Science.gov

Sample records for femtosecond fluorescence upconversion

  1. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  2. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    SciTech Connect

    Zhang, X.-X.; Wuerth, C.; Resch-Genger, U.; Zhao, L.; Ernsting, N. P.; Sajadi, M.

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  3. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  4. Ultrafast Fluorescence Spectroscopy via Upconversion: Applications to Biophysics

    PubMed Central

    Xu, Jianhua; Knutson, Jay R.

    2012-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed. PMID:19152860

  5. Three-photon-excited upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation.

    PubMed

    Zeng, Huidan; Song, Juan; Chen, Danping; Yuan, Shuanglong; Jiang, Xiongwei; Cheng, Ya; Yang, Yunxia; Chen, Guorong

    2008-04-28

    We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O(2-) to Nb(5+) can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix.

  6. Direct observation of up-conversion via femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Gerber, Thomas

    2015-10-01

    Ultrafast relaxation dynamics in 2-methylfuran has been investigated by time-resolved photoelectron imaging. An "up" internal conversion from a low-lying state into a higher-lying one has been observed experimentally. Temporal photoelectron kinetic-energy distributions and angular distributions of the photoelectrons are analyzed. In the up-conversion process, the vibrational energy in the initial state is converted to the electronic energy of the final state during the energy transfer. And the time scale for the up-conversion process is estimated by the observed onset delay for the corresponding photoelectron bands.

  7. Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique

    NASA Astrophysics Data System (ADS)

    Rhee, June-Koo; Sosnowski, Thomas S.; Tien, An-Chun; Norris, Theodore B.

    1996-08-01

    We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

  8. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  9. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  10. Xanthines Studied via Femtosecond Fluorescence Spectroscopy.

    PubMed

    Changenet-Barret, Pascale; Kovács, Lajos; Markovitsi, Dimitra; Gustavsson, Thomas

    2016-12-03

    Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10(-4)) and average decay time (0.9 ps) are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  11. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  12. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Wu, Yuanyuan; Zhu, Yihua; Yang, Xiaoling; Jiang, Xin; Xiao, Jingfan; Zhang, Yuanxing; Li, Chunzhong

    2014-03-01

    Here, we report a simple and ultrasensitive upconversion fluorescent strip sensor based on NaYF4:Yb,Er nanoparticles (NPs) and the lateral flow immunochromatographic assay (LFIA). Carboxyl-modified β-NaYF4:Yb,Er NPs were successfully synthesized by a facile one-pot solvothermal approach, upon further coupling with monoclonal antibody, the resultant UCNPs-antibody conjugates probes were used in LFIA and served as signal vehicles for the fluorescent reporters. V. anguillarum was used as a model analyte to demonstrate the use of this strip sensor. The limit of the detection for the fluorescent strip was determined as 102 CFU mL-1, which is 100 times lower than those displayed by enzyme-linked immunosorbent assays, while the time needed for the detection was only 15 min. Furthermore, no cross-reaction with other eight pathogens was found, indicating the good specificity of the strip. This developed LFIA would offer the potential as a useful tool for the quantification of pathogens analysis in the future.

  13. Intense upconversion fluorescence in Tm 3+/Yb3+ codoped alumina lead borate glasses

    NASA Astrophysics Data System (ADS)

    Krishna Murthy Goud, K.; Shekhar Reddy, M. Chandra; Appa Rao, B.

    2016-09-01

    The Tm3+/Yb3+ codoped alumina lead borate glasses were prepared by the conventional melt quenching technique. Optical absorption and FTIR spectra were recorded. The upconversion fluorescence spectra exhibited weak blue (480 nm) and intense red (660 nm) emissions due to 1G4 → 3H6 and 1G4 → 3H4 transitions, respectively. The results concluded that both emissions are due to three photon absorption process. It has been observed that in the upconversion efficiency increases with the increase in the concentration of Yb3+ ions. The strong red upconversion fluorescence indicate that Tm3+/Yb3+ codoped alumina lead borate glasses can be used as potential host material for upconversion lasers.

  14. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions

    PubMed Central

    Yao, Yunhua; Zhang, Shian; Zhang, Hui; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2014-01-01

    We theoretically and experimentally demonstrate the up-conversion fluorescence control via resonance-mediated two-photon absorption in rare-earth ions by varying both the laser polarization and phase. We show that both the laser polarization and phase can control the up-conversion fluorescence, and the up-conversion fluorescence intensity is decreased when the laser polarization changes from linear through elliptical to circular. We also show that the laser polarization will affect the control efficiency of the up-conversion fluorescence by varying the laser phase, and the circular polarization will reduce the control efficiency. Furthermore, we suggest that the control efficiency by varying the laser polarization and the effect of the laser polarization on the control efficiency by varying the laser phase can be artificially manipulated by controlling the laser spectral bandwidth. This optical control method opens a new opportunity to control the up-conversion fluorescence of rare-earth ions, which may have significant impact on the related applications of rare-earth ions. PMID:25465401

  15. Upconversion: road to El Dorado of the fluorescence world.

    PubMed

    Ong, Li Ching; Gnanasammandhan, Muthu Kumara; Nagarajan, Sounderya; Zhang, Yong

    2010-01-01

    Upconversion nanoparticles (UCNs), in the recent times have attracted attention due to their unique properties, which makes them ideal fluorophores for use in biological applications. There have been various reports on their use for targeted cell imaging, drug and gene delivery and also for diffuse optical tomography. Here we give a brief introduction on what are UCNs and the mechanism of upconversion, followed by a discussion on the biological applications of UCNs and further on what the future holds for UCNs.

