yield Stress

    PubMed Central

    Steines, Daniel; Liew, Siau-Way; Arnaud, Claude; Voracek, Rene Vargas; Nazarian, Ara; Müller, Ralph; Snyder, Brian; Hess, Patrick; Lang, Philipp

    2010-01-01

    Introduction We compared morphometric measurements of trabecular patterns in two-dimensional (2D) projection radiographic images of cores from cadaver proximal femoral bones with conceptually equivalent measurements from three-dimensional (3D) μCT images. Methods Seven cadaver proximal femora provided 47 excised cores from seven regions. Digitized radiographs of those cores were processed with software that extracts trabecular patterns. Measurements of their distribution, geometry, and connectivity were compared with 3D parameters of similar definition derived from μCT of those cores. The relationship between 2D and 3D measurements and yield stress was also examined. Results 2D measurements strongly correlated with conceptually equivalent measurements obtained using 3D μCT. In all cases, the correlation coefficients were high, ranging from r=0.84 (p<0.001) to r=0.93 (p<0.001). The correlation coefficients between 2D and 3D measurements and yield stress of the cores were also high (r=0.60 and 0.82, p<0.001 respectively). Conclusions These findings provide correlative and biomechanical evidence supporting the qualitative similarity of 2D microstructural parameters extracted from plain proximal femoral core X-ray images to conceptually equivalent 3D microstuctural measurements of those same cores. PMID:19319618

  13. Evidence for Altered Canonical Wnt Signaling in the Trabecular Bone of Elderly Postmenopausal Women with Fragility Femoral Fracture

    PubMed Central

    Bolamperti, Simona; Villa, Isabella; Spinello, Alice; Manfredini, Greta; Mezzadri, Umberto; Ometti, Marco; Fraschini, Gianfranco; Guidobono, Francesca

    2016-01-01

    Wnt signaling, a major regulator of bone formation and homeostasis, might be involved in the bone loss of osteoporotic patients and the consequent impaired response to fracture. Therefore we analyzed Wnt-related, osteogenic, and adipogenic genes in bone tissue of elderly postmenopausal women undergoing hip replacement for either femoral fracture or osteoarthritis. Bone specimens derived from the intertrochanteric region of the femurs of 25 women with fracture (F) and 29 with osteoarthritis without fracture (OA) were analyzed. Specific miRNAs were analyzed in bone and in matched blood samples. RUNX2, BGP, and OPG showed lower expression in F than in OA samples, while OSX, OPN, BSP, and RANKL were not different. Inhibitory genes of Wnt pathway were lower in F versus OA. β-Catenin protein levels were higher in F versus OA, whereas its cotranscriptional regulator (Lef1) was lower in F group. miR-204, which targets RUNX2, and miR-130a, which inhibits PPARγ, were lower and higher, respectively, in F versus OA serum samples. The present study showed an inefficient Wnt signal transduction in F group despite higher β-catenin protein levels, consistent with the expected overall postfracture systemic activation towards osteogenesis. This transcriptional inefficiency could contribute to the osteoporotic bone fragility. PMID:27999816

  14. Comparison of the abilities of human parathyroid hormone (hPTH)-(1-34) and [Leu27]-cyclo(Glu22-Lys26)-hPTH-(1-31)NH2 to stimulate femoral trabecular bone growth in ovariectomized rats.

    PubMed

    Whitfield, J F; Morley, P; Willick, G; MacLean, S; Ross, V; Isaacs, R J; Barbier, J R

    1998-11-01

    hPTH-(1-31)NH2, so far the smallest of the potently anabolic N-terminal fragments of the human parathyroid hormone, stimulates trabecular growth in the distal femurs of ovariectomized (OVX) rats as strongly as hPTH-(1-34) when injected at a high daily dose such as 1 nmol/100 g of body weight, but it is only about 70% as effective as hPTH-(1-34) when injected at the suboptimal 0.6 nmol/100 g of body weight. A lactam derivative of hPTH-(1-31)-NH2, [Leu27]-cyclo(Glu22-Lys26)-hPTH-(1-31)NH2, is a much more effective stimulator of adenylyl cyclase in ROS 17/2 rat osteoblast-like cells and a significantly more effective stimulator of femoral trabecular growth in OVX rats than hPTH-(1-31)NH2. We have now shown that [Leu27]-cyclo(Glu22-Lys26)-hPTH-(1-31)NH2 prevents the OVX-induced loss of femoral trabeculae significantly more effectively than hPTH-(1-34) and stimulates the thickening of the trabeculae remaining in severely depleted femoral trabecular bone of OVX rats as effectively as hPTH-(1-34) when injected at 0.6 nmol/100 g of body weight.

  15. Stimulation of the growth of femoral trabecular bone in ovariectomized rats by the novel parathyroid hormone fragment, hPTH-(1-31)NH2 (Ostabolin).

    PubMed

    Whitfield, J F; Morley, P; Willick, G E; Ross, V; Barbier, J R; Isaacs, R J; Ohannessian-Barry, L

    1996-02-01

    The human parathyroid hormone, hPTH-(1-84), and its hPTH-(1-34) fragment are promising anabolic agents for treating osteoporosis because they can strongly stimulate the production of biomechanically effective cortical and trabecular bone in osteopenic ovariectomized (OVX) rats and trabecular bone in osteoporotic postmenopausal humans. The ideal PTH fragment for treating osteoporosis would be the smallest and functionally simplest fragment that activates only one signal mechanism and still strongly stimulates trabecular bone growth. A new PTH fragment, hPTH-(1-31)NH2, which only stimulates adenylyl cyclase instead of stimulating both adenylyl cyclase and phospholipase-C as do hPTH-(1-84) and hPTH-(1-34), is this minimum, high-potency anabolic fragment. hPTH-(1-31)NH2 (which we have named Ostabolin) can greatly thicken trabeculae and increase the dry weight and calcium content of trabecular bone in the distal femurs of osteopenic, young, sexually mature OVX Sprague-Dawley rats when injected subcutaneously each day for 6 weeks at doses between 0.4 and 1.6 nmole/100 g of body weight.

  16. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.

    PubMed

    Wang, Ji; Zhou, Bin; Liu, X Sherry; Fields, Aaron J; Sanyal, Arnav; Shi, Xiutao; Adams, Mark; Keaveny, Tony M; Guo, X Edward

    2015-03-01

    The microstructure of trabecular bone is usually perceived as a collection of plate-like and rod-like trabeculae, which can be determined from the emerging high-resolution skeletal imaging modalities such as micro-computed tomography (μCT) or clinical high-resolution peripheral quantitative CT (HR-pQCT) using the individual trabecula segmentation (ITS) technique. It has been shown that the ITS-based plate and rod parameters are highly correlated with elastic modulus and yield strength of human trabecular bone. In the current study, plate-rod (PR) finite element (FE) models were constructed completely based on ITS-identified individual trabecular plates and rods. We hypothesized that PR FE can accurately and efficiently predict elastic modulus and yield strength of human trabecular bone. Human trabecular bone cores from proximal tibia (PT), femoral neck (FN) and greater trochanter (GT) were scanned by μCT. Specimen-specific ITS-based PR FE models were generated for each μCT image and corresponding voxel-based FE models were also generated in comparison. Both types of specimen-specific models were subjected to nonlinear FE analysis to predict the apparent elastic modulus and yield strength using the same trabecular bone tissue properties. Then, mechanical tests were performed to experimentally measure the apparent modulus and yield strength. Strong linear correlations for both elastic modulus (r(2) = 0.97) and yield strength (r(2) = 0.96) were found between the PR FE model predictions and experimental measures, suggesting that trabecular plate and rod morphology adequately captures three-dimensional (3D) microarchitecture of human trabecular bone. In addition, the PR FE model predictions in both elastic modulus and yield strength were highly correlated with the voxel-based FE models (r(2) = 0.99, r(2) = 0.98, respectively), resulted from the original 3D images without the PR segmentation. In conclusion, the ITS-based PR models predicted accurately both elastic

  17. Dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in trabecular bone

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2014-06-01

    The present study aims to investigate the dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in 12 bovine femoral trabecular bone samples. The phase velocity and the attenuation coefficient of the fast wave measured at 0.5 MHz were found to decrease significantly with increasing angle and had their maximum values at 0°, i.e., for wave propagation in a direction parallel to the predominant trabecular alignment. The present study applied the angle-dependent Biot model by introducing anisotropy into the Biot model through the angle-dependent Young's, bulk, and shear moduli of the skeletal frame for trabecular bone to predict the measurements. Good agreement between the measurements and the prediction of the fast wave velocity suggests that the anisotropic fast wave velocity as a function of the propagation angle is mainly due to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment.

  18. Fractal dimension and architecture of trabecular bone.

    PubMed

    Fazzalari, N L; Parkinson, I H

    1996-01-01

    The fractal dimension of trabecular bone was determined for biopsies from the proximal femur of 25 subjects undergoing hip arthroplasty. The average age was 67.7 years. A binary profile of the trabecular bone in the biopsy was obtained from a digitized image. A program written for the Quantimet 520 performed the fractal analysis. The fractal dimension was calculated for each specimen, using boxes whose sides ranged from 65 to 1000 microns in length. The mean fractal dimension for the 25 subjects was 1.195 +/- 0.064 and shows that in Euclidean terms the surface extent of trabecular bone is indeterminate. The Quantimet 520 was also used to perform bone histomorphometric measurements. These were bone volume/total volume (BV/TV) (per cent) = 11.05 +/- 4.38, bone surface/total volume (BS/TV) (mm2/mm3) = 1.90 +/- 0.51, trabecular thickness (Tb.Th) (mm) = 0.12 +/- 0.03, trabecular spacing (Tb.Sp) (mm) = 1.03 +/- 0.36, and trabecular number (Tb.N) (number/mm) = 0.95 +/- 0.25. Pearsons' correlation coefficients showed a statistically significant relationship between the fractal dimension and all the histomorphometric parameters, with BV/TV (r = 0.85, P < 0.0001), BS/TV (r = 0.74, P < 0.0001), Tb.Th (r = 0.50, P < 0.02), Tb.Sp (r = -0.81, P < 0.0001), and Tb.N (r = 0.76, P < 0.0001). This method for calculating fractal dimension shows that trabecular bone exhibits fractal properties over a defined box size, which is within the dimensions of a structural unit for trabecular bone. Therefore, the fractal dimension of trabecular bone provides a measure which does not rely on Euclidean descriptors in order to describe a complex geometry.

  19. Internal channel structures in trabecular bone

    NASA Astrophysics Data System (ADS)

    Scherf, Heike; Beckmann, Felix; Fischer, Jens; Witte, Frank

    2004-10-01

    Material properties of bone are crucial for studies regarding the mechanical behavior of bone. The mechanical behavior depends on the macro- and micro-architecture as well as the organic and mineral content of bone. The marco-architecture of bone is normally analyzed by plane radiographs. The micro-architecture of the trabecular bone can be imaged by high resolution CT imaging techniques using conventional x-ray tubes. However, fine structures in bone architecture cannot be sufficiently analyzed by this technique due to its limited resolution. High resolution CT imaging technique using synchrotron radiation generates images with a high spatial resolution of bone structures on a micron scale. Additionally, this imaging technique provides superior determination of local differences in the bone mineral density. Two microtomography techniques, first: based on conventional x-ray tubes and second: based on synchrotron radiation were compared in this study to detect fine bone structures such as inner trabecular channels. In two red howler monkeys (Alouatta seniculus) femora channel structures were found inside the trabecular bone by both techniques. Only synchrotron-based microtomography was able to detect layers of lower mineral density in the channel walls. The found structures in trabecular bone are normally expected in the Haversian channel walls of the cortical bone. However, the origin of the trabecular channel structure is not fully understood. We found, that synchrotron-based microtomography is a very valuable technique in the research of fine bone structures. Further research should focus on the impact of these findings on the mechanical properties of trabecular bone.

  20. Nonlinear viscoelastic characterization of bovine trabecular bone.

    PubMed

    Manda, Krishnagoud; Wallace, Robert J; Xie, Shuqiao; Levrero-Florencio, Francesc; Pankaj, Pankaj

    2017-02-01

    The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness-density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep-recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text]). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery's nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep-recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening-softening behaviour with increasing stress.

  1. Shear Strength Behavior of Human Trabecular Bone

    PubMed Central

    Sanyal, Arnav; Gupta, Atul; Bayraktar, Harun H.; Kwon, Ronald Y.; Keaveny, Tony M.

    2012-01-01

    The shear strength of human trabecular bone may influence overall bone strength under fall loading conditions and failure at bone-implant interfaces. Here, we sought to compare shear and compressive yield strengths of human trabecular bone and elucidate the underlying failure mechanisms. We analyzed 54 specimens (5-mm cubes), all aligned with the main trabecular orientation and spanning four anatomic sites, 44 different cadavers, and a wide range of bone volume fraction (0.06–0.38). Micro-CT-based non-linear finite element analysis was used to assess the compressive and shear strengths and the spatial distribution of yielded tissue; the tissue-level constitutive model allowed for kinematic non-linearity and yielding with strength asymmetry. We found that the computed values of both the shear and compressive strengths depended on bone volume fraction via power law relations having an exponent of 1.7 (R2=0.95 shear; R2=0.97 compression). The ratio of shear to compressive strengths (mean ± SD, 0.44 ± 0.16) did not depend on bone volume fraction (p=0.24) but did depend on microarchitecture, most notably the intra-trabecular standard deviation in trabecular spacing (R2=0.23, p<0.005). For shear, the main tissue-level failure mode was tensile yield of the obliquely oriented trabeculae. By contrast, for compression, specimens having low bone volume fraction failed primarily by large-deformation-related tensile yield of horizontal trabeculae and those having high bone volume failed primarily by compressive yield of vertical trabeculae. We conclude that human trabecular bone is generally much weaker in shear than compression at the apparent level, reflecting different failure mechanisms at the tissue level. PMID:22884967

  2. Tensile strength of bovine trabecular bone.

    PubMed

    Kaplan, S J; Hayes, W C; Stone, J L; Beaupré, G S

    1985-01-01

    Data on the tensile and compressive properties of trabecular bone are needed to define input parameters and failure criteria for modeling total joint replacements. To help resolve differences in reports comparing tensile and compressive properties of trabecular bone, we have developed new methods, based on porous foam technology, for tensile testing of fresh/frozen trabecular bone specimens. Using bovine trabecular bone from an isotropic region from the proximal humerus as a model material, we measured ultimate strengths in tension and compression for two groups of 24 specimens each. The average ultimate strength in tension was 7.6 +/- 2.2 (95% C.I.) MPa and in compression was 12.4 +/- 3.2 MPa. This difference was statistically significant (p = 0.013) and was not related to density differences between the test groups (p = 0.28). Strength was related by a power-law function of the local apparent density, but, even accounting for density influences, isotropic bovine trabecular bone exhibits significantly lower strengths in tension than in compression.

  3. The effect of freezing and intraosseous fluid on the stiffness behavior of canine trabecular bone.

    PubMed

    Nuccion, S L; Otsuka, N Y; Davey, J R

    2001-04-01

    The effect of disrupting the intraosseous fluid compartment and freezing on the mechanical stiffness of trabecular bone in intact canine femoral head specimens was investigated. Twenty-four skeletally mature dogs were divided into two groups. Twelve paired fresh femora were tested and 12 paired femora were tested after freezing at -20 degrees C. The intact femoral head specimens were subjected to a load of physiologic magnitude, and then the stiffness of the underlying trabecular bone was determined in intact femora, in drilled femora with a disrupted intraosseous fluid compartment, and subsequently after refilling the compartment with fluid. Drilling of the femoral head and disrupting its bony fluid compartment resulted in a 40% decrease in stiffness (P<.001). This effect was seen only with fresh specimens and not frozen specimens. Refilling the bony compartment with fluid restored the stiffness of the fresh femoral head. These results demonstrate the mechanical properties of trabecular bone in canine femoral head specimens in vitro are affected by intraosseous fluid and freezing. Removal of the intraosseous fluid decreases the mechanical stiffness of canine trabecular bone, and freezing the specimens appears to alter the intraosseous fluid compartment behavior. It is necessary to gain a better understanding of the dynamic mechanical properties of intact bone to improve the existing analytical and experimental mechanical bone models. The effect of intraosseous fluid and freezing should be considered in these models.

  4. An Orientation Distribution Function for Trabecular Bone

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-10-08

    We describe a new method for quantifying the orientation of trabecular bone from three-dimensional images. Trabecular lattices from five human vertebrae were decomposed into individual trabecular elements, and the orientation, mass, and thickness of each element were recorded. Continuous functions that described the total mass (M({var_phi},{theta})) and mean thickness ({tau}({var_phi},{theta})) of all trabeculae as a function of orientation were derived. The results were compared with experimental measurements of the elastic modulus in the three principal anatomic directions. A power law scaling relationship between the anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 (R{sup 2} = 0.88). As expected, the preponderance of trabecular mass was oriented along the cranial-caudal direction; on average, there was 3.4 times more mass oriented vertically than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than the horizontal trabeculae. The vertical trabecular thickness was inversely related to the connectivity (R{sup 2} = 0.70; p = 0.07), suggesting a possible organization into either few, thick trabeculae or many thin trabeculae. The method, which accounts for the mechanical connectedness of the lattice, provides a rapid way to both visualize and quantify the three-dimensional organization of trabecular bone.

  5. Image-Based Modeling of Trabecular Bones

    NASA Astrophysics Data System (ADS)

    Rajapakse, Chamith; Gunaratne, Gemunu

    2004-10-01

    Osteoporosis is a major health problem in the U.S. today. The detection and treatment of osteoporosis is currently based on Bone Mineral Density (BMD) measurements. Recent evidence suggests that the low bone mass alone does not account for the entire risk of osteoporotic fractures. It is also been known that the trabecular regions of bones play a major role in the bone strength . Trabecular bone has a complex structure with substantial heterogeneity, anisotropy and asymmetry. Although these properties effect BMD, the role of architecture and tissue material remain uncertain. Computer modeling of trabecular bone can be used predict responses that cannot be obtained experimentally, and they can compute responses that cannot be measured in-vivo. Due to the complexity of the Trabecular Architecture (TA) a model system based on scanned digital images is introduced to get substantial insight of TA and to predict the failure behavior. It is assumed that the added insight provided by these studies will lead to improved diagnostics and treatments of patient-specific osteoporotic fractures.

  6. Material Properties of the Mandibular Trabecular Bone

    PubMed Central

    Lakatos, Éva; Magyar, Lóránt; Bojtár, Imre

    2014-01-01

    The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa. PMID:27006933

  7. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents.

    PubMed

    Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna

    2015-09-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen-mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone.

  8. Trabecular bone microstructure scales allometrically in the primate humerus and femur.

    PubMed

    Ryan, Timothy M; Shaw, Colin N

    2013-05-07

    Most analyses of trabecular microarchitecture in mammals have focused on the functional significance of interspecific variation, but they have not effectively considered the influence of body size or phylogeny on bone architecture. The goals of this study were to determine the relationship between trabecular bone and body size in the humeral and femoral heads of extant primates, and to assess the influence of phylogeny on bone microstructure. Using a sample of 235 individuals from 34 primate species, ranging in body size from 0.06 to 130 kg, the relationships between trabecular bone structure and body size were assessed by using conventional and phylogenetic regression analyses. Bone volume fraction, trabecular thickness and trabecular spacing increase with body size, whereas bone surface-area-to-volume ratio decreases. Shape variables such as trabecular number, connectivity density and degree of anisotropy scale inversely with size. Most of these variables scale with significant negative allometry, except bone surface-area-to-volume ratio, which scales with slight positive allometry. Phylogenetic regressions indicate a relatively weak phylogenetic signal in some trabecular bone variables. These data demonstrate that, relative to body size, large primates have thinner and more tightly packed trabeculae than small primates. The relatively thin trabeculae in large primates and other mammals, coupled with constraints on trabecular thickness related to osteocyte function, suggest that increased skeletal loads in the postcranial joints of large mammals are probably mitigated not only through alterations in trabecular microarchitecture, but also through other mechanisms such as changes in cortical bone distribution, limb posture and gait speed.

  9. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.

    PubMed

    Kreipke, T C; Niebur, G L

    2017-02-02

    Trabecular bone is a porous, mineralized tissue found in vertebral bodies, the metaphyses and epiphyses of long bones, and in the irregular and flat shaped bones. The pore space is filled with bone marrow, a highly cellular fluid. Together, the bone and marrow behave as a poroelastic solid. In poroelasticity theory, the permeability is the primary material property that governs the momentum transfer between the solid and fluid constituents. In the linearized theory, the permeability of a material depends on the shape and connectivity of the pores. Developing a model of the relationship between trabecular microarchitecture and permeability could lead to improved simulations of trabecular bone mechanical response, which can be used to investigate bone adaptation, mechanobiological signaling, and progression of diseases such as osteoporosis. This study used finite element models of the trabecular pore space to calculate the complete anisotropic permeability tensor of 12 human and 18 porcine femoral trabecular bone samples. The sensitivity of the simulations to model assumptions and post-processing was analyzed to improve confidence in the result. The orthotropic permeability tensor depended on the fabric tensor, trabecular spacing, and structure model index through a power law relationship. Porosity and fabric alone also provided a reasonable prediction, which may be useful in cases where the image resolution is insufficient to obtain detailed measures of architecture.

  10. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  11. Ultrasonic characterization of human trabecular bone microstructure.

    PubMed

    Hakulinen, Mikko A; Day, Judd S; Töyräs, Juha; Weinans, Harrie; Jurvelin, Jukka S

    2006-03-21

    New quantitative ultrasound (QUS) techniques involving ultrasound backscattering have been introduced for the assessment of bone quality. QUS parameters are affected by the transducer characteristics, e.g. frequency range, wave and pulse length. Although frequency-dependent backscattering has been studied extensively, understanding of the ultrasound scattering phenomenon in trabecular bone is still limited. In the present study, the relationships between QUS parameters and the microstructure of human trabecular bone were investigated experimentally and by using numerical simulations. Speed of sound (SOS), normalized broadband ultrasound attenuation (nBUA), average attenuation, integrated reflection coefficient (IRC) and broadband ultrasound backscatter (BUB) were measured for 26 human trabecular bone cylinders. Subsequently, a high-resolution microCT system was used to determine the microstructural parameters. Moreover, based on the sample-specific microCT data, a numerical model for ultrasound propagation was developed for the simulation of experimental measurements. Experimentally, significant relationships between the QUS parameters and microstructural parameters were demonstrated. The relationships were dependent on the frequency, and the strongest association (r = 0.88) between SOS and structural parameters was observed at a centre frequency of 5 MHz. nBUA, average attenuation, IRC and BUB showed somewhat lower linear correlations with the structural properties at a centre frequency of 5 MHz, as compared to those determined at lower frequencies. Multiple regression analyses revealed that the variation of acoustic parameters could best be explained by parameters reflecting the amount of mineralized tissue. A principal component analysis demonstrated that the strongest determinants of BUB and IRC were related to the trabecular structure. However, other structural characteristics contributed significantly to the prediction of the acoustic parameters as well. The

  12. Trabecular bone of growth plate origin influences both trabecular and cortical morphology in adulthood.

    PubMed

    Wang, Qingju; Ghasem-Zadeh, Ali; Wang, Xiao-Fang; Iuliano-Burns, Sandra; Seeman, Ego

    2011-07-01

    Skeletal fragility is common at metaphyseal regions of long bones. The cortices of this region are derived by coalescence of trabeculae around the periphery of the growth plate, not by periosteal apposition, as occurs in the diaphyses. We therefore hypothesized that trabecular bone in childhood predicted both cortical and trabecular morphology in adulthood. To test this hypothesis, we measured distal radial and tibial structure using high-resolution peripheral quantitative computed tomography in 61 daughter-mother pairs, mean age 12.5 years (range 7 to 19 years) and 44.1 years (range 32 to 50 years), respectively. The daughters' trabecular bone volume (BV/TV), thickness, number, and separation predicted the corresponding traits in their mothers. Their trabecular BV/TV also predicted their mothers' cortical thickness (r = 0.32, p = .02). By contrast, the daughters' cortical thickness did not predict their mothers' cortical thickness. The daughters had higher trabecular BV/TV than their mothers (mean ± SD, radius 0.134 ± 0.024 versus 0.124 ± 0.033, p = .03; tibia 0.145 ± 0.021 versus 0.135 ± 0.032, p < .01) owing to greater trabecular number, not thickness, and less trabecular separation. Abnormalities in the development of metaphyseal trabecular bone are likely to influence fragility in both trabecular and cortical bone of this region in adulthood.

  13. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone.

    PubMed

    Lee, Kang Il

    2013-11-01

    In the present study, correlations of linear and nonlinear ultrasound parameters (speed of sound, normalized broadband ultrasound attenuation, and nonlinear parameter B/A) with bone mineral density and microarchitectural parameters were investigated in 28 bovine femoral trabecular bone samples in vitro. All three ultrasound parameters exhibited relatively high correlation coefficients with the indexes of bone quantity (bone mineral density and bone volume fraction) and lower correlation coefficients with the remaining microarchitectural parameters. These results suggest that B/A, in addition to speed of sound and attenuation, may have potential as an index for the assessment of bone status and osteoporosis.

  14. Trabecular bone texture classification using wavelet leaders

    NASA Astrophysics Data System (ADS)

    Zou, Zilong; Yang, Jie; Megalooikonomou, Vasileios; Jennane, Rachid; Cheng, Erkang; Ling, Haibin

    2016-03-01

    In this paper we propose to use the Wavelet Leader (WL) transformation for studying trabecular bone patterns. Given an input image, its WL transformation is defined as the cross-channel-layer maximum pooling of an underlying wavelet transformation. WL inherits the advantage of the original wavelet transformation in capturing spatial-frequency statistics of texture images, while being more robust against scale and orientation thanks to the maximum pooling strategy. These properties make WL an attractive alternative to replace wavelet transformations which are used for trabecular analysis in previous studies. In particular, in this paper, after extracting wavelet leader descriptors from a trabecular texture patch, we feed them into two existing statistic texture characterization methods, namely the Gray Level Co-occurrence Matrix (GLCM) and the Gray Level Run Length Matrix (GLRLM). The most discriminative features, Energy of GLCM and Gray Level Non-Uniformity of GLRLM, are retained to distinguish two different populations between osteoporotic patients and control subjects. Receiver Operating Characteristics (ROC) curves are used to measure performance of classification. Experimental results on a recently released benchmark dataset show that WL significantly boosts the performance of baseline wavelet transformations by 5% in average.

  15. Trabecular bone scales allometrically in mammals and birds.

    PubMed

    Doube, Michael; Klosowski, Michal M; Wiktorowicz-Conroy, Alexis M; Hutchinson, John R; Shefelbine, Sandra J

    2011-10-22

    Many bones are supported internally by a latticework of trabeculae. Scaling of whole bone length and diameter has been extensively investigated, but scaling of the trabecular network is not well characterized. We analysed trabecular geometry in the femora of 90 terrestrial mammalian and avian species with body masses ranging from 3 g to 3400 kg. We found that bone volume fraction does not scale substantially with animal size, while trabeculae in larger animals' femora are thicker, further apart and fewer per unit volume than in smaller animals. Finite element modelling indicates that trabecular scaling does not alter the bulk stiffness of trabecular bone, but does alter strain within trabeculae under equal applied loads. Allometry of bone's trabecular tissue may contribute to the skeleton's ability to withstand load, without incurring the physiological or mechanical costs of increasing bone mass.

  16. Biomechanics and Mechanobiology of Trabecular Bone: A Review

    PubMed Central

    Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C.; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength. PMID:25412137

  17. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.

    PubMed

    Metzger, Thomas A; Kreipke, Tyler C; Vaughan, Ted J; McNamara, Laoise M; Niebur, Glen L

    2015-01-01

    Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation.

  18. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-10-01

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  19. Feasibility of bone assessment by using the nonlinear parameter in trabecular bone

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2013-04-01

    The purpose of the present study is to investigate the feasibility of assessing bone status and osteoporosis by using the nonlinear parameter B/A in bovine trabecular bone in vitro. The B/A values measured in 18 bovine femoral trabecular bone samples by using a finite-amplitude through-transmission method ranged from 63.3 to 122.6. The apparent bone density was highly correlated with the B/A and with the existing quantitative ultrasound parameters of the speed of sound (SOS) and the normalized broadband ultrasound attenuation (nBUA), with Pearson's correlation coefficients of r = 0.83 to 0.96. The best univariate predictor of the apparent bone density was the B/A, with an adjusted squared correlation coefficient of r 2 = 0.91. These results suggest that the B/A, in addition to the SOS and the nBUA, may have potential as an index for the assessment of bone status and osteoporosis.

  20. 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images.

    PubMed

    Humbert, Ludovic; Martelli, Yves; Fonolla, Roger; Steghofer, Martin; Di Gregorio, Silvana; Malouf, Jorge; Romera, Jordi; Barquero, Luis Miguel Del Rio

    2017-01-01

    The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm(3). Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.

  1. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.

    PubMed

    Lee, Kang Il

    2015-02-01

    The dependences of ultrasonic properties on the frequency and the trabecular spacing were investigated in 20 trabecular-bone-mimicking phantoms consisting of cellular copper foams. The strong slow waves were consistently observed in the signals transmitted through all of the phantoms. The frequency-dependent phase velocity and attenuation coefficient of the slow wave were measured at frequencies from 0.7 to 1.3 MHz. The phase velocity decreased approximately linearly with increasing frequency while the attenuation coefficients increased with increasing frequency. The phase velocity increased monotonically with increasing trabecular spacing from 1337 to 2931 μm while the attenuation coefficient decreased with increasing spacing.

  2. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone.

    PubMed

    Shi, Xiutao; Liu, X Sherry; Wang, Xiang; Guo, X Edward; Niebur, Glen L

    2010-05-01

    Trabecular architecture becomes more rod-like and anisotropic in osteoporotic and aging trabecular bone. In order to address the effects of trabecular type and orientation on trabecular bone damage mechanics, microstructural finite element modeling was used to identify the yielded tissue in ten bovine tibial trabecular bone samples compressed to 1.2% on-axis apparent strain. The yielded tissue was mapped onto individual trabeculae identified by an Individual Trabeculae Segmentation (ITS) technique, and the distribution of the predicted yielding among trabecular types and orientations was compared to the experimentally measured microdamage. Although most of the predicted yielded tissue was found in longitudinal plates (73+/-11%), the measured microcrack density was positively correlated with the proportion of the yielded tissue in longitudinal rods (R(2)=0.52, p=0.02), but not in rods of other directions or plates. The overall fraction of rods and the fractions of rods along the longitudinal and transverse axes were also correlated with the measured microcrack density. In contrast, diffuse damage area did not correlate with any of these quantities. These results agree with the findings that both in vitro and in vivo microcrack densities are correlated with Structure Model Index (SMI), and are also consistent with decreased energy to failure in more rod-like trabecular bone. Together the results suggest that bending or buckling deformations of rod-like trabeculae may make trabecular structures more susceptible to microdamage formation. Moreover, while simple strain-based tissue yield criteria may account for macroscopic yielding, they may not be suitable for identifying damage.

  3. Modeling orthotropic elasticity, localized plasticity and fracture in trabecular bone

    NASA Astrophysics Data System (ADS)

    O'Connor, D. T.; Elkhodary, K. I.; Fouad, Y.; Greene, M. S.; Sabet, F. A.; Qian, J.; Zhang, Y.; Liu, W. K.; Jasiuk, I.

    2016-09-01

    This work develops a model for the mechanical response of trabecular bone including plasticity, damage and fracture. It features a resultant lamellar orientation that captures trabecular strut anisotropic elasticity, and introduces asymmetric J2 plasticity with isotropic hardening to capture evolving strut tensile and compressive dissipative properties. A continuum compatibility based damage and fracture criterion is also proposed to model fracture surface generation. We investigated fracture of a trabecular bone network under a compressive load, for which failure modes of both tension and compression were identified at the strut level. The predicted trabecular network response was found to fall within the range of experimental results reported in literature. We also investigated the response of idealized struts under compression, tension and bending using our model. Individual struts were found to exhibit micro-buckling under compression and micro-necking under tension. These instabilities are however masked by the multiplicity and complexity of strut orientations at the trabecular network level.

  4. Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis.

    PubMed

    Dall'Ara, Enrico; Ohman, Caroline; Baleani, Massimiliano; Viceconti, Marco

    2011-05-17

    This study investigated whether changes in hardness of human trabecular bone are associated with osteoarthritis. Twenty femoral heads extracted from subjects without musculoskeletal diseases (subject age: 49-83 years) and twenty femoral heads extracted from osteoarthritic subjects (subject age: 42-85 years) were tested. Sixty indentations were performed along the main trabecular direction of each sample at a fixed relative distance. Two microstructures were found on the indenting locations: packs of parallel-lamellae (PL) and secondary osteons (SO). A 25gf load was applied for 15s and the Vickers Hardness (HV) was assessed. Trabecular tissue extracted from osteoarthritic subjects was found to be about 13% less hard compared to tissue extracted from non-pathologic subjects. However, tissue hardness was not significantly affected by gender or age. The SO was 10% less hard than the PL for both pathologic and non-pathologic tissues. A hardness of 34.1HV for PL and 30.8HV for SO was found for the non-pathologic tissue. For osteoarthritic tissue, the hardness was 30.2HV for PL and 27.1HV for SO. In the bone tissue extracted from osteoarthritic subjects the occurrence of indenting a SO (28%) was higher than that observed in the non-pathological tissue (15%). Osteoarthritis is associated with reduced tissue hardness and alterations in microstructure of the trabecular bone tissue. Gender does not significantly affect trabecular bone hardness either in non-pathological or osteoarthritic subjects. A similar conclusion can be drawn for age, although a larger donor sample size would be necessary to definitively exclude the existence of a slight effect.

  5. Effects of spaceflight on trabecular bone in rats

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.

    1983-01-01

    Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.

  6. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    PubMed

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.

  7. Comparative forefoot trabecular bone architecture in extant hominids.

    PubMed

    Griffin, Nicole L; D'Août, Kristiaan; Ryan, Timothy M; Richmond, Brian G; Ketcham, Richard A; Postnov, Andrei

    2010-08-01

    The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.

  8. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  9. Detection of trabecular bone microdamage by micro-computed tomography

    PubMed Central

    Wang, Xiang; Masse, Daniel B.; Leng, Huijie; Hess, Kevin P.; Ross, Ryan D.; Roeder, Ryan K.; Niebur, Glen L.

    2007-01-01

    Microdamage is an important component of bone quality and affects bone remodeling. Improved techniques to assess microdamage without the need for histological sectioning would provide insight into the role of microdamage in trabecular bone strength by allowing the spatial distribution of damage within the trabecular microstructure to be measured. Nineteen cylindrical trabecular bone specimens were prepared and assigned to two groups. The specimens in group I were damaged to 3% compressive strain and labeled with BaSO4. Group II was not loaded, but was labeled with BaSO4. Micro-CT images of the specimens were obtained at 10 μm resolution. The median intensity of the treated bone tissue was compared between groups. Thresholding was also used to measure the damaged area fraction in the micro-CT scans. The histologically measured damaged area fraction, the median CT intensity, and the micro-CT measured damaged area fraction were all higher in the loaded group than in the unloaded group, indicating that the micro-CT images could differentiate the damaged specimen group from the unloaded specimens. The histologically measured damaged area fraction was positively correlated with the micro-CT measured damaged area fraction and with the median CT intensity of the bone, indicating that the micro-CT images can detect microdamage in trabecular bone with sufficient accuracy to differentiate damage levels between samples. This technique provides a means to non-invasively assess the three-dimensional distribution of microdamage within trabecular bone test specimens, and could be used to gain insight into the role of trabecular architecture in microdamage formation. PMID:17588588

  10. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    PubMed

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis.

  11. Study of trabecular bone microstructure using spatial autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Wald, Michael J.; Vasilic, Branimir; Saha, Punam K.; Wehrli, Felix W.

    2005-04-01

    The spatial autocorrelation analysis method represents a powerful, new approach to quantitative characterization of structurally quasi-periodic anisotropic materials such as trabecular bone (TB). The method is applicable to grayscale images and thus does not require any preprocessing, such as segmentation which is difficult to achieve in the limited resolution regime of in vivo imaging. The 3D autocorrelation function (ACF) can be efficiently calculated using the Fourier transform. The resulting trabecular thickness and spacing measurements are robust to the presence of noise and produce values within the expected range as determined by other methods from μCT and μMRI datasets. TB features found from the ACF are shown to correlate well with those determined by the Fuzzy Distance transform (FDT) in the transverse plane, i.e. the plane orthogonal to bone"s major axis. The method is further shown to be applicable to in-vivo μMRI data. Using the ACF, we examine data acquired in a previous study aimed at evaluating the structural implications of male hypogonadism characterized by testosterone deficiency and reduced bone mass. Specifically, we consider the hypothesis that eugonadal and hypogonadal men differ in the anisotropy of their trabecular networks. The analysis indicates a significant difference in trabecular bone thickness and longitudinal spacing between the control group and the testosterone deficient group. We conclude that spatial autocorrelation analysis is able to characterize the 3D structure and anisotropy of trabecular bone and provides new insight into the structural changes associated with osteoporotic trabecular bone loss.

  12. Interrelationships between electrical properties and microstructure of human trabecular bone

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Hakulinen, M. A.; Töyräs, J.; Day, J. S.; Weinans, H.; Kiviranta, I.; Jurvelin, J. S.; Lappalainen, R.

    2006-10-01

    Microstructural changes, such as reduction of trabecular thickness and number, are characteristic signs of osteoporosis leading to diminished bone strength. Electrical and dielectric parameters might provide diagnostically valuable information on trabecular bone microstructure not extractable from bone mineral density measurements. In this study, structural properties of human trabecular bone samples (n = 26) harvested from the distal femur and proximal tibia were investigated using the computed microtomography (microCT) technique. Quantitative parameters, e.g. structural model index (SMI) or trabecular bone volume fraction (BV/TV), were calculated. In addition, the samples were examined electrically over a wide frequency range (50 Hz-5 MHz) using a two-electrode impedance spectroscopy set-up. Relative permittivity, loss factor, conductivity, phase angle, specific impedance and dissipation factor were determined. Significant linear correlations were obtained between the dissipation factor and BV/TV or SMI (|r| >= 0.70, p < 0.01, n = 26). Principal component analyses, conducted on electrical and structural parameters, revealed that the high frequency principal component of the dissipation factor was significantly related to SMI (r = 0.72, p < 0.01, n = 26). The linear combination of high and low frequency relative permittivity predicted 73% of the variation in BV/TV. To conclude, electrical and dielectric parameters of trabecular bone, especially relative permittivity and dissipation factor, were significantly and specifically related to a trabecular microstructure as characterized with microCT. The data gathered in this study constitute a useful basis for theoretical and experimental work towards the development of impedance spectroscopy techniques for detection of bone quality in vitro or in special cases of open surgery.

  13. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  14. Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone

    PubMed Central

    Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland

    2013-01-01

    Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465

  15. Multi-scale modelling of elastic moduli of trabecular bone

    PubMed Central

    Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz

    2012-01-01

    We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160

  16. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  17. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound.

    PubMed

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R(2)=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R(2)=0.67) and BV/TV (R(2)=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R(2)=0.92 for BV/TV and R(2)=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  18. Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample

    NASA Astrophysics Data System (ADS)

    Kasseck, Christoph; Kratz, Marita; Torcasio, Antonia; Gerhardt, Nils C.; van Lenthe, G. Harry; Gambichler, Thilo; Hoffmann, Klaus; Jones, David B.; Hofmann, Martin R.

    2010-07-01

    We investigate optical coherence tomography (OCT) as a method for imaging bone. The OCT images are compared directly to those of the standard methods of bone histology and microcomputed tomography (μCT) on a single, fixed human femoral trabecular bone sample. An advantage of OCT over bone histology is its noninvasive nature. OCT also images the lamellar structure of trabeculae at slightly higher contrast than normal bone histology. While μCT visualizes the trabecular framework of the whole sample, OCT can image additionally cells with a penetration depth limited approximately to 1 mm. The most significant advantage of OCT, however, is the absence of toxic effects (no ionizing radiation), i.e., continuous images may be made and individual cell tracking may be performed. The penetration depth of OCT, however, limits its use to small animal models and small bone organ cultures.

  19. Heterogeneity of yield strain in low-density versus high-density human trabecular bone

    PubMed Central

    Bevill, Grant; Farhamand, Farhad; Keaveny, Tony M.

    2010-01-01

    Understanding the off-axis behavior of trabecular yield strains may lend unique insight into the etiology of fractures since yield strains provide measures of failure independent of elastic behavior. We sought to address anisotropy of trabecular yield strains while accounting for variations in both density and anatomic site and to determine the mechanisms governing this behavior. Cylindrical specimens were cored from vertebral bodies (n=22, BV/TV=0.11±0.02) and femoral necks (n=28, BV/TV=0.22±0.06) with the principal trabecular orientation either aligned along the cylinder axis (on-axis, n=22) or at an oblique angle of 15° or 45° (off-axis, n=28). Each specimen was scanned with micro-CT, mechanically compressed to failure, and analyzed with nonlinear micro-CT-based finite element analysis. Yield strains depended on anatomic site (p=0.03, ANOVA), and the effect of off-axis loading was different for the two sites (p=0.04) – yield strains increased for off-axis loading of the vertebral bone (p=0.04), but were isotropic for the femoral bone (p=0.66). With sites pooled together, yield strains were positively correlated with BV/TV for on-axis loading (R2=58%, p<0.0001), but no such correlation existed for off-axis loading (p=0.79). Analysis of the modulus-BV/TV and strength-BV/TV relationships indicated that, for the femoral bone, the reduction in strength associated with off-axis loading was greater than that for modulus, while the opposite trend occurred for the vertebral bone. The micro-FE analyses indicated that these trends were due to different failure mechanisms for the two types of bone and the different loading modes. Taken together, these results provide unique insight into the failure behavior of human trabecular bone and highlight the need for a multiaxial failure criterion that accounts for anatomic site and bone volume fraction. PMID:19700162

  20. Multi-axial mechanical properties of human trabecular bone.

    PubMed

    Rincón-Kohli, Liliana; Zysset, Philippe K

    2009-06-01

    In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric-elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.

  1. Recent origin of low trabecular bone density in modern humans.

    PubMed

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  2. Recent origin of low trabecular bone density in modern humans

    PubMed Central

    Chirchir, Habiba; Kivell, Tracy L.; Ruff, Christopher B.; Hublin, Jean-Jacques; Carlson, Kristian J.; Zipfel, Bernhard; Richmond, Brian G.