  16. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  17. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.

    PubMed

    Kumar, P Hemant; Venkatesh, Yeduru; Siva, Doddi; Ramakrishna, B; Bangal, Prakriti Ranjan

    2015-02-26

    The ultrafast photophysical characterization of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin (H2F20TPP) in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solution has been done in the femtosecond-picosecond time domain, by combining fluorescence up-conversion and femtosecond transient absorption spectroscopy. Fluorescence up-conversion studies on H2F20TPP were done demonstrating fluorescence dynamics over the whole spectral range from 440 to 650 nm when excited at 405 nm, 360.5 cm(-1) excess vibrational energy of Soret band (411 nm). Single-exponential decay with ∼160 ± 50 fs lifetime of Soret fluorescence (also called S2 fluorescence or B band fluorescence) at around 440 nm was observed. On going from 440 nm, S2 fluorescence to S1 fluorescence, (Q-band) around 640 nm (wavelength of 0-0 transition in the stationary spectrum), single-exponential fluorescence time profile turns into a multiexponential time profile and it could be resolved critically into five-exponential components. An ultrafast rise component with ∼160 ± 50 fs followed by two decay components: a very fast decay component with 200 ± 50 fs time constant and another relatively slower 1.8 ± 0.5 ps decay component. Next, a very prominent rise component with 105 ± 30 ps lifetime followed by long-lived 10 ns decay component. The initial rise of S1 (Q-band) fluorescence around 640 nm agreed with the decay time of S2 (Soret or B band) fluorescence indicates that internal conversion (IC) from relaxed S2 to vibrationally excited S1 occurs in the ∼160 fs time scale and subsequent very fast decay with 200 fs time constant, which is assigned to be intramolecular vibrational dephasing or redistribution. The 1.8 ps decay component of S1 fluorescence is attributed to be "hot" fluorescence from vibrationally excited S1 state, and it reveals the vibrational relaxation time induced by elastic or quasi-elastic collision with solvent molecules. The 105 ps rise component is the creation time of the

  18. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  19. Fabrication of fluorescent composite hydrogel using in situ synthesis of upconversion nanoparticles.

    PubMed

    Dong, Yuqing; Lin, Min; Jin, Guorui; Il Park, Yong; Qiu, Mushu; Zhao, Ying; Yang, Hui; Li, Ang; Jian Lu, Tian

    2017-04-28

    Fluorescent composite hydrogels have found widespread applications, especially in spatial and temporal monitoring of in vivo hydrogel behaviors via the emitting optical signal. However, most existing fluorescent composite hydrogels suffer from limited capability of deep tissue imaging and complicated fabrication routes. We herein report a facile method for fabricating fluorescent composite hydrogels based on the in situ synthesis of NaYF4:Yb, Er upconversion nanoparticles (UCNPs). This approach employs polyacrylamide (PAAm) hydrogels as a template, where the interconnected pores within the hydrogel act as nanoreactors to confine the growth of nanocrystals. We then obtained a fluorescent composite hydrogel exhibiting upconversion fluorescence and enhanced mechanical properties. The fluorescence spectra show that the fluorescence intensity decreases with decreasing size of the UCNPs. We investigated the relationship between the optical properties of the fluorescent composite hydrogel and the incorporated UCNPs based on the morphology, size, and distribution of the UCNPs by using scanning electron microscopy and transmission electron microscopy. In addition, we demonstrated the applicability of the synthesized hydrogel for deep tissue imaging through an in vitro tissue penetration experiment. Compressive and dynamic rheological testing reveal enhanced mechanical properties with increasing UCNP concentration. The fabricated upconversion fluorescent composite hydrogel may pave the way for monitoring the in vivo behavior of biomimetic materials via deep tissue imaging.

  20. Wide-bandgap nonlinear crystal LiGaS2 for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    PubMed

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaS2 is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaS2 as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mn2(CO)10 in cyclohexane and bovine serum albumin in D2O are demonstrated with a high signal-to-noise ratio.

  1. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.

    PubMed

    Zhang, Fan; Shi, Qihui; Zhang, Yichi; Shi, Yifeng; Ding, Kunlun; Zhao, Dongyuan; Stucky, Galen D

    2011-09-01

    Fluoride rare-earth-doped upconversion microbarcodes have been successfully developed for multiplexed signaling and nucleic-acid encoding. This kind of novel barcode material can be used for rapid and sensitive analysis of nucleic acids and antigens, which would have many potential applications in clinical, food, and environment detection.

  2. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals.

    PubMed

    Chatterjee, Dev K; Rufaihah, Abdul J; Zhang, Yong

    2008-03-01

    Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. This has several advantages, including absence of photo-damage to living organisms, very low auto-fluorescence, high detection sensitivity, and high light penetration depth in biological tissues. In this report we demonstrate the use of a new upconversion fluorophore, lanthanide doped nanocrystals, for imaging of cells and some deep tissues in animal. Polyethyleneimine (PEI) coated NaYF(4):Yb,Er nanoparticles were synthesized, which produce very strong upconversion fluorescence when excited at 980 nm by a NIR laser. The nanoparticles were shown to be stable in physiologic buffered saline (PBS), non-toxic to bone marrow stem cells, and resistant to photo-bleaching. The nanoparticles delivered into some cell lines or injected intradermally and intramuscularly into some tissues either near the body surface or deep in the body of rats showed visible fluorescence, when exposed to a 980 nm NIR laser. To the best of our knowledge, this represents the first demonstration of use of upconversion fluorophores for cellular and tissue imaging.

  3. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  4. Infrared to visible upconversion fluorescence in Yb,Tm:YAG single crystal

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Xu, Xiaodong; Wu, Feng; Zhao, Guangjun; Zhao, Zhiwei; Zhou, Guoqing; Xu, Jun

    2007-04-01

    Absorption spectrum from 400 to 2000 nm and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition 1G4 → 3H6, the emission band around 646 nm corresponds to the transition 1G4 → 3F4 of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of 1G4 level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions 1G4 → 3H6 in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light output.

  5. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship.A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to

  6. Broadband up-conversion at subsolar irradiance: triplet-triplet annihilation boosted by fluorescent semiconductor nanocrystals.

    PubMed

    Monguzzi, A; Braga, D; Gandini, M; Holmberg, V C; Kim, D K; Sahu, A; Norris, D J; Meinardi, F

    2014-11-12

    Conventional solar cells exhibit limited efficiencies in part due to their inability to absorb the entire solar spectrum. Sub-band-gap photons are typically lost but could be captured if a material that performs up-conversion, which shifts photon energies higher, is coupled to the device. Recently, molecular chromophores that undergo triplet-triplet annihilation (TTA) have shown promise for efficient up-conversion at low irradiance, suitable for some types of solar cells. However, the molecular systems that have shown the highest up-conversion efficiency to date are ill suited to broadband light harvesting, reducing their applicability. Here we overcome this limitation by combining an organic TTA system with highly fluorescent CdSe semiconductor nanocrystals. Because of their broadband absorption and spectrally narrow, size-tunable fluorescence, the nanocrystals absorb the radiation lost by the TTA chromophores, returning this energy to the up-converter. The resulting nanocrystal-boosted system shows a doubled light-harvesting ability, which allows a green-to-blue conversion efficiency of ∼12.5% under 0.5 suns of incoherent excitation. This record efficiency at subsolar irradiance demonstrates that boosting the TTA by light-emitting nanocrystals can potentially provide a general route for up-conversion for different photovoltaic and photocatalytic applications.

  7. Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass

    NASA Astrophysics Data System (ADS)

    Huang, Q. J.; Wang, Q. P.; Chang, J.; Zhang, X. Y.; Liu, Z. J.; Yu, G. Y.

    2010-04-01

    Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.

  8. Observation of upconversion fluorescence and stimulated emission based on three-photon absorption

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lin, S.; Xu, L.; Yang, F.; Yang, Y.; Pan, L.; Sun, C.; Li, Y.; Sun, G.; Jiang, Z.

    2005-06-01

    The observations of three-photon-induced frequency-upconversion fluorescence and the highly directional stimulated visible emission in two dyes, 4-[p-(dicyanoethylamino) styryl]-N-methylpyridinium iodide (abbreviated as CEASP) and the complex of CEASP and Ce(NO3) (abbreviated as CEASP-Ce), are reported. The photographs of the forward amplified spontaneous emissions spots, pumped by an optical parametric oscillator idler with a pulse width of 8 ns and a wavelength of 1.3 μ m, are shown. The upconversion fluorescence produced both in dimethyl formamide solution and 2-hydroxyethyl methacrylate (HEMA) polymer spans from green to red, with a cubic dependence on the pump light intensity. The experimental results imply that the existence of the lanthanide ion Ce3 + sensitizes the nonlinear absorption and emission.

  9. Optical parameters and upconversion fluorescence in Tm3+/Yb3+-doped alkali-barium-bismuth-tellurite glasses.

    PubMed

    Lin, Hai; Liu, Ke; Lin, Lin; Hou, Yanyan; Yang, Dianlai; Ma, Tiecheng; Pun, Edwin Yun Bun; An, Qingda; Yu, Jiayou; Tanabe, Setsuhisa

    2006-11-01

    Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.

  10. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer.