    2015-01-01

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations. PMID:25535354

  3. Limited Trabecular Bone Density Heterogeneity in the Human Skeleton

    PubMed Central

    Chirchir, Habiba

    2016-01-01

    There is evidence for variation in trabecular bone density and volume within an individual skeleton, albeit in a few anatomical sites, which is partly dependent on mechanical loading. However, little is known regarding the basic variation in trabecular bone density throughout the skeleton in healthy human adults. This is because research on bone density has been confined to a few skeletal elements, which can be readily measured using available imaging technology particularly in clinical settings. This study comprehensively investigates the distribution of trabecular bone density within the human skeleton in nine skeletal sites (femur, proximal and distal tibia, third metatarsal, humerus, ulna, radius, third metacarpal, and axis) in a sample of N = 20 individuals (11 males and 9 females). pQCT results showed that the proximal ulna (mean = 231.3 mg/cm3) and axis vertebra (mean = 234.3 mg/cm3) displayed significantly greater (p < 0.01) trabecular bone density than other elements, whereas there was no significant variation among the rest of the elements (p > 0.01). The homogeneity of the majority of elements suggests that these sites are potentially responsive to site-specific genetic factors. Secondly, the lack of correlation between elements (p > 0.05) suggests that density measurements of one anatomical region are not necessarily accurate measures of other anatomical regions. PMID:27148458

  4. Lattice strains and load partitioning in bovine trabecular bone.

    SciTech Connect

    Akhtar, R.; Daymond, M. R.; Almer, J. D.; Mummery, P. M.

    2012-02-01

    Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bone behaves like a plastically yielding foam

  5. Lattice strains and load partitioning in bovine trabecular bone.

    PubMed

    Akhtar, R; Daymond, M R; Almer, J D; Mummery, P M

    2011-02-01

    Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bone behaves like a plastically yielding foam.

  6. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone

    NASA Astrophysics Data System (ADS)

    Riekkinen, O.; Hakulinen, M. A.; Töyräs, J.; Jurvelin, J. S.

    2007-12-01

    In clinical applications, ultrasound parameters are measured as an average value over a region of interest (ROI) or as a value at a single measurement point. Due to natural adaptation to loading conditions, trabecular bone is structurally, compositionally and mechanically heterogeneous and anisotropic. Thus, spatial variation of ultrasound parameters within ROI may contain valuable information on the mechanical integrity of trabecular bone. However, this issue has not been thoroughly investigated. In the present study, we aimed at investigating the significance of the spatial variation of ultrasound parameters for the prediction of mechanical properties of human trabecular bone. For this aim, parametric maps of apparent integrated backscattering (AIB), integrated reflection coefficient (IRC), speed of sound (SOS), average attenuation (AA) and normalized broadband ultrasound attenuation (nBUA) were calculated for femoral and tibial bone cylinders (n = 19-20). Further, the effect of time window length on the AIB, variation of AIB within ROI and association between AIB and bone mechanical properties were characterized. Based on linear correlation analysis, spatial variation of AIB, assessed as standard deviation of measurements within ROI, was a strong predictor of bone ultimate strength (r = -0.82, n = 19, p < 0.01). Further, the time window length affected absolute values of AIB and strength of correlation between AIB and bone ultimate strength. Interestingly, linear combination of mean IRC and spatial variation of AIB within ROI was the strongest predictor of bone ultimate strength (r = 0.92, n = 19, p < 0.01). In conclusion, our findings suggest that the measurement of two-dimensional parametric maps of ultrasound parameters could yield information on bone status not extractable from single point measurements. This highlights the potential of parametric imaging in osteoporosis diagnostics.

  7. Finite element dependence of stress evaluation for human trabecular bone.

    PubMed

    Depalle, B; Chapurlat, R; Walter-Le-Berre, H; Bou-Saïd, B; Follet, H

    2013-02-01

    Numerical simulation using finite element models (FEM) has become more and more suitable to estimate the mechanical properties of trabecular bone. The size and kind of elements involved in the models, however, may influence the results. The purpose of this study is to analyze the influence of hexahedral elements formulation on the evaluation of mechanical stress applied to trabeculae bone during a compression test simulation. Trabecular bone cores were extracted from 18 L2 vertebrae (12 women and 6 men, mean age: 76 ± 11, BV/TV=7.5 ± 1.9%). Samples were micro-CT scanned at 20 μm isotropic voxel size. Micro-CT images have been sub-sampled (20, 40 and 80 μm) to create 5.6 mm cubic FEM. For each sample, a compression test FEM has been created, using either 8-nodes linear hexahedral elements with full or reduced integration or 20-nodes quadratic hexahedral elements fully integrated, resulting in nine models per samples. Bone mechanical properties have been assumed isotropic, homogenous and to follow a linear elastic behavior law (Young modulus: 8 GPa, Poisson ratio: 0.3). Despite micro-architecture modifications (loss of connectivity, trabeculae thickening) due to voxel size increase, apparent mechanical properties calculated with low resolution models are significantly correlated with high resolution results, no matter the element formulation. However, stress distributions are more sensitive to both resolution and element formulation modifications. With linear elements, increasing voxel size leads to an alteration of stress concentration areas due to stiffening errors. On the opposite, the use of reduced integration induces severe smoothing and underestimation of stress fields resulting in stress raisers loss. Notwithstanding their high computational cost, quadratic elements are most appropriate for stress prediction in low resolution trabecular bone FEM. These observations are dependent on trabecular bone micro-architecture, and are more significant for low

  8. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing

  9. The role of fabric in the large strain compressive behavior of human trabecular bone.

    PubMed

    Charlebois, Mathieu; Pretterklieber, Michael; Zysset, Philippe K

    2010-12-01

    Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains

  10. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    PubMed Central

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2012-01-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  11. The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.

    PubMed

    Baumann, Andrew P; Shi, Xiutao; Roeder, Ryan K; Niebur, Glen L

    2016-01-01

    Microarchitectural finite element models have become a key tool in the analysis of trabecular bone. Robust, accurate, and validated constitutive models would enhance confidence in predictive applications of these models and in their usefulness as accurate assays of tissue properties. Human trabecular bone specimens from the femoral neck (n = 3), greater trochanter (n = 6), and lumbar vertebra (n = 1) of eight different donors were scanned by μ-CT and converted to voxel-based finite element models. Unconfined uniaxial compression and shear loading were simulated for each of three different constitutive models: a principal strain-based model, Drucker-Lode, and Drucker-Prager. The latter was applied with both infinitesimal and finite kinematics. Apparent yield strains exhibited minimal dependence on the constitutive model, differing by at most 16.1%, with the kinematic formulation being influential in compression loading. At the tissue level, the quantities and locations of yielded tissue were insensitive to the constitutive model, with the exception of the Drucker-Lode model, suggesting that correlation of microdamage with computational models does not improve the ability to discriminate between constitutive laws. Taken together, it is unlikely that a tissue constitutive model can be fully validated from apparent-level experiments alone, as the calculations are too insensitive to identify differences in the outcomes. Rather, any asymmetric criterion with a valid yield surface will likely be suitable for most trabecular bone models.

  12. A novel in silico method to quantify primary stability of screws in trabecular bone.

    PubMed

    Steiner, Juri A; Christen, Patrik; Affentranger, Remo; Ferguson, Stephen J; van Lenthe, Gerrit Harry

    2017-02-27

    Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based finite-element analysis (micro-FE) is capable of capturing the patient-specific bone micro-architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion-related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro-FE model, we predicted specimen-specific Young's moduli of the peri-implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro-FE models assuming perfectly intact peri-implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri-implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross-validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro-FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro-FE model overestimated the bone-implant stiffness, the consideration of insertion-related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen-specific micro-FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  13. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.

    PubMed

    Birmingham, E; Kreipke, T C; Dolan, E B; Coughlin, T R; Owens, P; McNamara, L M; Niebur, G L; McHugh, P E

    2015-04-01

    Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.

  14. Relationships of linear and nonlinear ultrasound parameters with porosity and trabecular spacing in trabecular-bone-mimicking phantoms.

    PubMed

    Lee, Kang Il

    2016-12-01

    The speed of sound (SOS), the normalized broadband ultrasound attenuation (nBUA), and the nonlinear parameter (B/A) were measured in 18 trabecular-bone-mimicking phantoms consisting of water-saturated aluminum foams. The strong slow wave and the very weak fast wave were consistently observed in the signals transmitted through all of the phantoms. It was found that the SOS increased as the porosity and the trabecular spacing increased. In contrast, both the nBUA and the B/A showed opposite dependences on the porosity and the trabecular spacing. All three ultrasound parameters exhibited high correlation coefficients with the porosity and the trabecular spacing.

  15. Trabecular bone microdamage and microstructural stresses under uniaxial compression.

    PubMed

    Nagaraja, Srinidhi; Couse, Tracey L; Guldberg, Robert E

    2005-04-01

    The balance between local remodeling and accumulation of trabecular bone microdamage is believed to play an important role in the maintenance of skeletal integrity. However, the local mechanical parameters associated with microdamage initiation are not well understood. Using histological damage labeling, micro-CT imaging, and image-based finite element analysis, regions of trabecular bone microdamage were detected and registered to estimated microstructural von Mises effective stresses and strains, maximum principal stresses and strains, and strain energy density (SED). Bovine tibial trabecular bone cores underwent a stepwise uniaxial compression routine in which specimens were micro-CT imaged following each compression step. The results indicate that the mode of trabecular failure observed by micro-CT imaging agreed well with the polarity and distribution of stresses within an individual trabecula. Analysis of on-axis subsections within specimens provided significant positive relationships between microdamage and each estimated tissue stress, strain and SED parameter. In a more localized analysis, individual microdamaged and undamaged trabeculae were extracted from specimens loaded within the elastic region and to the apparent yield point. As expected, damaged trabeculae in both groups possessed significantly higher local stresses and strains than undamaged trabeculae. The results also indicated that microdamage initiation occurred prior to apparent yield at local principal stresses in the range of 88-121 MPa for compression and 35-43 MPa for tension and local principal strains of 0.46-0.63% in compression and 0.18-0.24% in tension. These data provide an important step towards understanding factors contributing to microdamage initiation and establishing local failure criteria for normal and diseased trabecular bone.

  16. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone

    SciTech Connect

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D; Marchadier, A.; Rachidi, M.; Benhamou, Cl.; Chappard, C.

    2011-01-15

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  17. Trabecular bone pattern factor--a new parameter for simple quantification of bone microarchitecture.

    PubMed

    Hahn, M; Vogel, M; Pompesius-Kempa, M; Delling, G

    1992-01-01

    The stability of trabecular bone depends not only on the amount of bone tissue, but also on the three-dimensional orientation and connectedness of trabeculae, which is summarized as trabecular microarchitecture. In previous studies we could demonstrate that in three-dimensional bone tissue the relation of trabecular plates to rods is reflected in the ratio of concave to convex surfaces of the bone pattern in two-dimensional bone sections. For the quantification of the connectedness of these bone patterns we developed a new histomorphometric parameter called Trabecular Bone Pattern factor (TBPf). The basic idea is that the connectedness of structures can be described by the relation of convex to concave surfaces. A lot of concave surfaces represent a well connected spongy lattice, whereas a lot of convex surfaces indicate a badly connected trabecular lattice in two-dimensional sections. By means of an automatic image analysis system we measure trabecular bone area (A1) and perimeter (P1). A second measurement of these two parameters (now A2 and P2) is done after a simulated dilatation of trabeculae on the screen. This dilatation results in a characteristic change of bone area and perimeter depending on the relation of convex to concave surfaces. TBPf is defined as a quotient of the difference of the first and the second measurement: TBPf = (P1 - P2)/(A1 - A2). First measurements of TBPf in 192 iliac crest bone biopsies of autopsy cases show that there is not only age-related loss of bone volume, but also a decrease of trabecular connectedness. By means of TBPf we can demonstrate a significant difference in the age-related loss of trabecular connectivity between male and female individuals.

  18. Heme compounds in dinosaur trabecular bone.

    PubMed

    Schweitzer, M H; Marshall, M; Carron, K; Bohle, D S; Busse, S C; Arnold, E V; Barnard, D; Horner, J R; Starkey, J R

    1997-06-10

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex. These include signatures from nuclear magnetic resonance and electron spin resonance that indicate the presence of a paramagnetic compound consistent with heme. In addition, UV/visible spectroscopy and high performance liquid chromatography data are consistent with the Soret absorbance characteristic of this molecule. Resonance Raman profiles are also consistent with a modified heme structure. Finally, when dinosaurian tissues were extracted for protein fragments and were used to immunize rats, the resulting antisera reacted positively with purified avian and mammalian hemoglobins. The most parsimonious explanation of this evidence is the presence of blood-derived hemoglobin compounds preserved in the dinosaurian tissues.

  19. Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone.

    PubMed

    Johnson, Rachelle W; McGregor, Narelle E; Brennan, Holly J; Crimeen-Irwin, Blessing; Poulton, Ingrid J; Martin, T John; Sims, Natalie A

    2015-12-01

    Interleukin-6 (IL-6) and interleukin-11 (IL-11) receptors (IL-6R and IL-11R, respectively) are both expressed in osteoclasts and transduce signal via the glycoprotein130 (gp130) co-receptor, but the physiological role of this pathway is unclear. To determine the critical roles of gp130 signalling in the osteoclast, we generated mice using cathepsin K Cre (CtskCre) to disrupt gp130 signalling in osteoclasts. Bone marrow macrophages from CtskCre.gp130(f/f) mice generated more osteoclasts in vitro than cells from CtskCre.gp130(w/w) mice; these osteoclasts were also larger and had more nuclei than controls. While no increase in osteoclast numbers was observed in vivo, osteoclasts on trabecular bone surfaces of CtskCre.gp130(f/f) mice were more spread out than in control mice, but had no functional defect detectable by serum CTX1 levels or trabecular bone cartilage remnants. However, trabecular osteoblast number and mineralising surfaces were significantly lower in male CtskCre.gp130(f/f) mice compared to controls, and this was associated with a significantly lower trabecular bone volume at 12 weeks of age. Furthermore, CtskCre.gp130(f/f) mice exhibited greatly suppressed periosteal bone formation at this age, indicated by significant reductions in both double-labelled surface and mineral apposition rate. By 26 weeks of age, CtskCre.gp130(f/f) mice exhibited narrower femora, with lower periosteal and endocortical perimeters than CtskCre.gp130(w/w) controls. Since IL-6 and IL-11R global knockout mice exhibited a similar reduction in femoral width, we also assessed periosteal bone formation in those strains, and found bone forming surfaces were also reduced in male IL-6 null mice. These data suggest that IL-6/gp130 signalling in the osteoclast is not essential for normal bone resorption in vivo, but maintains both trabecular and periosteal bone formation in male mice by promoting osteoblast activity through the stimulation of osteoclast-derived "coupling factors" and

  20. Trabecular bone volume fraction mapping by low-resolution MRI.

    PubMed

    Fernández-Seara, M A; Song, H K; Wehrli, F W

    2001-07-01

    Trabecular bone volume fraction (TBVF) is highly associated with the mechanical competence of trabecular bone. TBVF is ordinarily measured by histomorphometry from bone biopsies or, noninvasively, by means of high-resolution microcomputed tomography and, more recently, by micro-MRI. The latter methods require spatial resolution sufficient to resolve trabeculae, along with segmentation techniques that allow unambiguous assignment of the signal to bone or bone marrow. In this article it is shown that TBVF can be measured under low-resolution conditions by exploiting the attenuation of the MR signal resulting from fractional occupancy of the imaging voxel by bone and bone marrow, provided that a reference signal is available from a marrow volume devoid of trabeculation. The method requires accurate measurement of apparent proton density, which entails correction for various sources of error. Key among these are the spatial nonuniformity in the RF field amplitude and effects of the slice profile, which are determined by B(1) field mapping and numerical integration of the Bloch equations, respectively. By contrast, errors from variations in bone marrow composition (hematopoietic vs. fatty) between trabecular and reference site are predicted to be small and usually negligible. The method was evaluated in phantoms and in vivo in the distal radius and found to be accurate to 1% in marrow volume fraction. Finally, in a group of 12 patients of varying skeletal status, TBVF in the calcaneus was found to strongly correlate with integral bone mineral density of the lumbar vertebrae (r(2) = 0.83, p < 0.0001). The method may fail in large imaging objects such as the human trunk at high magnetic field where standing wave and RF penetration effects cause intensity variations that cannot be corrected. Magn Reson Med 46:103-113, 2001.

  1. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  2. Topology optimization of trabecular bone in the human spine

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed

    2015-03-01

    It is widely believed in the realm of biology that the trabecular structure of long bones self-optimizes in response to mechanical loads, in accordance with Wolff's law. Here, we examine this idea by applying techniques from topology optimization the human spine. We consider different domain geometries as well as different load cases to account for the various loading conditions and changes in shape that take place within the spine during day-to-day activities and over the years. We show that the classical approach of minimizing compliance subject to a volume constraint does not yield a sponge-like architecture but results in only vertical trabeculae. Additional constraints/objective functions have to be considered simultaneously. We show that more realistic trabecular geometries may be produced by taking into consideration the function of trabecular bone as a reservoir for minerals and bone marrow production. By maximizing the surface area of the generated voids while minimizing the total volume of the trabeculae subject to a constraint on their buckling strength, we recover the sponge-like structure. Our results shed light on the optimizing conditions for bone structure beyond Wolff's law and provide guidelines for biomimetic material design.

  3. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure.

    PubMed

    Fu, Cen; Zhang, Xiaolin; Ye, Fei; Yang, Jianhong

    2015-04-13

    Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay) diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD), micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD), cortical volumetric BMD (vBMD) and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV), trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC), bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  4. Elastic Anisotropy of Trabecular Bone in the Elderly Human Vertebra

    PubMed Central

    Unnikrishnan, Ginu U.; Gallagher, John A.; Hussein, Amira I.; Barest, Glenn D.; Morgan, Elise F.

    2015-01-01

    Knowledge of the nature of the elastic symmetry of trabecular bone is fundamental to the study of bone adaptation and failure. Previous studies have classified human vertebral trabecular bone as orthotropic or transversely isotropic but have typically obtained samples from only selected regions of the centrum. In this study, the elastic symmetry of human vertebral trabecular bone was characterized using microfinite element (μFE) analyses performed on 1019 cubic regions of side length equal to 5 mm, obtained via thorough sampling of the centrums of 18 human L1 vertebrae (age = 81.17 ± 7.7 yr; eight males and ten females). An optimization procedure was used to find the closest orthotropic representation of the resulting stiffness tensor for each cube. The orthotropic elastic constants and orientation of the principal elastic axes were then recorded for each cube and were compared to the constants predicted from Cowin's fabric-based constitutive model (Cowin, 1985, “The Relationship Between the Elasticity Tensor and the Fabric Tensor,” Mech. Mater., 4(2), pp. 137–147.) and the orientation of the principal axes of the fabric tensor, respectively. Deviations from orthotropy were quantified by the “orthotropic error” (van Rietbergen et al., 1996, “Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture,” J. Biomech., 29(12), pp. 1653–1657), and deviations from transverse isotropy were determined by statistical comparison of the secondary and tertiary elastic moduli. The orthotropic error was greater than 50% for nearly half of the cubes, and the secondary and tertiary moduli differed from one another (p < 0.0001). Both the orthotropic error and the difference between secondary and tertiary moduli decreased with increasing bone volume fraction (BV/TV; p ≤ 0.007). Considering only the cubes with an orthotropic error less than 50%, only moderate correlations were observed between the fabric

  5. Inhibition of cortical and trabecular bone formation in the long bones of immobilized monkeys

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Tetracycline derivatives are administered on three separate occasions to label the sites of bone formation. Determinations are made of the tetracycline-labeling frequency and mineral apposition rate of osteons and trabecular bone surfaces in the humerus and femur. The inhibition of bone formation induced by immobilization is found to be more pronounced in trabecular bone. The immobilized monkeys exhibit a moderate, but statistically nonsignificant, reduction in the percentage of osteons forming bone. Conversely, the dramatic decline in the percentage of trabecular surfaces undergoing bone formation in the monkeys is found to be highly significant. The diminished rate of mineral apposition in osteons is seen as suggesting that osteoblastic activity is impaired in cortical bone during immobilization.

  6. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-07

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling.

  7. A model of trabecular bone and an application to osteoporosis

    NASA Astrophysics Data System (ADS)

    Gunaratne, Gemunu H.; Mohanty, Kishore K.; Wimalawansa, Sunil J.

    2002-11-01

    Large bones consists of an outer compact shaft and an inner porous segment, known as the trabecular architecture (TA). The TA is the principal load carrier in bones from older adults, and the aim of therapeutic interventions is to preserve their strength. It is argued that forms for broad-based diagnostic tools for osteoporosis can be identified through an analysis of simple model systems. A model based on elastic networks is introduced, and shows that weak networks can only utilize a small fraction of themselves for stress transmission. This observation is used to argue that the ratio of linear response of a network to DC and AC strain can be used as a surrogate for bone strength. We discuss the possibility of using this measure to identify osteoporotic bone and to monitor the efficacy of therapy.

  8. Vibrational testing of trabecular bone architectures using rapid prototype models.

    PubMed

    Mc Donnell, P; Liebschner, M A K; Tawackoli, Wafa; Mc Hugh, P E

    2009-01-01

    The purpose of this study was to investigate if standard analysis of the vibrational characteristics of trabecular architectures can be used to detect changes in the mechanical properties due to progressive bone loss. A cored trabecular specimen from a human lumbar vertebra was microCT scanned and a three-dimensional, virtual model in stereolithography (STL) format was generated. Uniform bone loss was simulated using a surface erosion algorithm. Rapid prototype (RP) replicas were manufactured from these virtualised models with 0%, 16% and 42% bone loss. Vibrational behaviour of the RP replicas was evaluated by performing a dynamic compression test through a frequency range using an electro-dynamic shaker. The acceleration and dynamic force responses were recorded and fast Fourier transform (FFT) analyses were performed to determine the response spectrum. Standard resonant frequency analysis and damping factor calculations were performed. The RP replicas were subsequently tested in compression beyond failure to determine their strength and modulus. It was found that the reductions in resonant frequency with increasing bone loss corresponded well with reductions in apparent stiffness and strength. This suggests that structural dynamics has the potential to be an alternative diagnostic technique for osteoporosis, although significant challenges must be overcome to determine the effect of the skin/soft tissue interface, the cortex and variabilities associated with in vivo testing.

  9. Fractal-based image texture analysis of trabecular bone architecture.

    PubMed

    Jiang, C; Pitt, R E; Bertram, J E; Aneshansley, D J

    1999-07-01

    Fractal-based image analysis methods are investigated to extract textural features related to the anisotropic structure of trabecular bone from the X-ray images of cubic bone specimens. Three methods are used to quantify image textural features: power spectrum, Minkowski dimension and mean intercept length. The global fractal dimension is used to describe the overall roughness of the image texture. The anisotropic features formed by the trabeculae are characterised by a fabric ellipse, whose orientation and eccentricity reflect the textural anisotropy of the image. Tests of these methods with synthetic images of known fractal dimension show that the Minkowski dimension provides a more accurate and consistent estimation of global fractal dimension. Tests on bone x-ray (eccentricity range 0.25-0.80) images indicate that the Minkowski dimension is more sensitive to the changes in textural orientation. The results suggest that the Minkowski dimension is a better measure for characterising trabecular bone anisotropy in the x-ray images of thick specimens.

  10. Heritability of lumbar trabecular bone mechanical properties in baboons.

    PubMed

    Havill, L M; Allen, M R; Bredbenner, T L; Burr, D B; Nicolella, D P; Turner, C H; Warren, D M; Mahaney, M C

    2010-03-01

    Genetic effects on mechanical properties have been demonstrated in rodents, but not confirmed in primates. Our aim was to quantify the proportion of variation in vertebral trabecular bone mechanical properties that is due to the effects of genes. L3 vertebrae were collected from 110 females and 46 male baboons (6-32 years old) from a single extended pedigree. Cranio-caudally oriented trabecular bone cores were scanned with microCT then tested in monotonic compression to determine apparent ultimate stress, modulus, and toughness. Age and sex effects and heritability (h(2)) were assessed using maximum likelihood-based variance components methods. Additive effects of genes on residual trait variance were significant for ultimate stress (h(2)=0.58), toughness (h(2)=0.64), and BV/TV (h(2)=0.55). When BV/TV was accounted for, the residual variance in ultimate stress accounted for by the additive effects of genes was no longer significant. Toughness, however, showed evidence of a non-BV/TV-related genetic effect. Overall, maximum stress and modulus show strong genetic effects that are nearly entirely due to bone volume. Toughness shows strong genetic effects related to bone volume and shows additional genetic effects (accounting for 10% of the total trait variance) that are independent of bone volume. These results support continued use of bone volume as a focal trait to identify genes related to skeletal fragility, but also show that other focal traits related to toughness and variation in the organic component of bone matrix will enhance our ability to find additional genes that are particularly relevant to fatigue-related fractures.

  11. MR imaging and osteoporosis: fractal lacunarity analysis of trabecular bone.

    PubMed

    Zaia, Annamaria; Eleonori, Roberta; Maponi, Pierluigi; Rossi, Roberto; Murri, Roberto

    2006-07-01

    We develop a method of magnetic resonance (MR) image analysis able to provide parameter(s) sensitive to bone microarchitecture changes in aging, and to osteoporosis onset and progression. The method has been built taking into account fractal properties of many anatomic and physiologic structures. Fractal lacunarity analysis has been used to determine relevant parameter(s) to differentiate among three types of trabecular bone structure (healthy young, healthy perimenopausal, and osteoporotic patients) from lumbar vertebra MR images. In particular, we propose to approximate the lacunarity function by a hyperbola model function that depends on three coefficients, alpha, beta, and gamma, and to compute these coefficients as the solution of a least squares problem. This triplet of coefficients provides a model function that better represents the variation of mass density of pixels in the image considered. Clinical application of this preliminary version of our method suggests that one of the three coefficients, beta, may represent a standard for the evaluation of trabecular bone architecture and a potentially useful parametric index for the early diagnosis of osteoporosis.

  12. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.

    PubMed

    Yeni, Yener N; Zelman, Eric A; Divine, George W; Kim, Do-Gyoon; Fyhrie, David P

    2008-03-01

    Trabecular shear stress magnitude and variability have been implicated in damage formation and reduced bone strength associated with bone loss for human vertebral bone. This study addresses the issue of whether these parameters change with age, gender or anatomical location, and if so whether this is independent of bone mass. Additionally, 3D-stereology-based architectural parameters were examined in order to establish the relationship between stress distribution parameters and trabecular architecture. Eighty cancellous bone specimens were cored from the anterior region of thoracic 12 and donor-matched lumbar 1 vertebrae from a randomly selected population of 40 cadavers. The specimens were scanned at 21-microm voxel size using microcomputed tomography (microCT) and reconstructed at 50microm. Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), bone surface-to-volume ratio (BS/BV), degree of anisotropy (MIL1/MIL3), and connectivity density (-#Euler/Vol) were calculated directly from micro-CT images. Large-scale finite element models were constructed and superoinferior compressive loading was simulated. Apparent cancellous modulus (EFEM) was calculated. The average trabecular von Mises stress generated per uniaxial apparent stress (sigma (-)VM / sigmaapp) and coefficient of variation of trabecular von Mises stresses (COV) were calculated as measures of the magnitude and variability of shear stresses in the trabeculae. Mixed-models and regression were used for analysis. sigma(-)VM / sigmaapp and COV were not different between genders and vertebrae. Both sigma(-)VM / sigmaapp and COV increased with age accompanied by a decrease in BV/TV. Strong relationship of sigma(-)VM / sigmaapp with BV/TV was found whereas COV was strongly related to EFEM/(BV/TV). The results from T12 and L1 were not different and highly correlated with each other. The relationship of sigma(-)VM / sigmaapp with COV was observed to be

  13. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals

    PubMed Central

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-01-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. PMID:25655770

  14. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    PubMed

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations.

  15. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  16. Alterations in Trabecular Bone Microarchitecture in the Ovine Spine and Distal Femur Following Ovariectomy

    PubMed Central

    Kreipke, Tyler C.; Rivera, Nicole C.; Garrison, Jacqueline G.; Easley, Jeremiah T.; Turner, A. Simon; Niebur, Glen L.

    2014-01-01

    Osteoporosis is a bone disease resulting in increased fracture risk as a result of alterations in both the quantity and quality of bone. Bone quality is a combination of metabolic and microarchitectural properties of bone that can help to explain the increased susceptibility to fracture. Translational animal models are essential to understanding the pathology and evaluating potential treatments of this disease. Large animal models, such as the ovariectomized sheep, have been used as a model for post-menopausal osteoporosis. However, long-term studies have not been carried out to observe the effects of ovariectomy after more than one year. This study employed micro-computed tomography to quantify changes in microarchitectural and mechanical parameters in the femoral condyles and vertebral bodies of sheep that were sacrificed one or two years following ovariectomy. In the vertebral body, microarchitectural characteristics were significantly degraded following one year of ovariectomy in comparison to controls. The mechanical anisotropy, determined from micro-scale finite element models, was also greater in the ovariectomized groups, although the fabric tensor anisotropy was similar. There was no greater architectural degradation following two years of ovariectomy compared to one. Ovariectomy had minimal effects on the trabecular architecture of the distal femur even after two years. These results indicate that the vertebral body is the preferred anatomic site for studying bone from the ovariectomized sheep model, and that the architectural changes stabilize after the first year. PMID:24720887

  17. Alterations in trabecular bone microarchitecture in the ovine spine and distal femur following ovariectomy.

    PubMed

    Kreipke, Tyler C; Rivera, Nicole C; Garrison, Jacqueline G; Easley, Jeremiah T; Turner, A Simon; Niebur, Glen L

    2014-06-03

    Osteoporosis is a bone disease resulting in increased fracture risk as a result of alterations in both quantity and quality of bone. Bone quality is a combination of metabolic and microarchitectural properties of bone that can help to explain the increased susceptibility to fracture. Translational animal models are essential to understanding the pathology and for evaluating potential treatments of this disease. Large animals, such as the ovariectomized sheep, have been used as models for post-menopausal osteoporosis. However, long-term studies have not been carried out to observe the effects of ovariectomy after more than one year. This study employed micro-computed tomography to quantify changes in microarchitectural and mechanical parameters in femoral condyles and vertebral bodies of sheep that were sacrificed one or two years following ovariectomy. In the vertebral body, microarchitectural characteristics were significantly degraded following one year of ovariectomy in comparison to controls. The mechanical anisotropy, determined from micro-scale finite element models, was also greater in the ovariectomized groups, although the fabric tensor anisotropy was similar. There was no greater architectural degradation following two years of ovariectomy compared to one. Ovariectomy had minimal effects on the trabecular architecture of the distal femur even after two years. These results indicate that the vertebral body is the preferred anatomic site for studying bone from the ovariectomized sheep model, and that architectural changes stabilize after the first year.

  18. Premenopausal Women with a Distal Radial Fracture Have Deteriorated Trabecular Bone Density and Morphology Compared with Controls without a Fracture

    PubMed Central

    Rozental, Tamara D.; Deschamps, Laura N.; Taylor, Alexander; Earp, Brandon; Zurakowski, David; Day, Charles S.; Bouxsein, Mary L.

    2013-01-01

    Background: Measurement of bone mineral density by dual x-ray absorptiometry combined with clinical risk factors is currently the gold standard in diagnosing osteoporosis. Advanced imaging has shown that older patients with fragility fractures have poor bone microarchitecture, often independent of low bone mineral density. We hypothesized that premenopausal women with a fracture of the distal end of the radius have similar bone mineral density but altered bone microarchitecture compared with control subjects without a fracture. Methods: Forty premenopausal women with a recent distal radial fracture were prospectively recruited and matched with eighty control subjects without a fracture. Primary outcome variables included trabecular and cortical microarchitecture at the distal end of the radius and tibia by high-resolution peripheral quantitative computed tomography. Bone mineral density at the wrist, hip, and lumbar spine was also measured by dual x-ray absorptiometry. Results: The fracture and control groups did not differ with regard to age, race, or body mass index. Bone mineral density was similar at the femoral neck, lumbar spine, and distal one-third of the radius, but tended to be lower in the fracture group at the hip and ultradistal part of the radius (p = 0.06). Trabecular microarchitecture was deteriorated in the fracture group compared with the control group at both the distal end of the radius and distal end of the tibia. At the distal end of the radius, the fracture group had lower total density and lower trabecular density, number, and thickness compared with the control group (–6% to –14%; p < 0.05 for all). At the distal end of the tibia, total density, trabecular density, trabecular thickness, and cortical thickness were lower in the fracture group than in the control group (–7% to –14%; p < 0.01). Conditional logistic regression showed that trabecular density, thickness, separation, and distribution of trabecular separation remained

  19. The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss

    PubMed Central

    Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc

    2016-01-01

    ABSTRACT Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. PMID:27956598

  20. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    PubMed Central

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol® by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. Results: At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P < 0.01) while serum minerals and ALP concentrations showed no significant difference. The treatment group had dramatically decreased biomarkers and increased BMD than OVX group (P < 0.01). Histomorphometry analysis showed worse bone microarchitecture parameters in the OVX group compared with the SHAM group which were significantly improved in the treatment group compared with the OVX group (P < 0.01). Discussion and conclusion: Pycnogenol® (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention. PMID:26379883

  1. Parameter Estimation in Ultrasonic Measurements on Trabecular Bone

    NASA Astrophysics Data System (ADS)

    Marutyan, Karen R.; Anderson, Christian C.; Wear, Keith A.; Holland, Mark R.; Miller, James G.; Bretthorst, G. Larry

    2007-11-01

    Ultrasonic tissue characterization has shown promise for clinical diagnosis of diseased bone (e.g., osteoporosis) by establishing correlations between bone ultrasonic characteristics and the state of disease. Porous (trabecular) bone supports propagation of two compressional modes, a fast wave and a slow wave, each of which is characterized by an approximately linear-with-frequency attenuation coefficient and monotonically increasing with frequency phase velocity. Only a single wave, however, is generally apparent in the received signals. The ultrasonic parameters that govern propagation of this single wave appear to be causally inconsistent [1]. Specifically, the attenuation coefficient rises approximately linearly with frequency, but the phase velocity exhibits a decrease with frequency. These inconsistent results are obtained when the data are analyzed under the assumption that the received signal is composed of one wave. The inconsistency disappears if the data are analyzed under the assumption that the signal is composed of superposed fast and slow waves. In the current investigation, Bayesian probability theory is applied to estimate the ultrasonic characteristics underlying the propagation of the fast and slow wave from computer simulations. Our motivation is the assumption that identifying the intrinsic material properties of bone will provide more reliable estimates of bone quality and fracture risk than the apparent properties derived by analyzing the data using a one-mode model.

  2. A nonlocal constitutive model for trabecular bone softening in compression.

    PubMed

    Charlebois, Mathieu; Jirásek, Milan; Zysset, Philippe K

    2010-10-01

    Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.

  3. Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing.

    PubMed

    Liu, Daquan; Li, Xinle; Li, Jie; Yang, Jing; Yokota, Hiroki; Zhang, Ping

    2015-12-01

    Osteonecrosis of the femoral head is a serious orthopedic problem. Moderate loads with knee loading promote bone formation, but their effects on osteonecrosis have not been investigated. Using a rat model, we examined a hypothesis that knee loading enhances vessel remodeling and bone healing through the modulation of the fate of bone marrow-derived cells. In this study, osteonecrosis was induced by transecting the ligamentum teres followed by a tight ligature around the femoral neck. For knee loading, 5 N loads were laterally applied to the knee at 15 Hz for 5 min/day for 5 weeks. Changes in bone mineral density (BMD) and bone mineral content (BMC) of the femur were measured by pDEXA, and ink infusion was performed to evaluate vessel remodeling. Femoral heads were harvested for histomorphometry, and bone marrow-derived cells were isolated to examine osteoclast development and osteoblast differentiation. The results showed that osteonecrosis significantly induced bone loss, and knee loading stimulated both vessel remodeling and bone healing. The osteonecrosis group exhibited the lowest trabecular BV/TV (p b 0.001) in the femoral head, and lowest femoral BMD and BMC (both p b 0.01). However, knee loading increased trabecular BV/TV (p b 0.05) as well as BMD (pb 0.05) and BMC (p b 0.01). Osteonecrosis decreased the vessel volume (pb 0.001), vessel number (pb 0.001) and VEGF expression (p b 0.01), and knee loading increased them (pb 0.001, pb 0.001 and p b 0.01). Osteonecrosis activated osteoclast development, and knee loading reduced its formation, migration, adhesion and the level of “pit” formation (pb 0.001, pb 0.01, pb 0.001 and pb 0.001). Furthermore, knee loading significantly increased osteoblast differentiation and CFU-F (both p b 0.001). A significantly positive correlation was observed between vessel remodeling and bone healing (both p b 0.01). These results indicate that knee loading could be effective in repair osteonecrosis of the femoral head in a rat

  4. Abnormalities in Cortical Bone, Trabecular Plates, and Stiffness in Postmenopausal Women Treated With Glucocorticoids

    PubMed Central

    Sutter, Stephanie; Nishiyama, Kyle K.; Kepley, Anna; Zhou, Bin; Wang, Ji; McMahon, Donald J.; Guo, X. Edward

    2014-01-01

    Context: The mechanisms by which glucocorticoids (GCs) increase skeletal fragility are not well understood. Objective: The objective of the study was to evaluate the microarchitecture, trabecular morphology, and biomechanical properties of bone in postmenopausal women treated with GCs. Design: This was a case-control study. Setting: The study was conducted at a university hospital outpatient facility. Patients: Postmenopausal women treated with oral GCs for longer than 3 months (n = 30) and age/race-matched controls (n = 60) participated in the study. Main Outcome Measures: Areal bone mineral density aBMD (BMD) by dual-energy x-ray absorptiometry (DXA) was measured. Trabecular and cortical volumetric BMD (vBMD) and microarchitecture by high-resolution peripheral computed tomography of the distal radius and tibia were also measured. Whole-bone stiffness was estimated by finite element analysis. A novel technique, individual trabecula segmentation, was used to evaluate trabecular type (as plate or rod), orientation, and connectivity. Results: DXA T-scores did not differ significantly at any site. GC subjects had significantly lower total, cortical, and trabecular vBMD and thinner cortices, fewer, thinner, more widely, and irregularly spaced trabeculae. They had fewer trabecular plates, fewer axially aligned trabeculae, and lower trabecular connectivity. Differences ranged from 4% to 65% for these trabecular measures and 5% to 17% for the cortical measures. Whole-bone stiffness was significantly lower (11%–16%) in GC subjects. Markers of bone formation (osteocalcin and amino-terminal propeptide of type I procollagen) and resorption (C-telopeptide) were lower in the GC subjects. Conclusions: Despite similar areal BMD by DXA, GC-treated women had abnormal cortical and trabecular vBMD and microarchitecture at both the radius and tibia, including fewer trabecular plates, a less axially aligned trabecular network, lower trabecular connectivity, thinner cortices, and

  5. Alteration of femoral bone morphology and density in COX-2-/- mice.

    PubMed

    Robertson, Galen; Xie, Chao; Chen, Di; Awad, Hani; Schwarz, Edward M; O'Keefe, Regis J; Guldberg, Robert E; Zhang, Xinping

    2006-10-01

    A role of COX-2 in pathological bone destruction and fracture repair has been established; however, few studies have been conducted to examine the involvement of COX-2 in maintaining bone mineral density and bone micro-architecture. In this study, we examined bone morphology in multiple trabecular and cortical regions within the distal and diaphyseal femur of 4-month-old wild-type and COX-2-/- mice using micro-computed tomography. Our results demonstrated that while COX-2-/- female mice had normal bone geometry and trabecular microarchitecture at 4 months of age, the male knockout mice displayed reduced bone volume fraction within the distal femoral metaphysis. Furthermore, male COX-2-/- mice had a significant reduction in cortical bone mineral density within the central cortical diaphysis and distal epiphysis and metaphysis. Consistent with the observed reduction in cortical mineral density, biomechanical testing via 4-point-bending showed that male COX-2-/- mice had a significant increase in postyield deformation, indicating a ductile bone phenotype in male COX-2-/- mice. In conclusion, our study suggests that genetic ablation of COX-2 may have a sex-related effect on cortical bone homeostasis and COX-2 plays a role in maintaining normal bone micro-architecture and density in mice.

  6. Alteration of femoral bone morphology and density in COX-2−/− mice

    PubMed Central

    Robertson, Galen; Xie, Chao; Chen, Di; Awad, Hani; Schwarz, Edward M.; O’Keefe, Regis J.; Guldberg, Robert E.; Zhang, Xinping

    2009-01-01

    A role of COX-2 in pathological bone destruction and fracture repair has been established; however, few studies have been conducted to examine the involvement of COX-2 in maintaining bone mineral density and bone micro-architecture. In this study, we examined bone morphology in multiple trabecular and cortical regions within the distal and diaphyseal femur of 4-month-old wild-type and COX-2−/− mice using micro-computed tomography. Our results demonstrated that while COX-2−/− female mice had normal bone geometry and trabecular microarchitecture at 4 months of age, the male knockout mice displayed reduced bone volume fraction within the distal femoral metaphysis. Furthermore, male COX-2−/− mice had a significant reduction in cortical bone mineral density within the central cortical diaphysis and distal epiphysis and metaphysis. Consistent with the observed reduction in cortical mineral density, biomechanical testing via 4-point-bending showed that male COX-2−/− mice had a significant increase in postyield deformation, indicating a ductile bone phenotype in male COX-2−/− mice. In conclusion, our study suggests that genetic ablation of COX-2 may have a sex-related effect on cortical bone homeostasis and COX-2 plays a role in maintaining normal bone micro-architecture and density in mice. PMID:16731065

  7. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments.

    PubMed

    Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J; Ray, Manas K; Lynch, Michelle; Ma, Peter X; Morris, Michael D; Yamauchi, Mitsuo; Kohn, David H; Mishina, Yuji

    2016-07-01

    Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments.

  8. Orientation-weighted local Minkowski functionals in 3D for quantitative assessment of trabecular bone structure in the hip

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Bitterling, H.; Weber, C.; Kuhn, V.; Eckstein, F.; Reiser, M.