    PubMed

    Li, Hui; Sun, De-en; Liu, Yajie; Liu, Zhihong

    2014-05-15

    We developed an ultrasensitive fluorescence resonance energy transfer (FRET) aptasensor for kanamycin detection, using upconversion nanoparticles (UCNPs) as the energy donor and graphene as the energy acceptor. Oleic acid modified upconversion nanoparticles were synthesized through a hydrothermal process followed by a ligand exchange with hexanedioic acid. The kanamycin aptamer (5'-NH2-AGATGGGGGTTGAGGCTAAGCCGA-3') was tagged to UCNPs through an EDC-NHS protocol. The π-π stacking interaction between the aptamer and graphene brought UCNPs and graphene in close proximity and hence initiated the FRET process resulting in quenching of UCNPs fluorescence. The addition of kanamycin to the UCNPs-aptamer-graphene complex caused the fluorescence recovery because of the blocking of the energy transfer, which was induced by the conformation change of aptamer into a hairpin structure. A linear calibration was obtained between the fluorescence intensity and the logarithm of kanamycin concentration in the range from 0.01 nM to 3 nM in aqueous buffer solution, with a detection limit of 9 pM. The aptasensor was also applicable in diluted human serum sample with a linear range from 0.03 nM to 3 nM and a detection limit of 18 pM. The aptasensor showed good specificity towards kanamycin without being disturbed by other antibiotics. The ultrahigh sensitivity and pronounced robustness in complicated sample matrix suggested promising prospect of the aptasensor in practical applications.

  11. Femtosecond fluorescence depolarization study of photosynthetic antenna proteins: observation of ultrafast energy transfer in trimeric C-phycocyanin and allophycocyanin

    NASA Astrophysics Data System (ADS)

    Xie, Sunney; Du, Mei; Mets, Laurens; Fleming, Graham R.

    1992-04-01

    C-phycocyanin (CPC) and Allophycocyanin (APC) are pigment-protein complexes isolated from antenna systems in cyanobacteria. The crystal structure of CPC has recently been solved and APC has a similar structure. CPC and APC have a trimeric structure, monomeric subunits are composed of an (alpha) and (beta) polypeptide chain, each has a tetrapyrrole chromophore chemically bound to position 84. In CPC and APC trimers, the (alpha) 84 and (beta) 84 chromophores in adjacent monomers are in close proximity, forming relatively strong coupled pairs. Calculation of pairwise energy transfer rates using Foerster theory has suggested an extremely fast transfer (> 1 ps-1) between the (alpha) 84 and (beta) 84 pair in CPC. A femtosecond fluorescence up-conversion apparatus was constructed which achieves subhundred femtosecond time resolution. This allows experimental observation of the fast energy transfer process between the (alpha) 84 and (beta) 84 pair in both CPC and APC. There was also a wavelength dependence of the fluorescence depolarization kinetics which is inconsistent with Foerster inductive resonance energy transfer theory.

  12. Femtosecond fluorescence dynamics of rotation-restricted azobenzenophanes: new evidence on the mechanism of trans --> cis photoisomerization of azobenzene.

    PubMed

    Lu, Ying-Chih; Diau, Eric Wei-Guang; Rau, Hermann

    2005-03-17

    The ultrafast relaxation dynamics of two rotation-restricted (azobenzeno-2S-phane and azobenzeno-4S-phane) and one rotation-free (4,4'-dimethylazobenzene) azobenzene derivatives were investigated using femtosecond fluorescence up-conversion on both S(1)(n,pi) and S(2)(pi,pi) excitations. On S(2) excitation, pulse-limited kinetics with a decay coefficient of approximately 100 fs corresponding to ultrafast S(2) --> S(1) relaxation is found to be common for all molecules under investigation regardless of the molecular structure. This indicates that a direct rotational relaxation on the S(2) surface is unfavorable. On S(1) excitation, we observed biphasic fluorescence decay with a femtosecond component attributed to the decay of the Franck-Condon state prepared by excitation and a picosecond component attributed to the deactivation of the relaxed molecule on the S(1) surface. This picosecond component is slowed by at least a factor of 2 for the rotation-restricted 2S-bridged molecule compared to that of the rotation-free molecule; for the even stronger rotation-restricted azobenzeno-4S-phane, the decrease is by a factor of 10. These differences in deactivation suggest that the relaxed states and probably the trajectories for rotation-free and rotation-restricted molecules are different on the S(1) surface, which should be important for the quantum yield of photoisomerization.

  13. Sensitivity of laser-induced upconversion fluorescence dynamics to exciting wavelength in Er3+-doped YAG

    NASA Astrophysics Data System (ADS)

    Du, S.; Jiang, L.; Zhang, W.; Gong, W.; Fu, Z.; Dai, Z.

    2011-06-01

    A novel sensitivity of laser-induced upconversion (UC) fluorescence dynamics to the exciting wavelength in Er3+:YAG crystal has been observed. The sensitivities to exciting wavelength variations are only 0.02 and 0.06 nm for 2 G 9/2 and 2 P 3/2 UC luminescence, respectively. The observation of this sensitivity reveals that when a certain level is populated by more than one UC mechanisms, a precise determination of suitable exciting wavelength is crucial because the competition between different UC mechanisms has a sensitive variation with exciting wavelength in near-resonant range.

  14. Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals.

    PubMed

    Li, Zhengquan; Zhang, Yong; Shuter, Borys; Muhammad Idris, Niagara

    2009-10-20

    Nanoparticles comprising of fluorescent probes and MRI contrast agents are highly desirable for biomedical applications due to their ability to be detected at different modes, optically and magnetically. However, most fluorescent probes in such nanoparticles synthesized so far are down-conversion phosphors such as organic dyes and quantum dots, which are known to display many intrinsic limitations. Here, we report a core-shell hybrid lanthanide nanoparticle consisting of an upconverting lanthanide nanocrystal core and a paramagnetic lanthanide complex shell. These nanoparticles are uniform in size, stable in water, and show both high MR relaxivities and upconversion fluorescence, which may have the potential to serve as a versatile imaging tool for smart detection or diagnosis in future biomedical engineering.

  15. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-01

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2 ng·ml- 1, and in the effective detection range 0.2 to 100 ng·ml- 1, good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

  16. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles.

    PubMed

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-05

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2ng·ml(-1), and in the effective detection range 0.2 to 100ng·ml(-1), good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

  17. Fluorescence Behaviour and Singlet Oxygen Production of Aluminium Phthalocyanine in the Presence of Upconversion Nanoparticles.

    PubMed

    Watkins, Zane; Taylor, Jessica; D'Souza, Sarah; Britton, Jonathan; Nyokong, Tebello

    2015-09-01

    NaYF4:Yb/Er/Gd upconversion nanoparticles (UCNP) were synthesised and the photoemission stabilised by embedding them in electrospun fibers. The photophysical behaviour of chloro aluminium tetrasulfo phthalocyanine (ClAlTSPc) was studied in the presence of UCNPs when the two are mixed in solution. The fluorescence quantum yield value of ClAlTSPc decreased in the presence of UCNPs due to the heavy atom effect of UCNPs. This effect also resulted in increase in triplet quantum yields for ClAlTSPc in the presence of UCNPs. The fluorescence lifetimes for UCNPs were shortened at 658 nm in the presence of ClAlTSPc when the former was embedded in fiber and suspended in a dimethyl sulfoxide solution of the latter. A clear singlet oxygen generation by ClAlTSPc though Förster resonance energy transfer was demonstrated using a singlet oxygen quencher, 1,3-diphenylisobenzofuran.

  18. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  19. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-01

    The paper presents the growth of hexagonal NaYF4:Yb3+, Tm3+ nanocrystals with tunable sizes induced by different contents of doped Yb3+ ions (10%-99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb3+ ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm2. More importantly, the obvious short-wave (300-500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  20. Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Gu, Dahai; Yang, Yukun; Wang, Shuo

    2016-05-15

    A novel fluorescence material with thermo-sensitive for the enrichment and sensing of protein was successfully prepared by combining molecular imprinting technology with upconversion nanoparticles (UCNPs) and metal-organic frameworks (MOFs). Herein, the UCNPs acted as signal reporter for composite materials because of its excellent fluorescence property and chemical stability. MOFs were introduced to molecularly imprinted polymer (MIP) due to its high specific surface area which increases the rate of mass transfer relative to that of traditional bulk MIP. The thermo-sensitive imprinted material which allows for swelling and shrinking with response to temperature changes was prepared by choosing Bovine hemoglobin (BHB) as the template, N-isopropyl acrylamide (NIPAAM) as the temperature-sensitive functional monomer and N,N-methylenebisacrylamide (MBA) as the cross-linker. The recognition characterizations of imprinted material-coated UCNPs/MOFs (UCNPs/MOFs/MIP) were evaluated, and the results showed that the fluorescence intensity of UCNPs/MOFs/MIP reduced gradually with the increase of BHB concentration. The fluorescence material was response to the temperature. The adsorption capacity was as much as 167.6 mg/g at 28°C and 101.2mg/g at 44°C, which was higher than that of traditional MIP. Therefore, this new fluorescence material for enrichment and sensing protein is very promising for future applications.

  1. Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air

    NASA Astrophysics Data System (ADS)

    Li, Suyu; Jiang, Yuanfei; Chen, Anmin; He, Lanhai; Liu, Dunli; Jin, Mingxing

    2017-03-01

    The backward propagating and side emitted fluorescence during the femtosecond filamentation in air is experimentally investigated in this paper. By comparing the fluorescence emission in the circular and linear polarization states, we find that in the shorter focal length case, the direct ionization of N 2 greatly affects the fluorescence emission behaviors: the fluorescence from N2 + and N 2 is always stronger in the linear and circular polarization cases, respectively. Based on the observation, the emission mechanism of nitrogen fluorescence emission induced by a femtosecond filament is discussed.

  2. Electron transfer and solvation in 9,9 '-bianthryl and derivatives: a sub-ps fluorescence upconversion study

    NASA Astrophysics Data System (ADS)

    Jurczok, Martin; Gustavsson, Thomas; Mialocq, Jean-Claude; Rettig, Wolfgang

    2001-08-01

    The time-evolution of the fluorescence spectra of 9,9 '-bianthryl and 9-carbazolyl-anthracene in ethanol and butanol have been studied with subpicosecond time-resolution by the fluorescence upconversion technique. For both compounds, an initial phase (<1 ps) with a structured anthracene-type fluorescence spectrum could be observed which transforms into an unstructured redshifted emission spectrum further shifting to the red on the time scale of the slow component of solvent relaxation. The results are compared to recent transient absorption studies and are interpreted as evidence for a subpicosecond relaxation process (ca 0.4 ps) occurring prior to electron transfer in these compounds.