    2007-03-01

    Fragility fractures or pathologic fractures of the hip, i.e. fractures with no apparent trauma, represent the worst complication in osteoporosis with a mortality close to 25% during the first post-traumatic year. Over 90% of hip fractures result from falls from standing height. A substantial number of femoral fractures are initiated in the femoral neck or the trochanteric regions which contain an internal architecture of trabeculae that are functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Prediction of the mechanical strength of bone tissue can be achieved by dedicated texture analysis of data obtained by high resolution imaging modalities, e.g. computed tomography (CT) or magnetic resonance tomography (MRI). Since in the case of the proximal femur, the connectivity, regional distribution and - most of all - the preferred orientation of individual trabeculae change considerably within narrow spatial limits, it seems most reasonable to evaluate the femoral bone structure on an orientation-weighted, local scale. In past studies, we could demonstrate the advantages of topological analysis of bone structure using the Minkowski Functionals in 3D on a global and on a local scale. The current study was designed to test the hypothesis that the prediction of the mechanical competence of the proximal femur by a new algorithm considering orientational changes of topological properties in the trabecular architecture is feasible and better suited than conventional methods based on the measurement of the mineral density of bone tissue (BMD).

  9. Cortical bone allografting in femoral head necrosis.

    PubMed

    Delloye, C; Cornu, O

    1999-01-01

    Ten femoral heads (six patients) with avascular necrosis were operated on using a fibular allograft. The procedure included core decompression followed by insertion of a cortical bone graft in order to relieve mechanical stresses from the overlying subchondral bone. The presence of the supporting graft should avoid an expected collapse or prevent its worsening if already present. A freeze-dried and processed cortical bone allograft was preferred to an autograft. Weightbearing was normally and fully resumed at the second postoperative month. There were three failures within the first year, four satisfactory results, in which the hip was replaced after 4 years while there are still 3 hips that have been preserved from arthroplasty in young patients after 5 years. The technique is easy and able to substantially delay an arthroplasty in an active patient.

  10. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies.

    PubMed

    Taylor, A M; Boyde, A; Davidson, J S; Jarvis, J C; Ranganath, L R; Gallagher, J A

    2012-04-21

    It is widely held that bone architecture is finely regulated in accordance with homeostatic requirements. Aberrant remodelling (hyperdensification and/or cyst formation in the immediately subchondral region) has previously been described in bone underlying cartilage in arthropathies. The present study examined the trabecular architecture of samples of bone, initially in the severe osteoarthropathy of alkaptonuria, but subsequently in osteoarthritis using a combination of light microscopy, 3D scanning electron microscopy and quantitative backscattered electron scanning electron microscopy. We report an extraordinary and previously unrecognised bone phenotype in both disorders, including novel microanatomical structures. The underlying subchondral trabecular bone contained idiosyncratic architecture. Trabecular surfaces had numerous outgrowths that we have termed "trabecular excrescences", of which three distinct types were recognised. The first type arose from incomplete resorption of branching secondary trabeculae arising from the deposition of immature (woven) bone in prior marrow space. These were characterised by very deeply scalloped surfaces and rugged edges. The second type had arisen in a similar way but been smoothed over by new bone deposition. The third type, which resembled coarse stucco, probably arises from resting surfaces that had been focally reactivated. These were poorly integrated with the prior trabecular wall. We propose that these distinctive microanatomical structures are indicative of abnormal osteoclast/osteoblast modelling in osteoarthropathies, possibly secondary to altered mechanical loading or other aberrant signalling. Identification of the mechanisms underlying the formation of trabecular excrescences will contribute to a better understanding of the role of aberrant bone remodelling in arthropathies and development of new therapeutic strategies.

  11. Prediction of biomechanical trabecular bone properties with geometric features using MR imaging

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Lancianese, Sarah L.; Ikpot, Imoh; Nagarajan, Mahesh B.; Lerner, Amy L.; Wismüller, Axel

    2010-03-01

    Trabecular bone parameters extracted from magnetic resonance (MR) images are compared in their ability to predict biomechanical properties determined through mechanical testing. Trabecular bone density and structural changes throughout the proximal tibia are indicative of several musculoskeletal disorders of the knee joint involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging, most frequently applied in soft tissue imaging, also allows non-invasive 3-dimensional characterization of bone microstructure. Sophisticated MR image features that estimate local structural and geometric properties of the trabecular bone may improve the ability of MR imaging to determine local bone quality in vivo. The purpose of the current study is to use whole joint MR images to compare the performance of trabecular bone features extracted from the images in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. The regional apparent bone volume fraction (appBVF) and scaling index method (SIM) derived features were calculated; a Multilayer Radial Basis Functions Network was then optimized to calculate the prediction accuracy as measured by the root mean square error (RSME) for each bone feature. The best prediction result was obtained with a SIM feature with the lowest prediction error (RSME=0.246) and the highest coefficient of determination (R2 = 0.769). The current study demonstrates that the combination of sophisticated bone structure features and supervised learning techniques can improve MR imaging as an in vivo imaging tool in determining local trabecular bone quality.

  12. Trabecular Bone Structure Correlates with Hand Posture and Use in Hominoids

    PubMed Central

    Tsegai, Zewdi J.; Kivell, Tracy L.; Gross, Thomas; Nguyen, N. Huynh; Pahr, Dieter H.; Smaers, Jeroen B.; Skinner, Matthew M.

    2013-01-01

    Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred

  13. Automated selection of trabecular bone regions in knee radiographs.

    PubMed

    Podsiadlo, P; Wolski, M; Stachowiak, G W

    2008-05-01

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the "gold standard" that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8 x 12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI) = 0.83 (medial) and 0.81 (lateral) and the offset =[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions

  14. Automated selection of trabecular bone regions in knee radiographs

    SciTech Connect

    Podsiadlo, P.; Wolski, M.; Stachowiak, G. W.

    2008-05-15

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the ''gold standard'' that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8x12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI)=0.83 (medial) and 0.81 (lateral) and the offset=[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions

  15. Ultrasonic wave propagation in trabecular bone predicted by the stratified model

    NASA Technical Reports Server (NTRS)

    Lin, W.; Qin, Y. X.; Rubin, C.

    2001-01-01

    The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.

  16. Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process.

    PubMed

    Wang, Hong; Ji, Baohua; Liu, X Sherry; Guo, X Edward; Huang, Yonggang; Hwang, Keh-Chih

    2012-09-21

    Bone remodeling is a complex dynamic process, which modulates both bone mass and bone microstructure. In addition to bone mass, bone microstructure is an important contributor to bone quality in osteoporosis and fragility fractures. However, the quantitative knowledge of evolution of three-dimensional (3D) trabecular microstructure in adaptation to the external forces is currently limited. In this study, a new 3D simulation method of remodeling of human trabecular bone was developed to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to different external loading conditions. The morphological features of trabecular plate and rod, such as thickness and number density in different orientations were monitored during the remodeling process using a novel imaging analysis technique, namely Individual Trabecula Segmentation (ITS). We showed that the volume fraction and microstructures of trabecular bone including, trabecular type and orientation, were determined by the applied mechanical load. Particularly, the morphological parameters of trabecular plates were more sensitive to the applied load, indicating that they played the major role in the mechanical properties of the trabecular bone. Reducing the applied load caused severe microstructural deteriorations of trabecular bone, such as trabecular plate perforation, rod breakage, and a conversion from plates to rods.

  17. A Wolff in sheep's clothing: trabecular bone adaptation in response to changes in joint loading orientation.

    PubMed

    Barak, Meir M; Lieberman, Daniel E; Hublin, Jean-Jacques

    2011-12-01

    This study tests Wolff's law of trabecular bone adaptation by examining if induced changes in joint loading orientation cause corresponding adjustments in trabecular orientation. Two groups of sheep were exercised at a trot, 15 min/day for 34 days on an inclined (7°) or level (0°) treadmills. Incline trotting caused the sheep to extend their tarsal joints by 3-4.5° during peak loading (P<0.01) but has no effect on carpal joint angle (P=0.984). Additionally, tarsal joint angle in the incline group sheep were maintained more extended throughout the day using elevated platform shoes on their forelimbs. A third "sedentary group" group did not run but wore platform shoes throughout the day. As predicted by Wolff's law, trabecular orientation in the distal tibia (tarsal joint) were more obtuse by 2.7 to 4.3° in the incline group compared to the level group; trabecular orientation was not significantly different in the sedentary and level groups. In addition, trabecular orientations in the distal radius (carpal joint) of the sedentary, level and incline groups did not differ between groups, and were aligned almost parallel to the radius long axis, corresponding to the almost straight carpal joint angle at peak loading. Measurements of other trabecular bone parameters revealed additional responses to loading, including significantly higher bone volume fraction (BV/TV), Trabecular number (Tb.N) and trabecular thickness (Tb.Th), lower trabecular spacing (Tb.Sp), and less rod-shaped trabeculae (higher structure model index, SMI) in the exercised than sedentary sheep. Overall, these results demonstrate that trabecular bone dynamically adjusts and realigns itself in very precise relation to changes in peak loading direction, indicating that Wolff's law is not only accurate but also highly sensitive.

  18. Using anisotropic 3D Minkowski functionals for trabecular bone characterization and biomechanical strength prediction in proximal femur specimens

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2014-04-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk.

  19. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  20. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    SciTech Connect

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2

  1. Zoledronic acid prevents loss of trabecular bone after focal irradiation in mice.

    PubMed

    Keenawinna, Lihini; Oest, Megan E; Mann, Kenneth A; Spadaro, Joseph; Damron, Timothy A

    2013-07-01

    Radiation therapy for soft tissue sarcomas and metastatic disease can adversely affect bone, leading to late-onset fragility fractures. Adjunct administration of bisphosphonates has been postulated as means of minimizing these adverse effects. Using a murine model of focal hindlimb irradiation, we examined the potential for zoledronic acid treatment to minimize the deleterious effects of localized radiotherapy (RTx) on bone. Mice received a single, unilateral hindlimb exposure of 20 Gy. Beginning 4 days prior to irradiation, and at 1, 2 and 3 weeks post-irradiation, animals were treated with zoledronic acid or saline/vehicle injections. Areal bone mineral density was assessed at 4 days, and 2, 4 and 12 weeks post-irradiation by dual-energy X-ray absorptiometry (DXA). Micro-computed tomography and axial compression testing were used to quantify changes in morphological and mechanical properties of femurs at 4 and 12 weeks post-irradiation. Radiation had differential effects on cortical and trabecular bone, increasing cortical bone mineral content (BMC), cortical bone volume (BV) and trabecular separation (Tb.Sp) while decreasing trabecular number (Tb.N) by 12 weeks after localized radiotherapy. Administration of zoledronic acid increased hindlimb areal bone mineral density in both the presence and absence of radiotherapy, increased cortical bone mineral content and bone volume, increased trabecular bone volume (BV/TV), increased trabecular number, increased trabecular thickness (Tb.Th), and decreased trabecular separation compared to irradiated and vehicle control femurs. Despite these improvements in morphology with zoledronic acid, no biomechanical advantage was observed. Further work is needed to define the role of bisphosphonates in prevention of post-irradiation fragility fractures.

  2. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

    PubMed Central

    2017-01-01

    Purpose The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm). Conclusions Bone quality depended on Tb.Sp and number—that is, endosteal space architecture—rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies. PMID:28261521

  3. Osteocyte-viability-based simulations of trabecular bone loss and recovery in disuse and reloading.

    PubMed

    Wang, Hong; Ji, Baohua; Liu, X Sherry; van Oers, René F M; Guo, X Edward; Huang, Yonggang; Hwang, Keh-Chih

    2014-01-01

    Osteocyte apoptosis is known to trigger targeted bone resorption. In the present study, we developed an osteocyte-viability-based trabecular bone remodeling (OVBR) model. This novel remodeling model, combined with recent advanced simulation methods and analysis techniques, such as the element-by-element 3D finite element method and the ITS technique, was used to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to various loading and unloading conditions. Different levels of unloading simulated the disuse condition of bed rest or microgravity in space. The amount of bone loss and microstructural deterioration correlated with the magnitude of unloading. The restoration of bone mass upon the reloading condition was achieved by thickening the remaining trabecular architecture, while the lost trabecular plates and rods could not be recovered by reloading. Compared to previous models, the predictions of bone resorption of the OVBR model are more consistent with physiological values reported from previous experiments. Whereas osteocytes suffer a lack of loading during disuse, they may suffer overloading during the reloading phase, which hampers recovery. The OVBR model is promising for quantitative studies of trabecular bone loss and microstructural deterioration of patients or astronauts during long-term bed rest or space flight and thereafter bone recovery.

  4. Manipulation of Ovarian Function Significantly Influenced Trabecular and Cortical Bone Volume, Architecture and Density in Mice at Death

    PubMed Central

    Mason, Jeffrey B.; Terry, Boston C.; Merchant, Samer S.; Mason, Holly M.; Nazokkarmaher, Mahdi

    2015-01-01

    Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-age mice increased life span and decreased cardiomyopathy at death. We anticipated that the same factors that increased life span and decreased cardiomyopathy could also influence the progression of orthopedic disease. At 11 months of age, prepubertally ovariectomized and ovary-intact mice (including reproductively cycling and acyclic mice) received new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed tomography. For qualitative analysis of osteophytosis, we also included mineralized connective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on bone volume, ovarian transplantation had the greatest influence on bone architecture and both treatments influenced bone density. Ovarian transplantation increased cortical, but not trabecular bone density and tended to increase osteophytosis and heterotopic mineralization, except in acyclic recipients. These effects may have been dictated by the timing of the treatments, with ovariectomy appearing to influence early development and ovarian transplantation limited to influencing only the postreproductive period. However, major differences observed between cycling, acyclic and ovariectomized recipients of new ovaries may have been, in part due to differences in the levels of hormone receptors present and the responsiveness of specific bone processes to hormone signaling. Changes that resulted from these treatments may represent a compensatory response to normal age-associated, negative, orthopedic changes. Alternatively, differences between treatments may simply be the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative, age-associated effects. These findings may suggest that in women, tailoring hormone replacement therapy to the patient's current

  5. T2-based temperature monitoring in trabecular bone marrow for MRgHIFU

    NASA Astrophysics Data System (ADS)

    Ozhinsky, Eugene; Han, Misung; Krug, Roland; Rieke, Viola

    2017-03-01

    Current clinical protocols for HIFU treatment of painful bone metastases rely on measurement of temperature change of adjacent muscle to estimate the temperature of the bone. In this study, we investigated if T2-based temperature mapping could be used to determine the temperature within ex vivo trabecular bone during HIFU ablation. We have shown that T2-based ablation monitoring in the red marrow in trabecular bone is feasible. The linear relationship between T2 change and temperature could be used to quantify the temperature during heating of up to 60°C.

  6. Chemical and structural characterization of the mineral phase from cortical and trabecular bone.

    PubMed

    Bigi, A; Cojazzi, G; Panzavolta, S; Ripamonti, A; Roveri, N; Romanello, M; Noris Suarez, K; Moro, L

    1997-10-01

    X-ray diffraction, infrared spectroscopy and chemical investigations have been carried out on the inorganic phases from rat cortical and trabecular bone. Although both inorganic phases consist of poorly crystalline B carbonated apatite, several significant differences have been observed. In particular, trabecular bone apatite displays reduced crystallite sizes, Ca/P molar ratio, and carbonate content, and exhibits a greater extent of thermal conversion into beta-tricalcium phosphate than cortical bone apatite. These differences can be related to the different extents of collagen posttranslational modifications exhibited by the two types of bone, in agreement with their different biological functions.

  7. Comparisons of trabecular and cortical bone in late adolescent black and white females.

    PubMed

    Pollock, Norman K; Laing, Emma M; Taylor, Ruth G; Baile, Clifton A; Hamrick, Mark W; Hall, Daniel B; Lewis, Richard D

    2011-01-01

    Few childhood studies have investigated racial differences in volumetric bone mineral density (vBMD), bone geometry, and bone strength indices measured by three-dimensional bone imaging. The purpose of this study was to compare trabecular and cortical bone parameters at the radius and tibia between late adolescent white and black females using peripheral quantitative computed tomography (QCT). White (n = 25) and black females (n = 25), 18-19 years of age, were pair-matched for age, height, and fat-free soft tissue mass. Peripheral QCT scans were obtained at the 4% (trabecular bone), 20% (cortical bone), and 66% [muscle cross-sectional area (CSA)] sites from the distal metaphyses. Bone strength was determined from vBMD and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength-strain index (SSI; cortical site). Radial SSI was not different between groups; however, blacks had greater radial BSI (P = 0.02) than whites. After adjustment for the longer forearm in blacks, the greater radial BSI in blacks no longer remained. At the tibia, blacks versus whites had greater bone strength at the trabecular and cortical bone sites (BSI, P = 0.03; SSI, P = 0.04, respectively). When controlling for differences in tibial length and muscle CSA, the higher estimates of bone strength persisted in blacks versus whites (BSI, P = 0.01; SSI, P = 0.02). Our data suggest that when differences in body size are considered, late adolescent black versus white females have a stronger bone profile, due to greater bone geometry and vBMD, at the trabecular and cortical regions of the tibia but not at the radius.

  8. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  9. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone.

    PubMed

    Li, Zihui; Kuhn, Gisela; von Salis-Soglio, Marcella; Cooke, Stephen J; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2015-12-01

    The mechanical integrity of the bone-implant system is maintained by the process of bone remodeling. Specifically, the interplay between bone resorption and bone formation is of paramount importance to fully understand the net changes in bone structure occurring in the peri-implant bone, which are eventually responsible for the mechanical stability of the bone-implant system. Using time-lapsed in vivo micro-computed tomography combined with new composite material implants, we were able to characterize the spatio-temporal changes of bone architecture and bone remodeling following implantation in living mice. After insertion, implant stability was attained by a quick and substantial thickening of the cortical shell which counteracted the observed loss of trabecular bone, probably due to the disruption of the trabecular network. Within the trabecular compartment, the rate of bone formation close to the implant was transiently higher than far from the implant mainly due to an increased mineral apposition rate which indicated a higher osteoblastic activity. Conversely, in cortical bone, the higher rate of bone formation close to the implant compared to far away was mostly related to the recruitment of new osteoblasts as indicated by a prevailing mineralizing surface. The behavior of bone resorption also showed dissimilarities between trabecular and cortical bone. In the former, the rate of bone resorption was higher in the peri-implant region and remained elevated during the entire monitoring period. In the latter, bone resorption rate had a bigger value away from the implant and decreased with time. Our approach may help to tune the development of smart implants that can attain a better long-term stability by a local and targeted manipulation of the remodeling process within the cortical and the trabecular compartments and, particularly, in bone of poor health.

  10. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  11. Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone

    PubMed Central

    Oftadeh, Ramin; Entezari, Vahid; Spörri, Guy; Villa-Camacho, Juan C.; Krigbaum, Henry; Strawich, Elsa; Graham, Lila; Rey, Christian; Chiu, Hank; Müller, Ralph; Hashemi, Hamid Nayeb; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    The aim of this study was to explore the hierarchical arrangement of structural properties in cortical and trabecular bone and to determine a mathematical model that accurately predicts the tissue's mechanical properties as a function of these indices. By using a variety of analytical techniques, we were able to characterize the structural and compositional properties of cortical and trabecular bones, as well as to determine the suitable mathematical model to predict the tissue's mechanical properties using a continuum micromechanics approach. Our hierarchical analysis demonstrated that the differences between cortical and trabecular bone reside mainly at the micro- and ultrastructural levels. By gaining a better appreciation of the similarities and differences between the two bone types, we would be able to provide a better assessment and understanding of their individual roles, as well as their contribution to bone health overall. PMID:25808343

  12. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

    PubMed Central

    Kim, Jo-Eun; Shin, Jae-Myung; Oh, Sung-Ook; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul

    2013-01-01

    Purpose This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Materials and Methods Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Results Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. Conclusion There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site. PMID:24380061

  13. Can Deterministic Mechanical Size Effects Contribute to Fracture and Microdamage Accumulation in Trabecular Bone?

    PubMed Central

    Siegmund, Thomas; Allen, Matthew R.; Burr, David B.

    2010-01-01

    Failure of bone under monotonic and cyclic loading is related to the bone mineral density, the quality of the bone matrix and the evolution of microcracks. The theory of linear elastic fracture mechanics has commonly been applied to describe fracture in bone. Evidence is presented that bone failure can be described through a non-linear theory of fracture. Thereby, deterministic size effects are introduced. Concepts of a non-linear theory are applied to discern how the interaction among bone matrix constituents (collagen and mineral), microcrack characteristics, and trabecular architecture can create distinctively differences in the fracture resistance at the bone tissue level. The nonlinear model is applied to interpret pre-clinical data concerning the effects of anti-osteoporotic agents on bone properties. The results show that bisphosphonate (BP) treatments that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is reduced. Selective estrogen receptor modulators (SERMs) that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is increased. The consequences of these changes are reflected in bone mechanical response and predictions are consistent with experimental observations in the animal model which show that BP treatment is associated with more brittle fracture and microcracks without altering the average length of the cracks, whereas SERM treatments lead to a more ductile fracture and mainly increase crack length with a smaller increase in microcrack density. The model suggests that BPs may be more effective in cases in which bone mass is very low, whereas SERMS may be more effective when milder osteoporotic symptoms are present. PMID:20398678

  14. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology.

  15. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Neria-Pérez, J. A.; Medina, L.; Garipov, R.; Rodríguez, A. O.

    2014-11-01

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot's model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot's waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  16. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    SciTech Connect

    Solis-Najera, S. E. E-mail: angel.perez@ciencias.unam.mx Neria-Pérez, J. A. E-mail: angel.perez@ciencias.unam.mx Medina, L. E-mail: angel.perez@ciencias.unam.mx; Garipov, R.; Rodríguez, A. O.

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  17. Geodesic topological analysis of trabecular bone microarchitecture from high-spatial resolution magnetic resonance images.

    PubMed

    Carballido-Gamio, Julio; Krug, Roland; Huber, Markus B; Hyun, Ben; Eckstein, Felix; Majumdar, Sharmila; Link, Thomas M

    2009-02-01

    In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, topology, and anisotropy of the trabecular bone network in terms of its junctions are the result of GTA. The reproducibility of GTA was tested with in vivo images of human distal tibiae and radii (n = 6) at 1.5 Tesla; and its ability to discriminate between subjects with and without vertebral fracture was assessed with ex vivo images of human calcanei at 1.5 and 3.0 Tesla (n = 30). GTA parameters yielded an average reproducibility of 4.8%, and their individual areas under the curve (AUC) of the receiver operating characteristic curve analysis for fracture discrimination performed better at 3.0 than at 1.5 Tesla reaching values of up to 0.78 (p < 0.001). Logistic regression analysis demonstrated that fracture discrimination was improved by combining GTA parameters, and that GTA combined with bone mineral density (BMD) allow for better discrimination than BMD alone (AUC = 0.95; p < 0.001). Results indicate that GTA can substantially contribute in studies of osteoporosis involving imaging of the trabecular bone microarchitecture.

  18. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair.

    PubMed

    Appleford, Mark R; Oh, Sunho; Oh, Namsik; Ong, Joo L

    2009-06-15

    The objective of this research was to investigate the bone formation and angio-conductive potential of hydroxyapatite (HA) scaffolds closely matched to trabecular bone in a canine segmental defect after 3 and 12 weeks post implantation. Histomorphometric comparisons were made between naturally forming trabecular bone (control) and defects implanted with scaffolds fabricated with micro-size (M-HA) and nano-size HA (N-HA) ceramic surfaces. Scaffold architecture was similar to trabecular bone formed in control defects at 3 weeks. No significant differences were identified between the two HA scaffolds; however, significant bone in-growth was observed by 12 weeks with 43.9 +/- 4.1% and 50.4 +/- 8.8% of the cross-sectional area filled with mineralized bone in M-HA and N-HA scaffolds, respectively. Partially organized, lamellar collagen fibrils were identified by birefringence under cross-polarized light at both 3 and 12 weeks post implantation. Substantial blood vessel infiltration was identified in the scaffolds and compared with the distribution and diameter of vessels in the surrounding cortical bone. Vessels were less numerous but significantly larger than native cortical Haversian and Volkmann canals reflecting the scaffold architecture where open spaces allowed interconnected channels of bone to form. This study demonstrated the potential of trabecular bone modeled, highly porous and interconnected, HA scaffolds for regenerative orthopedics.

  19. Dependence of ultrasonic scattering on frequency and microarchitecture in trabecular bone: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Wear, Keith A.

    2002-05-01

    Measurements of ultrasonic properties of calcaneus (heel bone) have been shown to be effective for the diagnosis of osteoporosis. However, the mechanisms underlying the interaction between ultrasound and bone are currently not well understood. A model that predicts backscatter from trabecular bone has been developed. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long, thin, elastic cylinders with radii small compared with the ultrasonic wavelength. Experimental measurements of backscatter using broadband ultrasound centered at 500 kHz from 43 trabecular bone samples (from human calcaneus) in vitro have been performed. Microcomputed tomography has been performed on all 43 samples in order to measure microarchitectural features. The theory correctly predicts the measured dependences of backscatter on ultrasonic frequency and trabecular thickness. [Funding from the FDA Office of Womens Health is gratefully acknowledged.

  20. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties.

    PubMed

    Day, J S; Ding, M; Bednarz, P; van der Linden, J C; Mashiba, T; Hirano, T; Johnston, C C; Burr, D B; Hvid, I; Sumner, D R; Weinans, H

    2004-05-01

    Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear. We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose for osteoporosis treatment. After one year, the dogs were killed, and samples from the first lumbar vertebrae were examined using a combination of micro-computed tomography, finite element modeling, and mechanical testing. By combining these methods, we examined the treatment effects on the calcified matrix and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage.

  1. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment

    PubMed Central

    Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods. PMID:27447827

  2. Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength.

    PubMed

    Majumdar, S; Lin, J; Link, T; Millard, J; Augat, P; Ouyang, X; Newitt, D; Gould, R; Kothari, M; Genant, H

    1999-07-01

    The purpose of this study was to determine whether fractal dimension of radiographs provide measures of trabecular bone structure which correlate with bone mineral density (BMD) and bone biomechanics, and whether these relationships depend on the technique used to calculate the fractal dimension. Eighty seven cubic specimen of human trabecular bone were obtained from the vertebrae and femur. The cubes were radiographed along all three orientations--superior-inferior (SI), medial-lateral (ML), and anterior-posterior (AP), digitized, corrected for background variations, and fractal based techniques were applied to quantify trabecular structure. Three different techniques namely, semivariance, surface area, and power spectral methods were used. The specimens were tested in compression along three orientations and the Young's modulus (YM) was determined. Compressive strength was measured along the SI direction. Quantitative computed tomography was used to measure trabecular BMD. High-resolution magnetic-resonance images were used to obtain three-dimensional measures of trabecular architecture such as the apparent bone volume fraction, trabecular thickness, spacing, and number. The measures of trabecular structure computed in the different directions showed significant differences (p<0.05). The correlation between BMD, YM, strength, and the fractal dimension were direction and technique dependent. The trends of variation of the fractal dimension with BMD and biomechanical properties also depended on the technique and the range of resolutions over which the data was analyzed. The fractal dimension showed varying trends with bone mineral density changes, and these trends also depended on the range of frequencies over which the fractal dimension was measured. For example, using the power spectral method the fractal dimension increased with BMD when computed over a lower range of spatial frequencies and decreased for higher ranges. However, for the surface area technique

  3. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

    PubMed

    Kivell, Tracy L

    2016-04-01

    Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past.

  4. Calorie restriction aggravated cortical and trabecular bone architecture in ovariectomy-induced estrogen-deficient rats.

    PubMed

    Ahn, Hyejin; Seo, Dong-Hyun; Kim, Han Sung; Choue, Ryowon

    2014-08-01

    We hypothesized that calorie restriction (CR) and estrogen deficiency (ovariectomy [OVX]) would aggravate bone biomarkers and structural parameters in rats. Seven-week-old female Sprague-Dawley rats were randomized to sham-operated groups and fed either an ad libitum diet (SHAM-AL) or a CR diet (SHAM-CR); ovariectomy-operated groups were fed an ad libitum diet (OVX-AL) or a CR diet (OVX-CR). For 8 weeks, the OVX-AL and SHAM-AL groups were fed the same diet, whereas CR groups were fed a diet containing 50% fewer calories. Bone-related biomarkers and structural parameters (OC; deoxypyridinoline [DPD]; N-terminal telopeptide, NTx; architecture and mineralization; and microcomputed tomography images) were analyzed at the end of the experiment. The serum OC levels of calorie-restricted groups (SHAM-CR and OVX-CR) were significantly lower than those of the AL groups (SHAM-AL and OVX-AL) (P < .05). Urinary DPD levels of calorie-restricted and ovariectomized groups were higher than those of their counterparts (P < .05), whereas urinary NTx levels of calorie-restricted groups were higher than those of AL groups (P < .05). In regard to trabecular bone, the calorie-restricted and ovariectomized groups had lower values of bone volume to total volume, trabecular number, and bone mineral density, but higher values of trabecular separation than those of their counterparts (P < .05). Regarding cortical bone, the calorie-restricted groups had reduced values of bone volume, mean polar moment of inertia, and cortical thickness compared to the AL groups (P < .05). In conclusion, severe CR with or without OVX during the growth period in rats is equally detrimental to bone; CR has detrimental effects on trabecular and cortical bone; and estrogen deficiency only had an effect on trabecular bone.

  5. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.

    PubMed

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-07

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  6. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-01

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  7. The roles of architecture and estrogen depletion in microdamage risk in trabecular bone.

    PubMed

    Kreipke, Tyler C; Garrison, Jacqueline G; Easley, Jeremiah; Turner, A Simon; Niebur, Glen L

    2016-10-03

    Bone quantity, or density, has insufficient power to discriminate fracture risk in individuals. Additional measures of bone quality, such as microarchitectural characteristics and bone tissue properties, including the presence of damage, may improve the diagnosis of fracture risk. Microdamage and microarchitecture are two aspects of trabecular bone quality that are interdependent, with several microarchitectural changes strongly correlated to damage risk after compensating for bone density. This study aimed to delineate the effects of microarchitecture and estrogen depletion on microdamage susceptibility in trabecular bone using an ovariectomized sheep model to mimic post-menopausal osteoporosis. The propensity for microdamage formation in trabecular bone of the distal femur was studied using a sequence of compressive and torsional overloads. Ovariectomy had only minor effects on the microarchitecture at this anatomic site. Microdamage was correlated to bone volume fraction and structure model index (SMI), and ovariectomy increased the sensitivity to these parameters. The latter may be due to either increased resorption cavities acting as stress concentrations or to altered bone tissue properties. Pre-existing damage was also correlated to new damage formation. However, sequential loading primarily generated new cracks as opposed to propagating existing cracks, suggesting that pre-existing microdamage contributes to further damage of bone by shifting load bearing to previously undamaged trabeculae, which are subsequently damaged. The transition from plate-like to rod-like trabeculae, indicated by SMI, dictates this shift, and may be a hallmark of bone that is already predisposed to accruing greater levels of damage through compromised microarchitecture.

  8. Computer modelling of the microstructure of the trabecular bone fragments for the study of stress-strain state

    NASA Astrophysics Data System (ADS)

    Lastovkina, Y. N.; Kolmakova, T. V.

    2016-11-01

    The paper presents the computer models of the structure of the trabecular bone tissue. The approach to the construction of computer models of fragments of cancellous bone tissues was offered. The model fragment of the trabecular bone tissue was built based on the data of structure of the real bone fragments, taking into account the orientation of the trabeculae of bones, their length and thickness.

  9. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.

    PubMed

    Ozcivici, Engin; Judex, Stefan

    2014-10-01

    Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced

  10. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading.

    PubMed

    Ozcivici, Engin; Zhang, Weidong; Donahue, Leah Rae; Judex, Stefan

    2014-07-01

    Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.

  11. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone

    NASA Astrophysics Data System (ADS)

    Huiskes, Rik; Ruimerman, Ronald; van Lenthe, G. Harry; Janssen, Jan D.

    2000-06-01

    The architecture of trabecular bone, the porous bone found in the spine and at articulating joints, provides the requirements for optimal load transfer, by pairing suitable strength and stiffness to minimal weight according to rules of mathematical design. But, as it is unlikely that the architecture is fully pre-programmed in the genes, how are the bone cells informed about these rules, which so obviously dictate architecture? A relationship exists between bone architecture and mechanical usage-while strenuous exercise increases bone mass, disuse, as in microgravity and inactivity, reduces it. Bone resorption cells (osteoclasts) and bone formation cells (osteoblasts) normally balance bone mass in a coupled homeostatic process of remodelling, which renews some 25% of trabecular bone volume per year. Here we present a computational model of the metabolic process in bone that confirms that cell coupling is governed by feedback from mechanical load transfer.This model can explain the emergence and maintenance of trabecular architecture as an optimal mechanical structure, as well as its adaptation to alternative external loads.

  12. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  13. Dynamic Hydraulic Flow Stimulation on Mitigation of Trabecular Bone Loss in a Rat Functional Disuse Model

    PubMed Central

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-01-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generator to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS + static loading, and 5) HLS + DHS. Hydraulic flow stimulation was carried out daily on a “10 min on-5min off-10min on” loading regime, 5 days/week, for total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using µCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of -26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the µCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis. PMID:22820398

  14. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model.

    PubMed

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-10-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generators to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS+static loading, and 5) HLS+DHS. Hydraulic flow stimulation was carried out daily on a "10 min on-5 min off-10 min on" loading regime, 5 days/week, for a total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using μCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of 26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the μCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis.

  15. Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.

    PubMed

    Metzger, Thomas A; Niebur, Glen L

    2016-10-03

    The mechanical environment and mechanobiology of bone marrow may play essential roles in bone adaptation, cancer metastasis, and immune cell regulation. However, the location of marrow within the trabecular pore space complicates experimental measurement of marrow mechanics. Computational models provide a means to assess the shear stress and pressure in the marrow during physiological loading, but they rely on accurate inputs for the marrow and the physics assumed for the interaction of bone and marrow. Elastic, viscoelastic, and fluid constitutive properties have all been reported from experimental measurements of marrow properties. It is unclear whether this ambiguity reflects the various length-scales, loading rates, and boundary conditions of the experiments, or if the material models are sufficiently similar as to be interchangeable. To address this question, we analyzed both the mean shear stress and its spatial distribution induced in marrow during compression of trabecular bone cubes when using linear elastic, neo-Hookean, viscoelastic, and power-law fluid constitutive models. Experimentally reported parameters were initially applied for all four constitutive models, resulting in poor agreement. The parameters of the soft solid models were calibrated by linear interpolation so that the volume averaged shear stress agreed with the fluid model for each, but this could only be accomplished on a specimen-by-specimen basis. Following calibration, the root-mean-squared (RMS) difference between the solid and fluid constitutive models was still greater than 26% even when the overall mean shear stress was in close agreement, indicating that the spatial distribution of stress is also sensitive to the constitutive model. As such, the choice of constitutive model should be backed by a strong rationale, and results should be interpreted with care.

  16. Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes.

    PubMed Central

    Wolman, R L; Clark, P; McNally, E; Harries, M; Reeve, J

    1990-01-01

    OBJECTIVE--To study the effects of amenorrhoea and intensive back exercise on the bone mineral density of the lumbar spine in female athletes. DESIGN--Cross sectional study comparing amenorrhoeic with eumenorrhoeic athletes and rowers with non-rowers. SETTING--The British Olympic Medical Centre, Northwick Park Hospital. PATIENTS--46 Elite female athletes comprising 19 rowers, 18 runners, and nine dancers, of whom 25 were amenorrhoeic and 21 eumenorrhoeic. MAIN OUTCOME MEASURE--Trabecular bone mineral density of the lumbar spine measured by computed tomography. RESULTS--Mean trabecular bone mineral density was 42 mg/cm3 (95% confidence interval 22 to 62 mg/cm3) lower in the amenorrhoeic than the eumenorrhoeic athletes; this difference was highly significant (p = 0.0002). Mean trabecular bone mineral density was 21 mg/cm3 (1 to 41 mg/cm3) lower in the non-rowers than the rowers; this was also significant (p = 0.05). There was no interaction between these two effects (p = 0.28). CONCLUSION--The effect of intensive exercise on the lumbar spine partially compensates for the adverse effect of amenorrhoea on spinal trabecular bone density. Images p516-a PMID:2207417

  17. Trabecular bone class mapping across resolutions: translating methods from HR-pQCT to clinical CT

    NASA Astrophysics Data System (ADS)

    Valentinitsch, Alexander; Fischer, Lukas; Patsch, Janina M.; Bauer, Jan; Kainberger, Franz; Langs, Georg; DiFranco, Matthew

    2015-03-01

    Quantitative assessment of 3D bone microarchitecture in high-resolution peripheral quantitative computed tomography (HR-pQCT) has shown promise in fracture risk assessment and biomechanics, but is limited to the distal radius and tibia. Trabecular microarchitecture classes (TMACs), based on voxel-wise clustering texture and structure tensor features in HRpQCT, is extended in this paper to quantify trabecular bone classes in clinical multi-detector CT (MDCT) images. Our comparison of TMACs in 12 cadaver radii imaged using both HRpQCT and MDCT yields a mean Dice score of up to 0.717+/-0.40 and visually concordant bone quality maps. Further work to develop clinically viable bone quantitative imaging using HR-pQCT validation could have a significant impact on overall bone health assessment.

  18. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.

    PubMed

    Adachi, Taiji; Kameo, Yoshitaka; Hojo, Masaki

    2010-06-13

    In bone functional adaptation by remodelling, osteocytes in the lacuno-canalicular system are believed to play important roles in the mechanosensory system. Under dynamic loading, bone matrix deformation generates an interstitial fluid flow in the lacuno-canalicular system; this flow induces shear stress on the osteocytic process membrane that is known to stimulate the osteocytes. In this sense, the osteocytes behave as mechanosensors and deliver mechanical information to neighbouring cells through the intercellular communication network. In this study, bone remodelling is assumed to be regulated by the mechanical signals collected by the osteocytes. From the viewpoint of multi-scale biomechanics, we propose a mathematical model of trabecular bone remodelling that takes into account the osteocytic mechanosensory network system. Based on this model, a computational simulation of trabecular bone remodelling was conducted for a single trabecula under cyclic uniaxial loading, demonstrating functional adaptation to the applied mechanical loading as a load-bearing construct.

  19. Hip bone trabecular architecture shows uniquely distinctive locomotor behaviour in South African australopithecines.

    PubMed

    Macchiarelli, R; Bondioli, L; Galichon, V; Tobias, P V

    1999-02-01

    Cancellous bone retains structural and behavioural properties which are time and strain-rate dependent. As the orientation of the trabeculae (trajectories) follows the direction of the principal strains imposed by daily loadings, habitual postural and locomotor behaviours are responsible for a variety of trabecular architectures and site-specific textural arrangements of the pelvic cancellous network. With respect to the great ape condition, the human trabecular pattern is characterized by a distinctive ilioischial bundle, an undivided sacropubic bundle, and a full diagonal crossing (approximately 100 degrees) over the acetabulum between the ilioischial and the sacropubic bundles. Advanced digital image processing (DIP) of hip bone radiographs has revealed that adolescent and adult South African australopithecines retained an incompletely developed human-like trabecular pattern associated with gait-related features that are unique among the extant primates.

  20. Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis

    PubMed Central

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Sharif, Mohammed

    2016-01-01

    Osteoarthritis (OA) is the most common joint disorder, characterised by focal loss of cartilage and increased subchondral bone remodelling at early OA stages of the disease. We have investigated the temporal and the spatial relationship between bone remodelling in subchondral bone plate (Sbp) and trabecular bone (Tb) in Dunkin Hartley (DH, develop OA early) and the Bristol Strain 2 (BS2, control which develop OA late) guinea pigs. Right tibias were dissected from six male animals of each strain, at 10, 16, 24 and 30 weeks of age. Micro-computed tomography was used to quantify the growth plate thickness (GpTh), subchondral bone plate thickness (SbpTh) and trabecular bone thickness (TbTh), and bone mineral density (BMD) in both Sbp and Tb. The rate of change was calculated for 10–16 weeks, 16–24 weeks and 24–30 weeks. The rate of changes in Sbp and Tb thickness at the earliest time interval (10–16 weeks) were significantly greater in DH guinea pigs than in the growth-matched control strain (BS2). The magnitude of these differences was greater in the medial side than the lateral side (DH: 22.7 and 14.75 µm/week, BS2: 5.63 and 6.67 µm/week, respectively). Similarly, changes in the BMD at the earliest time interval was greater in the DH strain than the BS2, again more pronounced in the disease prone medial compartment (DH: 0.0698 and 0.0372 g/cm3/week, BS2: 0.00457 and 0.00772 g/cm3/week, respectively). These changes observed preceded microscopic and cellular signs of disease as previously reported. The rapid early changes in SbpTh, TbTh, Sbp BMD and Tb BMD in the disease prone DH guinea pigs compared with the BS2 control strain suggest a link to early OA pathology. This is corroborated by the greater relative changes in subchondral bone in the medial compared with the lateral compartment. PMID:27618009

  1. A critical damping approach for assessing the role of marrow fat on the mechanical strength of trabecular bone.

    PubMed

    Braidotti, P; Stagni, L

    2007-01-01

    Several clinical findings revealed that post-menopausal osteoporosis and age-related osteopenia are accompanied by trabecular bone marrow fat (BMF) increase. To help understand this phenomenon, a vibrating string model is proposed, based on the hypothesis that, when bone marrow properties change, the trabecular bone structure remodels itself to preserve its critical damping state. It is found that an inverse relationship holds between trabecular average length and marrow damping coefficient. Such a result leads us to hypothesize the following bone-weakening mechanism. Since fat-rich bone marrow is a worse damper, a BMF increment causes an increase of trabecular average length, which is accomplished by the absorption of horizontal trabeculae (structurally less important than vertical trabeculae). The resulting bone patterns are in excellent agreement with clinical observations of osteoporotic bone. A definitive confirmation of the proposed mechanism will support a therapeutical approach to widespread osteopenic diseases aimed at avoiding, or limiting, BMF increase.

  2. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone

    PubMed Central

    Salmon, Phil L.; Ohlsson, Claes; Shefelbine, Sandra J.; Doube, Michael

    2015-01-01

    Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+) and negative (SMI−) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species’ femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155–0.700). SMI is unavoidably influenced by aberrations induced by SMI−, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds’ more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be

  3. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.

    PubMed

    Thomsen, J S; Ebbesen, E N; Mosekilde, Li

    2002-01-01

    We recently developed a new, rapid method for conducting static histomorphometry on large histologic sections. This method has now been applied on both iliac crest and lumbar vertebral bone to compare the age-related changes at these two skeletal sites and to investigate the correlation between the histomorphometric measures at the iliac crest and the vertebral body. The material comprised matched sets of unilateral transiliac crest bone biopsies and lumbar vertebral bodies (L-2) from 24 women (19-96 years) and 24 men (23-95 years) selected from a larger autopsy material. Three female subjects (80, 88, and 90 years) had a known vertebral fracture of L-2. The iliac crest biopsies and 9-mm-thick mediolateral slices of half the entire vertebral bodies were embedded in methylmetacrylate, stained with aniline blue, and scanned into a computer with a flatbed image scanner at a high resolution. With a custom-made computer program the following static histomorphometric measures were determined: trabecular bone volume; marrow and bone space star volume; node-strut analysis; trabecular bone pattern factor; trabecular thickness; trabecular number; trabecular separation; and anisotropy of bone and marrow phase. In addition, connectivity density was measured (ConnEulor method). The results showed that the age-related changes in the static histomorphometric measures are generally similar in the iliac crest and the vertebral body, and that these age-related changes are independent of gender. An exception, however, is connectivity density, where the age-related changes are similar for women and men in the vertebral body but significantly different in the iliac crest. Furthermore, the results showed that the histomorphometric measures were weakly intercorrelated between the iliac crest and the vertebral body, despite the generally similar pattern in age-related changes at these two skeletal sites. The highest correlation coefficient was found for trabecular separation (Tb.Sp; r = 0

  4. Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice.

    PubMed

    Shahnazari, Mohammad; Dwyer, Denise; Chu, Vivian; Asuncion, Frank; Stolina, Marina; Ominsky, Michael; Kostenuik, Paul; Halloran, Bernard

    2012-03-01

    We examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion. Trabecular bone loss temporally correlated with reductions in biomarkers of bone formation and resorption in both peripheral blood and bone marrow. Endocortical bone loss and periosteal bone gain were not reflected in these protein biomarkers, but were well correlated with increased expression of osteocalcin, rank, tracp5b, and cathepsinK in RNA extracted from cortical bone. While age-related changes in bone turnover markers remained concordant in blood versus marrow, aging led to divergent changes in blood versus marrow for the bone cell regulators RANKL, OPG, sclerostin, DKK1, and serotonin. Bone expression of runx2 and osterix increased progressively with aging and was associated with an increase in the number of osteoprogenitors and osteoclast precursors. In summary, levels of biochemical markers of bone turnover in blood and bone marrow plasma were predictive of an age-related loss of trabecular surfaces in adult C57BL/6 mice, but did not predict gains in cortical surfaces resulting from cortical expansion. Unlike these turnover markers, a panel of bone cell regulatory proteins exhibited divergent age-related changes in marrow versus peripheral blood, suggesting that their circulating levels may not reflect local levels to which osteoclasts and osteoblasts are directly exposed.

  5. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading.

    PubMed

    Lloyd, Shane A; Lewis, Gregory S; Zhang, Yue; Paul, Emmanuel M; Donahue, Henry J

    2012-11-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as

  6. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  7. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blaber, E. A.; Cheng-Campbell, M.; Almeida, E. A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31% decrease in bone volume ratio, a 14% decrease in trabecular thickness, and a 20% decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1.This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  8. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  9. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone.

    PubMed

    Fenech, C M; Keaveny, T M

    1999-08-01

    In a long-term effort to develop a complete multi-axial failure criterion for human trabecular bone, the overall goal of this study was to compare the ability of a simple cellular solid mechanistic criterion versus the Tsai-Wu, Principal Strain, and von Mises phenomenological criteria--all normalized to minimize effects of interspecimen heterogeneity of strength--to predict the on-axis axial-shear failure properties of bovine trabecular bone. The Cellular Solid criterion that was developed here assumed that vertical trabeculae failed due to a linear superposition of axial compression/tension and bending stresses, induced by the apparent level axial and shear loading, respectively. Twenty-seven bovine tibial trabecular bone specimens were destructively tested on-axis without end artifacts, loaded either in combined tension-torsion (n = 10), compression-torsion (n = 11), or uniaxially (n = 6). For compression-shear, the mean (+/- S.D.) percentage errors between measured values and criterion predictions were 7.7 +/- 12.6 percent, 19.7 +/- 23.2 percent, 22.8 +/- 18.9 percent, and 82.4 +/- 64.5 percent for the Cellular Solid, Tsai-Wu, Principal Strain, and von Mises criteria, respectively; corresponding mean errors for tension-shear were -5.2 +/- 11.8 percent, 14.3 +/- 12.5 percent, 6.9 +/- 7.6 percent, and 57.7 +/- 46.3 percent. Statistical analysis indicated that the Cellular Solid criterion was the best performer for compression-shear, and performed as well as the Principal Strain criterion for tension-shear. These data should substantially improve the ability to predict axial-shear failure of dense trabecular bone. More importantly, the results firmly establish the importance of cellular solid analysis for understanding and predicting the multiaxial failure behavior of trabecular bone.

  10. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    PubMed Central

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  11. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also

  12. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    PubMed

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface.

  13. Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice.

    PubMed

    Kondoh, Shino; Inoue, Kazuki; Igarashi, Katsuhide; Sugizaki, Hiroe; Shirode-Fukuda, Yuko; Inoue, Erina; Yu, Taiyong; Takeuchi, Jun K; Kanno, Jun; Bonewald, Lynda F; Imai, Yuuki

    2014-03-01

    Estrogens are well known steroid hormones necessary to maintain bone health. In addition, mechanical loading, in which estrogen signaling may intersect with the Wnt/β-catenin pathway, is essential for bone maintenance. As osteocytes are known as the major mechanosensory cells embedded in mineralized bone matrix, osteocyte ERα deletion mice (ERα(ΔOcy/ΔOcy)) were generated by mating ERα floxed mice with Dmp1-Cre mice to determine the role of ERα in osteocytes. Trabecular bone mineral density of female, but not male ERα(ΔOcy/ΔOcy) mice was significantly decreased. Bone formation parameters in ERα(ΔOcy/ΔOcy) were significantly decreased while osteoclast parameters were unchanged. This suggests that ERα in osteocytes exerts osteoprotective function by positively controlling bone formation. To identify potential targets of ERα, gene array analysis of Dmp1-GFP osteocytes sorted by FACS from ERα(ΔOcy/ΔOcy) and control mice was performed. Gene expression microarray followed by gene ontology analyses revealed that osteocytes from ERα(ΔOcy/ΔOcy) highly expressed genes categorized in 'Secreted' when compared to control osteocytes. Among them, expression of Mdk and Sostdc1, both of which are Wnt inhibitors, was significantly increased without alteration of expression of the mature osteocyte markers such as Sost and β-catenin. Moreover, hindlimb suspension experiments showed that trabecular bone loss due to unloading was greater in ERα(ΔOcy/ΔOcy) mice without cortical bone loss. These data suggest that ERα in osteocytes has osteoprotective functions in trabecular bone formation through regulating expression of Wnt antagonists, but conversely plays a negative role in cortical bone loss due to unloading.

  14. Increased Nitric Oxide-Mediated Vasodilation of Bone Resistance Arteries Is Associated With Increased Trabecular Bone Volume After Endurance Training In Rats

    PubMed Central

    Dominguez, James M.; Prisby, Rhonda D.; Muller-Delp, Judy M.; Allen, Matthew R.; Delp, Michael D.

    2009-01-01

    Old age-associated osteoporosis is related to diminished bone blood flow and impaired nitric oxide (NO)-mediated vasodilation of the bone vasculature. Endurance exercise training restores the age-associated reduction of vasodilation in numerous vascular beds, as well as improving bone properties. The purpose of this study was to determine whether functional improvements in the bone vasculature are associated with increased bone properties after an endurance training intervention. Young adult (4–6mo) and old (24–26 mo) male Fischer-344 rats remained sedentary or were trained (15 m/min walking, 15° incline, 5 days/wk, 10–12 wk). Endothelium-dependent vasodilation of the femoral principal nutrient artery (PNA) was assessed in vitro using acetylcholine (ACh) and inhibitors of NO synthase (NOS) and cyclooxygenase (COX). PNA endothelium-dependent vasodilation was greater after training by 16% in young and by 24% in old animals. The NOS-mediated contribution to endothelium-dependent vasodilation was enhanced by 77% after training in old rats. Distal femur trabecular bone volume (BV/TV, %) was lower with old age in sedentary animals (young: 27±2%, old: 23±1%; P<0.05). Exercise-induced elevations in bone and marrow blood flow and the NOS signaling pathway were associated with greater BV/TV (young trained: 34±2%, old trained: 26±1%; P<0.05) relative to sedentary groups. These data demonstrate that training-induced increases in bone properties are associated with enhanced endothelium-dependent vasodilation through a NOS signaling pathway in the bone vasculature. PMID:19892040

  15. Implant design and its effects on osseointegration over time within cortical and trabecular bone.

    PubMed

    Beutel, Bryan G; Danna, Natalie R; Granato, Rodrigo; Bonfante, Estevam A; Marin, Charles; Tovar, Nick; Suzuki, Marcelo; Coelho, Paulo G

    2016-08-01

    Healing chambers present at the interface between implant and bone have become a target for improving osseointegration. The objective of the present study was to compare osseointegration of several implant healing chamber configurations at early time points and regions of interest within bone using an in vivo animal femur model. Six implants, each with a different healing chamber configuration, were surgically implanted into each femur of six skeletally mature beagle dogs (n = 12 implants per dog, total n = 72). The implants were harvested at 3 and 5 weeks post-implantation, non-decalcified processed to slides, and underwent histomorphometry with measurement of bone-to-implant contact (BIC) and bone area fraction occupied (BAFO) within healing chambers at both cortical and trabecular bone sites. Microscopy demonstrated predominantly woven bone at 3 weeks and initial replacement of woven bone by lamellar bone by 5 weeks. BIC and BAFO were both significantly increased by 5 weeks (p < 0.001), and significantly higher in cortical than trabecular bone (p < 0.001). The trapezoidal healing chamber design demonstrated a higher BIC than other configurations. Overall, a strong temporal and region-specific dependence of implant osseointegration in femurs was noted. Moreover, the findings suggest that a trapezoidal healing chamber configuration may facilitate the best osseointegration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1091-1097, 2016.

  16. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  17. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    NASA Astrophysics Data System (ADS)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  18. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  19. Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats.

    PubMed

    Dai, Ruchun; Ma, Yulin; Sheng, Zhifeng; Jin, Yan; Zhang, Yuhai; Fang, Lingna; Fan, Huijie; Liao, Eryuan

    2008-01-01

    Until now, the effects of phytoestrogen on bone in both women and ovarian hormone-deficient animal models of osteoporosis have remained uncertain. We have aimed here to investigate the effect of genistein (GEN) on trabecular bone quality in ovariectomized (OVX) rats. Forty 7-month-old female Sprague-Dawley rats were randomly divided into the following four groups: OVX, sham-operated (SHAM), treated with 17beta-estradiol (EST, 10 microg x kg(-1) x day(-1)), and GEN (5 mg x kg(-1) x day(-1)). At 15 weeks postoperation, the compressive test was performed on the L5 vertebral body; additionally, microcomputed tomography (micro-CT) assessment was performed to estimate the bone mineral density (BMD) and microstructure parameters of the L6 vertebral body. After fatigue damage testing, the L6 vertebral body was bulk-stained in 1% basic fuchsin and embedded in methylmethacrylate. The L4 vertebral body was embedded in methylmethacrylate for dynamic histomorphometry analysis without staining. Mounted bone slices were used to measure microcrack parameters, empty osteocyte lacuna density (e.Lc.Dn), and osteocyte density (Ot.N/T.Ar). Maximum loading (ML) and Ot.N/T.Ar were significantly lower in the OVX group than in the other groups. E.Lc.Dn was significantly decreased in GEN and EST groups compared to the OVX group. ML was significantly decreased in the GEN group compared to the SHAM group. Microcrack density, microcrack surface density, and microcrack length were significantly increased in the OVX group compared to the other groups. Mineral apposition rate was significantly decreased in the OVX group compared to the SHAM and GEN groups. Bone formation rate was significantly decreased in the OVX group compared to other groups. There were no significant differences with regard to mineralizing surface among the four groups. Volumetric BMD at organ was significantly lower in OVX, EST, and GEN groups than in the SHAM group. Bone mineral content was significantly lower in the OVX

  20. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    PubMed

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other

  1. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

    PubMed

    Chirchir, Habiba

    2015-05-01

    Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running.

  2. Quantitative description of collagen fibre network on trabecular bone surfaces based on AFM imaging.

    PubMed

    Hua, W-D; Chen, P-P; Xu, M-Q; Ao, Z; Liu, Y; Han, D; He, F

    2016-04-01

    The collagen fibre network is an important part of extracellular matrix (ECM) on trabecular bone surface. The geometry features of the network can provide us insights into its physical and physiological properties. However, previous researches have not focused on the geometry and the quantitative description of the collagen fibre network on trabecular bone surface. In this study,we developed a procedure to quantitatively describe the network and verified the validity of the procedure. The experiment proceeds as follow. Atomic force microscopy (AFM) was used to acquire submicron resolution images of the trabecular surface. Then, an image analysing procedure was built to extract important parameters, including, fibre orientation, fibre density, fibre width, fibre crossing numbers, the number of holes formed by fibre s, and the area of holes from AFM images. In order to verify the validity of the parameters extracted by image analysing methods, we adopted two other methods, which are statistical geometry model and computer simulation, to calculate those same parameters and check the consistency of the three methods' results. Statistical tests indicate that there is no significant difference between three groups. We conclude that, (a) the ECM on trabecular surface mainly consists of random collagen fibre network with oriented fibres; (b) our method based on image analysing can be used to characterize quantitative geometry features of the collagen fibre network effectively. This method may provide a basis for quantitative investigating the architecture and function of collagen fibre network.

  3. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.

    PubMed

    Sierpowska, J; Töyräs, J; Hakulinen, M A; Saarakkala, S; Jurvelin, J S; Lappalainen, R

    2003-03-21

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  4. Three-dimensional quantification of structures in trabecular bone using measures of complexity.

    PubMed

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus; Felsenberg, Dieter; Saparin, Peter

    2009-02-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (microCT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the microCT data sets.

  5. Trabecular bone of precocials at birth; Are they prepared to run for the wolf(f)?

    PubMed Central

    Wolschrijn, Claudia F.; van Vilsteren, Anouk A.M.; van Rietbergen, Bert; van Weeren, P. René

    2016-01-01

    ABSTRACT Bone is a dynamic tissue adapting to loading according to “Wolff's law of bone adaptation.” During very early life, however, such a mechanism may not be adequate enough to adapt to the dramatic change in environmental challenges in precocial species. Their neonates are required to stand and walk within hours after birth, in contrast to altricial animals that have much more time to adapt from the intrauterine environment to the outside world. In this study, trabecular bone parameters of the talus and sagittal ridge of the tibia from stillborn but full‐term precocials (calves and foals) were analyzed by micro‐CT imaging in order to identify possible anticipatory mechanisms to loading. Calculated average bone volume fraction in the Shetland pony (49–74%) was significantly higher compared to Warmblood foals (28–51%). Bovine trabecular bone was characterized by a low average bone volume fraction (22–28%), however, more directional anisotropy was found. It is concluded that anticipatory strategies in skeletal development exist in precocial species, which differ per species and are most likely related to anatomical differences in joint geometry and related loading patterns. The underlying regulatory mechanisms are still unknown, but they may be based on a genetic blueprint for the development of bone. More knowledge, both about a possible blueprint and its regulation, will be helpful in understanding developmental bone and joint diseases. J. Morphol. 277:948–956, 2016. © 2016 Wiley Periodicals, Inc. PMID:27098190

  6. Three-dimensional quantification of structures in trabecular bone using measures of complexity

    NASA Astrophysics Data System (ADS)

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus; Felsenberg, Dieter; Saparin, Peter

    2009-02-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (μCT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the μCT data sets.

  7. Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    PubMed Central

    Christensen, Susan E.; Coles, Jeffrey M.; Zelenski, Nicole A.; Furman, Bridgette D.; Leddy, Holly A.; Zauscher, Stefan; Bonaldo, Paolo; Guilak, Farshid

    2012-01-01

    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data. PMID:22448243

  8. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  9. Validation of composite finite elements efficiently simulating elasticity of trabecular bone.

    PubMed

    Schwen, Lars Ole; Wolfram, Uwe

    2014-01-01

    Patient-specific analyses of the mechanical properties of bones become increasingly important for the management of patients with osteoporosis. The potential of composite finite elements (CFEs), a novel FE technique, to assess the apparent stiffness of vertebral trabecular bone is investigated in this study. Segmented volumes of cylindrical specimens of trabecular bone are compared to measured volumes. Elasticity under uniaxial loading conditions is simulated; apparent stiffnesses are compared to experimentally determined values. Computational efficiency is assessed and recommendations for simulation parameters are given. Validating apparent uniaxial stiffnesses results in concordance correlation coefficients 0.69 ≤ r(c) ≤ 0.92 for resolutions finer than 168 μm, and an average error of 5.8% between experimental and numerical results at 24 μm resolution. As an application, the code was used to compute local, macroscopic stiffness tensors for the trabecular structure of a lumbar vertebra. The presented technique allows for computing stiffness using smooth FE meshes at resolutions that are well achievable in peripheral high resolution quantitative CT. Therefore, CFEs could be a valuable tool for the patient-specific assessment of bone stiffness.

  10. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  11. Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study.

    PubMed

    Maurer, Manfred M; Weinkamer, Richard; Müller, Ralph; Ruffoni, Davide

    2015-08-01

    Although it is beyond doubt that mechanical stimulation is crucial to maintain bone mass, its role in preserving bone architecture is much less clear. Commonly, it is assumed that mechanics helps to conserve the trabecular network since an "accidental" thinning of a trabecula due to a resorption event would result in a local increase of load, thereby activating bone deposition there. However, considering that the thin trabecula is part of a network, it is not evident that load concentration happens locally on the weakened trabecula. The aim of this work was to clarify whether mechanical load has a protective role for preserving the trabecular network during remodeling. Trabecular bone is made dynamic by a remodeling algorithm, which results in a thickening/thinning of trabeculae with high/low strain energy density. Our simulations show that larger deviations from a regular cubic lattice result in a greater loss of trabeculae. Around lost trabeculae, the remaining trabeculae are on average thinner. More generally, thin trabeculae are more likely to have thin trabeculae in their neighborhood. The plausible consideration that a thin trabecula concentrates a higher amount of strain energy within itself is therefore only true when considering a single isolated trabecula. Mechano-regulated remodeling within a network-like architecture leads to local concentrations of thin trabeculae.

  12. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    PubMed

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p < 0.001) relative to the small deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p < 0.03). Even so, some low-density specimens having nearly identical volume fraction and SMI exhibited up to fivefold differences in strength reduction. We conclude that within very low-density bone, the potentially important biomechanical effect of large-deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by

  13. Finite element analysis of a three-dimensional open-celled model for trabecular bone.

    PubMed

    Beaupre, G S; Hayes, W C

    1985-08-01

    Based on a regular array of cubic unit cells, each containing a body-centered spherical void, we created an idealized three-dimensional model for both subchondral trabecular bone and a class of porous foams. By considering only face-to-face stacking of unit cells, the inherent symmetry was such that, except at the surface, the displacements and stresses within any one unit cell were representative of the entire porous structure. Using prescribed displacements the model was loaded in both uniaxial compressive strain and uniaxial shear strain. Based on the response to these loads, we found the tensor of elastic constants for an equivalent homogeneous elastic solid with cubic symmetry. We then compared the predicted modulus with our experimental values for bovine trabecular bone and literature values for an open-celled latex rubber foam.

  14. Metrology applied to ultrasound characterization of trabecular bones using the AIB parameter

    NASA Astrophysics Data System (ADS)

    Braz, D. S.; Silva, C. E.; Alvarenga, A. V.; Junior, D. S.; Costa-Félix, R. P. B.

    2016-07-01

    Apparent Integrated Backscattering (AIB) presents correlation between Apparent Backscatter Transfer Function and the transducer bandwidth. Replicas of trabecular bones (cubes of 20 mm side length) created by 3D printing technique were characterized using AIB with a 2.25 MHz center frequency transducer. A mechanical scanning system was used to acquire multiple backscatter signals. An uncertainty model in measurement was proposed based on the Guide to the Expression of Uncertainty in Measurement. Initial AIB results are not metrologically reliable, presenting high measurement uncertainties (sample: 5_0.2032/AIB: -15.1 dB ± 13.9 dB). It is noteworthy that the uncertainty model proposed contributes as unprecedented way for metrological assessment of trabecular bone characterization using AIB.

  15. The relationship between ultrasonic backscatter and trabecular anisotropic microstructure in cancellous bone

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Ta, Dean; Fujita, Fuminori; Hachiken, Takuma; Matsukawa, Mami; Mizuno, Katsunori; Wang, Weiqi

    2014-02-01

    To investigate the relationship between ultrasonic backscatter and trabecular microstructure, ultrasonic backscatter measurements were performed on cylindrical bovine cancellous bone samples in vitro. The backscatter signals from different specimen angles were obtained by rotating the specimen at various central frequencies. The backscatter signal varied a lot as the specimen angle changed. The main trabecular alignment (MTA) orientation was estimated by the maximum of signal energy and integrated reflection coefficient, or the minor axis of fitted ellipse for apparent integrated backscatter and the backscattered spectrum centroid frequency versus specimen angle. The degree of anisotropy (DA) was estimated by the eccentricity of the fitted ellipse with highly significant correlations. The MTA orientation and DA value estimation method proposed in this study is useful for ultrasonic cancellous bone assessment.

  16. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.

    PubMed Central

    Parfitt, A M; Mathews, C H; Villanueva, A R; Kleerekoper, M; Frame, B; Rao, D S

    1983-01-01

    We devised a new method for examining the structural changes that occur in trabecular bone in aging and in osteoporosis. With simultaneous measurement of total perimeter and bone area in thin sections, indirect indices of mean trabecular plate thickness (MTPT) and mean trabecular plate density (MTPD) can be derived, such that trabecular bone volume = MTPD X MTPT. MTPD is an index of the probability that a scanning or test line will intersect a structural element of bone, and is the reciprocal of the mean distance between the midpoints of structural elements, multiplied by pi/2. We applied this method to iliac bone samples from 78 normal subjects, 100 patients with vertebral fracture, and 50 patients with hip fracture. The reduction in trabecular bone volume observed in normal subjects with increasing age was mainly due to a reduction in plate density, with no significant decrease in plate thickness. The further reduction in trabecular bone volume observed in patients with osteoporotic vertebral fracture was mainly due to a further reduction in plate density. There was a relatively smaller reduction in plate thickness that was statistically significant in males but not in females. Only in patients with hip fracture did trabecular thinning contribute substantially to the additional loss of trabecular bone in osteoporosis relative to age. These data indicate that age-related bone loss occurs principally by a process that removes entire structural elements of bone; those that remain are more widely separated and some may undergo compensatory thickening, but most slowly become reduced in thickness. We propose that the process of removal is initiated by increased depth of osteoclastic resorption cavities which leads to focal perforation of trabecular plates; this is followed by progressive enlargement of the perforations with conversion of plates to rods. The resulting structural changes are more severe in osteoporotic patients than in normal subjects, but have been

  17. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.

    PubMed

    Nazemi, S Majid; Cooper, David M L; Johnston, James D

    2016-09-01

    Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.

  18. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.

    PubMed

    Kosmopoulos, Victor; Schizas, Constantin; Keller, Tony S

    2008-01-01

    Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.

  19. Possible role of lymphocytes in glucocorticoid-induced increase in trabecular bone mineral density

    PubMed Central

    Grahnemo, Louise; Jochems, Caroline; Andersson, Annica; Engdahl, Cecilia; Ohlsson, Claes; Islander, Ulrika; Carlsten, Hans

    2015-01-01

    Treatment with anti-inflammatory glucocorticoids is associated with osteoporosis. Many of the treated patients are postmenopausal women, who even without treatment have an increased risk of osteoporosis. Lymphocytes have been shown to play a role in postmenopausal and arthritis-induced osteoporosis, and they are targeted by glucocorticoids. The aim of this study was to investigate the mechanisms behind effects of glucocorticoids on bone during health and menopause, focusing on lymphocytes. Female C57BL/6 or SCID mice were therefore sham-operated or ovariectomized and 2 weeks later treatment with dexamethasone (dex), the nonsteroidal anti-inflammatory drug carprofen, or vehicle was started and continued for 2.5 weeks. At the termination of experiments, femurs were phenotyped using peripheral quantitative computed tomography and high-resolution micro-computed tomography, and markers of bone turnover were analyzed in serum. T and B lymphocyte populations in bone marrow and spleen were analyzed by flow cytometry. Dex-treated C57BL/6 mice had increased trabecular bone mineral density, but lower cortical content and thickness compared with vehicle-treated mice. The dex-treated mice also had lower levels of bone turnover markers and markedly decreased numbers of spleen T and B lymphocytes. In contrast, these effects could not be repeated when mice were treated with the nonsteroidal anti-inflammatory drug carprofen. In addition, dex did not increase trabecular bone in ovariectomized SCID mice lacking functional T and B lymphocytes. In contrast to most literature, the results from this study indicate that treatment with dex increased trabecular bone density, which may indicate that this effect is associated with corticosteroid-induced alterations of the lymphocyte populations. PMID:25359897

  20. Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography.

    PubMed

    Lettgen, B; Hauffa, B; Möhlmann, C; Jeken, C; Reiners, C

    1995-01-01

    Bone mineral density (BMD) was studied in 21 children and adolescents with type I diabetes and in age- and sex-matched healthy controls. BMD was selectively measured in trabecular and total bone using peripheral quantitative computed tomography (pQCT). Cortical bone density was calculated. There was a decrease of trabecular bone density (-18.9%, p < 0.01), total bone density (-9.0%, NS) and cortical bone density (-5.1%, NS) in diabetes. Trabecular bone density was inversely correlated with the duration of diabetes and the concentration of glycosylated hemoglobin (HbA1) (r = -0.48, p = 0.027 and r = -0.63, p = 0.002, respectively). Total BMD correlated inversely with HbA1 (r = -0.52, p = 0.017). pQCT allows the selective measurement of metabolically active trabecular bone where changes of mineralization first occur. We conclude that pQCT is a useful method for investigating BMD in diabetes.

  1. Femoral head-neck junction reconstruction, after iatrogenic bone resection.

    PubMed

    Guevara-Alvarez, Alberto; Lash, Nicholas; Beck, Martin

    2015-07-01

    Arthroscopic over-resection of the head-neck junction during the treatment of a cam deformity can be a devastating complication and is difficult to treat. Large defects of the femoral head-neck junction (FHNJ) increase the risk of femoral neck fracture and can also affect hip biomechanics. We describe a case of an iatrogenic defect of the FHNJ due to excessive bone resection, and a previously non-described treatment using iliac crest autograft to restore femoral head-neck sphericity and hip joint stability. After protecting the femoral neck with an angled blade plate, the large anterior FHNJ defect was reconstructed using autogenous iliac crest bone graft; sphericity was restored by contouring the graft using spherical templates. Clinical and radiographic follow-up was performed up to 2 years. Results at 2 years showed no residual groin pain and normal range of motion. The Oxford Hip Score was 46/48, rated as excellent. Computed tomography (CT) scanning showed union of bone graft without resorption, and CT arthrogram indicating retained sphericity of the FHNJ without evidence of degenerative changes in the articular surface. This novel surgical technique can be used to restore the structural integrity and contour of the FHNJ that contains a significant anterior defect.

  2. Wavelet based characterization of ex vivo vertebral trabecular bone structure with 3T MRI compared to microCT

    SciTech Connect

    Krug, R; Carballido-Gamio, J; Burghardt, A; Haase, S; Sedat, J W; Moss, W C; Majumdar, S

    2005-04-11

    Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool to characterize and quantify texture in an image. In this study the thickness of trabecular bone was analyzed in 8 cylindrical cores of the vertebral spine. Images were obtained from 3 Tesla (T) magnetic resonance imaging (MRI) and micro-computed tomography ({micro}CT). Results from the wavelet based analysis of trabecular bone were compared with standard two-dimensional structural parameters (analogous to bone histomorphometry) obtained using mean intercept length (MR images) and direct 3D distance transformation methods ({micro}CT images). Additionally, the bone volume fraction was determined from MR images. We conclude that the wavelet based analyses delivers comparable results to the established MR histomorphometric measurements. The average deviation in trabecular thickness was less than one pixel size between the wavelet and the standard approach for both MR and {micro}CT analysis. Since the wavelet based method is less sensitive to image noise, we see an advantage of wavelet analysis of trabecular bone for MR imaging when going to higher resolution.

  3. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    PubMed

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility.

  4. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.

    PubMed

    Sanyal, Arnav; Scheffelin, Joanna; Keaveny, Tony M

    2015-01-01

    Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),mechanical anisotropy (range of E3/E1¼3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.

  5. The speed of sound through trabecular bone predicted by Biot theory.

    PubMed

    Yoon, Young June; Chung, Jae-Pil; Bae, Chul-Soo; Han, Seog-Young

    2012-02-23

    Cancellous bone is a highly porous material filled with fluid. The mechanical properties of cancellous bone determine whether the bone is normal or osteoporotic. Wave propagation can be used to measure the elastic constants of cancellous bone. Recently, poroelasticity theory has been used to predict the elastic constants of cancellous bone from the wave velocities. In this study, it is shown that the fast wave, predicted by the Biot theory, corresponds to the wave penetrating the trabeculae, while the slow wave is determined by the interaction between the trabeculae and the fluid. The trabecular shape does not affect the wave velocity significantly when using the variable, which is determined by the microstructure, and the slow wave velocity decreases after the porosity reaches 80%.

  6. Improved Trabecular Bone Structure of 20-Month-Old Male Spontaneously Hypertensive Rats

    PubMed Central

    Lee, Tzu-Cheng; Burghardt, Andrew J.; Yao, Wei; Lane, Nancy E.; Majumdar, Sharmila; Gullberg, Grant T.; Seo, Youngho

    2014-01-01

    A few clinical studies have reported that elderly male participants with hypertensive disease frequently have higher BMD than the normotensive participants at several skeletal sites. The detailed mechanism is still unknown; therefore a study of bone structure and density using the hypertensive animal models could be informative. We used micro-computed tomography (μCT) to quantitatively evaluate the tibial and 3rd lumbar vertebral bones in the 20-month-old male spontaneous hypertensive rat (SHR). The BMD, volume fraction, and the microarchitecture changes of the SHR were compared to those of same-age normotensive controls (Wistar-Kyoto rat, WKY). We found that in the very old (20-month) male rats, the trabecular bone fraction and microstructure were higher than those in the same-age normotensive controls. The observation of the association of hypertension with BMD and bone strength in hypertensive rats warrants further investigations of bone mass and strength in elderly males with hypertension. PMID:25106873

  7. Slow and fast ultrasonic wave detection improvement in human trabecular bones using Golay code modulation.

    PubMed

    Lashkari, Bahman; Manbachi, Amir; Mandelis, Andreas; Cobbold, Richard S C

    2012-09-01

    The identification of fast and slow waves propagating through trabecular bone is a challenging task due to temporal wave overlap combined with the high attenuation of the fast wave in the presence of noise. However, it can provide valuable information about bone integrity and become a means for monitoring osteoporosis. The objective of this work is to apply different coded excitation methods for this purpose. The results for single-sine cycle pulse, Golay code, and chirp excitations are compared. It is shown that Golay code is superior to the other techniques due to its signal enhancement while exhibiting excellent resolution without the ambiguity of sidelobes.

  8. Assessment of global morphological and topological changes in trabecular structure under the bone resorption process

    NASA Astrophysics Data System (ADS)

    Sidorenko, Irina N.; Bauer, Jan; Monetti, Roberto; Baum, Thomas; Rummeny, Ernst J.; Eckstein, Felix; Matsuura, Maiko; Lochmueller, Eva-Maria; Zysset, Philippe K.; Raeth, Christoph W.

    2012-03-01

    Osteoporosis is a frequent skeletal disease characterised both by loss of bone mineral mass and deterioration of cancellous bone micro-architecture. It can be caused by mechanical disuse, estrogen deficiency or natural age-related resorption process. Numerical analysis of high-resolution images of the trabecular network is recognised as a powerful tool for assessment of structural characteristics. Using μCT images of 73 thoracic and 78 lumbar human vertebral specimens in vitro with isotropic resolution of 26μm we simulate bone atrophy as random resorption of bone surface voxels. Global morphological and topological characteristics provided by four Minkowski Functionals (MF) are calculated for two numerical resorption models with and without conservation of global topological connectivity of the trabecular network, which simulates different types of bone loss in osteoporosis, as it has been described in males and females. Diagnostic performance of morphological and topological characteristics as a function of relative bone loss is evaluated by a correlation analysis with respect to experimentally measured Maximum Compressive Strength (MCS). In both resorption models the second MF, which coincides with bone surface fraction BS/TV, demonstrates almost constant value of Pearson's correlation coefficient with respect to the relative bone loss ▵BV/TV. This morphological characteristic does not vary considerably under age-related random resorption and can be used for predicting bone strength in the elderly. The third and fourth MF demonstrate an increasing correlation coefficients with MCS after applying random bone surface thinning without preserving topological connectivity, what can be used for improvement of evaluation of the current state of the structure.

  9. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.

    PubMed

    Daszkiewicz, Karol; Maquer, Ghislain; Zysset, Philippe K

    2016-10-26

    Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from [Formula: see text] scans of femoral heads and vertebral bodies. They were converted into [Formula: see text] models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. "In situ" stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset-Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters [Formula: see text] (Poisson's ratio) [Formula: see text] and [Formula: see text] (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on [Formula: see text]. However, KUBCs- and PMUBCs-based [Formula: see text] and [Formula: see text], respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.

  10. Long-Duration Spaceflight During the Bion-M1 Spaceflight Experiment Resulted in Significant Bone Loss in the Femoral Head and Alterations in Stem Cell Differentiation Potential in Male Mice

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Almeida, Eduardo; Grigoryan, Eleonora; Globus, Ruth

    Scientific understanding of the effects of microgravity on mammalian physiology has been limited to short duration spaceflight experiments (10-15 days). As long duration and inter-planetary missions are being initiated, there is a great need to understand the long-term effects of spaceflight on various physiological processes, including stem cell-based tissue regeneration. Bion-M1, for the first time, enabled the possibility of studying the effects of 30-days of microgravity exposure on a mouse model with sufficient sample size to enable statistical analysis. In this experiment, we hypothesized that microgravity negatively impacts stem cell based tissue regeneration, such as bone remodeling and regeneration from hematopoietic and mesenchymal precursors, thereby resulting in tissue degeneration in mice exposed to spaceflight. To test this hypothesis we collected the pelvis and proximal femur from space-flown mice and asynchronous ground controls and analyzed bone and bone marrow using techniques including Microcomputed Tomography (MicroCT), and in-vitro differentiation and differentiating cell motility assays. To determine the effects of 30-days spaceflight on bone tissue mass, we used MicroCT to analyze the trabecular bone of the femoral head and the cortical bone of the femoral neck and mid-shaft. We found that spaceflight caused a 45% decrease in bone volume ratio, a 17% decrease in trabecular thickness, a 25% decrease in trabecular number, and a 17% increase in trabecular spacing of trabecular bone. Furthermore, structural model index and trabecular pattern factor were increased by 32% and 82% respectively indicating that 30-days spaceflight resulted not only in a large loss of trabecular bone but also in a decrease of bone strength indicators. Analysis of the femoral neck cortical bone showed an increase in marrow area and cortical porosity indicating an overall widening of the femoral neck. Interestingly, no significant alterations were found in the cortical

  11. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence.

    PubMed

    Kelly, Nicola; Harrison, Noel M; McDonnell, Pat; McGarry, J Patrick

    2013-08-01

    Interbody fusion device subsidence has been reported clinically. An enhanced understanding of the mechanical behaviour of the surrounding bone would allow for accurate predictions of vertebral subsidence. The multiaxial inelastic behaviour of trabecular bone is investigated at a microscale and macroscale level. The post-yield behaviour of trabecular bone under hydrostatic and confined compression is investigated using microcomputed tomography-derived microstructural models, elucidating a mechanism of pressure-dependent yielding at the macroscopic level. Specifically, microstructural trabecular simulations predict a distinctive yield point in the apparent stress-strain curve under uniaxial, confined and hydrostatic compression. Such distinctive apparent stress-strain behaviour results from localised stress concentrations and material yielding in the trabecular microstructure. This phenomenon is shown to be independent of the plasticity formulation employed at a trabecular level. The distinctive response can be accurately captured by a continuum model using a crushable foam plasticity formulation in which pressure-dependent yielding occurs. Vertebral device subsidence experiments are also performed, providing measurements of the trabecular plastic zone. It is demonstrated that a pressure-dependent plasticity formulation must be used for continuum level macroscale models of trabecular bone in order to replicate the experimental observations, further supporting the microscale investigations. Using a crushable foam plasticity formulation in the simulation of vertebral subsidence, it is shown that the predicted subsidence force and plastic zone size correspond closely with the experimental measurements. In contrast, the use of von Mises, Drucker-Prager and Hill plasticity formulations for continuum trabecular bone models lead to over prediction of the subsidence force and plastic zone.

  12. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    PubMed

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.

  13. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.

    PubMed

    Weatherholt, Alyssa M; Fuchs, Robyn K; Warden, Stuart J

    2013-01-01

    The mouse tibial axial compression loading model has recently been described to allow simultaneous exploration of cortical and trabecular bone adaptation within the same loaded element. However, the model frequently induces cortical woven bone formation and has produced inconsistent results with regards to trabecular bone adaptation. The aim of this study was to investigate bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model, with the ultimate goal of revealing a load that simultaneously induced lamellar cortical and trabecular bone adaptation. Adult (16 weeks old) female C57BL/6 mice were randomly divided into three load magnitude groups (5, 7 and 9N), and had their right tibia axially loaded using a continuous 2-Hz haversine waveform for 360 cycles/day, 3 days/week for 4 consecutive weeks. In vivo peripheral quantitative computed tomography was used to longitudinally assess midshaft tibia cortical bone adaptation, while ex vivo micro-computed tomography and histomorphometry were used to assess both midshaft tibia cortical and proximal tibia trabecular bone adaptation. A dose response to loading magnitude was observed within cortical bone, with increasing load magnitude inducing increasing levels of lamellar cortical bone adaptation within the upper two thirds of the tibial diaphysis. Greatest cortical bone adaptation was observed at the midshaft where there was a 42% increase in estimated mechanical properties (polar moment of inertia) in the highest (9N) load group. A dose response to load magnitude was not clearly evident within trabecular bone, with only the highest load (9N) being able to induce measureable adaptation (31% increase in trabecular bone volume fraction at the proximal tibia). The ultimate finding was that a load of 9N (engendering a tensile strain of 1833 με on medial surface of the midshaft tibia) was able to simultaneously induce measurable lamellar cortical and trabecular bone adaptation

  14. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    PubMed

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah

    2015-10-01

    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  15. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    SciTech Connect

    Gotman, Irena Gutmanas, Elazar Y.; Zaretzky, Asaph; Psakhie, Sergey G.

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  16. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Zaretzky, Asaph; Psakhie, Sergey G.; Gutmanas, Elazar Y.

    2015-10-01

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength "trabecular Nitinol" scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1-1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  17. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  18. Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis.

    PubMed

    Patsch, Janina M; Kohler, Thomas; Berzlanovich, Andrea; Muschitz, Christian; Bieglmayr, Christian; Roschger, Paul; Resch, Heinrich; Pietschmann, Peter

    2011-07-01

    Male idiopathic osteoporosis (MIO) is a metabolic bone disease that is characterized by low bone mass, microstructural alterations, and increased fracture risk in otherwise healthy men. Although the detailed pathophysiology of MIO has yet to be clarified, evidence increasingly suggests an osteoblastic defect as the underlying cause. In this study we tested the hypothesis that the expression profile of certain osteoblastic or osteoblast-related genes (ie, WNT10B, RUNX2, Osterix, Osteocalcin, SOST, RANKL, and OPG) is different in iliac crest biopsies of MIO patients when compared with healthy controls. Furthermore, we investigated the relation of local gene expression characteristics with histomorphometric, microstructural, and clinical features. Following written informed consent and diligent clinical patient characterization, iliac crest biopsies were performed in nine men. While RNA extraction, reverse-transcription, and real-time polymerase chain reactions (PCRs) were performed on one biopsy, a second biopsy of each patient was submitted for histomorphometry and micro-computed tomography (µCT). Age-matched bone samples from forensic autopsies served as controls. MIO patients displayed significantly reduced WNT10B, RUNX2, RANKL, and SOST expression. Performing µCT for the first time in MIO biopsies, we found significant decreases in trabecular number and connectivity density. Trabecular separation was increased significantly, but trabecular thickness was similar in both groups. Histomorphometry revealed decreased BV/TV and osteoid volume and fewer osteoclasts in MIO. By providing evidence for reduced local WNT10B, RUNX2, and RANKL gene expression and histomorphometric low turnover, our data support the osteoblast dysfunction model discussed for MIO. Further, MIO seems to lead to a different microstructural pathology than age-related bone loss.

  19. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog

    PubMed Central

    Liao, Sheng-hui; Zhu, Xing-hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers. PMID:27403424

  20. Trabecular Bone Adaptation to Low-Magnitude High-Frequency Loading in Microgravity

    PubMed Central

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E.; Vander Sloten, Jos; Stoddart, Martin J.; van Lenthe, G. Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence. PMID:24787094

  1. Distal radius bone mineral density estimation using the filling factor of trabecular bone in the x-ray image.

    PubMed

    Lee, Sooyeul; Jeong, Ji-Wook; Lee, Jeong Won; Yoo, Done-Sik; Kim, Seunghwan

    2006-01-01

    Osteoporosis is characterized by an abnormal loss of bone mineral content, which leads to a tendency to non-traumatic bone fractures or to structural deformations of bone. Thus, bone density measurement has been considered as a most reliable method to assess bone fracture risk due to osteoporosis. In past decades, X-ray images have been studied in connection with the bone mineral density estimation. However, the estimated bone mineral density from the X-ray image can undergo a relatively large accuracy or precision error. The most relevant origin of the accuracy or precision error may be unstable X-ray image acquisition condition. Thus, we focus our attentions on finding a bone mineral density estimation method that is relatively insensitive to the X-ray image acquisition condition. In this paper, we develop a simple technique for distal radius bone mineral density estimation using the trabecular bone filling factor in the X-ray image and apply the technique to the wrist X-ray images of 20 women. Estimated bone mineral density shows a high linear correlation with a dual-energy X-ray absorptiometry (r=0.87).