  3. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-08-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases.Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the

  4. Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Zhang, Yong

    2011-09-01

    Upconversion nanoparticles (UCNs) are nanoparticles that are excited in the near infrared (NIR) region with emission in the visible or NIR regions. This makes these particles attractive for use in biological imaging as the NIR light can penetrate the tissue better with minimal absorption/scattering. This paper discusses the study of the depth to which cells can be imaged using these nanoparticles. UCNs with NaYF4 nanocrystals doped with Yb3 + , Er3 + (visible emission)/Yb3 + , Tm3 + (NIR emission) were synthesized and modified with silica enabling their dispersion in water and conjugation of biomolecules to their surface. The size of the sample was characterized using transmission electron microscopy and the fluorescence measured using a fluorescence spectrometer at an excitation of 980 nm. Tissue phantoms were prepared by reported methods to mimic skin/muscle tissue and it was observed that the cells could be imaged up to a depth of 3 mm using the NIR emitting UCNs. Further, the depth of detection was evaluated for UCNs targeted to gap junctions formed between cardiac cells.

  5. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  6. Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8 - 1 {mu}m in silica fibres

    SciTech Connect

    Anashkina, E A; Andrianov, A V; Kim, A V

    2013-03-31

    We consider different mechanisms of nonlinear frequency up-conversion of femtosecond pulses emitted by an erbium fibre system ({lambda} = 1.5 {mu}m) to the range of 0.8 - 1.2 {mu}m in nonlinear silica fibres. The generation efficiency and the centre frequencies of dispersive waves are found as functions of the parameters of the fibre and the input pulse. Simple analytical estimates are obtained for the spectral distribution of the intensity and the frequency shift of a wave packet in the region of normal dispersion during the emission of a high-order soliton under phase matching conditions. In the geometrical optics approximation the frequency shifts are estimated in the interaction of dispersive waves with solitons in various regimes. (extreme light fields and their applications)

  7. A Modified Four-State Model for the "Dual Fluorescence" of N6,N6-Dimethyladenine Derived from Femtosecond Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwalb, Nina K.; Temps, Friedrich

    2009-07-01

    The radiationless deactivation of the excited electronic states of the dual fluorescence molecule N6,N6-dimethyladenine (DMAde) was investigated using femtosecond time-resolved fluorescence up-conversion spectroscopy. The molecules were studied in solution in water and in dioxane. Fluorescence-time profiles were recorded in the wide wavelength range of 290 ≤ λfl ≤ 650 nm. The excitation wavelengths in the region of the first UV absorption band were tuned from close to the electronic origin (λpump = 294 nm) to excess energies of ˜5400 cm-1 above (λpump = 258 nm). Global fits to the measured curves turned out to reflect distinctive molecular relaxation processes on five well-defined time scales. Sub-100 fs and 0.52(3) ps lifetimes were found to predominate at the shortest UV and blue emission wavelengths in water, 1.5(1) and 3.0(2) ps components at intermediate wavelengths and a 62(1) ps value in the red region of the spectrum (2σ error limits of the last digits in parentheses). In dioxane, these lifetimes changed to ≤0.27 and 0.63(4) ps in the UV, 1.5(1) and 10.9(10) ps in a wide range of intermediate, and 1.40(4) ns at the longest wavelengths. However, little dependence of the respective time constants on λpump was observed, indicating that the ensuing relaxation processes proceed via practically barrierless pathways through conical intersections. Building on the knowledge for the parent molecule adenine (Ade), the observations were rationalized with the help of a modified four-state model for the electronic dynamics in DMAde with the ππ*(La), ππ*(Lb), and nπ* states similar to those in Ade and an intramolecular charge-transfer (ICT) state, which has no counterpart in Ade, responsible for the long-wavelength fluorescence.

  8. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  9. Deoxycholate induced tetramer of αA-crystallin and sites of phosphorylation: Fluorescence correlation spectroscopy and femtosecond solvation dynamics

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Mojumdar, Supratik Sen; Choudhury, Aparajita; Banerjee, Rajat; Das, Kali Pada; Sasmal, Dibyendu Kumar; Bhattacharyya, Kankan

    2012-04-01

    Structure and dynamics of acrylodan labeled αA-crystallin tetramer formed in the presence of a bile salt (sodium deoxycholate, NaDC) has been studied using fluorescence correlation spectroscopy (FCS) and femtosecond up-conversion techniques. Using FCS it is shown that, the diffusion constant (Dt) of the αA-crystallin oligomer (mass ˜800 kDa) increases from ˜35 μm2 s-1 to ˜68 μm2 s-1. This corresponds to a decrease in hydrodynamic radius (rh) from ˜6.9 nm to ˜3.3 nm. This corresponds to about 10-fold decrease in molecular mass to ˜80 kDa and suggests formation of a tetramer (since mass of αA-crystallin monomer is ˜20 kDa). The steady state emission maximum and average solvation time (<τs>) of acrylodan labeled at cysteine 131 position of αA-crystallin is markedly affected on addition of NaDC, while the tryptophan (trp-9) becomes more exposed. This suggests that NaDC binds near the cys-131 and makes the terminal region of αA-crystallin exposed. This may explain the enhanced auto-phosphorylation activity of αA-crystallin near the terminus of the 173 amino acid protein (e.g., at the threonine 13, serine 45, or serine 169 and 172) and suggests that phosphorylation at ser-122 (close to cys-131) is relatively less important.