  2. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    PubMed

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  3. Trabecular Bone Structure and Spatial Differences in Articular Cartilage MR Relaxation Times in Individuals with Posterior Horn Medial Meniscal Tears

    PubMed Central

    Kumar, Deepak; Schooler, Joseph; Zuo, Jin; McCulloch, Charles E.; Nardo, Lorenzo; Link, Thomas M.; Li, Xiaojuan; Majumdar, Sharmila

    2012-01-01

    Objective To analyze knee trabecular bone structure and spatial cartilage T1ρ and T2 relaxation times using 3-T MRI in subjects with and without tears of posterior horn of medial meniscus (PHMM). Design 3-T MRI from 59 subjects (> 18 years), were used to evaluate PHMM tears based on modified WORMS scoring; and to calculate apparent trabecular bone - volume over total bone volume fraction (app. BV/TV), number (app. Tb.N), separation (app. Tb.Sp) and thickness (app. Tb.Th) for overall femur/tibia and medial/lateral femur/tibia; and relaxation times for deep and superficial layers of articular cartilage. A repeated measures analysis using GEE was performed to compare trabecular bone and cartilage relaxation time parameters between people with (n = 35) and without (n= 24) PHMM tears, while adjusting for age and knee OA presence. Results Subjects with PHMM tears had lower app. BV./TV and app. Tb.N, and greater app. Tb.Th, and app. Tb.Sp. They also had higher T1ρ times in the deep cartilage layer for lateral tibia and medial femur and higher T2 relaxation times for the deep cartilage layer across all compartments. Conclusions PHMM tears are associated with differences in underlying trabecular bone and deep layer of cartilage. Overload of subchondral bone can lead to its sclerosis and stress shielding of trabecular bone leading to the resorptive changes observed in this study. The results underline the importance of interactions of trabecular bone and cartilage in the pathogenesis of knee OA in people with PHMM tears. PMID:23047010

  4. Differences in acoustic impedance of fresh and embedded human trabecular bone samples-Scanning acoustic microscopy and numerical evaluation.

    PubMed

    Ojanen, Xiaowei; Töyräs, Juha; Inkinen, Satu I; Malo, Markus K H; Isaksson, Hanna; Jurvelin, Jukka S

    2016-09-01

    Trabecular bone samples are traditionally embedded and polished for scanning acoustic microscopy (SAM). The effect of sample processing, including dehydration, on the acoustic impedance of bone is unknown. In this study, acoustic impedance of human trabecular bone samples (n = 8) was experimentally assessed before (fresh) and after embedding using SAM and two-dimensional (2-D) finite-difference time domain simulations. Fresh samples were polished with sandpapers of different grit (P1000, P2500, and P4000). Experimental results indicated that acoustic impedance of samples increased significantly after embedding [mean values 3.7 MRayl (fresh), 6.1 MRayl (embedded), p < 0.001]. After polishing with different papers, no significant changes in acoustic impedance were found, even though higher mean values were detected after polishing with finer (P2500 and P4000) papers. A linear correlation (r = 0.854, p < 0.05) was found between the acoustic impedance values of embedded and fresh bone samples polished using P2500 SiC paper. In numerical simulations dehydration increased the acoustic impedance of trabecular bone (38%), whereas changes in surface roughness of bone had a minor effect on the acoustic impedance (-1.56%/0.1 μm). Thereby, the numerical simulations corroborated the experimental findings. In conclusion, acoustic impedance measurement of fresh trabecular bone is possible and may provide realistic material values similar to those of living bone.

  5. Trabecular bone formation in the healing of the rodent molar tooth extraction socket.

    PubMed

    Devlin, H; Hoyland, J; Newall, J F; Ayad, S

    1997-12-01

    The aim of this study was to investigate the nature of the template structure on which trabecular bone formation occurs during healing of the rodent tooth extraction socket, a well studied bone healing system. The presence of collagen type II mRNA has previously been described in the healing socket, although the formation of the protein or cartilage has not been observed. However, recent evidence from developmental and other bone healing studies indicates that collagen type III may be important in forming the preliminary scaffold on which bone trabeculae are formed. The maxillary right molar teeth were removed from rats under general anaesthesia and the animals killed at various times afterward. The tissues were examined using histological, in situ hybridization, and immunohistochemical staining techniques. It was concluded that collagen type IIA mRNA was produced by osteoblast cells of the socket, but that collagen type II, if present, would account for less than 0.01% of the total proteins extracted. During bone formation, Sharpey's fibers were seen radiating from the peripheral bone toward the center of the socket. These optically active collagen fibers were inserted into the forming bone trabeculae and were recognized by antibodies raised against collagen type III. The arrangement and composition of these fibers therefore suggest that they form a preliminary framework on which deposition of woven bone trabeculae occurs.

  6. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

    PubMed Central

    Lima, Eric G.; Chao, Pen-hsiu Grace; Ateshian, Gerard A.; Bal, B. Sonny; Cook, James L.; Vunjak-Novakovic, Gordana; Hung, Clark T.

    2008-01-01

    In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Young's modulus (EY) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (EY = 87 ± 12 kPa, GAG = 1.9 ± 0.8%ww) compared to the gel-alone group (EY = 642 ± 97 kPa, GAG = 4.6 ± 1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell–bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (EY = 730 ± 65 kPa, GAG = 5.2 ± 0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts. PMID:18718655

  7. Scaling in Theropod Dinosaurs: Femoral Bone Dimensions

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.

    2014-05-01

    Finding topics that inspire students is an important aspect of any physics course. Virtually everyone is fascinated by Tyrannosaurus rex, and the excitement of the class is palpable when we explore scaling effects in T. rex and other bipedal theropod dinosaurs as part of our discussion of mechanics and elasticity. In this paper, we explore the role of longitudinal stress in the femur bones due to the weight of the dinosaur in determining how the geometry of the femur changes with size of the theropod. This is one area of allometry the study of how different biological characteristics scale with size.

  8. Modeling of the dielectric properties of trabecular bone samples at microwave frequency.

    PubMed

    Irastorza, Ramiro M; Blangino, Eugenia; Carlevaro, Carlos M; Vericat, Fernando

    2014-05-01

    In this paper, the dielectric properties of human trabecular bone are evaluated under physiological condition in the microwave range. Assuming a two components medium, simulation and experimental data are presented and discussed. A special experimental setup is developed in order to deal with inhomogeneous samples. Simulation data are obtained using finite difference time domain from a realistic sample. The bone mineral density of the samples are also measured. The simulation and experimental results of the present study suggest that there is a negative relation between bone volume fraction (BV/TV) and permittivity/conductivity: the higher the BV/TV, the lower the permittivity/conductivity. This is in agreement with the recently published in vivo data.

  9. Unusual Foreign Bone Fragment in Femoral Open Fracture

    PubMed Central

    Sadoni, Hanon; Arti, Hamidreza

    2016-01-01

    Introduction: Femoral shaft fracture is one of the typical bone fractures due to high energy trauma and may occur as an open fracture. Some foreign materials may enter the fracture site such as sand, cloth particles and so on. Case Presentation: A 28-year-old motorcycle riding military member and his collaborator were received in the hospital because of multiple traumas due to a fall in a hollow during a surveillance mission. His collaborator died because of head trauma and multiple severe open fractures. When fixing the patients femoral fracture, a large femoral butterfly fragment was removed from the patient’s thigh as a foreign segment. The patient’s femur was fixed with a plate and screws. No femoral defect was detected during surgery or post-operative X-rays and CT scan. The removed segment was not a part of the patient’s femur. Conclusions: Surgical and post-surgical findings showed that this segment was not related to the patient’s femur. The foreign segment may have belonged to the other victim of this trauma. PMID:27218050

  10. The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.

    PubMed

    Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas

    2016-10-01

    Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX(®). GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols.

  11. Comparing nonlinear texture measures for quantifying trabecular bone structures using surrogates

    NASA Astrophysics Data System (ADS)

    Rath, Christoph W.; Monetti, Roberto A.; Muller, Dirk; Bohm, Holger; Rummeny, Ernst J.; Link, Thomas M.

    2004-05-01

    We generalize the methods of constrained randomization in order to assess different nonlinear texture measures for the quantitative characterisation of trabecular bone structures as seen in high resolution MR images of the distal radius for patients with and without osteoporotic bone fractures. We demonstrate that it is feasible to produce surrogates which preserve texture measures sensitive to higher-order correlations. Specifically, we preserve for two-dimensional images the three Minkowski functionals (MF) which can be interpreted as the surface, the perimeter and the Euler-Characteristic of an excursion set. The surrogates preserving the MF's are generated by using simulated annealing techniques, where the constraints are specified in terms of a cost function which has a global minimum when the constraints are fulfilled. The cost function has to be minimized among all permutations of the image pixels. The surrogates and the original data are quantified by estimating their local scaling properties by means of the calculation of the spectrum of weighted scaling indices (WSI). It is shown that a significant discrimination between original and surrogate data is made possible by comparing the probability distributions of the weighted scaling indices. This proves that the two nonlinear texture measures (MF an WSI) are complementary since they are sensitive to different morphological aspects of the trabecular bone structures. It turns out that the generalized method of constrained randomization is a vital tool for assessing the quality of texture measures in terms of sensitivity to images structures and discrimination power.

  12. Bovine viral diarrhea virus cyclically impairs long bone trabecular modeling in experimental persistently infected fetuses.

    PubMed

    Webb, B T; Norrdin, R W; Smirnova, N P; Van Campen, H; Weiner, C M; Antoniazzi, A Q; Bielefeldt-Ohmann, H; Hansen, T R

    2012-11-01

    Persistent infection (PI) with bovine viral diarrhea virus (BVDV) has been associated with osteopetrosis and other long bone lesions, most commonly characterized as transverse zones of unmodeled metaphyseal trabeculae in fetuses and calves. This study was undertaken to characterize the morphogenesis of fetal long bone lesions. Forty-six BVDV-naïve pregnant Hereford heifers of approximately 18 months of age were inoculated with noncytopathic BVDV type 2 containing media or media alone on day 75 of gestation to produce PI and control fetuses, respectively, which were collected via cesarean section on days 82, 89, 97, 192, and 245 of gestation. Radiographic and histomorphometric abnormalities were first detected on day 192, at which age PI fetal long bone metaphyses contained focal densities (4 of 7 fetuses) and multiple alternating transverse radiodense bands (3 of 7 fetuses). Day 245 fetuses were similarly affected. Histomorphometric analysis of proximal tibial metaphyses from day 192 fetuses revealed transverse zones with increased calcified cartilage core (Cg.V/BV, %) and trabecular bone (BV/TV, %) volumes in regions corresponding to radiodense bands (P < .05). Numbers of tartrate resistant acid phosphatase positive osteoclasts (N.Oc/BS, #/mm(2)) and bone perimeter occupied (Oc.S/BS, %) were both decreased (P < .05). Mineralizing surface (MS/BS, %), a measure of tissue level bone formation activity, was reduced in PI fetuses (P < .05). It is concluded that PI with BVDV induces cyclic abnormal trabecular modeling, which is secondary to reduced numbers of osteoclasts. The factors responsible for these temporal changes are unknown but may be related to the time required for osteoclast differentiation from precursor cells.

  13. Strength through structure: visualization and local assessment of the trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Räth, C.; Monetti, R.; Bauer, J.; Sidorenko, I.; Müller, D.; Matsuura, M.; Lochmüller, E.-M.; Zysset, P.; Eckstein, F.

    2008-12-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  14. Stochastic predictors from the DXA scans of human lumbar vertebrae are correlated with the microarchitecture parameters of trabecular bone.

    PubMed

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Tvinnereim, Amy; Lowe, Timothy; Di Paolo, David; Shirvaikar, Mukul

    2015-09-18

    The purpose of this study was to provide a novel stochastic assessment of inhomogeneous distribution of bone mineral density (BMD) from the Dual-energy X-ray Absorptiometry (DXA) scans of human lumbar vertebrae and identify the stochastic predictors that were correlated with the microarchitecture parameters of trabecular bone. Eighteen human lumbar vertebrae with intact posterior elements from 5 cadaveric spines were scanned in the posterior-anterior projection using a Hologic densitometer. The BMD map of human vertebrae was obtained from the raw data of DXA scans by directly operating on the transmission measurements of low- and high-energy X-ray beams. Stochastic predictors were calculated by fitting theoretical models onto the experimental variogram of the BMD map, rather than grayscale images, from DXA scans. In addition, microarchitecture parameters of trabecular bone were measured from the 3D images of human vertebrae acquired using a Micro-CT scanner. Significant correlations were observed between stochastic predictors and microarchitecture parameters. The sill variance, representing the standard deviation of the BMD map to some extent, had significantly positive correlations with bone volume, trabecular thickness, trabecular number and connectivity density. The sill variance was also negatively associated with bone surface to volume ratio and trabecular separation. This study demonstrates that the stochastic assessment of the inhomogeneous distribution of BMD from DXA scans of human lumbar vertebrae can reveal microarchitecture information of trabecular bone. However, future studies are needed to examine the potential of stochastic predictors from routine clinical DXA scans in providing bone fragility information complementary to BMD.

  15. The Effects of Frequency-Dependent Dynamic Muscle Stimulation on Inhibition of Trabecular Bone Loss in a Disuse Model

    PubMed Central

    Lam, Hoyan; Qin, Yi-Xian

    2008-01-01

    Clinical electrical muscle stimulation has been shown to alleviate muscle atrophy resulting from functional disuse, yet little is known about its effect on the skeleton. The objective of this study is to evaluate the potential of dynamic muscle stimulation on disused trabecular bone, and to investigate the importance of optimized stimulation frequency in the loading regimen. Fifty-six skeletally mature Sprague-Dawley rats were divided into seven groups for the 4-week experiment: baseline control, age-matched control, hindlimb suspended (HLS), and HLS with muscle stimulation at 1 Hz, 20 Hz, 50 Hz, and 100 Hz. Muscle stimulation was carried out for 10 minutes per day for 5 days per week, total of 4 weeks. The metaphyseal and epiphyseal trabecular regions of the distal femurs were analyzed with microcomputed tomography and histomorphometry methods. HLS alone for 4-week resulted in a significant amount of trabecular bone loss and structural deterioration. Muscle contraction at 1 Hz was not sufficient to inhibit trabecular bone loss and resulted in similar amount of loss to that of HLS alone. Bone quantity and structure were significantly improved by applying muscle stimulation at mid-frequency (20 Hz & 50 Hz). Dynamic stimulation at 50 Hz demonstrated the greatest preventive effect on the skeleton against functional disused alone animals (up to +147% in bone volume fraction, +38% in trabecular number and -36% in trabecular separation). Histomorphometric analysis showed that the stimulation, regardless of its frequency, did not have an effect on the bone formation indices, such as mineral apposition rate and bone formation rate. Overall, the data demonstrated the potentials of frequency-dependent dynamic muscle contraction in regulating skeletal adaptive responses under disuse conditions. Dynamic muscle stimulation, with a specific regimen, may be beneficial to future orthopedic research in developing a countermeasure for disuse osteopenia and osteoporosis. PMID

  16. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis.

    PubMed

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Haut Donahue, Tammy L

    2015-12-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans.

  17. Decreased Bone Volume and Bone Mineral Density in the Tibial Trabecular Bone Is Associated with Per2 Gene by 405 nm Laser Stimulation

    PubMed Central

    Yoo, Yeong-Min; Lee, Myung-Han; Park, Ji Hyung; Seo, Dong-Hyun; Lee, Sangyeob; Jung, Byungjo; Kim, Han Sung; Bae, Kiho

    2015-01-01

    Low-level laser therapy/treatment (LLLT) using a minimally invasive laser needle system (MILNS) might enhance bone formation and suppress bone resorption. In this study, the use of 405 nm LLLT led to decreases in bone volume and bone mineral density (BMD) of tibial trabecular bone in wild-type (WT) and Per2 knockout (KO) mice. Bone volume and bone mineral density of tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase (ALP) and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2 KO mice compared to the non-irradiated left tibia (p < 0.001). Per2 mRNA expression in WT mice was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated left tibia (p < 0.001). To identify the decrease in tibial bone mediated by the Per2 gene, levels of runt-related transcription factor 2 (Runx2) and ALP mRNAs were determined in non-irradiated WT and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice (p < 0.001). Therefore, the reduction in tibial trabecular bone resulting from 405 nm LLLT using MILNS might be associated with Per2 gene expression. PMID:26580614

  18. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.

    PubMed

    Goff, M G; Lambers, F M; Nguyen, T M; Sung, J; Rimnac, C M; Hernandez, C J

    2015-10-01

    Impaired bone toughness is increasingly recognized as a contributor to fragility fractures. At the tissue level, toughness is related to the ability of bone tissue to resist the development of microscopic cracks or other tissue damage. While most of our understanding of microdamage is derived from studies of cortical bone, the majority of fragility fractures occur in regions of the skeleton dominated by cancellous bone. The development of tissue microdamage in cancellous bone may differ from that in cortical bone due to differences in microstructure and tissue ultrastructure. To gain insight into how microdamage accumulates in cancellous bone we determined the changes in number, size and location of microdamage sites following different amounts of cyclic compressive loading. Human vertebral cancellous bone specimens (n=32, 10 male donors, 6 female donors, age 76 ± 8.8, mean ± SD) were subjected to sub-failure cyclic compressive loading and microdamage was evaluated in three-dimensions. Only a few large microdamage sites (the largest 10%) accounted for 70% of all microdamage caused by cyclic loading. The number of large microdamage sites was a better predictor of reductions in Young's modulus caused by cyclic loading than overall damage volume fraction (DV/BV). The majority of microdamage volume (69.12 ± 7.04%) was located more than 30 μm (the average erosion depth) from trabecular surfaces, suggesting that microdamage occurs primarily within interstitial regions of cancellous bone. Additionally, microdamage was less likely to be near resorption cavities than other bone surfaces (p<0.05), challenging the idea that stress risers caused by resorption cavities influence fatigue failure of cancellous bone. Together, these findings suggest that reductions in apparent level mechanical performance during fatigue loading are the result of only a few large microdamage sites and that microdamage accumulation in fatigue is likely dominated by heterogeneity in tissue

  19. Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice.

    PubMed

    Sankar, Uma; Pritchard, Zachary J; Voor, Michael J

    2016-05-03

    Shorter generation time and the power of genetic manipulation make mice an ideal model system to study bone biology as well as bone diseases. However their small size presents a challenge to perform strength measurements, particularly of the weight-bearing cancellous bone in the murine long bones. We recently developed an improved method to measure the axial compressive strength of the cancellous bone in the distal femur metaphysis in mice. Transverse micro-computed tomography image slices that are 7µm thick were used to locate the position where the epiphysis-metaphysis transition occurs. This enabled the removal of the distal femur epiphysis at the exact transition point exposing the full extent of metaphyseal trabecular bone, allowing more accurate and consistent measurement of its strength. When applied to a murine model system consisting of five month old male wild-type (WT) and Ca(2+)/calmodulin dependent protein kinase kinase 2 (CaMKK2) knockout (KO) Camkk2(-/-) mice that possess recorded differences in trabecular bone volume, data collected using this method showed good correlation between bone volume fraction and strength of trabecular bone. In combination with micro-computed tomography and histology, this method will provide a comprehensive and consistent assessment of the microarchitecture and tissue strength of the cancellous bone in murine mouse models.

  20. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  1. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach.

    PubMed

    Harrison, Noel M; McDonnell, Pat; Mullins, Liam; Wilson, Niall; O'Mahoney, Denis; McHugh, Peter E

    2013-04-01

    Trabecular bone tissue failure can be considered as consisting of two stages: damage and fracture; however, most failure analyses of 3D high-resolution trabecular bone samples are confined to damage mechanisms only, that is, without fracture. This study aims to develop a computational model of trabecular bone consisting of an explicit representation of complete failure, incorporating damage criteria, fracture criteria, cohesive forces, asymmetry and large deformation capabilities. Following parameter studies on a test specimen, and experimental testing of bone sample to complete failure, the asymmetric critical tissue damage and fracture strains of ovine vertebral trabecular bone were calibrated and validated to be compression damage -1.16 %, tension damage 0.69 %, compression fracture -2.91 % and tension fracture 1.98 %. Ultimate strength and post-ultimate strength softening were captured by the computational model, and the failure of individual struts in bending and shear was also predicted. This modelling approach incorporated a cohesive parameter that provided a facility to calibrate ductile-brittle behaviour of bone tissue in this non-linear geometric and non-linear constitutive property analyses tool. Finally, the full accumulation of tissue damage and tissue fracture has been monitored from range of small magnitude (normal daily loading) through to specimen yielding, ultimate strength and post-ultimate strength softening.

  2. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice.

    PubMed

    Harvey, N C; Glüer, C C; Binkley, N; McCloskey, E V; Brandi, M-L; Cooper, C; Kendler, D; Lamy, O; Laslop, A; Camargos, B M; Reginster, J-Y; Rizzoli, R; Kanis, J A

    2015-09-01

    Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.

  3. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    PubMed

    Lu, Hongbin; Zheng, Cheng; Wang, Zhanwen; Chen, Can; Chen, Huabin; Hu, Jianzhong

    2015-01-01

    This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week) and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point). The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate the

  4. A histomorphometric study of necrotic femoral head in rabbits treated with extracorporeal shock waves

    PubMed Central

    Ma, Huan-Zhi; Zhou, Dong-Sheng; Li, Dong; Zhang, Wei; Zeng, Bing-Fang

    2017-01-01

    [Purpose] This study aimed to determine the effectiveness and mechanisms of extracorporeal shock wave therapy in the treatment of femoral head osteonecrosis. [Subjects and Methods] Histomorphometric analysis of necrotic femoral head in rabbits treated with shock waves was performed. Bilateral osteonecrosis of femoral heads was induced with methylprednisolone and lipopolysaccharide in eight rabbits. The left limb (study side) received shock waves to the femoral head. The right limb (control side) received no shock waves. Biopsies of the femoral heads were performed at 12 weeks after shock wave therapy. [Results] Necrotic femoral heads treated with shock waves, compared with controls, had higher bone volume per tissue volume, trabecular thickness, trabecular number, osteoblast surface/bone surface, osteoid surface/bone surface, osteoid thickness, mineralizing surface/bone surface, mineralizing apposition rate, and bone formation rate. However, trabecular separation was lower in shock wave-treated femoral heads than in controls. Eroded surface/bone surface and osteoclast surface/bone surface did not differ significantly between groups. [Conclusion] The bone mass of necrotic femoral heads treated with shock waves increases. Extracorporeal shock wave may promote bone repair in necrotic femoral heads through the proliferation and activation of osteoblasts. PMID:28210032

  5. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  6. Three-dimensional image registration of MR proximal femur images for the analysis of trabecular bone parameters

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Janet; Studholme, Colin; Carballido-Gamio, Julio; Link, Thomas M.; Majumdar, Sharmila

    2008-03-01

    This study investigated the feasibility of automatic image registration of MR high-spatial resolution proximal femur trabecular bone images as well as the effects of gray-level interpolation and volume of interest (VOI) misalignment on MR-derived trabecular bone structure parameters. For six subjects, a baseline scan and a follow-up scan of the proximal femur were acquired on the same day. An automatic image registration technique, based on mutual information, utilized a baseline and a follow-up scan to compute transform parameters that aligned the two images. These parameters were subsequently used to transform the follow-up image with three different gray-level interpolators. Nearest neighbor interpolation and b-spline approximation did not significantly alter bone parameters, while linear interpolation significantly modified bone parameters (p<0.01). Improvement in image alignment due to the automatic registration was determined by visually inspecting difference images and 3D renderings. This work demonstrates the first application of automatic registration, without prior segmentation, of high-spatial resolution trabecular bone MR images of the proximal femur. Additionally, effects due to imprecise analysis volume alignment are investigated. Inherent heterogeneity in trabecular bone structure and imprecise positioning of the VOI along the slice (A/P) direction resulted in significant changes in bone parameters (p<0.01). Results suggest that automatic mutual information registration using nearest-neighbor gray-level interpolation to transform the final image ensures VOI alignment between baseline and follow-up images and does not compromise the integrity of MR-derived trabecular bone parameters.

  7. Three-dimensional image registration of MR proximal femur images for the analysis of trabecular bone parameters

    PubMed Central

    Blumenfeld, Janet; Studholme, Colin; Carballido-Gamio, Julio; Carpenter, Dana; Link, Thomas M.; Majumdar, Sharmila

    2008-01-01

    This study investigated the feasibility of automatic image registration of MR high-spatial resolution proximal femur trabecular bone images as well as the effects of gray-level interpolation and volume of interest (VOI) misalignment on MR-derived trabecular bone structure parameters. For six subjects in a short-term study, a baseline scan and a follow-up scan of the proximal femur were acquired on the same day. For ten subjects in a long-term study, a follow-up scan of the proximal femur was acquired 1 year after the baseline. An automatic image registration technique, based on mutual information, utilized a baseline and a follow-up scan to compute transform parameters that aligned the two images. In the short-term study, these parameters were subsequently used to transform the follow-up image with three different gray-level interpolators. Nearest-neighbor interpolation and B-spline approximation did not significantly alter bone parameters, while linear interpolation significantly modified bone parameters (p<0.01). Improvement in image alignment due to the automatic registration for the long-term and short-term study was determined by inspecting difference images and 3D renderings. This work demonstrates the first application of automatic registration, without prior segmentation, of high-spatial resolution trabecular bone MR images of the proximal femur. Additionally, inherent heterogeneity in trabecular bone structure and imprecise positioning of the VOI along the slice (anterior–posterior) direction resulted in significant changes in bone parameters (p<0.01). Results suggest that automatic mutual information registration using B-spline approximation or nearest neighbor gray-level interpolation to transform the final image ensures VOI alignment between baseline and follow-up images and does not compromise the integrity of MR-derived trabecular bone parameters used in this study. PMID:18975709

  8. Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone.

    PubMed

    Kim, Woong; Oravec, Daniel; Nekkanty, Srikant; Yerramshetty, Janardhan; Sander, Edward A; Divine, George W; Flynn, Michael J; Yeni, Yener N

    2015-01-01

    Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63-90 years) were scanned using microCT and DTS. Anisotropy (μCT.DA), and the specimen-average and standard deviation of trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp) were obtained using stereology. Apparent modulus (EFEM), and the magnitude (VMExp/σapp) and variability (VMCV) of trabecular stresses were calculated using microCT-based finite element modeling. Mean intercept length, line fraction deviation and fractal parameters were obtained from coronal DTS slices, then correlated with stereological and finite element parameters using linear regression models. Twenty-one DTS parameters (out of 27) correlated to BV/TV, Tb.Th, Tb.N, Tb.Sp and/or μCT.DA (p<0.0001-p<0.05). DTS parameters increased the explained variability in EFEM and VMCV (by 9-11% and 13-19%, respectively; p<0.0001-p<0.04) over that explained by BV/TV. In conclusion, DTS has potential for quantitative assessment of cancellous bone and may be used as a modality complementary to those measuring bone mass for assessing spinal fracture risk.

  9. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to

  10. Deficits in Trabecular Bone Microarchitecture in Young Women With Type 1 Diabetes Mellitus.

    PubMed

    Abdalrahaman, Naiemh; McComb, Christie; Foster, John E; McLean, John; Lindsay, Robert S; McClure, John; McMillan, Martin; Drummond, Russell; Gordon, Derek; McKay, Gerard A; Shaikh, M Guftar; Perry, Colin G; Ahmed, S Faisal

    2015-08-01

    The pathophysiological mechanism of increased fractures in young adults with type 1 diabetes mellitus (T1DM) is unclear. We conducted a case-control study of trabecular bone microarchitecture and vertebral marrow adiposity in young women with T1DM. Thirty women with T1DM with a median age (range) age of 22.0 years (16.9, 36.1) attending one outpatient clinic with a median age at diagnosis of 9.7 years (0.46, 14.8) were compared with 28 age-matched healthy women who acted as controls. Measurements included MRI-based assessment of proximal tibial bone volume/total volume (appBV/TV), trabecular separation (appTb.Sp), vertebral bone marrow adiposity (BMA), and abdominal adipose tissue and biochemical markers of GH/IGF-1 axis (IGF-1, IGFBP3, ALS) and bone turnover. Median appBV/TV in cases and controls was 0.3 (0.22, 0.37) and 0.33 (0.26, 0.4), respectively (p = 0.018) and median appTb.Sp in T1DM was 2.59 (2.24, 3.38) and 2.32 (2.03, 2.97), respectively (p = 0.012). The median appBV/TV was 0.28 (0.22, 0.33) in those cases with retinopathy (n = 15) compared with 0.33 (0.25, 0.37) in those without retinopathy (p = 0.02). Although median visceral adipose tissue in cases was higher than in controls at 5733 mm(3) (2030, 11,144) and 3460 mm(3) (1808, 6832), respectively (p = 0.012), there was no difference in median BMA, which was 31.1% (9.9, 59.9) and 26.3% (8.5, 49.8) in cases and controls, respectively (p = 0.2). Serum IGF-1 and ALS were also lower in cases, and the latter showed an inverse association to appTbSp (r = -0.30, p = 0.04). Detailed MRI studies in young women with childhood-onset T1DM have shown clear deficits in trabecular microarchitecture of the tibia. Underlying pathophysiological mechanisms may include a microvasculopathy.

  11. Differential gene expression of bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar L.) vertebrae.

    PubMed

    Krossøy, Christel; Ornsrud, Robin; Wargelius, Anna

    2009-12-01

    The tissue-specific gene expression of the vitamin K-dependent proteins bone gamma-carboxyglutamate-protein (BGP) and matrix gamma-carboxyglutamate-protein (MGP) in Atlantic salmon (Salmo salar L.) was investigated. In previous studies, BGP, the most abundant non-collagenous protein of bone, was almost exclusively associated with bone, whereas the non-structural protein MGP has a more widespread tissue distribution. In-situ hybridization of juvenile Atlantic salmon ( approximately 40 g, fresh water) vertebrae demonstrated expression of bgp and mgp mRNA in osteoblasts lining the trabecular bone, whereas no staining was observed in the compact bone. By separating the trabecular and compact bone of both juvenile ( approximately 40 g, fresh water) and adult ( approximately 1000 g, sea water) Atlantic salmon, we observed that the two vertebral bone compartments displayed different levels of bgp, whereas no such differences were seen for mgp. Measurements of the mineral content and Ca/P molar ratio in adult salmon revealed no significant differences between trabecular and compact bone. In conclusion, the osteoblasts covering the salmon vertebrae have unique gene expression patterns and levels of bgp and mgp. Further, the study confirms the presence of mRNA from the vitamin K-dependent proteins BGP and MGP in the vertebrae, fin and gills of Atlantic salmon.

  12. Numerical simulation on the adaptation of forms in trabecular bone to mechanical disuse and basic multi-cellular unit activation threshold at menopause

    NASA Astrophysics Data System (ADS)

    Gong, He; Fan, Yubo; Zhang, Ming

    2008-04-01

    The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical- biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause. The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced significantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mechanical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.

  13. Reduced trabecular bone mass and strength in mice overexpressing Gα11 protein in cells of the osteoblast lineage.

    PubMed

    Dela Cruz, Ariana; Mattocks, Michael; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2014-02-01

    G protein-coupled receptors (GPCRs) require G proteins for intracellular signaling to regulate a variety of growth and maintenance processes, including osteogenesis and bone turnover. Bone maintenance events may be altered by changes in the activity or level of G proteins, which then modify signaling in bone cells such as osteoblasts. We have previously reported increased levels of Gα11 protein and signaling to phospholipase C/protein kinase C pathways in response to dexamethasone in osteoblastic UMR 106-01 cells. Here we generated pOBCol3.6-GNA11 transgenic mice that overexpress Gα11 protein in cells of the osteoblast lineage (G11-Tg mice). G11-Tg mice exhibit an osteopenic phenotype characterized by significant reductions in trabecular bone mineral density, thickness, number and strength. The numbers of osteoblasts and osteocytes were unchanged in G11-Tg bone, but early markers of osteoblast differentiation, Alp and Bsp, were increased while the late stage differentiation marker Ocn was not changed suggesting reduced osteoblast maturation in G11-Tg trabecular bone which was accompanied by a decreased bone formation rate. Furthermore, in vitro cultures of G11-Tg primary osteoblasts show delayed osteoblast differentiation and mineralization. Histological analyses also revealed increased osteoclast parameters, accompanied by elevated mRNA expression of Trap and Ctsk. mRNA levels of Rankl and M-csf were elevated in vitro in bone marrow stromal cells undergoing osteogenesis and in trabecular bone in vivo. Together, these findings demonstrate that increasing Gα11 protein expression in osteoblasts can alter gene expression and result in a dual mechanism of trabecular bone loss.

  14. Trabecular Bone Score Reflects Trabecular Microarchitecture Deterioration and Fragility Fracture in Female Adult Patients Receiving Glucocorticoid Therapy: A Pre-Post Controlled Study

    PubMed Central

    2017-01-01

    A recently developed diagnostic tool, trabecular bone score (TBS), can provide quality of trabecular microarchitecture based on images obtained from dual-energy X-ray absorptiometry (DXA). Since patients receiving glucocorticoid are at a higher risk of developing secondary osteoporosis, assessment of bone microarchitecture may be used to evaluate risk of fragility fractures of osteoporosis. In this pre-post study of female patients, TBS and fracture risk assessment tool (FRAX) adjusted with TBS (T-FRAX) were evaluated along with bone mineral density (BMD) and FRAX. Medical records of patients with (n = 30) and without (n = 16) glucocorticoid treatment were retrospectively reviewed. All patients had undergone DXA twice within a 12- to 24-month interval. Analysis of covariance was conducted to compare the outcomes between the two groups of patients, adjusting for age and baseline values. Results showed that a significant lower adjusted mean of TBS (p = 0.035) and a significant higher adjusted mean of T-FRAX for major osteoporotic fracture (p = 0.006) were observed in the glucocorticoid group. Conversely, no significant differences were observed in the adjusted means for BMD and FRAX. These findings suggested that TBS and T-FRAX could be used as an adjunct in the evaluation of risk of fragility fractures in patients receiving glucocorticoid therapy. PMID:28127556

  15. Microdistribution and local dosimetry of /sup 226/Ra in trabecular bone of the beagle

    SciTech Connect

    Polig, E.; Jee, W.S.; Dell, R.B.; Johnson, F.

    1988-11-01

    Sections of lumbar vertebral bodies of young adult beagle dogs have been analyzed autoradiographically to characterize and quantify the local distribution of 226Ra by means of a scanning microscope photometer. The animals received a single injection of 355 kBq/kg body weight and were serially sacrificed at 5 to 1381 days postinjection. Hotspot concentrations decreased from about 51 kBq/g bone at 5 days to 20 kBq/g at 1381 days postinjection. The diffuse concentration changed from 8.3 to 1.9 kBq/g. The mean 226Ra concentration in the trabecular areas scanned was initially higher and at the end of the observation period lower than the average calculated for the whole lumbar vertebral column. Density and area of, and fraction of bone activity in, hotspots virtually remained constant. With time hotspots tended to become translocated into bone volume. Mean dose rates to lining cells from both hotspots and diffuse labels decreased from about 210 mGy/d at early postinjection times to 105 mGy/d. This corresponds to 2.5 to 1.1 times the average skeletal dose rate. A discussion of the level of irradiation in terms of hit frequencies shows that osteoblasts in the initial phase of hotspot formation receive about 60 hits to their nucleus for the duration of bone formation. After about 6 months, however, the 226Ra concentration in new bone and the corresponding hit frequency appears to be low enough that interference with bone formation is unlikely. Morphometric measurements showed that abnormal bone accretion and thickening of trabeculae occurred. This was interpreted as an imbalance between bone formation and resorption. Both formation and resorption seem to be substantially lowered compared to control animals.

  16. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway.

    PubMed

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  17. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  18. Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence.

    PubMed

    Hudelmaier, Martin; Kollstedt, A; Lochmüller, E M; Kuhn, V; Eckstein, F; Link, T M

    2005-09-01

    High-resolution magnetic resonance imaging (hrMRI) has recently made it possible to evaluate trabecular bone structure in vivo. Despite obvious gender differences in fracture incidence at the distal radius, little is known about gender differences in trabecular bone microarchitecture and its relationship to the structural strength of the forearm. The aim of this study was to determine trabecular bone structure in the distal radius of elderly women and men and its correlation with failure loads of the distal radius as determined in a fall configuration. Specifically, we tested the hypotheses that structural indices differ between women and men and that they offer information that is independent from BMD for predicting structural strength. Intact right arms were obtained from 73 formalin-fixed cadavers (age 80+/-11 years, 43 women, 30 men). Trabecular structural indices (apparent bone volume fraction [app. BV/TV], trabecular number [app. Tb.N], trabecular separation [app. Tb.Sp], trabecular thickness [app. Tb.Th] and fractal dimension [Frac.Dim]) were assessed in the distal metaphysis, using hrMRI with 156 microm in-plane resolution and proprietary digital image analysis, while BMD was measured with dual X-ray absorptiometry (DXA). Women displayed significantly lower BMD (-29.8%, p <0.001), app. BV/TV (-8.2%, p <0.05) and app. Tb.Th (-10.2%, p <0.001) than men, whereas app. Tb.N, app. Tb.Sp. and fractal dimension did not differ significantly. Structural parameters differed between normal and osteopenic women (BV/TV: -11%, p <0.01; Tb.Th: -8%, p <0.001) and between normal and osteoporotic women BV/TV: -21%, p <0.001; Tb.Th: -16%, p <0.001). App. BV/TV, app. Tb.Th and fractal dimension provided information independent from BMD in the prediction of radial failure loads in multiple regression models. These findings imply that it should be of clinical interest to monitor both bone mass and trabecular microstructure for predicting osteoporotic fracture risk.

  19. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis.

    PubMed

    Scherf, Heike; Tilgner, Rico

    2009-09-01

    In the last decade, high-resolution computed tomography (CT) and microcomputed tomography (micro-CT) have been increasingly used in anthropological studies and as a complement to traditional histological techniques. This is due in large part to the ability of CT techniques to nondestructively extract three-dimensional representations of bone structures. Despite prior studies employing CT techniques, no completely reliable method of bone segmentation has been established. Accurate preprocessing of digital data is crucial for measurement accuracy, especially when subtle structures such as trabecular bone are investigated. The research presented here is a new, reproducible, accurate, and fully automated computerized segmentation method for high-resolution CT datasets of fossil and recent cancellous bone: the Ray Casting Algorithm (RCA). We compare this technique with commonly used methods of image thresholding (i.e., the half-maximum height protocol and the automatic, adaptive iterative thresholding procedure). While the quality of the input images is crucial for conventional image segmentation, the RCA method is robust regarding the signal to noise ratio, beam hardening, ring artifacts, and blurriness. Tests with data of extant and fossil material demonstrate the superior quality of RCA compared with conventional thresholding procedures, and emphasize the need for careful consideration of optimal CT scanning parameters.

  20. Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats

    PubMed Central

    Hu, Shidi; Li, Jin; Liu, Lu; Dai, Ruchun; Sheng, Zhifeng; Wu, Xianping; Feng, Xiqiao; Yao, Xuefeng; Liao, Eryuan; Keller, Evan; Jiang, Yebin

    2015-01-01

    Bone mechanical properties encompass both geometric and material factors, while the effects of estrogen deficiency on the material and structural characteristics of bone at micro- to nanoscales are still obscure. We performed a series of combined methodological experiments, including nanoindentation assessment of intrinsic material properties, atomic force microscopy (AFM) characterization of trabecular (Tb) nanostructure, and Tb microarchitecture and 2D BMD. At 15 weeks after surgery, we found significantly less Tb bone mineral density (BMD) at organ (−27%) and at tissue level (−12%), Tb bone volume fraction (−29%), Tb thickness (−14%), and Tb number (−17%) in ovariectomy (OVX) rats than in sham operated (SHAM) rats, while the structure model index (+91%) and Tb separation (+19%) became significantly greater. AFM images showed lower roughness Tb surfaces with loosely packed large nodular structures and less compacted interfibrillar space in OVX than in SHAM. However, no statistically significant changes were in the Tb intrinsic material properties—nanoindentation hardness, elastic modulus, and plastic deformation—nanoindentation depths, and residual areas. Therefore, estrogen deprivation results in a dramatic deterioration in Tb micro/nanoarchitectures, 3D volumetric BMD at both organ and tissue levels, and 2D BMD, but not in the nanomechanical properties of the trabeculae per se. PMID:26273294

  1. The effect of a low dose of transforming growth factor beta1 (TGF-beta1) on the early bone-healing around oral implants inserted in trabecular bone.

    PubMed

    Nikolidakis, Dimitris; Meijer, Gert J; Oortgiesen, Daniel A W; Walboomers, X Frank; Jansen, John A

    2009-01-01

    Transforming growth factor beta1 (TGF-beta1) has been shown to stimulate bone healing in several animal models and may influence bone response directly after implant installation. Aim of the present study is to investigate the effect of a low dose of TGF-beta1, on the early bone-healing around oral implants placed in trabecular bone (femoral condyle of goats). Twenty-four cylindrical screw type implants were used and TGF-beta1 in two different concentrations were applied on sixteen of them. Each animal received three implants: one Ti (control), one Ti loaded with 0.5 microg TGF-beta1 (Ti-TGF(0.5)), and one Ti loaded with 1.0 microg TGF-beta1 (Ti-TGF(1.0)). The eight animals were euthanized at 6 weeks after implantation and implants with surrounding tissue were retrieved for histological preparation and histomorphometrical evaluation. Light microscopical analysis showed the occurrence of an intervening fibrous tissue layer around about half of the TGF-beta1 loaded implants. Further, the histomorphometrical measurements revealed that the Ti implants demonstrated the highest percentage of bone-implant contact (65+/-4%), while Ti-TGF(1.0) implants showed the lowest amount (45+/-12%). The difference between these two groups was statistically significant. On basis of the results, it is concluded that a low dose of TGF-beta1 has a negative effect on the integration of oral implants in trabecular bone during the early post-implantation healing phase.

  2. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    PubMed

    Yang, Wuchen; Guo, Dayong; Harris, Marie A; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S; Edwards, James R; Mundy, Gregory R; Lichtler, Alex; Kream, Barbara E; Rowe, David W; Kalajzic, Ivo; David, Val; Quarles, Darryl L; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S; Martin, James F; Mishina, Yuji; Harris, Stephen E

    2013-09-15

    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.

  3. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats*.

    PubMed

    Scholz-Ahrens, Katharina E; Açil, Yahya; Schrezenmeir, Jürgen

    2002-10-01

    We investigated the effects of dietary oligofructose and Ca on bone structure in ovariectomized rats, using microradiography and histomorphometry. Ninety-six animals were allocated to seven experimental groups: G1, sham-operated; G2-G7, ovariectomized. Semi-purified diets containing 5 g Ca/kg (recommended content) without oligofructose (G1, G2) or with 25, 50 or 100 g oligofructose/kg (G3, G4, G5) or 10 g Ca/kg (high content) without oligofructose (G6) or with 50 g oligofructose/kg (G7) were fed for 16 weeks. At the recommended level of Ca, high oligofructose (G5) increased femur mineral levels in ovariectomized rats, while medium oligofructose did so at high Ca. Increasing Ca in the absence of oligofructose did not increase femur mineral content. Trabecular bone area (%) analysed in the tibia was 10.3 (sem 1.2) (G1), 7.7 (sem 0.6) (G2), 9.3 (sem 0.7) (G3), 9.4 (sem 1.0) (G4), 9.5 (sem 0.7) (G5), 10.2 (sem 0.8) (G6), and 12.6 (sem 0.8) (G7). At the recommended level of Ca, 25 g oligofructose/kg prevented loss of trabecular area due to increased trabecular thickness, while 50 or 100 g oligofructose/kg increased trabecular perimeter. At high Ca, oligofructose prevented loss of bone area due to increased trabecular number but similar thickness (G7 v. G6). When Ca was raised in the presence of oligofructose (G7), trabecular area and cortical thickness were highest, while loss of trabecular connectivity was lowest of all groups. At the same time, lumbar vertebra Ca was higher; 44.0 (sem 0.8) (G7) compared with 41.6 (sem 0.8) (G2), 41.4 (sem 0.7) (G4), and 40.5 (sem 1.0) mg (G6). We conclude that ovariectomy-induced loss of bone structure in the tibia was prevented but with different trabecular architecture, depending on whether dietary Ca was increased, oligofructose was incorporated, or both. Oligofructose was most effective when dietary Ca was high.

  4. Fractal lacunarity of trabecular bone and magnetic resonance imaging: New perspectives for osteoporotic fracture risk assessment

    PubMed Central

    Zaia, Annamaria

    2015-01-01

    Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest

  5. Fractal lacunarity of trabecular bone and magnetic resonance imaging: New perspectives for osteoporotic fracture risk assessment.

    PubMed

    Zaia, Annamaria

    2015-03-18

    Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest

  6. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.

    PubMed

    Gilbert, Robert P; Guyenne, Philippe; Li, Jing

    2014-02-01

    In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network.

  7. Regional Variations in Shear Strength and Density of the Human Thoracic Vertebral Endplate and Trabecular Bone

    PubMed Central

    Jauregui, Julio J.; Cornish, Nathan; Jason-Rousseau, Rebecca; Chatterjee, Dipal; Feuer, Gavriel; Hayes, Westley; Kapadia, Bhaveen H.; Carter, John N.; Yoshihara, Hiroyuki; Saha, Subrata

    2017-01-01

    Background Previous studies investigated the overall mechanical strength of the vertebral body; however, limited information is available on the biomechanical properties of different regions within the vertebral endplate and cancellous bone. In addition, the correlation between mechanical strength and various density measurements has not been studied yet. Methods Thoracic (T10) vertebrae were harvested from fifteen human cadaveric spines (average age: 77 years old). Twelve cylindrical cores of 7.2 mm (diameter) by 3.2 mm (height) were prepared from each vertebral body. Shear was produced using a stainless steel tubular blade and measured with a load cell from a mechanical testing machine. Optical and bulk densities were calculated before mechanical testing. Apparent, material, and ash densities were measured after testing. Results Material density and shear strength increased from anterior to lateral regions of both endplate and cancellous bone. Endplate shear strength was significantly lower in the anterior (0.52 ± 0.08 MPa) than in the lateral region (2.72 ± 0.59 MPa) (p=0.017). Trabecular bone maximum load carrying capacity was 5 times higher in the lateral (12 ± 2.74 N) (p=0.09) and 4.5 times higher in the central (10 ± 2.24 N) (p=0.2) than in the anterior (2 ± 0.60 N) regions. Mechanical strength positively correlated with ash density, and even moreso with material density. Conclusion Shear strength was the lowest at the anterior region and highest at the lateral region for both endplate and cancellous bone. Material density had the best correlation with mechanical strength. Newer spinal implants could optimize the loading in the lateral aspects of both endplate and cancellous bone to reduce the likelihood of screw loosening and the subsidence of disc replacement devices. This study was reviewed by the SUNY Downstate Medical Center IRB Committee; IRB#: 533603-2. PMID:28377865

  8. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.

    PubMed

    Gu, Yifei; Wang, Gang; Zhang, Xin; Zhang, Yadong; Zhang, Changqing; Liu, Xin; Rahaman, Mohamed N; Huang, Wenhai; Pan, Haobo

    2014-03-01

    Three-dimensional porous scaffolds of a borosilicate bioactive glass (designated 13-93B1), with the composition 6Na2O-8K2O-8MgO-22CaO-18B2O3-36SiO2-2P2O5 (mol%), were prepared using a foam replication technique and evaluated in vitro and in vivo. Immersion of the scaffolds for 30 days in a simulated body fluid in vitro resulted in partial conversion of the glass to a porous hydroxyapatite composed of fine needle-like particles. The capacity of the scaffolds to support bone formation in vivo was evaluated in non-critical sized defects created in the femoral head of rabbits. Eight weeks post-implantation, the scaffolds were partially converted to hydroxyapatite, and they were well integrated with newly-formed bone. When loaded with platelet-rich plasma (PRP), the scaffolds supported bone regeneration in segmental defects in the diaphysis of rabbit radii. The results indicate that these 13-93B1 scaffolds, loaded with PRP or without PRP, are beneficial for bone repair due to their biocompatibility, conversion to hydroxyapatite, and in vivo bone regenerative properties.

  9. Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients

    NASA Astrophysics Data System (ADS)

    Lü, Linwei; Meng, Guangwei; Gong, He; Zhu, Dong; Gao, Jiazi; Fan, Yubo

    2015-04-01

    This study aims to investigate the regional variations of trabecular morphological parameters and mechanical parameters of the femoral head, as well as to determine the relationship between trabecular morphological and mechanical parameters. Seven femoral heads from patients with fractured proximal femur were scanned using a micro-CT system. Each femoral head was divided into 12 sub-regions according to the trabecular orientation. One trabecular cubic model was reconstructed from each sub-region. A total of 81 trabecular models were reconstructed, except three destroyed sub-regions from two femoral heads during the surgery. Trabecular morphological parameters, i.e. trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), specific bone surface (BS/BV), bone volume fraction (BV/TV), structural model index (SMI), and degree of anisotropy (DA) were measured. Micro-finite element analyses were performed for each cube to obtain the apparent Young's modulus and tissue level von Mises stress distribution under 1 % compressive strain along three orthogonal directions, respectively. Results revealed significant regional variations in the morphological parameters (). Young's moduli along the trabecular orientation were significantly higher than those along the other two directions. In general, trabecular mechanical properties in the medial region were lower than those in the lateral region. Trabecular mechanical parameters along the trabecular orientation were significantly correlated with BS/BV, BV/TV, Tb.Th, and DA. In this study, regional variations of microstructural features and mechanical properties in the femoral head of patients with proximal femur fracture were thoroughly investigated at the tissue level. The results of this study will help to elucidate the mechanism of femoral head fracture for reducing fracture risk and developing treatment strategies for the elderly.

  10. The mechanical behavior of PMMA/bone specimens extracted from augmented vertebrae: a numerical study of interface properties, PMMA shrinkage and trabecular bone damage.

    PubMed

    Kinzl, M; Boger, A; Zysset, P K; Pahr, D H

    2012-05-11

    Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.

  11. MRI findings of new uptake in the femoral head detected on follow-up bone scans.

    PubMed

    Kim, Seong Ho; Yoo, Hye Jin; Kang, Yusuhn; Choi, Ja-Young; Hong, Sung Hwan

    2015-03-01

    OBJECTIVE. The purpose of this article is to suggest clinical indications for MRI in patients with breast cancer who have new uptake lesions in the femoral head on follow-up bone scans, by evaluating the incidence and causes of new uptake lesions. MATERIALS AND METHODS. Between January 2002 and July 2013, a total of 145 patients with breast cancer who showed new uptake in the femoral head on follow-up bone scans were included in our study. They were classified into two groups: group 1 consisted of 125 patients without known bone metastases, and group 2 consisted of 20 patients who already had bone metastases other than that in the femoral head. The Fisher exact test was performed for the statistical analysis. Thereafter, we reviewed MR images for characterization of the new abnormal uptake in the femoral head. RESULTS. New uptake lesions in the femoral head were metastatic in only 4.8% (6/125) of group 1 patients but in 75% (15/20) of group 2 patients (p < 0.0001). In both groups, no patient with a single uptake lesion in the femoral head had bone metastasis, whereas all patients with more than five new uptake lesions, including those of the femoral head, showed bone metastasis. Most MRI diagnoses for new uptake in the femoral head were fibrocystic change (15/30, 50%) and subchondral fracture (11/30, 36.7%). CONCLUSION. Most of the new uptake lesions in the femoral head detected on the follow-up bone scans in patients with breast cancer were benign. However, MRI could be considered in patients with known bone metastasis or with multiple new uptake lesions on bone scans.

  12. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  13. Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography

    PubMed Central

    Tu, Shu-Ju; Wang, Shun-Ping; Cheng, Fu-Chou; Weng, Chia-En; Huang, Wei-Tzu; Chang, Wei-Jeng; Chen, Ying-Ju

    2017-01-01

    Objective The literature shows that bone mineral density (BMD) and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT) to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice. Materials and methods Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3) was obtained using a standard phantom. Results We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA), and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96%) decrease in Mg and a 40% (71%) decrease in Ca in plasma (urine excretion). Conclusions This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice. PMID:28369124

  14. Assessment of trabecular bone mineral density using quantitative computed tomography in normal cats.

    PubMed

    Cheon, Haengbok; Choi, Wooshin; Lee, Youngjae; Lee, Donghoon; Kim, Juhyung; Kang, Ji-Houn; Na, Kijeong; Chang, Jinhwa; Chang, Dongwoo

    2012-11-01

    The aim of this study was to assess age-related changes and anatomic variation in trabecular bone mineral density (tBMD) using quantitative computed tomography (QCT) in normal cats. Seventeen normal cats were included in this study and divided into the following 3 age groups:<6 months (n=4), 2-5 years (n=10) and >6 years (n=3). A computed tomographic scan of each vertebra from the 12th thoracic to the 7th lumbar spine and the pelvis was performed with a bone-density phantom (50, 100 and 150 mg/cm(3), calcium hydroxyapatite, CIRS phantom(®)). On the central transverse section, the elliptical region of interest (ROI) was drawn to measure the mean Hounsfield unit (HU) value. Those values were converted to equivalent tBMD (mg/cm(3)) by use of the bone-density phantom and linear regression analysis (r(2) >0.95). The mean tBMD value of the thoracic vertebrae (369.4 ± 31.8 mg/cm(3)) was significantly higher than that of the lumbar vertebrae (285 ± 58.1 mg/cm(3)). The maximum tBMD occurred at the T12, T13 and L1 levels in all age groups. There was a statistically significant difference in the mean tBMD value among the 3 age groups at the T12 (P<0.001), T13 (P<0.001) and L4 levels (P=0.013), respectively. The present study suggests that age-related changes and anatomic variation in tBMD values should be considered when assessing tBMD using QCT in cats with bone disorders.

  15. Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method.

    PubMed

    Moreschi, H; Callé, S; Guerard, S; Mitton, D; Renaud, G; Defontaine, M

    2011-03-01

    Dynamic acousto-elastic testing (DAET) is based on the coupling of a low-frequency (LF) acoustic wave and high-frequency ultrasound (US) pulses (probing wave). It was developed to measure US viscoelastic and dissipative non-linearity in trabecular bone. It is well known that this complex biphasic medium contains microdamage, even when tissues are healthy. The purpose of the present study was to assess the sensitivity of DAET to monitor microdamage in human calcanei. Three protocols were therefore performed to investigate the regional heterogeneity of the calcaneus, the correlation between DAET measurements and microdamage revealed by histology, and DAET sensitivity to mechanically induced fatigue microdamage. The non-linear elastic parameter beta was computed for all these protocols. The study demonstrated the presence of high viscoelastic and dissipative non-linearity only in the region of the calcaneus close to the anterior talocalcaneal articulation (region of high bone density). Protocols 1 and 2 also showed that most unsorted calcanei did not naturally exhibit high non-linearity, which is correlated with a low level of microcracks. Nevertheless, when microdamage was actually present, high levels of US non-linearity were always found, with characteristic non-linear signatures such as hysteresis and tension/compression asymmetry. Finally, protocol 3 demonstrated the high sensitivity of DAET measurement to fatigue-induced microdamage.

  16. Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone.

    PubMed

    Carretta, Roberto; Stüssi, Edgar; Müller, Ralph; Lorenzetti, Silvio

    2013-08-01

    The ability to determine patient-specific mechanical properties of trabecular bone is needed for a reliable estimation of fracture risks. Tissue mechanics and material composition are important factors that contribute to trabecular bone performance, but only a few studies have investigated the post-yield behaviour of human trabecular bone, and limited knowledge for modelling is available about ultimate properties needed. Aim of this paper was to investigate absolute values and deviation of mechanical and material properties of human trabecular bone at the tissue level, in a healthy and osteoporotic donor. A combination of tensile and bending tests of single trabeculae up to failure, μCT measurement of sample geometry and finite element analysis were incorporated to determine mechanical properties. The samples were analysed with Raman spectroscopy to evaluate the material composition. High within-subject variability was found, for both the healthy and osteoporotic donor. Nevertheless, the two donors could be separated by analysing the ultimate strain and post-yield work, as well as two of the material parameters (B-type carbonate substitution ratio and collagen cross-link ratio). It indicates that tissue level properties seem to be relevant also for macroscopic mechanical behaviour. These findings also suggest that the mechanical variability for the inelastic region at the tissue level may be associated with varying material properties, while until yielding occurs our data does not suggest any connection between the mechanical and the investigated material. Finally, a set of mechanical properties of human bone have been reported that are a relevant reference for computational studies and FE analysis.

  17. The effect of the cathepsin K inhibitor ONO-5334 on trabecular and cortical bone in postmenopausal osteoporosis: the OCEAN study.

    PubMed

    Engelke, Klaus; Nagase, Shinichi; Fuerst, Thomas; Small, Maria; Kuwayama, Tomohiro; Deacon, Stephen; Eastell, Richard; Genant, Harry K

    2014-03-01

    ONO-5334 (Ono Pharmaceutical Co., Ltd., Osaka, Japan) inhibits cathepsin K and has been shown to increase areal bone mineral density (BMD) at the hip and spine in postmenopausal osteoporosis. Quantitative computed tomography (QCT) allows the study of the cortical and trabecular bone separately and provides structural information such as cortical thickness. We investigated the impact of 2 years of cathepsin K inhibition on these different bone compartments with ONO-5334. The clinical study was a randomized, double-blind, placebo, and active controlled parallel group study conducted in 13 centers in six European countries. The original study period of 12 months was extended by another 12 months. A total of 147 subjects (age 55-75 years) of the QCT substudy who participated in the extension period were included. Subjects had been randomized into one of five treatment arms: placebo; ONO-5334 50 mg twice per day (BID); ONO-5334 100 mg once daily (QD); ONO-5334 300 mg QD; or alendronate 70 mg once weekly (QW). QCT was obtained to evaluate bone structure at the lumbar spine and proximal femur. After 24 months ONO-5334 showed statistically significant increases versus placebo for integral, trabecular, and cortical BMD at the spine and the hip (for ONO-5334 300 mg QD, BMD increases were 10.5%, 7.1%, and 13.4% for integral, cortical, and trabecular BMD at the spine, respectively, and 6.2%, 3.4%, and 14.6% for integral, cortical, and trabecular total femur BMD, respectively). Changes in cortical and trabecular BMD in the spine and hip were similar for alendronate as for ONO-5334. Integral volume did not demonstrate statistically significant changes under ONO-5334 treatment, thus there was no evidence of periosteal apposition, neither at the spine nor at the femur. Cortical thickness changes were not statistically significant for ONO-5334 in the spine and hip, with exception of a 2.1% increase after month 24 in the intertrochanter for ONO-5334 300 mg QD. Over 2

  18. Trabecular volumetric bone mineral density is associated with previous fracture during childhood and adolescence in males: the GOOD study.

    PubMed

    Darelid, Anna; Ohlsson, Claes; Rudäng, Robert; Kindblom, Jenny M; Mellström, Dan; Lorentzon, Mattias

    2010-03-01

    Areal bone mineral density (aBMD) measured with dual-energy X-ray absorptiometry (DXA) has been associated with fracture risk in children and adolescents, but it remains unclear whether this association is due to volumetric BMD (vBMD) of the cortical and/or trabecular bone compartments or bone size. The aim of this study was to determine whether vBMD or bone size was associated with X-ray-verified fractures in men during growth. In total, 1068 men (aged 18.9 +/- 0.6 years) were included in the population-based Gothenburg Osteoporosis and Obesity Determinants (GOOD) Study. Areal BMD was measured by DXA, whereas cortical and trabecular vBMD and bone size were measured by peripheral quantitative computerized tomography (pQCT). X-ray records were searched for fractures. Self-reported fractures in 77 men could not be confirmed in these records. These men were excluded, resulting in 991 included men, of which 304 men had an X-ray-verified fracture and 687 were nonfracture subjects. Growth charts were used to establish the age of peak height velocity (PHV, n = 600). Men with prevalent fractures had lower aBMD (lumbar spine 2.3%, p = .005; total femur 2.6%, p = .004, radius 2.1%, p < .001) at all measured sites than men without fracture. Using pQCT measurements, we found that men with a prevalent fracture had markedly lower trabecular vBMD (radius 6.6%, p = 7.5 x 10(-8); tibia 4.5%, p = 1.7 x 10(-7)) as well as a slightly lower cortical vBMD (radius 0.4%, p = .0012; tibia 0.3%, p = .015) but not reduced cortical cross-sectional area than men without fracture. Every SD decrease in trabecular vBMD of the radius and tibia was associated with 1.46 [radius 95% confidence interval (CI) 1.26-1.69; tibia 95% CI 1.26-1.68] times increased fracture prevalence. The peak fracture incidence coincided with the timing of PHV (+/-1 year). In conclusion, trabecular vBMD but not aBMD was independently associated with prevalent X-ray-verified fractures in young men. Further studies are

  19. Directional fractal signature methods for trabecular bone texture in hand radiographs: Data from the Osteoarthritis Initiative

    PubMed Central

    Wolski, M.; Podsiadlo, P.; Stachowiak, G. W.

    2014-01-01

    Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FSSta), vertical (FSV) and horizontal (FSH) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in

  20. Directional fractal signature methods for trabecular bone texture in hand radiographs: Data from the Osteoarthritis Initiative

    SciTech Connect

    Wolski, M. Podsiadlo, P.; Stachowiak, G. W.

    2014-08-15

    Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation of fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early

  1. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer

    PubMed Central

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae

    2015-01-01

    Objectives The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. Methods We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Results Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. Conclusions These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important. PMID:26279958

  2. Protection of trabecular bone in ovariectomized rats by turmeric (Curcuma longa L.) is dependent on extract composition.

    PubMed

    Wright, Laura E; Frye, Jennifer B; Timmermann, Barbara N; Funk, Janet L

    2010-09-08

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague-Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60 mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy X-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by microcomputerized tomography (microCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor.

  3. Protection of Trabecular Bone in Ovariectomized Rats by Turmeric (Curcuma longa L.) is Dependent on Extract Composition

    PubMed Central

    Wright, Laura E.; Frye, Jennifer B.; Timmermann, Barbara N.; Funk, Janet L.

    2010-01-01

    Extracts prepared from turmeric (Curcuma longa L., [Zingiberaceae]) containing bioactive phenolic curcuminoids were evaluated for bone-protective effects in a hypogonadal rat model of postmenopausal osteoporosis. Three-month female Sprague Dawley rats were ovariectomized (OVX) and treated with a chemically complex turmeric fraction (41% curcuminoids by weight) or a curcuminoid-enriched turmeric fraction (94% curcuminoids by weight), both dosed at 60mg/kg 3x per week, or vehicle alone. Effects of two months of treatment on OVX-induced bone loss were followed prospectively by serial assessment of bone mineral density (BMD) of the distal femur using dual-energy x-ray absorptiometry (DXA), while treatment effects on trabecular bone microarchitecture were assessed at two months by micro-computerized tomography (μCT). Chemically complex turmeric did not prevent bone loss, however, the curcuminoid-enriched turmeric prevented up to 50% of OVX-induced loss of trabecular bone and also preserved the number and connectedness of the strut-like trabeculae. These results suggest that turmeric may have bone-protective effects but that extract composition is a critical factor. PMID:20695490

  4. Genetic algorithms as a useful tool for trabecular and cortical bone segmentation.

    PubMed

    Janc, K; Tarasiuk, J; Bonnet, A S; Lipinski, P

    2013-07-01

    The aim of this study was to find a semi-automatic method of bone segmentation on the basis of computed tomography (CT) scan series in order to recreate corresponding 3D objects. So, it was crucial for the segmentation to be smooth between adjacent scans. The concept of graphics pipeline computing was used, i.e. simple graphics filters such as threshold or gradient were processed in a manner that the output of one filter became the input of the second one resulting in so called pipeline. The input of the entire stream was the CT scan and the output corresponded to the binary mask showing where a given tissue is located in the input image. In this approach the main task consists in finding the suitable sequence, types and parameters of graphics filters building the pipeline. Because of the high number of desired parameters (in our case 96), it was decided to use a slightly modified genetic algorithm. To determine fitness value, the mask obtained from the parameters found through genetic algorithms (GA) was compared with those manually prepared. The numerical value corresponding to such a comparison has been defined by Dice's coefficient. Preparation of reference masks for a few scans among the several hundreds of them was the only action done manually by a human expert. Using this method, very good results both for trabecular and cortical bones were obtained. It has to be emphasized that as no real border exists between these two bone types, the manually prepared reference masks were quite conventional and therefore charged with errors. As GA is a non-deterministic method, the present work also contains a statistical analysis of the relations existing between various GA parameters and fitness function. Finally the best sets of the GA parameters are proposed.

  5. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing

    PubMed Central

    Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton’s susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing—in contrast to the insignificant response previously demonstrated in

  6. Microcomputed tomographic analysis of human condyles in unilateral condylar hyperplasia: increased cortical porosity and trabecular bone volume fraction with reduced mineralisation.

    PubMed

    Karssemakers, L H E; Nolte, J W; Tuinzing, D B; Langenbach, G E J; Raijmakers, P G; Becking, A G

    2014-12-01

    Unilateral condylar hyperplasia or hyperactivity is a disorder of growth that affects the mandible, and our aim was to visualise the 3-dimensional bony microstructure of resected mandibular condyles of affected patients. We prospectively studied 17 patients with a clinical presentation of progressive mandibular asymmetry and an abnormal single-photon emission computed tomographic (SPECT) scan. All patients were treated by condylectomy to arrest progression. The resected condyles were scanned with micro-CT (18 μm resolution). Rectangular volumes of interest were selected in 4 quadrants (lateromedial and superoinferior) of the trabecular bone of each condyle. Variables of bone architecture (volume fraction, trabecular number, thickness, and separation, degree of mineralisation, and degree of structural anisotrophy) were calculated with routine morphometric software. Eight of the 17 resected condyles showed clear destruction of the subchondral layer of cortical bone. There was a significant superoinferior gradient for all trabecular variables. Mean (SD) bone volume fraction (25.1 (6) %), trabecular number (1.69 (0.26) mm(-1)), trabecular thickness (0.17 (0.03) mm), and degree of mineralisation (695.39 (39.83) mg HA/cm(3)) were higher in the superior region. Trabecular separation (0.6 (0.16) mm) and structural anisotropy (1.84 (0.28)) were higher in the inferior region. The micro-CT analysis showed increased cortical porosity in many of the condyles studied. It also showed a higher bone volume fraction, greater trabecular thickness and trabecular separation, greater trabecular number, and less mineralisation in the condyles of the 17 patients compared with the known architecture of unaffected mandibular condyles.

  7. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    PubMed

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  8. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian

    2015-06-01

    Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications.

  9. Immediate changes of bone density caused by the implantation of a femoral stem--a DEXA study. Ulf.Leichtle@med.uni-tuebingen.de.

    PubMed

    Leichtle, Ulf G; Leasure, Jeremi; Martini, Franz; Leichtle, Carmen I

    2011-01-01

    Considerable immediate periprosthetic bone density changes after implantation of femoral stems have been observed comparing DEXA measurements taken pre- and post-operatively. This is important in relation to the interpretation of DEXA studies. We analysed these density changes under standardised experimental conditions. Five human femora were implanted with a custom made femoral stem and ten femora with a standard cementless prosthesis. Densitometry was performed at various stages of implantation. Following rasping only slight density changes were noted (-2.7% to +0.7%). Comparing post-implantation and pre-operative measurements, all custom made stems with a proximal press-fit demonstrated clear increases in proximal periprosthetic bone density of +11% and +14%. In contrast, the standard prosthesis with a distal press-fit showed a loss of -5% and -2% in the proximal zones. Measurements following removal of the implants demonstrated hardly any density changes (0% to -4%) compared to the pre-operative measurements. We concluded that compacting of trabecular bone or bone loss due to rasping are not the main causes of density changes. Substantial measuring errors exist. For examination of periprosthetic bone density changes, pre-operative initial measurements should not be used as a baseline for comparison. Studies should commence with an immediate postoperative measurement.

  10. Trabecular metal cup without augments for acetabular revision in case of extensive bone loss and low bone-prosthesis contact.

    PubMed

    Pierannunzii, L; Mambretti, A; D'Imporzano, M

    2011-01-01

    Current evidences in revision hip arthroplasty suggest to treat severe acetabular bone loss with dedicated implants, such as anti-protrusio cages, stemmed cups, modular systems supplied with iliac flanges and obturatory hook. However recent literature is reporting satisfactory outcomes with simple elliptical Trabecular Metal cups. Purpose of the study was to evaluate mid-term results of such a surgical procedure. All hip revisions performed from 2008 to 2009 with implantation of a TMT multi-hole acetabular cup without augmentations were retrospectively reviewed. The cases with low-degree acetabular bone loss (stage I and II according to GIR classification), with surgical report poorly describing the bone defect, with inadequate pre- and post-operative x-rays were ruled out. Twenty-five cases were identified, but four were lost to follow-up. The twenty-one patients were 71 year-old on average (from 60 to 82), with stage IV bone loss in 6 cases and stage III bone loss in 15 cases. Mean interval from surgery to evaluation was 20.9 months (from 13 to 30). The evaluation included bone-prosthesis contact estimation, component position, survivorship, complications, final Harris Hip Score, presence of periprosthetic radiolucencies. Host bone-prosthesis contact was estimated to be about 35%. Only three implant were subsequently reoperated (for infection, early migration, recurrent dislocation). The HHS among non-reoperated 18 patients was 81.96 on average (from 63.44 to 95.82). Six cases showed thin radiolucencies in one of the three Charnley zones, while three cases showed radiolucencies in two. None of these images was evolutive, thus they were not considered signs of loosening. The mid-term results of this series confirm the hypothesis that a porous tantalum acetabular cup is an effective option to deal with difficult acetabular revisions. Although no extra-acetabular fixation device is available, the very high surface friction guaranteed by the material and the

  11. The management of femoral bone stock in THA revision: indications and techniques.

    PubMed

    Bianchi, Luca; Galante, Claudio; Zagra, Luigi

    2014-10-02

    Following the increasing number of total hip arthroplasties, the amount of hip revision procedures continue to rise. Careful patient selection and bone loss evaluation is crucial for a correct management of femoral revision procedures. The key point in femoral revision is to obtain a reliable primary stability of the stem, with the least invasive implant as possible, to preserve and if possible to restore the bone stock. In this article we present the indications and the techniques for the femoral revisions most commonly used in Europe, referring to the evidence in the literature and our personal experiences.

  12. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 3A: Trabecular spacing and orientation in the long bones

    NASA Technical Reports Server (NTRS)

    Judy, M. M.

    1981-01-01

    Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.

  13. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  14. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets.

    PubMed

    Dant, James T; Richardson, Richard B; Nie, Linda H

    2013-05-21

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of (223)Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of (223)Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from (223)Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, (153)Sm and (89)Sr. There is also a slightly lower dose from (223)Ra in forming bone to haematopoietic marrow than that from (153)Sm and (89)Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from (223)Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and (223)Ra may be a more

  15. Relationship between trabecular texture features of CT images and an amount of bone cement volume injection in percutaneous vertebroplasty

    NASA Astrophysics Data System (ADS)

    Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.

    2001-06-01

    Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.

  16. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region.

    PubMed

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2015-02-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.

  17. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.

    PubMed

    Janovic, Aleksa; Saveljic, Igor; Vukicevic, Arso; Nikolic, Dalibor; Rakocevic, Zoran; Jovicic, Gordana; Filipovic, Nenad; Djuric, Marija

    2015-01-01

    Understanding of the occlusal load distribution through the mid-facial skeleton in natural dentition is essential because alterations in magnitude and/or direction of occlusal forces may cause remarkable changes in cortical and trabecular bone structure. Previous analyses by strain gauge technique, photoelastic and, more recently, finite element (FE) methods provided no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Therefore, we developed an improved three-dimensional FE model of the human skull in order to clarify the distribution of occlusal forces through the cortical and trabecular bone during habitual masticatory activities. Particular focus was placed on the load transfer through the anterior and posterior maxilla. The results were presented in von Mises stress (VMS) and the maximum principal stress, and compared to the reported FE and strain gauge data. Our qualitative stress analysis indicates that occlusal forces distribute through the mid-facial skeleton along five vertical and two horizontal buttresses. We demonstrated that cortical bone has a priority in the transfer of occlusal load in the anterior maxilla, whereas both cortical and trabecular bone in the posterior maxilla are equally involved in performing this task. Observed site dependence of the occlusal load distribution may help clinicians in creating strategies for implantology and orthodontic treatments. Additionally, the magnitude of VMS in our model was significantly lower in comparison to previous FE models composed only of cortical bone. This finding suggests that both cortical and trabecular bone should be modeled whenever stress will be quantitatively analyzed.

  18. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.

    PubMed

    Patel, Priyesh V; Eckstein, Felix; Carballido-Gamio, Julio; Phan, Catherine; Matsuura, Maiko; Lochmüller, Eva-Maria; Majumdar, Sharmila; Link, Thomas M

    2007-10-01

    Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [A(Z)] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD

  19. Comparison of contamination of femoral heads and pre-processed bone chips during hip revision arthroplasty.

    PubMed

    Mathijssen, N M C; Sturm, P D; Pilot, P; Bloem, R M; Buma, P; Petit, P L; Schreurs, B W

    2013-12-01

    With bone impaction grafting, cancellous bone chips made from allograft femoral heads are impacted in a bone defect, which introduces an additional source of infection. The potential benefit of the use of pre-processed bone chips was investigated by comparing the bacterial contamination of bone chips prepared intraoperatively with the bacterial contamination of pre-processed bone chips at different stages in the surgical procedure. To investigate baseline contamination of the bone grafts, specimens were collected during 88 procedures before actual use or preparation of the bone chips: in 44 procedures intraoperatively prepared chips were used (Group A) and in the other 44 procedures pre-processed bone chips were used (Group B). In 64 of these procedures (32 using locally prepared bone chips and 32 using pre-processed bone chips) specimens were also collected later in the procedure to investigate contamination after use and preparation of the bone chips. In total, 8 procedures had one or more positive specimen(s) (12.5 %). Contamination rates were not significantly different between bone chips prepared at the operating theatre and pre-processed bone chips. In conclusion, there was no difference in bacterial contamination between bone chips prepared from whole femoral heads in the operating room and pre-processed bone chips, and therefore, both types of bone allografts are comparable with respect to risk of infection.

  20. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT.

    PubMed

    Manske, Sarah L; Zhu, Ying; Sandino, Clara; Boyd, Steven K

    2015-10-01

    The second generation HR-pQCT scanner (XtremeCTII, Scanco Medical) can assess human bone microarchitecture of peripheral limbs with a 61 μm nominal isotropic voxel size. This is a marked improvement from the first generation HR-pQCT that had a nominal isotropic voxel size of 82 μm, which is at the limit to accurately determine the thickness of individual human trabeculae. We sought to determine the accuracy of a direct morphometric approach to measure trabecular bone microarchitecture with three-dimensional morphological techniques using second generation HR-pQCT, and to compare this with the approach currently applied by the first generation HR-pQCT scanner based on derived indices using ex vivo scans of human cadaveric radii. We also compared images acquired and resampled to mimic the first generation HR-pQCT with those obtained directly from the first generation HR-pQCT. We evaluated 20 human cadaveric radii and a micro-CT performance phantom using the first (XtremeCT, Scanco Medical) and second generation HR-pQCT scanner (XtremeCTII) and compared a patient evaluation (XCTII, 61 μm) with a high resolution ex vivo protocol (HR, 30μm). We generated 82 μm scans of the same specimens to mimic a first-generation HR-pQCT evaluation (XCTIM, 82 μm) and compared these with a first-generation patient evaluation (XCTI, 82 μm). A standard structural extraction approach was applied to both XCTII and HR evaluations for assessment of bone volume fraction (BV/TV), and a distance transform was used to assess trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). For XCTI and XCTIM evaluations we followed the manufacturer's standard procedure and assessed bone mineral density (BMD), Tb.N with a distance transform, and then derived bone volume ratio (BV/TV(d)), trabecular thickness (Tb.Th(d)) and separation (Tb.Sp(d)). The spatial resolution (10% MTF) was 142.2 μm for XCTI, 108.9 μm for XCTIM, 95.2μm for XCTII, and 55.9 μm for HR. XCTI

  1. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles.

    PubMed

    AlFarraj, Abdullah Aldosari; Sukumaran, Anil; Amri Al, D Mohammad; Van Oirschot, Aja Bart; Jansen, John A

    2017-02-13

    Zirconium (Zr) has been found to have comparable characteristics to titanium with a favorable modulus of elasticity. In addition, the release of Zr-ions of a Zr implant is supposed to further increase the bone-to-implant response. Therefore, the objective of this study is to compare the bone contact to Zr and Ti implants in the femoral trabecular bone of rabbits. In addition, implants provided with a hydroxyapatite (HA) coating were included, as such a coating was proven before to enhance the secondary implant stability. A total of 32 implants consisting of 16 Zr (8 HA coated) and 16 Ti (8 HA coated) implants were installed in the femoral condyle of 16 rabbits. After 8 weeks of healing the femoral condyles including the implants were retrieved and studied histologically. The bone-to-implant contact (BIC) percentage was assessed and analyzed statistically. The BIC values of the uncoated Zr and Ti implants showed comparable BIC values (45.1 ± 14.8 vs. 45.5 ± 13.1). The BIC percentage was slightly higher for HA coated Zr and Ti implants (60.3 ± 17.1, 59.8 ± 16.4, respectively) compared to uncoated, but statistical testing indicated that this difference was not significant. It can be concluded that Zr and Ti implants show a comparable bone-implant contact after 8 weeks of implantation in the currently used rabbit model. In addition, the deposition of a sputtered HA coating on both Zr and Ti implants did not further improve their bone integration.

  2. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity.

    PubMed

    Chappard, D; Legrand, E; Haettich, B; Chalès, G; Auvinet, B; Eschard, J P; Hamelin, J P; Baslé, M F; Audran, M

    2001-11-01

    Trabecular bone has been reported as having two-dimensional (2-D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski-Bouligand, and mass-radius fractal dimensions. The relationships with histomorphometric descriptors of the 2-D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter-connectivity index, and Euler-Poincaré number were computed. The box-counting method was used to obtain the Kolmogorov dimension (D(k)), the dilatation method for the Minkowski-Bouligand dimension (D(MB)), and the sandbox for the mass-radius dimension (D(MR)) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with D(MR) and the lowest with D(MB). Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2-D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods.

  3. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: findings from a pQCT case-control study.

    PubMed

    Gregson, Celia L; Sayers, Adrian; Lazar, Victor; Steel, Sue; Dennison, Elaine M; Cooper, Cyrus; Smith, George Davey; Rittweger, Jörn; Tobias, Jon H

    2013-01-01

    High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm(3)), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p<0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p<0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p<0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p<0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p<0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β -0.01 [-0.02, 0.01], p=0.41), but declined in family controls (-0.05 [-0.03, -0.07], p<0.001) interaction p=0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and by alterations in cortical bone density and

  4. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects.

    PubMed

    Dong, Jingjing; Cui, Geng; Bi, Long; Li, Jie; Lei, Wei

    2013-01-01

    In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial) for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood) was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L) ratios (g/mL) of 1:1, 3:1, and 5:1 (g/mL), and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL) group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC-FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05). The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation. This present study indicated that the CPC-FG composite at the P/L ratio of 1:1 (g/mL) stimulated bone regeneration better than any other designed group, which suggested that CPC-FG at the P/L ratio of 1:1 has significant potential as the bioactive material for the treatment of bone defects.

  5. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  6. Cortical bone distribution in the femoral neck of hominoids: implications for the locomotion of Australopithecus afarensis.

    PubMed

    Ohman, J C; Krochta, T J; Lovejoy, C O; Mensforth, R P; Latimer, B

    1997-09-01

    Contiguous high resolution computed tomography images were obtained at a 1.5 mm slice thickness perpendicular to the neck axis from the base of the femoral head to the trochanteric line in a sample of 10 specimens each of Homo sapiens, Pan troglodytes, and Gorilla gorilla, plus five specimens of Pan paniscus. Superior, inferior, anterior, and posterior cortical thicknesses were automatically measured directly from these digital images. Throughout the femoral neck H. sapiens displays thin superior cortical bone and inferior cortical bone that thickens distally. In marked contrast, cortical bone in the femoral neck of African apes is more uniformly thick in all directions, with even greater thickening of the superior cortical bone distally. Because the femoral neck acts as a cantilevered beam, its anchorage at the neck-shaft junction is subjected to the highest bending stresses and is the most biomechanically relevant region to inspect for response to strain. As evinced by A.L. 128-1, A.L. 211-1 and MAK-VP-1/1, Australopithecus afarensis is indistinguishable from H. sapiens, but markedly different from African apes in cortical bone distribution at the femoral neck-shaft junction. Cortical distribution in the African ape indicates much greater variation in loading conditions consistent with their more varied locomotor repertoire. Cortical distribution in hominids is a response to the more stereotypic loading pattern imposed by habitual bipedality, and thin superior cortex in A. afarensis confirms the absence of a significant arboreal component in its locomotor repertoire.

  7. Femoral impaction bone allografting with an Exeter cemented collarless, polished, tapered stem in revision hip replacement: a mean follow-up of 10.5 years.

    PubMed

    Wraighte, P J; Howard, P W

    2008-08-01

    Femoral impaction bone allografting has been developed as a means of restoring bone stock in revision total hip replacement. We report the results of 75 consecutive patients (75 hips) with a mean age of 68 years (35 to 87) who underwent impaction grafting using the Exeter collarless, polished, tapered femoral stem between 1992 and 1998. The mean follow-up period was 10.5 years (6.3 to 14.1). The median pre-operative bone defect score was 3 (interquartile range (IQR) 2 to 3) using the Endo-Klinik classification. The median subsidence at one year post-operatively was 2 mm (IQR 1 to 3). At the final review the median Harris hip score was 80.6 (IQR 67.6 to 88.9) and the median subsidence 2 mm (IQR 1 to 4). Incorporation of the allograft into trabecular bone and secondary remodelling were noted radiologically at the final follow-up in 87% (393 of 452 zones) and 40% (181 of 452 zones), respectively. Subsidence of the Exeter stem correlated with the pre-operative Endo-Klinik bone loss score (p = 0.037). The degree of subsidence at one year had a strong association with long-term subsidence (p < 0.001). There was a significant correlation between previous revision surgery and a poor Harris Hip score (p = 0.028), and those who had undergone previous revision surgery for infection had a higher risk of complications (p = 0.048). Survivorship at 10.5 years with any further femoral operation as the end-point was 92% (95% confidence interval 82 to 97).

  8. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing.

    PubMed

    Diederichs, Gerd; Link, Thomas M; Kentenich, Marie; Schwieger, Karsten; Huber, Markus B; Burghardt, Andrew J; Majumdar, Sharmila; Rogalla, Patrik; Issever, Ahi S

    2009-05-01

    The prediction of bone strength can be improved when determining bone mineral density (BMD) in combination with measures of trabecular microarchitecture. The goal of this study was to assess parameters of trabecular bone structure and texture of the calcaneus by clinical multi-detector row computed tomography (MDCT) in an experimental in situ setup and to correlate these parameters with microCT (microCT) and biomechanical testing. Thirty calcanei in 15 intact cadavers were scanned using three different protocols on a 64-slice MDCT scanner with an in-plane pixel size of 208 microm and 500 microm slice thickness. Bone cores were harvested from each specimen and microCT images with a voxel size of 16 microm were obtained. After image coregistration, trabecular bone structure and texture were evaluated in identical regions on the MDCT images. After data acquisition, uniaxial compression testing was performed. Significant correlations between MDCT- and microCT-derived measures of bone volume fraction (BV/TV), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) were found (range, R(2)=0.19-0.65, p<0.01 or 0.05). The MDCT-derived parameters of volumetric BMD, app. BV/TV, app. Tb.Th and app. Tb.Sp were capable of predicting 60%, 63%, 53% and 25% of the variation in bone strength (p<0.01). When combining those measures with one additional texture index (either GLCM, TOGLCM or MF.euler), prediction of mechanical competence was significantly improved to 86%, 85%, 71% and 63% (p<0.01). In conclusion, this study showed the feasibility of trabecular microarchitecture assessment using MDCT in an experimental setup simulating the clinical situation. Multivariate models of BMD or structural parameters combined with texture indices improved prediction of bone strength significantly and might provide more reliable estimates of fracture risk in patients.