  10. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy.

    PubMed

    Qian, Hai Sheng; Guo, Hui Chen; Ho, Paul Chi-Lui; Mahendran, Ratha; Zhang, Yong

    2009-10-01

    Near-infrared (NIR)-to-visible up-conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF(4) up-converting nanocrystals, with a large surface area of approximately 770 m(2) g(-1) and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.

  11. Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm.

    PubMed

    Guhur, A; Jackson, S D

    2010-09-13

    We demonstrate a highly efficient and high power Ho(3+)-doped fluoride glass fiber laser that is resonantly pumped with a Tm(3+)-doped silicate glass fiber laser operating at 2.051 µm. The laser operates at 2080 nm and generated 6.66 W at a slope efficiency of 72%. We observe strong visible upconversion fluorescence centered at a variety of wavelengths including 491 nm which results from three sequential energy transfer upconversion processes; the fluorescence to pump energy ratio for this emission is one the largest reported to date.

  12. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a

  13. ATOMIC AND MOLECULAR PHYSICS: Infrared-to-visible and infrared-to-violet upconversion fluorescence of rare earth doped LaF3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Qin Wei-, Ping; Di, Wei-Hua; Zhang Ji-, Sen; Cao, Chun-Yan

    2008-09-01

    This paper reports that hexagonal-phase LaF3:Yb0.203+, Er0.023+ and LaF3:Yb0.203+, Tm0.023+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb3+/Er3+ and Yb3+/Tm3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluorescence mechanisms of La F3:Yb0.023+ Er0.023+ and LaF3:Yb0.023+, Tm0.023+ NCs are investigated with a 980-nm diode laser as excitation source.

  14. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection

    PubMed Central

    2016-01-01

    We developed a sensor for the detection of specific microRNA (miRNA) sequences that was based on graphene quantum dots (GQDs) and ssDNA-UCNP@SiO2. The proposed sensor exploits the interaction between the sp2 carbon atoms of the GQD, mainly π–π stacking, and the DNA nucleobases anchored on the upconversion nanoparticles (UCNPs). This interaction brings the GQD to the surface of the ssDNA-UCNP@SiO2 system, enhancing the upconversion emission. On the other hand, hybridization of the single-stranded DNA (ssDNA) chains anchored on the nanoparticles with their complementary miRNA sequences blocks the capacity of the UCNPs to interact with the GQD through π–π stacking. That gives as result a reduction of the fluorescent enhancement, which is dependent on the concentration of miRNA sequences. This effect was used to create a sensor for miRNA sequences with a detection limit of 10 fM. PMID:27153453

  15. Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy.

    PubMed

    Tomi, Tetsuo; Shibata, Yutaka; Ikeda, Yuki; Taniguchi, Seiji; Haik, Chosrowjan; Mataga, Noboru; Shimada, Keizo; Itoh, Shigeru

    2007-01-01

    A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).

  16. Up-conversion fluorescence "off-on" switch based on heterogeneous core-satellite assembly for thrombin detection.

    PubMed

    Zhao, Xueli; Li, Si; Xu, Liguang; Ma, Wei; Wu, Xiaoling; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-08-15

    NaGdF4: Yb, Er nanoparticles, with up-conversion (UC) fluorescence, were used for the first time to build an "off-on" switch based on Au core-UC satellites for thrombin detection. We fabricated the fluorescence sensor using thrombin aptamer modified Au core and complementary sequence modified UC satellites in liquid phase. With optimized assembled conditions, the yield of Au core-UC satellites achieved 80%. The fluorescence of UC nanoparticles quenched when satellite NP attached to Au core NP. Thrombin aptamer on the surface of Au core would bind to targets when thrombin existed in the system, then UC satellites were released and the quenched fluorescence recovered. The sensor showed high specificity for thrombin compared with other biomolecules and the limit of detection reached 3.5 fg/mL. Application of this sensor to detect targets in human serum also achieved satisfactory results. The purpose of this work was to build an ultrasensitive sensor based on Au core-UC satellites for thrombin detection in human serum to achieve diagnosis of diseases.