  9. The lateral distal femoral DEXA scan in children: a chronology of growing bone?

    PubMed

    Tryon, Elyce; Szalay, Elizabeth A

    2008-11-01

    Dual energy x-ray absorptiometry (DEXA) is the current standard for measuring bone mineral density (BMD) in children. The International Society for Clinical Densitometry recommends scanning the total body and spine in children. However, in orthopedics, the total-body and spine DEXA scans are often rendered useless by the presence of metallic hardware and/or contractures. The lateral distal femoral DEXA scan was developed as a scan mode for children such as those with cerebral palsy who have contractures or metallic implants, which make it impossible to do total-body or spine scans. Unlike other DEXA scans, a single scan of the lateral distal femoral illustrates the density of the metaphyseal cancellous (newer) bone, the transitional, and the cortical (older) bone in 1 image. Because of this, we hypothesized that an individual lateral distal femoral scan could provide a map of bone health over time. The lateral distal femoral scans of 40 children whose bone growth was tainted by distant chemotherapy (chemotherapy group) were compared to the lateral distal femoral scans of 40 children whose bone environment had remained relatively stable over time (control group). The hypothesis was not confirmed by the data. The "Z-score difference," the difference between the Z-scores of the cancellous and cortical bone, for the chemotherapy group (0.16) and the control group (0.32) were not statistically different. While these results did not confirm the hypothesis, the lateral distal femoral scan remains a reproducible and useful DEXA scan in pediatric orthopedic clinical practice.

  10. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  11. A novel cranioplasty technique incorporating cancellous femoral bone and recombinant bone morphogenic protein 2.

    PubMed

    Wang, Frederick; Hoang, Don; Medvecky, Michael; Amankulor, Nduka; Teng, Edward; Narayan, Deepak

    2012-07-01

    Large calvarial defects in the setting of chronic infection and limited autologous donor sites present challenging problems for the reconstructive surgeon. We report on a novel osteogenic implant as a potential calvarial reconstruction solution. Two patients with an extensive history of severe traumatic brain injury and multiple cranial operations desired delayed calvarial reconstruction subsequent to removal of infected acrylic and titanium implants. These patients underwent harvesting of cancellous femoral bone and bone marrow, which was placed between 2 layers of recombinant bone morphogenic protein 2 impregnated in acellular collagen sponges and an outer layer of sturdily pliable Vicryl mesh to create a moldable osteogenic implant construct. The construct was molded into the shape of the defect and secured with sutures to the skull surrounding the defect. The osteogenic implant showed evidence of bone formation and maintained coverage over the original calvarial defect at 26 months postoperatively as well as subjective satisfaction by both patients and the senior surgeon. This technically straightforward technique with acceptable functional and aesthetic outcomes may be useful to reconstructing selected calvarial defects.

  12. Local Variation in Femoral Neck Cortical Bone: In Vitro Measured Bone Mineral Density, Geometry and Mechanical Properties.

    PubMed

    Coutts, Louise V; Jenkins, Thomas; Oreffo, Richard O C; Dunlop, Doug G; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Philipp J

    2015-12-17

    Age- and disease (osteoporotic fractured and osteoarthritic tissue)-related changes in the distribution of cortical bone were examined, using a multimodality approach, including measurement of local density, geometry and mechanical properties, where changes in these properties can give rise to instability and increasing probability of fracture. In contrast to the majority of previously reported research, this study also focuses on the characteristic non-circular femoral neck cross-sectional geometry and variation in bone mineral density (BMD) around the femoral neck. Twenty-two osteoarthritic and 7 osteoporotic femoral neck slices, collected from elective and trauma-related arthroplasty, and 16 cadaveric donor tissue controls were tested mechanically using Reference Point Indentation (BioDent™, Active Life Technologies®, Santa Barbara, CA) and then scanned with in vitro-based radiography intended to replicate the dual-energy X-ray absorptiometry technique. All parameters were measured regionally around the circumference of the femoral neck, allowing examination of spatial variability within the cortical bone. Fractured tissue was less resistant to indentation in the thinner superolateral segment compared to other segments and other groups. BMD around the fractured femoral necks appeared more consistent than that of nonfractured tissue, where BMD was reduced in the superolateral segment for the other groups. Cortical bone was thin in the superolateral segment for all groups except for the osteoarthritic group, and was thicker in the inferomedial segment for both osteoarthritic and fractured groups, resulting in the largest variation in buckling ratio (ratio of cortical bone diameter to cortical bone thickness) around the femoral neck for the fractured group. With age, healthy controls appeared to have lower inferomedial cortical thickness, whereas no significant differences in Reference Point Indentation measurements and density were observed. The study has

  13. Study of Different Involutive Changes in Bone Mineral Density Measured in Ward's Triangle and Trabecular Volume Measured in Iliac Crest in Relation to Age

    PubMed Central

    Castillo, RF; Gallegos, RF

    2015-01-01

    ABSTRACT Background: The ageing process causes changes in the bone structure, in bone mineral density, and musculoskeletal disorders. Aims: The purpose of this study is to evaluate and compare involutive changes in bone structure that occur in relation to age in men and women through the study of bone mineral density at the Ward's triangle and trabecular volume. Subjects and Methods: In this study, we analysed bone mineral density at Ward's triangle in 70 people (38 men and 32 women) and did a histomorphometric study of trabecular volume at the right iliac crest in 66 samples (42 males and 24 females) obtained from autopsies of court cases, aged between 13 and 83 years. Results: The results show significant correlations between measurements of bone mineral density, trabecular volume values and anthropometric measures of age, gender and body mass index. Conclusions: This study shows involutional changes that occur in the bone mineral density and Ward's triangle in the bone structure during the process of ageing. In addition, both weight and height have a great influence on bone mineral density and changes in bone that occur; and body mass index is a very important determinant of bone mineral density. PMID:26360671

  14. Trabecular mineral content of the spine in women with hip fracture: CT measurement

    SciTech Connect

    Firooznia, H.; Rafii, M.; Golimbu, C.; Schwartz, M.S.; Ort, P.

    1986-06-01

    The trabecular bone mineral content (BMC) of the spine was measured by computed tomography in 185 women aged 47-84 years with vertebral fracture (n = 74), hip fracture (n = 83), and both vertebral and hip fracture (n = 28). Eighty-seven percent of vertebral-fracture patients, 38% of hip-fracture patients, and 82% of vertebral- and hip-fracture patients had spinal BMC values below the fifth percentile for healthy premenopausal women and values 64%, 9%, and 68% below the fifth percentile for age-matched control subjects. No significant loss of spinal trabecular bone was seen in patients with hip fracture. If it is assumed that the rate of trabecular bone loss is the same in the spine and femoral neck, then hip fracture (unlike osteoporotic vertebral fracture) is not associated with disproportionate loss of trabecular bone. Hip fracture occurs secondary to weakening of bone and increased incidence of falls. Bone weakening may be due to disproportionate loss of trabecular or cortical bone, proportionate loss of both, or other as yet undetermined qualitative changes in bone.

  15. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    PubMed

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation.

  16. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    SciTech Connect

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M.

    2010-05-15

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78

  17. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

    PubMed

    Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C

    2015-12-01

    Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly

  18. Fabric-mechanical property relationships of trabecular bone allografts are altered by supercritical CO₂ treatment and gamma sterilization.

    PubMed

    Schwiedrzik, J J; Kaudela, K-H; Burner, U; Zysset, P K

    2011-06-01

    Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO₂ and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology-mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern

  19. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.

    PubMed

    Verhulp, E; Van Rietbergen, B; Muller, R; Huiskes, R

    2008-08-01

    Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 mum had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.

  20. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    PubMed

    Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub

    2017-01-01

    A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library.

  1. Methodological considerations for analyzing trabecular architecture: an example from the primate hand

    PubMed Central

    Kivell, Tracy L; Skinner, Matthew M; Lazenby, Richard; Hublin, Jean-Jacques

    2011-01-01

    Micro-computed tomographic analyses of trabecular bone architecture have been used to clarify the link between positional behavior and skeletal anatomy in primates. However, there are methodological decisions associated with quantifying and comparing trabecular anatomy across taxa that vary greatly in body size and morphology that can affect characterizations of trabecular architecture, such as choice of the volume of interest (VOI) size and location. The potential effects of these decisions may be amplified in small, irregular-shaped bones of the hands and feet that have more complex external morphology and more heterogeneous trabecular structure compared to, for example, the spherical epiphysis of the femoral head. In this study we investigate the effects of changes in VOI size and location on standard trabecular parameters in two bones of the hand, the capitate and third metacarpal, in a diverse sample of nonhuman primates that vary greatly in morphology, body mass and positional behavior. Results demonstrate that changes in VOI location and, to a lesser extent, changes in VOI size had a dramatic affect on many trabecular parameters, especially trabecular connectivity and structure (rods vs. plates), degree of anisotropy, and the primary orientation of the trabeculae. Although previous research has shown that some trabecular parameters are susceptible to slight variations in methodology (e.g. VOI location, scan resolution), this study provides a quantification of these effects in hand bones of a diverse sample of primates. An a priori understanding of the inherent biases created by the choice of VOI size and particularly location is critical to robust trabecular analysis and functional interpretation, especially in small bones with complex arthroses. PMID:20977475

  2. Comparative left-right mechanical testing of cancellous bone from normal femoral heads.

    PubMed

    Banse, X; Delloye, C; Cornu, O; Bourgois, R

    1996-10-01

    In order to assess the potential influence of various physical or chemical treatments on bone grafts, and in particular, on femoral heads to be used as bone grafts, the mechanical symmetry of the femoral head was investigated. Pairs of proximal human femora were harvested and transversally sliced using a coordinate system to orient correctly the head. After being embedded and polished, bone slices were loaded to failure between two steel columns (6 mm of diameter) in a sequential and symmetrical manner for both heads. From ten pairs, 592 mechanical assays on the cancellous bone of femoral heads were performed. There was a high variation in the mechanical properties of the specimens from the different donors. However, no statistical difference could be observed within each pair when side-to-side symmetry was tested for the different mechanical characteristics. Ultimate stress at failure and stiffness were also highly correlated for each mirror location of each pair. Provided that an accurate and reproducible method of slicing femoral head can be achieved, an excellent mechanical symmetry is observed using a static compressive test. Such a method could be used to determine the mechanical influence of any treatment applied to bone.

  3. Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging.

    PubMed

    Wald, Michael J; Vasilic, Branimir; Saha, Punam K; Wehrli, Felix W

    2007-03-01

    Osteoporosis is characterized by bone loss and deterioration of the trabecular bone (TB) architecture that leads to impaired overall mechanical strength of the bone. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is currently the standard clinical metric assessing bone integrity but it fails to capture the structural changes in the TB. Recent research suggests that structure contributes to bone strength in a manner complementary to BMD. Besides parameters of scale such as the mean TB thickness and mean bone volume fraction, parameters describing the anisotropy of the trabecular architecture play an important role in the characterization of TB since trabeculae are preferentially oriented along the direction of local loading. Therefore, the degree of structural anisotropy is of pivotal importance to the bone's mechanical competence. The most common method for measuring structural anisotropy of TB is the mean-intercept length (MIL). In this work we present a method, based on the three-dimensional spatial autocorrelation function (ACF), for mapping of the full structural anisotropy ellipsoid of both TB thickness and spacing and we examine its performance as compared to that of MIL. Not only is the ACF method faster by several orders of magnitude, it is also considerably more robust to noise. Further, it is applicable at lower spatial resolution and is relatively insensitive to image shading. The chief reason for ACF's superior performance is that it does not require binarization, which is difficult to achieve in the limited spatial regime of in vivo magnetic resonance imaging. MIL and ACF have been applied to high-resolution magnetic resonances images of the tibia in a group of ten healthy postmenopausal women by comparing the structural anisotropy and principal direction of the computed fabric tensor for each method. While there is fair agreement between the two methods, ACF analysis yielded greater anisotropy than MIL for both TB thickness

  4. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  5. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  6. Recurrence of a Unicameral Bone Cyst in the Femoral Diaphysis

    PubMed Central

    Kim, Hyun Se; Lim, Kyung Sup; Seo, Sung Wook; Jang, Seung Pil

    2016-01-01

    Diaphyseal unicameral bone cysts of the long bone are generally known to originate near the growth plate and migrate from the metaphysis to the diaphysis during skeletal growth. In the case of unicameral bone cysts of diaphyseal origin, recurrence at the same location is extremely rare. We report a case of recurrence of a unicameral bone cyst in the diaphysis of the femur that developed 8 years after treatment with curettage and bone grafting. We performed bone grafting and lengthening of the affected femur with an application of the Ilizarov apparatus over an intramedullary nail to treat the cystic lesion and limb length discrepancy simultaneously. PMID:27904734

  7. Femoral fracture after harvesting of autologous bone graft using a reamer/irrigator/aspirator.

    PubMed

    Giori, Nicholas J; Beaupre, Gary S

    2011-02-01

    A case of postoperative fracture in the donor femur after obtaining autologous bone graft with a reamer/irrigator/aspirator is presented. This procedure was successful in healing a difficult femoral nonunion, but the patient sustained a fracture of the contralateral (bone graft donor) femur 20 days after surgery. A mechanical analysis is conducted of this case and recommendations are made. Unrestricted weightbearing on a limb that has undergone reamer/irrigator/aspirator bone graft harvesting, particularly in a noncompliant patient, is probably inadvisable. If possible, one should obtain bone graft from the same limb as the fracture being treated because this will leave the patient with one unaltered limb for mobilization.

  8. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  9. An analysis of factors affecting the mercury content in the human femoral bone.

    PubMed

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  10. Beneficial effects of beta-Ecdysone on the joint, epiphyseal cartilage tissue and trabecular bone in ovariectomized rats.

    PubMed

    Kapur, P; Wuttke, W; Jarry, H; Seidlova-Wuttke, D

    2010-04-01

    Ecdysteroids are steroids found in invertebrates and plants. In mammals they have protein anabolic effects. We have recently published antiosteoporotic effects of Tinospora cordifolia (TC) extract and the search for the possible active ingredients yielded the presence of beta-Ecdysone (Ecd). Therefore, we investigated the effects of pure Ecd in ovariectomized rats on morphological changes in joint, epiphyseal cartilage and trabecular tissue. Following ovariectomy rats were fed for 1 month with Ecd containing food at a dose of 52.8 mg/day/animal. Positive and negative control animals received 17-beta Estradiol (E(2), 132 microg/day/animal) and soy free (sf) food respectively. At sacrifice, specimens consisting of upper tibiae-lower femurs and knee joint were harvested and processed for histomorphometry. The parameters measured included thickness of the joint cartilage, thickness of the whole epiphyseal growth plate and its three zones. Furthermore, the percentage of trabecular bone in the metaphysis region of tibiae was quantified. Ecd and E(2) induced a significant increase in the thickness of joint cartilage. The whole epiphyseal growth plate and its proliferative and hypertrophic zones were also increased by Ecd whereas E(2) reduced their size. The percentage of trabecular area in the metaphysis of tibia was significantly increased in Ecd and E(2) treated animals. Results provide a plausible explanation for the antiosteoporotic effects of TC. Hence, TC as well as other Ecd producing plants or pure Ecd may be of value in the prevention and treatment of osteoporosis and osteoarthritis which is of increasing importance due to aging and obesity among individuals.

  11. A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone

    PubMed Central

    Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei

    2008-01-01

    The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for ten minutes showed low density and cystic changes in X-ray photographs, osteonecrosis and repair occurred simultaneously in histology at four and eight weeks, and 69% femoral heads collapsed at 12 weeks. The ability of tissue engineered bone to repair the osteonecrosis was close to that of cancellous bone autograft. The new animal model of ONFH could be induced by microwave heating, and the tissue engineering technique will provide an effective treatment. PMID:18956184

  12. Immediate placement of a porous-tantalum, trabecular metal-enhanced titanium dental implant with demineralized bone matrix into a socket with deficient buccal bone: A clinical report

    PubMed Central

    Bencharit, Sompop; Byrd, Warren C.; Hosseini, Bashir

    2014-01-01

    A missing or deficient buccal alveolar bone plate is often an important limiting factor for immediate implant placement. Titanium dental implants enhanced with porous, tantalum-based trabecular metal material (PTTM) are designed for osseoincorporation, a combination of vascularized bone ingrowth and osseointegration (bone on-growth). Demineralized bone matrix (DBM) contains growth factors with good handling characteristics. However, the combination of these 2 materials in facial alveolar bone regeneration associated with immediate implant therapy has not been reported. A 65-year-old Asian woman presented with a failing central incisor. Most of the buccal alveolar bone plate of the socket was missing. A PTTM enhanced implant was immediately placed with DBM. Cone beam CT scans 12 months after the insertion of the definitive restoration showed regeneration of buccal alveolar bone. A combination of a PTTM enhanced implant, DBM, and a custom healing abutment may have an advantage in retaining biologically active molecules and form a scaffold for neovascularization and osteogenesis. This treatment protocol may be a viable option for immediate implant therapy in a failed tooth with deficient buccal alveolar bone. PMID:25702965

  13. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium

    PubMed Central

    2013-01-01

    Background The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Methods Twenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy. Results The body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons. Conclusions Se negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone. PMID:23369508

  14. Development of cortical bone geometry in the human femoral and tibial diaphysis.

    PubMed

    Gosman, James H; Hubbell, Zachariah R; Shaw, Colin N; Ryan, Timothy M

    2013-05-01

    Ontogenetic growth processes in human long bones are key elements, determining the variability of adult bone structure. This study seeks to identify and describe the interaction between ontogenetic growth periods and changes in femoral and tibial diaphyseal shape. Femora and tibiae (n = 46) ranging developmentally from neonate to skeletally mature were obtained from the Norris Farms No. 36 archeological skeletal series. High-resolution X-ray computed tomography scans were collected. Whole-diaphysis cortical bone drift patterns and relative bone envelope modeling activity across ages were assessed in five cross-sections per bone (total bone length: 20%, 35%, 50%, 65%, and 80%) by measuring the distance from the section centroid to the endosteal and periosteal margins in eight sectors using ImageJ. Pearson correlations were performed to document and interpret the relationship between the cross-sectional shape (Imax /Imin ), total subperiosteal area, cortical area, and medullary cavity area for each slice location and age for both the femur and the tibia. Differences in cross-sectional shape between age groups at each cross-sectional position were assessed using nonparametric Mann-Whitney U tests. The data reveal that the femoral and tibial midshaft shape are relatively conserved throughout growth; yet, conversely, the proximal and distal femoral diaphysis and proximal tibial diaphysis appear more sensitive to developmentally induced changes in mechanical loading. Two time periods of accelerated change are identified: early childhood and prepuberty/adolescence.

  15. Assessment of femoral bone quality using co-occurrence matrices and adaptive regions of interest

    NASA Astrophysics Data System (ADS)

    Fritscher, Karl David; Schuler, Benedikt; Grünerbl, Agnes; Hänni, Markus; Schwieger, Karsten; Suhm, Norbert; Schubert, Rainer

    2007-03-01

    The surgical treatment of femur fractures, which often result from osteoporosis, is highly dependent on the quality of the femoral bone. Unsatisfying results of surgical interventions like early loosening of implants may be one result of altered bone quality. However, clinical diagnostic techniques to quantify local bone quality are limited and often highly observer dependent. Therefore, the development of tools, which automatically and reproducibly place regions of interest (ROI) and asses the local quality of the femoral bone in these ROIs would be of great help for clinicians. For this purpose, a method to position and deform ROIs automatically and reproducibly depending on the size and shape of the femur will be presented. Moreover, an approach to asses the femur quality, which is based on calculating texture features using co-occurrence matrices and these adaptive regions, will be proposed. For testing purposes, 15 CT-datasets of anatomical specimen of human femora are used. The correlation between the texture features and biomechanical properties of the proximal femoral bone is calculated. First results are very promising and show high correlation between the calculated features and biomechanical properties. Testing the method on a larger data pool and refining the algorithms to further increase its sensitivity for altered bone quality will be the next steps in this project.

  16. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis.

    PubMed

    Wen, Xin-Xin; Xu, Chao; Zong, Chun-Lin; Feng, Ya-Fei; Ma, Xiang-Yu; Wang, Fa-Qi; Yan, Ya-Bo; Lei, Wei

    2016-07-01

    Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E.

  17. Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis

    PubMed Central

    Moreno, Rodrigo; Brismar, Torkel B.; Pahr, Dieter H.; Smedby, Örjan

    2016-01-01

    Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young’s modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research. PMID:27513664

  18. Effects of a single intraperitoneal administration of cadmium on femoral bone structure in male rats

    PubMed Central

    2011-01-01

    Background Exposure to cadmium (Cd) is considered a risk factor for various bone diseases in humans and experimental animals. This study investigated the acute effects of Cd on femoral bone structure of adult male rats after a single intraperitoneal administration. Methods Ten 4-month-old male Wistar rats were injected intraperitoneally with a single dose of 2 mg CdCl2/kg body weight and killed 36 h after the Cd had been injected. Ten 4-month-old males served as a control group. Differences in body weight, femoral weight, femoral length and histological structure of the femur were evaluated between the two groups of rats. The unpaired Student's t-test was used for establishment of statistical significance. Results A single intraperitoneal administration of Cd had no significant effect on the body weight, femoral weight or femoral length. On the other hand, histological changes were significant. Rats exposed to Cd had significantly higher values of area, perimeter, maximum and minimum diameters of the primary osteons' vascular canals and Haversian canals. In contrast, a significant decrease in all variables of the secondary osteons was observed in these rats. Conclusions The results indicate that, as expected, a single intraperitoneal administration of 2 mg CdCl2/kg body weight had no impact on macroscopic structure of rat's femora; however, it affected the size of vascular canals of primary osteons, Haversian canals, and secondary osteons. PMID:21884588

  19. Use of a trabecular metal cone made of tantalum, to treat bone defects during revision knee arthroplasty☆☆☆

    PubMed Central

    Mozella, Alan de Paula; Olivero, Ricardo Reiniger; Alexandre, Hugo; Cobra, Araújo Barros

    2014-01-01

    Objectives the aim of this study was to evaluate the surgical technique and determine the initial results, with a minimum follow-up of two years, from total knee arthroplasty revisions in which trabecular metal cones made of tantalum were used at the Knee Surgery Center of the National Institute of Traumatology and Orthopedics (INTO) or at the authors’ private clinic between July 2008 and December 2010. Methods ten patients were included in the study prospectively, through clinical and radiographic evaluations. Results seven patients presented evolution without complications relating to the tantalum cones used. Five of these patients said that they did not have any pain and all of them were able to walk without needing crutches. In all the cases, we observed that osseointegration of the tantalum cones had occurred. No migration or loosening of the implants was observed, nor was osteolysis. Conclusion use of trabecular metal cones made of tantalum for treating AORI type II or II bone defects was capable of providing efficient structural support to the prosthetic revision implants, in evaluations with a short follow-up. PMID:26229808

  20. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  1. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long-Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean

    2014-01-01

    Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted

  2. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    ERIC Educational Resources Information Center

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  3. Analyzing µCT images of bone specimen with wavelets and scaling indices: Which texture measure does better to depict the trabecular bone structure?

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Bauer, Jan; Mueller, Dirk; Rummeny, Ernst J.; Link, Thomas M.; Majumdar, Sharmila; Eckstein, Felix; Monetti, Roberto

    2007-03-01

    The visualisation and subsequent quantification of the inner bone structure plays an important role for better understanding the disease- or drug-induced changes of the bone in the context of osteoporosis. Scaling indices (SIM) are well suited to quantify these structures on a local level, especially to discriminate between plate-like and rod-like structural elements. Local filters based on wavelets (WVL) are a standard technique in texture analysis. So far, they are mainly used for two-dimensional image data sets. Here we extend the formalism of the spherical Mexican hat wavelets to the analysis of three-dimensional tomographic images and evaluate its performance in comparison with scaling indices, histomorphometric measures and BMD. μCT images with isotropic resolution of 30 x 30 x 30 μm of a sample of 19 trabecular bone specimen of human thoracic vertebrae were acquired. In addition, the bone mineral density was measured by QCT. The maximum compressive strength (MCS) was determined in a biomechanical test. Some wavelet-based as well as all scaling index- based texture measures show a significantly higher correlation with MCS (WVL: ρ2=0.54, SIM: ρ2=0.53-0.56) than BMD (ρ2=0.46), where we find slightly better correlations for SIM than for WVL. The SIM and WVL results are comparable but not better to those obtained with histomorphometric measures (BV/TV: ρ2=0.45, Tr. N.: ρ2=0.67, Tr.Sp.: ρ2=0.67). In conclusion, WVL and SIM techniques can successfully be applied to μCT image data. Since the two measures characterize the image structures on a local scale, they offer the possibility to directly identify and discriminate rods and sheets of the trabecular structure. This property may give new insights about the bone constituents responsible for the mechanical strength.

  4. Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement

    PubMed Central

    Lau, Anthony G.; Sun, Junjiang; Hannah, William B.; Livingston, Eric W.; Heymann, Dominique; Bateman, Ted A.; Monahan, Paul E.

    2015-01-01

    Introduction While chronic degenerative arthropathy is the main morbidity of hemophilia, a very high prevalance of low bone density is also seen in men and boys with hemophilia. The current study investigates bone degradation in the knee joint of hemophilic mice resulting from hemarthrosis and the efficacy of aggressive treatment with factor VIII in the period surrounding injury to prevent bone pathology. Methods Skeletally mature factor VIII knock-out mice were subjected to knee joint hemorrhage induced by puncture of the left knee joint capsule. Mice received either intravenous Factor VIII treatment or placebo immediately prior to injury and at hours 4, 24, 48, 72 and 96 after hemorrhage. Mice were euthanized two-weeks after injury and the joint morphology and loss of bone in the proximal tibia was assessed using microCT imaging. Results Quantitative microCT imaging of the knee joint found acute bone loss at the proximal tibia following injury including loss of trabecular bone volumetric density and bone mineral density, as well as trabecular connectivity density, number, and thickness. Unexpectedly, joint injury also resulted in calcification of the joint soft tissues including the tendons, ligaments, menisci, and cartilage. Treatment with factor VIII prevented this bone and soft tissue degeneration. Conclusion Knee joint hemorrhage resulted in acute changes of adjacent bone including loss of bone density and mineralization of joint soft tissues. The rapid calcification and loss of bone has implications for the initiation and progression of osteoarthritic degradation following joint bleeding. PMID:24712867

  5. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    PubMed Central

    Lambert, Laura J.; Challa, Anil K.; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S.; Nagy, Tim R.; Eberhardt, Alan W.; Estep, Patrick N.; Kesterson, Robert A.

    2016-01-01

    ABSTRACT Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. PMID:27483347

  6. Alendronate Treatment of the Brtl Osteogenesis Imperfecta Mouse Improves Femoral Geometry and Load Response Before Fracture but Decreases Predicted Material Properties and Has Detrimental Effects on Osteoblasts and Bone Formation

    PubMed Central

    Uveges, Thomas E.; Kozloff, Kenneth M.; Ty, Jennifer M.; Ledgard, Felicia; Raggio, Cathleen L.; Gronowicz, Gloria; Goldstein, Steven A.; Marini, Joan C.

    2009-01-01

    Long courses of bisphosphonates are widely administered to children with osteogenesis imperfecta (OI), although bisphosphonates do not block mutant collagen secretion and may affect bone matrix composition or structure. The Brtl mouse has a glycine substitution in col1a1 and is ideal for modeling the effects of bisphosphonate in classical OI. We treated Brtl and wildtype mice with alendronate (Aln; 0.219 mg/kg/wk, SC) for 6 or 12 wk and compared treated and untreated femora of both genotypes. Mutant and wildtype bone had similar responses to Aln treatment. Femoral areal BMD and cortical volumetric BMD increased significantly after 12 wk, but femoral length and growth curves were unaltered. Aln improved Brtl diaphyseal cortical thickness and trabecular number after 6 wk and cross-sectional shape after 12 wk. Mechanically, Aln significantly increased stiffness in wildtype femora and load to fracture in both genotypes after 12 wk. However, predicted material strength and elastic modulus were negatively impacted by 12 wk of Aln in both genotypes, and metaphyseal remnants of mineralized cartilage also increased. Brtl femoral brittleness was unimproved. Brtl osteoclast and osteoblast surface were unchanged by treatment. However, decreased mineral apposition rate and bone formation rate/bone surface and the flattened morphology of Brtl osteoblasts suggested that Aln impaired osteoblast function and matrix synthesis. We conclude that Aln treatment improves Brtl femoral geometry and load to fracture but decreases bone matrix synthesis and predicted material modulus and strength, with striking retention of mineralized cartilage. Beneficial and detrimental changes appear concomitantly. Limiting cumulative bisphosphonate exposure of OI bone will minimize detrimental effects. PMID:19113917

  7. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-02-01

    In our first article1 on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find that this effect is important for the geometry of the bone. We find that larger theropods (including Tyrannosaurus rex) were less athletic than smaller theropods.

  8. Can local Erythropoietin administration enhance bone regeneration in osteonecrosis of femoral head?

    PubMed

    Bakhshi, Hooman; Rasouli, Mohammad R; Parvizi, Javad

    2012-08-01

    Osteonecrosis of femoral head (ONFH) is a challenging disease. Regardless of underlying causes, the ultimate result in all cases is disruption of femoral head blood supply. Once the disease starts, it is progressive in 80% of cases. Since the majority of the affected individuals are young, every effort should be focused on preserving the patients own femoral head. These years, the role of angiogenic growth factors has been investigated with promising results in animal models of ONFH. Erythropoietin (EPO) is a well known hormone that has been used in treatment of chronic anemia for many years with few side effects. Considering the angiogenic properties of EPO, we hypothesize that local delivery of recombinant human EPO during core decompression will enhance bone regeneration in ONFH. In this way we also can avoid systemic side effects of EPO.

  9. [Paralysis of the femoral nerve complicating ilio-psoas hemorrhage after iliac bone transplantation (author's transl)].

    PubMed

    Mestdagh, H

    1982-03-11

    The author reported an unusual complication of iliac bone transplantation for grafting of a tibial pseudarthrosis. In a patient having anticoagulant therapy, a large iliac haematoma developed in the donor site and extended deep to the iliacus muscle and through the osteomuscular gap into the retroperitoneal space. Moreover it spread downwards and entrapped the femoral nerve as it lies behind the iliac fascia, above the inguinal ligament. Both a paralytic ileus and a femoral nerve injury commanded surgical exploration through an oblique iliac approach; emptying of the clotted haematoma, section of the inguinal ligament and liberation of the femoral nerve enable to avoid definitive sequelae to the quadriceps but the time required is varying: three years after the accident, recovery is not complete in the operated patient probably owing to delayed surgery (three weeks).

  10. Assessment of trabecular bone score (TBS) in overweight/obese men: effect of metabolic and anthropometric factors.

    PubMed

    Romagnoli, Elisabetta; Lubrano, Carla; Carnevale, Vincenzo; Costantini, Daniela; Nieddu, Luciano; Morano, Susanna; Migliaccio, Silvia; Gnessi, Lucio; Lenzi, Andrea

    2016-11-01

    The "trabecular bone score" (TBS) indirectly explores bone quality, independently of bone mineral density (BMD). We investigated the effects of anthropometric and metabolic parameters on TBS in 87 overweight/obese men. We assessed BMD and TBS by DXA, and some parameters of glucose metabolism, sex-and calciotropic hormone levels. Regression models were adjusted for either age and BMI, or age and waist circumference, or age and waist/hip ratio, also considering BMI >35 (y/n) and metabolic syndrome (MS) (y/n). Correlations between TBS and parameters studied were higher when correcting for waist circumference, although not significant in subjects with BMI >35. The analysis of covariance showed that the same model always had a higher adjusted r-square index. BMD at lumbar spine and total hip, fasting glucose, bioavailable testosterone, and sex hormone-binding globulin are the only covariates having a significant effect (p < 0.05) on the variations of TBS. The presence of MS negatively affected only the association between TBS and BMD at total hip. We did not find any significant effect of BMI >35 on TBS values or significant interaction terms between each covariate and either BMI >35 or the presence of MS. Obesity negatively affected TBS, despite unchanged BMD. Alterations of glucose homeostasis and sex hormone levels seem to influence this relationship, while calciotropic hormones have no role. The effect of waist circumference on TBS is more pronounced than that of BMI.

  11. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2015-03-01

    In the second paper1 of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod locomotion. In this paper, our model calculation of Ref. 1 is extended to incorporate the fact that larger animals run with straighter legs. As in Ref. 1, students use geometric data for the femora of theropod dinosaurs to analyze their locomotion abilities. This can either be an in-class activity or given as a homework problem. Larger theropods are found to be less athletic in their movements than smaller theropods since the stresses in the femora of large theropods are closer to breaking their legs than smaller theropods.

  12. In vitro measurement of bone-acrylic interface pressure during femoral component insertion.

    PubMed

    Markolf, K L; Amstutz, H C

    1976-01-01

    Bone-acrylic interface pressure measurements were recorded at the medial interior rasped surfaces of fresh cadaver femurs during digital packing of acrylic bone cement and during insertion and seating of a Trapezoidal-28 femoral total hip component. Plugging of the femoral canal below the tip of the prosthesis stem was an effective means for increasing pressure in the distal femoral canal when the stem was inserted in the early stages of acrylic polymerization (i.e. immediately after dough time). At surgery, this can be accomplished by inserting a small bolus of acrylic down the canal to a depth below the tip of the seated stem and allowing it to polymerize in place. This forms an effective seal which prevents distal extrusion of the acrylic when the cavity is then packed prior to prosthesis insertion. Elimination of cement in the distal canal also avoids any future difficulty of acrylic removal should revision become necessary due to loosening or infection. No significant pressure differences were observed between one and two millimeter thicknesses of acrylic between the metal and bone. Interface pressures developed during finger packing were of the same order of magnitude as those achieved during seating of the femoral component. Use of a rubber diaphragm stretched tightly over the margins of the rasped femoral cavity helped to contain the acrylic and prevent extrusion during finger packing but was ineffective in increasing interface pressure. When this method is used, the acrylic can be poured or injected into the canal and packed before dough stage and thus facilitate increased cancellous penetration when the acrylic is in a state of low viscosity.

  13. Low appendicular muscle mass is correlated with femoral neck bone mineral density loss in postmenopausal women

    PubMed Central

    2011-01-01

    Background After menopause, rapid bone mass loss occurs in response to hypoestrogenism. Several studies suggest that muscle mass and bone mineral density (BMD) are positively associated in postmenopausal women. Therefore, it may be assumed that postmenopausal low appendicular muscle mass (aMM) can increase BMD loss in a short period of time. Objective The purpose of this study was to assess relationship of aMM with femoral neck BMD in postmenopausal women. Methods Prospective, controlled clinical Trial including 64 women aged 45-70 years, who had not had their last menstruation for at least one year. Subjects were divided into two groups: low aMM (n = 32), and normal aMM (n-32). Femoral neck BMD and muscle mass were measured by DXA at baseline and after twelve months. Pairwise and independent t tests were used for data analysis. Results Baseline weight, BMI and muscle mass (total and appendicular) significantly differ between groups (p < 0.05). After twelve months, femoral neck BMD was significantly lower in the group with low aMM, whereas no significant difference was observed in the group with normal aMM (p < 0.05). Conclusion In postmenopausal women, low appendicular muscle mass is associated negatively with femoral neck BMD in a short period of time. PMID:21981859

  14. Effects of Sequential Osteoporosis Treatments on Trabecular Bone Mass and Strength in Osteopenic Rats

    PubMed Central

    Amugongo, Sarah K; Yao, Wei; Jia, Junjing; Lay, Yu-An E; Dai, Weiwei; Jiang, Li; Walsh, Daniel; Li, Chin-Shang; Dave, N. K. N.; Olivera, Diana; Panganiban, Brian; Ritchie, Robert O.; Lane, Nancy E

    2015-01-01

    Introduction Individual agents used to treat human osteoporosis reduce fracture risk by ~50-60%. Since agents that act with complementary mechanisms are available, sequential therapies that mix anti-resorptive and anabolic agents could improve fracture risk reduction, when compared to monotherapies. Methods We evaluated bone mass, bone microarchitecture, and bone strength in adult ovariectomized (OVX), osteopenic rats, during different sequences of vehicle (Veh), parathyroid hormone (PTH), alendronate (Aln), or raloxifene (Ral) in three 90 day treatment periods, over nine months. Differences among groups were evaluated. The interrelationships of bone mass and microarchitecture endpoints, and their relationship to bone strength were studied. Results Estrogen deficiency caused bone loss. OVX rats treated with Aln monotherapy had significantly better bone mass, microarchitecture, and bone strength than untreated OVX rats. Rats treated with an Aln drug holiday had bone mass and microarchitecture similar to the Aln monotherapy group, but with significantly lower bone strength. PTH-treated rats had markedly higher bone endpoints, but all were lost after PTH withdrawal without follow-up treatment. Rats treated with PTH followed by Aln had better bone endpoints than those treated with Aln monotherapy, PTH monotherapy, or an Aln holiday. Rats treated initially with Aln or Ral, then switched to PTH, also had better bone endpoints, than monotherapy treatment. Rats treated with Aln, then PTH, and returned to Aln had the highest values for all endpoints. Conclusion Our data indicate that anti-resorptive therapy can be coupled with an anabolic agent, to produce and maintain better bone mass, microarchitecture, and strength than can be achieved with any monotherapy. PMID:24722767

  15. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  16. Magnetic resonance imaging of trabecular and cortical bone in mice: comparison of high resolution in vivo and ex vivo MR images with corresponding histology.

    PubMed

    Weber, Michael H; Sharp, Jonathan C; Latta, Peter; Sramek, Milos; Hassard, H Thomas; Orr, F William

    2005-01-01

    Measurements of bone morphometry and remodeling have been shown to reflect bone strength and can be used to diagnose degenerative bone disease. In this study, in vivo and ex vivo magnetic resonance imaging (MRI) techniques to assess trabecular and cortical bone properties have been compared to each other and to histology as a novel means for the quantification of bone. Femurs of C57Bl/6 mice were examined both in vivo and ex vivo on an 11.7 T MRI scanner, followed by histologic processing and morphometry. A thresholding analysis technique was applied to the MRI images to generate contour lines and to delineate the boundaries between bone and marrow. Using MRI, an optimal correlation with histology was obtained with an in vivo longitudinal sectioned short echo time gradient-echo versus an in vivo long echo time spin-echo sequence or an ex vivo pulse sequence. Gradient-echo images were acquired with a maximum in-plane resolution of 35 microm. Our results demonstrated that in both the in vivo and ex vivo data sets, the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases moving from the epiphyseal growth plate to the diaphysis. These changes, observed with MRI, correlate with the histological data. Investigations using in vivo MRI gradient-echo sequences consistently gave the best correlation with histology. Our quantitative evaluation using both ex vivo and in vivo MRI was found to be an effective means to visualize non-invasively the normal variation in trabecular and cortical bone as compared to a histological "gold standard" The experiments validated in vivo MRI as a potential high resolution technique for investigating both soft tissue, such as marrow, and bone without radiation exposure.

  17. A new uncemented hydroxyapatite-coated femoral component for the treatment of femoral neck fractures: two-year radiostereometric and bone densitometric evaluation in 50 hips.

    PubMed

    Sköldenberg, O G; Salemyr, M O; Bodén, H S; Lundberg, A; Ahl, T E; Adolphson, P Y

    2011-05-01

    Our aim in this pilot study was to evaluate the fixation of, the bone remodelling around, and the clinical outcome after surgery of a new, uncemented, fully hydroxyapatite-coated, collared and tapered femoral component, designed specifically for elderly patients with a fracture of the femoral neck. We enrolled 50 patients, of at least 70 years of age, with an acute displaced fracture of the femoral neck in this prospective single-series study. They received a total hip replacement using the new component and were followed up regularly for two years. Fixation was evaluated by radiostereometric analysis and bone remodelling by dual-energy x-ray absorptiometry. Hip function and the health-related quality of life were assessed using the Harris hip score and the EuroQol-5D. Up to six weeks post-operatively there was a mean subsidence of 0.2 mm (-2.1 to +0.5) and a retroversion of a mean of 1.2° (-8.2° to +1.5°). No component migrated after three months. The patients had a continuous loss of peri-prosthetic bone which amounted to a mean of 16% (-49% to +10%) at two years. The mean Harris hip score was 82 (51 to 100) after two years. The two-year results from this pilot study indicate that this new, uncemented femoral component can be used for elderly patients with osteoporotic fractures of the femoral neck.

  18. Treatment of osteonecrosis of the femoral head with vascularized bone grafting.

    PubMed

    Millikan, Patrick D; Karas, Vasili; Wellman, Samuel S

    2015-09-01

    Osteonecrosis of the femoral head (ONFH) is a challenging diagnosis for the patient and treating surgeon. Though its cause is poorly understood, several methods of surgical treatment exist and are performed with variable success. Vascularized bone grafting is one such treatment that attempts to restore viable bone, structural support, and blood supply to the avascular portion of the femoral head. This review summarizes the various approaches to this technique that have been proposed and put into practice. The cost effectiveness of these procedures, both in time and resources, has been evaluated and found to be favorable. The use of revascularization procedures, along with the introduction of other potentiating factors, may signal an exciting future for this debilitating disease process.

  19. Longitudinal femoral shaft due to bone insufficiency. A review of three cases.

    PubMed

    Maraval, Anne; Grados, Franck; Royant, Valérie; Damade, Richard; Boulu, Gilles; Fardellone, Patrice

    2003-12-01

    We report three new cases of longitudinal femoral shaft fracture due to bone insufficiency and review the eight cases reported in the literature. The typical patient is a woman older than 65 years of age who present with mechanical pain in the thigh and/or groin. Palpation of the thigh may reproduce the pain. The diagnosis is often made late because the radiographs are normal initially. However, an early and consistent finding is increased radionuclide uptake along the femoral shaft. The fracture line is readily evidenced by computed tomography but may be difficult to see on magnetic resonance imaging. Use of crutches for 6 weeks to protect the bone from weight bearing ensures healing of the fracture.

  20. Trabecular bone characterization on the continuum of plates and rods using in vivo MR imaging and volumetric topological analysis

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Jin, Dakai; Liu, Yinxiao; Wehrli, Felix W.; Chang, Gregory; Snyder, Peter J.; Regatte, Ravinder R.; Saha, Punam K.

    2016-09-01

    Osteoporosis is associated with increased risk of fractures, which is clinically defined by low bone mineral density. Increasing evidence suggests that trabecular bone (TB) micro-architecture is an important determinant of bone strength and fracture risk. We present an improved volumetric topological analysis algorithm based on fuzzy skeletonization, results of its application on in vivo MR imaging, and compare its performance with digital topological analysis. The new VTA method eliminates data loss in the binarization step and yields accurate and robust measures of local plate-width for individual trabeculae, which allows classification of TB structures on the continuum between perfect plates and rods. The repeat-scan reproducibility of the method was evaluated on in vivo MRI of distal femur and distal radius, and high intra-class correlation coefficients between 0.93 and 0.97 were observed. The method’s ability to detect treatment effects on TB micro-architecture was examined in a 2 years testosterone study on hypogonadal men. It was observed from experimental results that average plate-width and plate-to-rod ratio significantly improved after 6 months and the improvement was found to continue at 12 and 24 months. The bone density of plate-like trabeculae was found to increase by 6.5% (p  =  0.06), 7.2% (p  =  0.07) and 16.2% (p  =  0.003) at 6, 12, 24 months, respectively. While the density of rod-like trabeculae did not change significantly, even at 24 months. A comparative study showed that VTA has enhanced ability to detect treatment effects in TB micro-architecture as compared to conventional method of digital topological analysis for plate/rod characterization in terms of both percent change and effect-size.

  1. Femoral diaphyseal endoprosthetic reconstruction after segmental resection of primary bone tumours.

    PubMed

    Hanna, S A; Sewell, M D; Aston, W J S; Pollock, R C; Skinner, J A; Cannon, S R; Briggs, T W R

    2010-06-01

    Segmental resection of malignant bone disease in the femoral diaphysis with subsequent limb reconstruction is a major undertaking. This is a retrospective review of 23 patients who had undergone limb salvage by endoprosthetic replacement of the femoral diaphysis for a primary bone tumour between 1989 and 2005. There were 16 males and seven females, with a mean age of 41.3 years (10 to 68). The mean overall follow-up was for 97 months (3 to 240), and 120 months (42 to 240) for the living patients. The cumulative patient survival was 77% (95% confidence interval 63% to 95%) at ten years. Survival of the implant, with failure of the endoprosthesis as an endpoint, was 85% at five years and 68% (95% confidence interval 42% to 92%) at ten years. The revision rate was 22% and the overall rate of re-operation was 26%. Complications included deep infection (4%), breakage of the prosthesis (8%), periprosthetic fracture (4%), aseptic loosening (4%), local recurrence (4%) and metastases (17%). The 16 patients who retained their diaphyseal endoprosthesis had a mean Musculoskeletal Tumour Society score of 87% (67% to 93%). They were all able to comfortably perform most activities of daily living. Femoral diaphyseal endoprosthetic replacement is a viable option for reconstruction following segmental resection of malignant bone disease. It allows immediate weight-bearing, is associated with a good long-term functional outcome, has an acceptable complication and revision rate and, most importantly, does not appear to compromise patient survival.

  2. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.

    PubMed

    Boyle, Christopher; Kim, Il Yong

    2011-03-15

    The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized.

  3. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study

    PubMed Central

    Rewell, Sarah S.; Iuliano, Sandra; Ghasem-Zadeh, Ali; Davey, Rachel A.; Ho, Heidi; Skeers, Peta N.; Bernhardt, Julie; Howells, David W.

    2017-01-01

    Background Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans. Objective To investigate the skeletal effect of middle cerebral artery occlusion (MCAo) stroke in rats and examine its utility as a model of human post-stroke bone loss. Methods Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV) measured by Micro-CT (10.5 micron istropic voxel size) at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults) and physical activity (cage monitoring) were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX) were assessed at baseline, and days 7 and 27. Results No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046) at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9) and total volume (6.4%, IQR 1.2, 7.6) were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals. Conclusion MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss. PMID:28278253

  4. [Epithelioid hemangioendothelioma of bone complicated by femoral fracture].

    PubMed

    Charfi, L; Mrad, K; Karray, S; Sassi, S; Driss, M; Abbes, I; Ben Romdhane, K

    2005-12-01

    A 54-year-old man was seen with a fracture of the left femur. Plain radiographs revealed a 40-mm lytic centromedullary lesion. Magnetic resonance T1- and T2-weighted sequences showed high and low signals. After stabilization of the fracture, the tumor was removed followed by reconstruction with a vascularized fibula. The pathological examination demonstrated proliferation of non atypical CD34 and CD31 positive epithelioid cells with few lumens, accompanied by abundant fibrous stroma, sometimes masking tumor cells. Satisfactory motion was achieved with no recurrence at 20 months follow-up. Bone hemangioendothelioma can simulate metastasis and must be distinguished by immunohistochemistry. Prognosis is a subject of debate as the tumor is considered to exhibit intermediate malignancy by some authors while other consider it to be a malignant tumor.

  5. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.

  6. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    PubMed Central

    Stüssi, Edgar; Müller, Ralph

    2015-01-01

    Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r = 0.65–0.94). Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters. PMID:25695083

  7. Finite Element Analysis for Prediction of Shear and Stress Concentration & Distribution in Femoral Bone

    NASA Astrophysics Data System (ADS)

    Suhendra, N.; Gustiono, D.; Nugroho, E. A.; Masmui; Yuliani, H.

    2017-02-01

    The effect of micromotion on the shear shielding and size of yielding region in the bone asperity in contact with metal of femoral stem was investigated. The main objective of this work was to gain an understanding of bone wear particleformation mechanism from the two-dimensional finite element model of cementless femoral stem type. To assess the influence of the parameters of interest, different friction coefficients and sliding distance (micromotion)were used in the numerical simulations. Results from the finite element analysis showed that the increase ofthe yielding region is strongly influenced by the rise in sliding distance (micromotion), which is related to the generation of bone wear particle formations. Finite element bone wearparticle formation model, based on strain discontinuities, was therefore proposed for further works. The results obtained in this study can lead to the development of an accurate finite element wearparticle formation mechanism model that would be of use in the assessment of an artificial implant performance and their development.

  8. Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: new methods for the generation and comparison of 3D models.

    PubMed

    Parr, W C H; Chamoli, U; Jones, A; Walsh, W R; Wroe, S

    2013-01-04

    Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs).

  9. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men.

    PubMed

    Rudäng, Robert; Darelid, Anna; Nilsson, Martin; Mellström, Dan; Ohlsson, Claes; Lorentzon, Mattias

    2013-11-01

    It has been suggested that fracture during childhood could be a predictor of low peak bone mass and thereby a potential risk factor for osteoporosis and fragility fractures later in life. The aim of this cross-sectional, population-based study was to investigate whether prevalent fractures, occurring from birth to young adulthood, were related to high-resolution peripheral quantitative computed tomography (HR-pQCT)-derived trabecular and cortical microstructure, as well as bone strength estimated by finite element (FEA) analysis of the radius and tibia in 833 young adult men around the time of peak bone mass (ages 23 to 25 years). In total, 292 subjects with prevalent X-ray-verified fractures were found. Men with prevalent fractures had lower trabecular bone volume fraction (BV/TV) at the radius (5.5%, p < 0.001) and tibia (3.7%, p < 0.001), as well as lower cortical thickness (5.1%, p < 0.01) and cortical cross-sectional area (4.1%, p < 0.01) at the tibia. No significant differences were seen for the cortical porosity or mean pore diameter. Using a logistic regression model (including age, smoking, physical activity, calcium intake, height, and weight as covariates), every SD decrease of FEA-estimated failure load was associated with an increased prevalence of fractures at both the radius (odds ratio [OR] 1.22 [1.03-1.45]) and tibia (OR 1.32 [1.11-1.56]). Including dual-energy X-ray absorptiometry (DXA)-derived radius areal bone mineral density (aBMD), cortical thickness, and trabecular BV/TV simultaneously in a logistic regression model (with age, smoking, physical activity, calcium intake, height, and weight as covariates), BV/TV was inversely and independently associated with prevalent fractures (OR 1.28 [1.04-1.59]), whereas aBMD and cortical thickness were not (OR 1.19 [0.92-1.55] and OR 0.91 [0.73-1.12], respectively). In conclusion, prevalent fractures in young adult men were associated with impaired trabecular BV/TV at the radius

  10. TBS (Trabecular Bone Score) Expands Understanding of Spaceflight Effects on the Lumbar Spine of Long Duration Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa

    2014-01-01

    Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between

  11. Aging Versus Postmenopausal Osteoporosis: Bone Composition and Maturation Kinetics at Actively-Forming Trabecular Surfaces of Female Subjects Aged 1 to 84 Years.

    PubMed

    Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus

    2016-02-01

    Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor.

  12. Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy

    PubMed Central

    Hernández, José L.; López-Mejías, Raquel; Blanco, Ricardo; Pina, Trinitario; Ruiz, Sheila; Sierra, Isabel; Ubilla, Begoña; Mijares, Verónica; González-López, Marcos A.; Armesto, Susana; Corrales, Alfonso; Pons, Enar; Fuentevilla, Patricia; González-Vela, Carmen; González-Gay, Miguel Á.

    2016-01-01

    Studies on trabecular bone score (TBS) in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6 months of therapy, a negative correlation between TBS and insulin resistance (p = 0.02) and leptin (p = 0.01) and a positive correlation with adiponectin were found (p = 0.01). The best set of predictors for TBS values at baseline were female sex (p = 0.015), age (p = 0.05), and BMI (p = 0.001). The best set of predictors for TBS following 6 months of biologic therapy were age (p = 0.001), BMI (p < 0.0001), and serum adiponectin levels (p = 0.027). In conclusion, in nondiabetic patients with moderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation. This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy. PMID:27293954

  13. Association of Trabecular Bone Score with Inflammation and Adiposity in Patients with Psoriasis: Effect of Adalimumab Therapy.

    PubMed

    Hernández, José L; López-Mejías, Raquel; Blanco, Ricardo; Pina, Trinitario; Ruiz, Sheila; Sierra, Isabel; Ubilla, Begoña; Mijares, Verónica; González-López, Marcos A; Armesto, Susana; Corrales, Alfonso; Pons, Enar; Fuentevilla, Patricia; González-Vela, Carmen; González-Gay, Miguel Á

    2016-01-01

    Studies on trabecular bone score (TBS) in psoriasis are lacking. We aim to assess the association between TBS and inflammation, metabolic syndrome features, and serum adipokines in 29 nondiabetic patients with psoriasis without arthritis, before and after 6-month adalimumab therapy. For that purpose, adjusted partial correlations and stepwise multivariable linear regression analysis were performed. No correlation was found between TBS and disease severity. TBS was negatively associated with weight, BMI, waist perimeter, fat percentage, and systolic and diastolic blood pressure before and after adalimumab. After 6 months of therapy, a negative correlation between TBS and insulin resistance (p = 0.02) and leptin (p = 0.01) and a positive correlation with adiponectin were found (p = 0.01). The best set of predictors for TBS values at baseline were female sex (p = 0.015), age (p = 0.05), and BMI (p = 0.001). The best set of predictors for TBS following 6 months of biologic therapy were age (p = 0.001), BMI (p < 0.0001), and serum adiponectin levels (p = 0.027). In conclusion, in nondiabetic patients with moderate-to-severe psoriasis, TBS correlates with metabolic syndrome features and inflammation. This association is still present after 6 months of adalimumab therapy. Moreover, serum adiponectin levels seem to be an independent variable related to TBS values, after adalimumab therapy.

  14. Age- and Sex-Dependent Changes of Intra-articular Cortical and Trabecular Bone Structure and the Effects of Rheumatoid Arthritis.

    PubMed

    Simon, David; Kleyer, Arnd; Stemmler, Fabian; Simon, Christoph; Berlin, Andreas; Hueber, Axel J; Haschka, Judith; Renner, Nina; Figueiredo, Camille; Neuhuber, Winfried; Buder, Thomas; Englbrecht, Matthias; Rech, Juergen; Engelke, Klaus; Schett, Georg

    2016-10-27

    The objective of this cross-sectional study was to define normal sex- and age-dependent values of intra-articular bone mass and microstructures in the metacarpal heads of healthy individuals by high-resolution peripheral quantitative computed tomography (HR-pQCT) and test the effect of rheumatoid arthritis (RA) on these parameters. Human cadaveric metacarpal heads were used to exactly define intra-articular bone. Healthy individuals of different sex and age categories and RA patients with similar age and sex distribution received HR-pQCT scans of the second metacarpal head and the radius. Total, cortical, and trabecular bone densities as well as microstructural parameters were compared between 1) the different ages and sexes in healthy individuals; 2) between metacarpal heads and the radius; and 3) between healthy individuals and RA patients. The cadaveric study allowed exact definition of the intra-articular (intracapsular) bone margins. These data were applied in measuring intra-articular and radial bone parameters in 214 women and men (108 healthy individuals, 106 RA patients). Correlations between intra-articular and radial bone parameters were good (r = 0.51 to 0.62, p < 0.001). In contrast to radial bone, intra-articular bone remained stable until age 60 years (between 297 and 312 mg HA/cm(3) ) but decreased significantly (p < 0.001) in women thereafter (237.5 ± 44.3) with loss of both cortical and trabecular bone. Similarly, RA patients showed significant (p < 0.001) loss of intra-articular total (263.0 ± 44.8), trabecular (171.2 ± 35.6), and cortical bone (610.2 ± 62.0) compared with sex- and age-adjusted controls. Standard sex- and age-dependent values for physiological intra-articular bone were defined. Postmenopausal state and RA led to significant decrease of intra-articular bone. © 2016 American Society for Bone and Mineral Research.

  15. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  16. Curcumin deteriorates trabecular and cortical bone in mice bearing metastatic Lewis lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone is a major target of metastasis for many malignancies; curcumin has been studied for its role in cancer prevention including early phase clinical trials for its efficacy and safe use with cancer patients. The present study investigated the effects of dietary supplementation with curcumin (2% a...

  17. Recombinant Human Bone Morphogenetic Protein-2 in Debridement and Impacted Bone Graft for the Treatment of Femoral Head Osteonecrosis

    PubMed Central

    Gao, Fuqiang; Shi, Zhencai; Zhang, Qidong; Guo, Wanshou

    2014-01-01

    The purpose of this study was to compare the clinical outcomes of impacted bone graft with or without recombinant human bone morphogenetic protein-2 (rhBMP-2) for osteonecrosis of the femoral head (ONFH). We examined the effect of bone-grafting through a window at the femoral head-neck junction, known as the “light bulb” approach, for the treatment of ONFH with a combination of artificial bone (Novobone) mixed with or without rhBMP-2. A total of 42 patients (72 hips) were followed-up from 5 to 7.67 years (average of 6.1 years). The patients with and without BMP were the first group (IBG+rhBMP-2) and the second group (IBG), respectively. The clinical effectiveness was evaluated by Harris hip score (HHS). The radiographic follow-up was evaluated by pre-and postoperative X-ray and CT scan. Excellent, good, and fair functions were obtained in 36, 12, and 7 hips, respectively. The survival rate was 81.8% and 71.8% in the first and second group, respectively. However, the survival rate was 90.3% in ARCO stage IIb, c, and only 34.6% in ARCO stage IIIa(P<0.05). It was concluded that good and excellent mid-term follow-up could be achieved in selected patients with ONFH treated with impacted bone graft operation. The rhBMP-2 might improve the clinical efficacy and quality of bone repair. PMID:24956102

  18. A novel intramedullary callus distraction system for the treatment of femoral bone defects.

    PubMed

    Horas, Konstantin; Schnettler, Reinhard; Maier, Gerrit; Horas, Uwe

    2016-08-01

    An intramedullary device has some advantages over external fixation in callus distraction for bone defect reconstruction. There are difficulties controlling motorized intramedullary devices and monitoring the distraction rate which may lead to poor results. The aim of this study was to design a fully implantable and non-motorized simple distraction nail for the treatment of bone defects. The fully implantable device comprises a tube-in-tube system and a wire pulling mechanism for callus distraction. For the treatment of femoral bone defects, a traction wire, attached to the device at one end, is fixed to the tibial tubercle at its other end. Flexion of the knee joint over a predetermined angle generates a traction force on the wire triggering bone segment transport. This callus distraction system was implanted into the femur of four human cadavers (total 8 femora), and bone segment transport was conducted over 60-mm defects with radiographic monitoring. All bone segments were transported reliably to the docking site. From these preliminary results, we conclude that this callus distraction system offers an alternative to the current intramedullary systems for the treatment of bone defects.

  19. A current review of non-vascularized bone grafting in osteonecrosis of the femoral head.

    PubMed

    Pierce, Todd P; Elmallah, Randa K; Jauregui, Julio J; Poola, Shiva; Mont, Michael A; Delanois, Ronald E

    2015-09-01

    Over the past three decades, non-vascularized bone grafts have been demonstrated to be viable treatments for pre- and early post-collapse osteonecrosis of the femoral head; however, there are limited reviews on this topic. Therefore, the purposes of this review are to (1) provide a summary of the different surgical techniques and their respective clinical outcomes and (2) evaluate new adjunct therapies. Originally, non-vascularized bone grafting was performed using the Phemister technique with varying results. More recently, newer techniques such as the lightbulb and trapdoor are used to place non-vascularized bone grafts with excellent results. The addition of various biological agents has demonstrated positive results; however, further studies are needed to confirm the best appropriate indications and to elucidate long-term results.

  20. Subchondral Insufficiency Fracture of the Femoral Head treated with Core Decompression and Bone Void Filler Support

    PubMed Central

    Patel, Hiren; Kamath, Atul F.

    2016-01-01

    Subchondral insufficiency fracture of the femoral head (SIFFH) is characterized by acute onset hip pain without overt trauma. It appears as a low intensity band with bone marrow edema on T1-weighted MRI. The most common course of treatment is protected weight bearing for a period of several weeks. Total hip arthroplasty (THA) has been commonly used if the patient does not respond to the initial protected weight bearing treatment. We present a case of a 48-year-old male with SIFFH who was treated with core hip decompression and bone void filler as a hip-preserving alternative to THA. The patient has an excellent clinical and radiographic result at final follow up. Core hip decompression with bone void filler is a less invasive alternative to THA, and may be a preferred initial treatment strategy for SIFFH in the young and active patient who has failed conservative measures. PMID:27517074

  1. Tantalum trabecular metal - addition of human skeletal cells to enhance bone implant interface strength and clinical application.

    PubMed

    Smith, J O; Sengers, B G; Aarvold, A; Tayton, E R; Dunlop, D G; Oreffo, R O C

    2014-04-01

    The osteo-regenerative properties of allograft have recently been enhanced by addition of autogenous human bone marrow stromal cells (HBMSCs). Limitations in the use of allograft have prompted the investigation of tantalum trabecular metal (TTM) as a potential alternative. TTM is already in widespread orthopaedic use, although in applications where there is poor initial stability, or when TTM is used in conjunction with bone grafting, initial implant loading may need to be limited. The aim of this study was to evaluate the osteo-regenerative potential of TTM with HBMSCs, in direct comparison to human allograft and autograft. HBMSCs were cultured on blocks of TTM, allograft or autograft in basal and osteogenic media. Molecular profiling, confocal and scanning electron microscopy (SEM) and biochemical assays were used to characterize cell adherence, proliferation and phenotype. Mechanical testing was used to define the tensile characteristics of the constructs. HBMSCs displayed adherence and proliferation throughout TTM, evidenced by immunocytochemistry and SEM, with significant cellular ingrowth and matrix production through TTM. In contrast to cells cultured with allograft, cell proliferation assays showed significantly higher activity with TTM (p < 0.001), although molecular profiling confirmed no significant difference in expression of osteogenic genes. In contrast to acellular constructs, mechanical testing of cell-TTM constructs showed enhanced tensile characteristics, which compared favourably to cell-allograft constructs. These studies demonstrated the ability of TTM to support HBMSC growth and osteogenic differentiation comparable to allograft. Thus, TTM represents an alternative to allograft for osteo-regenerative strategies, extending its clinical applications as a substitute for allograft.

  2. Densitometer-Specific Differences in the Correlation Between Body Mass Index and Lumbar Spine Trabecular Bone Score.

    PubMed

    Mazzetti, Gillian; Berger, Claudie; Leslie, William D; Hans, Didier; Langsetmo, Lisa; Hanley, David A; Kovacs, Christopher S; Prior, Jerrilyn C; Kaiser, Stephanie M; Davison, K Shawn; Josse, Robert; Papaioannou, Alexandra; Adachi, Jonathan R; Goltzman, David; Morin, Suzanne N

    2016-12-26

    Trabecular bone score (TBS) is a gray-level texture measure derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images that predicts fractures independent of bone mineral density (BMD). Increased abdominal soft tissue in individuals with elevated body mass index (BMI) absorbs more X-rays during image acquisition for BMD measurement and must be accommodated by the TBS algorithm. We aimed to determine if the relationship between BMI and TBS varied between 2 major manufacturers' densitometers, because different densitometers accommodate soft tissues differently. We identified 1919 women and 811 men, participants of the Canadian Multicentre Osteoporosis Study, aged ≥40 yr with lumbar spine DXA scans acquired on GE Lunar (4 centers) or Hologic (3 centers) densitometers at year 10 of follow-up. TBS was calculated for L1-L4 (TBS iNsight® software, version 2.1). A significant negative correlation between TBS and BMI was observed when TBS measurements were performed on Hologic densitometers in men (Pearson r = -0.36, p <0.0001) and in women (Pearson r = -0.33, p <0.0001); significant correlations were not seen when TBS was measured on GE Lunar densitometers (Pearson r = 0.00 in men, Pearson r = -0.02 in women). Age-adjusted linear regression models confirmed significant interactions between BMI and densitometer manufacturer for both men and women (p < 0.0001). In contrast, comparable positive correlations were observed between BMD and BMI on both Hologic and GE Lunar densitometers in men and women. In conclusion, BMI significantly affects TBS values in men and women when measured on Hologic but not GE Lunar densitometers. This finding has implications for clinical and research applications of TBS, especially when TBS is measured sequentially on DXA densitometers from different manufacturers or when results from different machines are pooled for analysis.

  3. Fast trabecular bone strength predictions of HR-pQCT and individual trabeculae segmentation-based plate and rod finite element model discriminate postmenopausal vertebral fractures.

    PubMed

    Liu, X Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X Edward

    2013-07-01

    Although high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (µFE) prediction of yield strength using a HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using an individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high-resolution micro-computed tomography (HR-µCT) voxel model of 19 trabecular subvolumes from human cadaveric tibia samples. Both the Young's modulus and yield strength of HR-pQCT PR models strongly correlated with those of µCT voxel models (r²  = 0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and computer central processing unit (CPU) time (>1200-fold). Then, we applied PR model µFE analysis to HR-pQCT images of 60 postmenopausal women with (n = 30) and without (n = 30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young's modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for areal bone mineral density (aBMD) T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against µCT voxel models and demonstrated its ability to discriminate vertebral fracture

  4. Stresses in cement mantles of hip replacements: effect of femoral implant sizes, body mass index and bone quality.

    PubMed

    Lamvohee, J-M S; Mootanah, R; Ingle, P; Cheah, K; Dowell, J K

    2009-10-01

    The effects of femoral prosthetic heads of diameters 22 and 28 mm were investigated on the stability of reconstructed hemi-pelves with cement mantles of thicknesses 1-4 mm and different bone qualities. Materialise medical imaging package and I-Deas finite element (FE) software were used to create accurate geometry of a hemi-pelvis from CT-scan images. Our FE results show an increase in cement mantle stresses associated with the larger femoral head. When a 22 mm femoral head is used on acetabulae of diameters 56 mm and above, the probability of survivorship can be increased by creating a cement mantle of at least 1 mm thick. However, when a 28 mm femoral head is used, a cement mantle thickness of at least 4 mm is needed. Poor bone quality resulted in an average 45% increase in the tensile stresses of the cement mantles, indicating resulting poor survivorship rate.

  5. Microstructures and properties of cancellous bone of avascular necrosis of femoral heads

    NASA Astrophysics Data System (ADS)

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun; Yeh, Hsien Yang

    2010-03-01

    The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroid-injection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional structures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.

  6. Bone mineral density in young Indian adults with traumatic proximal femoral fractures. A case control study.

    PubMed

    Gulati, Divesh; Kumar, Sudhir; Arora, Anil; Aggarwal, Aditya Nath; Bhargava, S K

    2010-06-01

    There is scarcity of data on osteoporosis in India for the age group of 20-40 years when peak bone mass is achieved. This study aimed to assess bone mineral density (BMD) in patients in this age group with traumatic proximal femoral fractures, and to compare it with age matched controls. Thirty patients aged 20 to 40 years with traumatic proximal femoral fractures and 30 healthy volunteers within the same age group were included in the study. Radiographs of the pelvis were taken to determine the Singh index, and DEXA scan of the unaffected hip was done to assess BMD. Fracture cases were compared with controls for significant difference in BMD. The male to female ratio of the study was 2:1. Based on Singh's index, 60% of fracture cases and 20% of controls were osteoporotic. T scores by DEXA revealed that 24 patients with fracture and 22 controls had osteopenia or osteoporosis. There was a significant difference in the Singh index between the two groups and no significant difference in BMD assessed by DEXA scan. No agreement was found between BMD determined by DEXA and Singh's index. The study points that our population fails to attain an adequate peak bone mass. It also questions the applicability of Western data to Indian population. The findings also indicate that Singh's Index cannot substitute DEXA for diagnosis of osteoporosis.

  7. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head.

    PubMed

    Li, Zhang-hua; Liao, Wen; Cui, Xi-long; Zhao, Qiang; Liu, Ming; Chen, You-hao; Liu, Tian-shu; Liu, Nong-le; Wang, Fang; Yi, Yang; Shao, Ning-sheng

    2011-01-09

    In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.

  8. Periprosthetic bone loss after insertion of an uncemented, customized femoral stem and an uncemented anatomical stem

    PubMed Central

    2011-01-01

    Background and purpose Customized femoral stems are designed to have a perfect fit and fill in the femur in order to achieve physiological load transfer and minimize stress shielding. Dual-energy X-ray absorptiometry (DXA) is regarded as an accurate method for detection of small alterations in bone mineral density (BMD) around hip prostheses. We present medium-term DXA results from a randomized study comparing a customized and an anatomical femoral stem. Methods 100 hips were randomized to receive either the anatomical ABG-I stem or the Unique customized femoral stem, both uncemented. DXA measurements were conducted postoperatively and after 3, 6, 12, 24, 36, and 60 months, and BMD was computed for each of the 7 Gruen zones in the proximal femur. Results Results from 87 patients were available for analysis. 78 completed the 5-year follow-up: 35 patients in the ABG group and 43 patients in the Unique group. In both groups, we found the greatest degree of bone loss in the proximal Gruen zones. In zone 1, there was 15% reduction in BMD in the ABG-I group and 14% reduction in the Unique group. In zone 7, the reduction was 28% in the ABG-I group and 27% in the Unique group. The only statistically significant difference between the groups was found in Gruen zone 4, which is distal to the tip of the stem, with 1.6% reduction in BMD in the ABG-I group and 9.7% reduction in the Unique group (p = 0.003). Interpretation 5-year DXA results showed that because of stress-shielding, proximal bone loss could not be avoided—either for the anatomical ABG-I stem or for the customized Unique stem. PMID:21668387

  9. Distributional Variations in the Quantitative Cortical and Trabecular Bone Radiographic Measurements of Mandible, between Male and Female Populations of Korea, and its Utilization

    PubMed Central

    Park, Soon-Yong; Heo, Min-Suk; Chien, Sung-Il

    2016-01-01

    It is important to investigate the irregularities in aging-associated changes in bone, between men and women for bone strength and osteoporosis. The purpose of this study was to characterize the changes and associations of mandibular cortical and trabecular bone measures of men and women based on age and to the evaluation of cortical shape categories, in a large Korean population. Panoramic radiographs of 1047 subjects (603 women and 444 men) aged between 15 to 90 years were used. Mandibular cortical width (MCW), mandibular cortical index (MCI), and fractal dimensions (FD) of the molar, premolar, and anterior regions of the mandibular trabecular bone were measured. Study subjects were grouped into six 10-years age groups. A local linear regression smoothing with bootstrap resampling for robust fitting of data was used to estimate the relationship between radiographic mandibular variables and age groups as well as genders. The mean age of women (49.56 ± 19.5 years) was significantly higher than that of men (45.57 ± 19.6 years). The MCW of men and women (3.17mm and 2.91mm, respectively, p < 0.0001) was strongly associated with age and MCI. Indeed, trabecular measures also correlated with age in men (r > −0.140, p = 0.003), though not as strongly as in women (r > −0.210, p < 0.0001). In men aged over 55 years, only MCW was significantly associated (r = −0.412, p < 0.0001). Furthermore, by comparison of mandibular variables from different age groups and MCI categories, the results suggest that MCW was detected to be strongly associated in both men and women for the detection of bone strength and osteoporosis. The FD measures revealed relatively higher association with age among women than men, but not as strong as MCW. PMID:28002443

  10. The effect of a short-term delay of puberty on trabecular bone mass and structure in female rats: a texture-based and histomorphometric analysis.

    PubMed

    Yingling, Vanessa R; Xiang, Yongqing; Raphan, Theodore; Schaffler, Mitchell B; Koser, Karen; Malique, Rumena

    2007-02-01

    Accrual of bone mass and strength during development is imperative in order to reduce the risk of fracture later in life. Although delayed pubertal onset is associated with an increased incidence of stress fracture, evidence supports the concept of "catch up" growth. It remains unclear if deficits in bone mass associated with delayed puberty have long-term effects on trabecular bone structure and strength. The purpose of this study was to use texture-based analysis and histomorphometry to investigate the effect of a delay in puberty on trabecular bone mass and structure immediately post-puberty and at maturity in female rats. Forty-eight female Sprague-Dawley rats (25 days) were randomly assigned to one of four groups; (1) short-term control (C-ST), (2) long-term control (C-LT), (3) short-term GnRH antagonist (G-ST) and (4) long-term GnRH antagonist (G-LT). Injections of either saline or gonadotropin-releasing hormone antagonist (GnRH-a) (100 microg/day) (Cetrotide, Serono, Inc.) were given intraperitoneally for 18 days (day 25-42) to both ST and LT. The ST groups were sacrificed after the last injection (day 43) and the LT groups at 6 months of age. Pubertal and gonadal development was retarded by the GnRA antagonist injections as indicated by a delay in vaginal opening, lower ovarian and uterine weights and suppressed estradiol levels in the short-term experimental animals (G-ST). Delayed puberty caused a transient reduction in trabecular bone area as assessed by histomorphometry. Specifically, the significant deficit in bone area resulted from a decreased trabecula number and an increase in trabecular separation. Texture analysis, a new method to assess bone density and structural anisotropy, correlated well with the standard histomorphometry and measured significant deficits in the density measure (M(Density)) in the G-ST group that remained at maturity (6 months). The texture energy deficit in the G-ST group was primarily in the 0 degrees orientation (-13

  11. Birth weight predicts bone size in young adulthood at cortical sites in men and trabecular sites in women from The Gambia.

    PubMed

    de Bono, Stephanie; Schoenmakers, Inez; Ceesay, Mustapha; Mendy, Michael; Laskey, M Ann; Cole, Tim J; Prentice, Ann

    2010-05-01

    Fracture risk is determined by bone mass, size and architecture. Birth weight (Bwt) is reported to predict adult bone mass and density. Early life environment may therefore be a determinant of bone strength in later life. However such evidence was obtained using dual energy X-ray absorptiometry (DXA), which is known to be dependent on size. We used peripheral quantitative computed tomography (pQCT) and DXA to investigate Bwt as a determinant of bone size and cross section area (CSA), bone mineral content (BMC) and volumetric bone mineral density (vBMD) and areal BMD (aBMD) independent of current weight, height and age. The study population consisted of 68 males and 52 nulliparous females aged 17 to 21years from Keneba, The Gambia. This population has a high prevalence of factors likely to influence skeletal development (poor nutrition, low calcium intake, late puberty and high physical activity). Measures of bone size and CSA, BMC and BMD were obtained using pQCT (Stratec 2000; at 4% and 66% radius; 4% and 50% tibia) and DXA (Lunar DPX; spine, hip, forearm and whole body). Sequential univariable (influence of Bwt on bone variables) and multivariable linear regression analyses (influence of Bwt on bone variables after adjusting for current height, weight and age) were used to investigate the independent effects of Bwt and attained size. Analyses were performed separately by sex. Bwt was a significant positive predictor of CSA at appendicular cortical sites in males and CSA and bone area at appendicular and most axial trabecular sites in females before and after adjustment for current height, weight and age. Bwt was not consistently related to BMC, vBMD or aBMD as measured by pQCT or DXA. Current weight was a positive predictor of aBMD and pQCT- and DXA-derived BMC in males and females. Height predicted aBMD and trabecular vBMD in males. In summary, Bwt significantly predicted attained CSA at cortical sites in males and at trabecular sites in females. Current weight

  12. Harvest of cortico-cancellous intramedullary femoral bone graft using the Reamer-Irrigator-Aspirator (RIA).

    PubMed

    Masquelet, A-C; Benko, P E; Mathevon, H; Hannouche, D; Obert, L

    2012-04-01

    The "Reamer-Irrigator-Aspirator" (RIA) is a device that provides continuous irrigation and aspiration during intramedullary reaming of long bones. The RIA system is first used to collect the reaming material from medullary cavities, a thick paste of finely morselized osseous particles containing significantly elevated levels of stem cells and growth factors as reported by quantitative analyses. The volume of bone graft material available from an adult femur corresponds to the amount of cancellous bone graft obtained from both the anterior and posterior iliac crests. The assembly and technicalities of the RIA system require a training period to prevent any femoral fracture, which appears to be the major RIA-related complication. The elective indications for RIA bone grafting are filling of bone defects in the epiphyseal and metaphyseal regions. Diaphyseal defects may also be managed using the RIA system provided the graft is placed in a constrained system (induced membrane) to prevent dispersion of the graft into the surrounding soft tissues and is aerated with a porous material to promote its revascularization. Other RIA indications include debriding intramedullary infections and reaming for intramedullary nailing of long bone fractures to reduce the risk of fat embolization.

  13. Preparation of the femoral bone cavity in cementless stems: broaching versus compaction

    PubMed Central

    Hjorth, Mette H; Stilling, Maiken; Søballe, Kjeld; Nielsen, Poul Torben; Christensen, Poul H; Kold, Søren

    2016-01-01

    Background and purpose — Short-term experimental studies have confirmed that there is superior fixation of cementless implants inserted with compaction compared to broaching of the cancellous bone. Patients and methods — 1-stage, bilateral primary THA was performed in 28 patients between May 2001 and September 2007. The patients were randomized to femoral bone preparation with broaching on 1 side and compaction on the other side. 8 patients declined to attend the postoperative follow-up, leaving 20 patients (13 male) with a mean age of 58 (36–70) years for evaluation. The patients were followed with radiostereometric analysis (RSA) at baseline, at 6 and 12 weeks, and at 1, 2, and 5 years, and measurements of periprosthetic bone mineral density (BMD) at baseline and at 1, 2, and 5 years. The subjective part of the Harris hip score (HHS) and details of complications throughout the observation period were obtained at a mean interval of 6.3 (3.0–9.5) years after surgery. Results — Femoral stems in the compaction group had a higher degree of medio-lateral migration (0.21 mm, 95% CI: 0.03–0.40) than femoral stems in the broaching group at 5 years (p = 0.02). No other significant differences in translations or rotations were found between the 2 surgical techniques at 2 years (p > 0.4) and 5 years (p > 0.7) postoperatively. There were no individual stems with continuous migration. Periprosthetic BMD in the 7 Gruen zones was similar at 2 years and at 5 years. Intraoperative femoral fractures occurred in 2 of 20 compacted hips, but there were none in the 20 broached hips. The HHS and dislocations were similar in the 2 groups at 6.3 (3.0–9.5) years after surgery. Interpretation — Bone compaction as a surgical technique with the Bi-Metric stem did not show the superior outcomes expected compared to conventional broaching. Furthermore, 2 periprosthetic fractures occurred using the compaction technique, so we cannot recommend compaction for insertion of the

  14. The topologic and chronologic patterns of hematopoietic cell seeding in host femoral bone marrow after transplantation.

    PubMed

    Askenasy, Nadir; Stein, Jeremiah; Yaniv, Isaac; Farkas, Daniel L

    2003-08-01

    The early stages of homing, seeding, and engraftment of hematopoietic stem and progenitor cells are poorly characterized. We have developed an optical technique that allows in vivo tracking of transplanted, fluorescent-tagged cells in the host femurs. In this study we used fluorescence microscopy to monitor the topologic and chronologic patterns of hematopoietic cell seeding in the femoral bone marrow (BM) of mice. PKH-labeled cells homed to the femur within minutes after injection into a peripheral vein. Most cells drifted within the marrow space and gradually seeded in clusters close to the endosteal surface of the epiphyseal cortex. Three days after transplantation 85% to 94% (14%) of PKH-labeled cells in the femoral marrow were located within 100 microm of the epiphyseal bone surface (P <.001 versus the more central cells), whereas labeled cells were absent in the femoral diaphysis. Primary seeding of juxtaendosteal, epiphyseal marrow occurred independently of recipient conditioning (myeloablated and nonconditioned hosts), donor-recipient antigen disparity, or the phenotype of the injected cells (whole BM and lineage-negative cells) and was consistently observed in secondary recipients of BM-homed cells. Seeding in regions close to the epiphyseal bone was also observed in freshly excised femurs perfused ex vivo and in femurs assessed without prior placement of optical windows, indicating that the site of primary seeding was not affected by surgical placement of optical windows. Four to 5 days after transplantation, cellular clusters appeared in the more central regions of the epiphyses and in the diaphyses. Centrally located cells showed decreased PKH fluorescence, suggesting that they were progeny of the seeding cells, and brightly fluorescent cells (quiescent first-generation seeding cells) were observed close to the bone surface for as long as 24 days after transplantation. These data indicate that the periphery of the femoral marrow hosts primary seeding

  15. Tomography of human trabecular bone with a laser-wakefield driven x-ray source

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Parker, S.; Symes, D. R.; Sandholzer, M. A.; Mangles, S. P. D.; Najmudin, Z.

    2016-01-01

    A laser-wakefield driven x-ray source is used for the radiography of human bone. The betatron motion of accelerated electrons generates x-rays which are hard (critical energy {{E}\\text{crit}}>30 keV), have small source size (<3 μm) and high average brightness. The x-rays are generated from a helium gas cell which is near-instantly replenishable, and thus the average photon flux is limited by the repetition rate of the driving laser rather than the breakdown of the x-ray source. A tomograph of a human bone sample was recorded with a resolution down to 50 μm. The photon flux was sufficiently high that a radiograph could be taken with each laser shot, and the fact that x-ray beams were produced on 97% of shots minimised failed shots and facilitated full micro-computed tomography in a reasonable time scale of several hours, limited only by the laser repetition rate. The x-ray imaging beamline length (not including the laser) is shorter than that of a synchrotron source due to the high accelerating fields and small source size. Hence this interesting laboratory-based source may one day bridge the gap between small microfocus x-ray tubes and large synchrotron facilities.

  16. Assessment of the changes in alveolar bone quality after fixed orthodontic therapy: A trabecular structure analysis

    PubMed Central

    Haghnegahdar, Abdolaziz; Zarif Najafi, Hooman; Sabet, Maryam; Saki, Maryam

    2016-01-01

    Background. Tooth displacement changes the periodontium. The aim of orthodontic treatment is desired tooth movement with minimum side effects on the alveolar bone quality. The aim of the present study was to assess changes of alveolar trabeculation in children, young adults and adults and the two genders. Methods. In this cross-sectional study, 63 patients who had been treated in Department of Orthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran, were chosen with convenient sampling method. They were divided into three groups based on their age. Their digitized panoramic radiographs (PRs) were evaluated at six interdental sites from the mesial aspect of the mandibular second molars to the distal aspect of the mandibular first premolars using a visual index. The trabeculation pattern was assigned as either dense (score 3), dense-sparse (score 2) or sparse (score 1). Data were imported to SPSS. Mean of the scores before treatment (score B) and mean of them after treatment (score A) were compared for each group with paired t-test. Changes between score B and sore A of the groups were compared using one-way ANOVA and post hoc tests. Results. Mean score A was significantly higher than mean score B in children (P = 0.001). In contrast, mean score A was significantly lower than mean score B in young adults (P = 0.003). Conclusion. Orthodontists should be cautious when treating young adults and adults regarding the probable, yet possibly temporary, negative effects of orthodontic therapy on the alveolar bone quality. PMID:28096944

  17. In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure.

    PubMed

    Pothuaud, Laurent; Newitt, David C; Lu, Ying; MacDonald, Brian; Majumdar, Sharmila

    2004-05-01

    Over the last several years magnetic resonance (MR) imaging has emerged as a means of measuring in vivo 3D trabecular bone structure. In particular, MR based diagnosis could be used to complement standard bone mineral density (BMD) methods for assessing osteoporosis and evaluating longitudinal changes. The aim of this study was to demonstrate the feasibility of using the 3D-LSGA technique for the evaluation of trabecular bone structure of high-resolution MR images, particularly for assessing longitudinal changes, in vivo. First, the reproducibility of topological 3D-LSGA based measurements was evaluated in a set of seven volunteers, and coefficients of variations ranged from 3.5% to 6%. Second, high-resolution MR images of the radius in 30 postmenopausal women from a placebo controlled drug study (Idoxifene), divided into placebo ( n=9) and treated ( n=21) groups, were obtained at baseline (BL) and after 1 year of treatment (follow-up, FU). In addition, dual X-ray absorptiometry (DXA) measures of BMD were obtained in the distal radius. Standard morphological measurements based on the mean intercept length (MIL) technique as well as 3D-LSGA based measurements were applied to the 3D MR images. Significant changes from BL to FU were detected, in the treated group, using the topological 3D-LSGA based measurements, morphological measures of volume of connected trabeculae and App Tb.N from MIL analysis. The duration of the study was short, and the number of patients remaining in the study was small, hence these results cannot be interpreted with regard to a true therapeutic response. Furthermore, the site (wrist) and the drug (idoxifene) are not optimal for follow-up study. However, this paper demonstrated the feasibility of using 3D-LSGA based evaluation coupled with in vivo high-resolution MR imaging as a complementary approach for the monitoring of trabecular bone changes in individual subjects.

  18. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.

    PubMed

    Hakulinen, Mikko A; Day, Judd S; Töyräs, Juha; Timonen, Matti; Kröger, Heikki; Weinans, Harrie; Kiviranta, Ilkka; Jurvelin, Jukka S

    2005-04-21

    The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extens