  17. Femtosecond two-photon-excited fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Teuchner, Klaus; Mueller, Susanne; Freyer, Wolfgang; Leupold, Dieter; Altmeyer, Peter; Stuecker, Markus; Hoffmann, Klaus

    2003-02-01

    Spectral and time-resolved fluorescence studies of different eumelanins (natural, synthetic, enzymatic) in solution have been carried out by two-photon excitation at 800 nm, using 80 fs pulses with photon flux densities <= 1027 cm-2.s-1. Whereas all samples show monotonously decreasing absorption between near UV and near IR, their fluorescence behavior indicates strong heterogeneity. With respect to the also measured one-photon excited fluorescence (OPF) of melanin at 400 nm, the overall spectral shape of the two-photon excited fluorescence (TPF) is red-shifted. Both OPF and TPF exhibit three-exponential decay with a shortest component # 200 ps. As is also shown, the fluorescence properties of melanin are dependent on the micro-environment. This allows the hypothesis, that the process of malignant transformation in skin tissue could be reflected in the fluorescence, provided the melanin in skin is selectively excited. The latter is realized by the described stepwise absorption of two 800 nm photons. In this way, indeed characteristic differences between the TPF spectra of healthy tissue, nevus cell nevi and malignant melanoma have been found.

  18. Femtosecond fluorescence dynamics of porphyrin in solution and solid films: the effects of aggregation and interfacial electron transfer between porphyrin and TiO2.

    PubMed

    Luo, Liyang; Lo, Chen-Fu; Lin, Ching-Yao; Chang, I-Jy; Diau, Eric Wei-Guang

    2006-01-12

    The excited-state relaxation dynamics of a synthetic porphyrin, ZnCAPEBPP, in solution, coated on a glass substrate as solid films, mixed with PMMA and coated on a glass substrate as solid films, and sensitized on nanocrystalline TiO2 films were investigated by using femtosecond fluorescence up-conversion spectroscopy with excitation in the Soret band, S2. We found that the S2--> S1 electronic relaxation of ZnCAPEBPP in solution and on PMMA films occurs in 910 and 690 fs, respectively, but it becomes extremely rapid, <100 fs, in solid films and TiO2 films due to formation of porphyrin aggregates. When probed in the S1 state of porphyrin, the fluorescence transients of the solid films show a biphasic kinetic feature with the rapid and slow components decaying in 1.9-2.4 and 19-26 ps, respectively. The transients in ZnCAPEBPP/TiO2 films also feature two relaxation processes but they occur on different time scales, 100-300 fs and 0.8-4.1 ps, and contain a small offset. According to the variation of relaxation period as a function of molecular density on a TiO2 surface, we assigned the femtosecond component of the TiO2 films as due to indirect interfacial electron transfer through a phenylethynyl bridge attached to one of four meso positions of the porphyrin ring, and the picosecond component arising from intermolecular energy transfer among porphyrins. The observed variation of aggregate-induced relaxation periods between solid and TiO2 films is due mainly to aggregation of two types: J-type aggregation is dominant in the former case whereas H-type aggregation prevails in the latter case.

  19. Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy.

    PubMed

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G; Lin, Charles P; Xu, Chris

    2012-09-01

    We demonstrate a fiber-based, three-color femtosecond source for simultaneous imaging of three fluorescent proteins (FPs) using two-photon fluorescence microscopy (2PM). The three excitation wavelengths at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation (SHG) of the 1550-nm pump laser and the 1728-nm and 1900-nm solitons generated through soliton self-frequency shift (SSFS) in a large-mode-area (LMA) fiber. These energetic pulses are well matched to the two-photon excitation peaks of red, cyan and yellow fluorescent proteins (TagRFPs, TagCFPs, and TagYFPs) for efficient excitation. We demonstrate simultaneous 2PM of human melanoma cells expressing a "rainbow" combination of these three fluorescent proteins.

  20. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  1. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods.

  2. Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal.

    PubMed

    Lv, Jinman; Hao, Xiaotao; Chen, Feng

    2016-10-31

    We report on the green up-conversion and near-infrared (NIR) emission in Er3+, MgO co-doped nearly stoichiometric LiNbO3 waveguides fabricated by femtosecond laser writing. The waveguides with so-called Type I geometry by laser writing support nearly single-mode propagation of light at NIR wavelength of 1.55 μm. In addition, it has been found that the guidance is only along the vertical (i.e., TM) polarization, which is due to the laser-induced positive changes of extraordinary index in the guiding core. The green up-conversion at 550 nm and 528 nm, corresponding to the transitions of 4S3/24I15/2, 2H11/24I15/2, as well as the NIR luminescence emission at C-band centered at 1550 nm under 4I13/24I15/2 transition have been realized in the waveguides, respectively. Our results have shown that the intensities of the guided-wave green up-conversion and NIR emissions are higher than those obtained from the bulk, which may be owing to the enhanced intracavity optical intensities of the waveguide with respect to the bulk.

  3. High-Speed Fluorescence Imaging and Intensity Profiling of Femtosecond-Induced Calcium Transients

    PubMed Central

    Cranfield, Charles G.; Gu, Min

    2006-01-01

    We have demonstrated a combined imaging system, where the physiology of biological specimens can be imaged and profiled at 10–20 frames per second whilst undergoing femtosecond laser irradiation. Individual GH3 cells labeled with the calcium fluorophore Fluo-3 were stimulated using a counter-propagating focused femtosecond beam with respect to the imaging system. As a result of the stimulation, calcium waves can be generated in COS cells, and laser-induced calcium oscillations are initiated in the GH3 cells. Single-photon fluorescence images and intensity profiles of the targeted specimens are sampled in real-time using a modified PerkinElmer UltraView LCI microscope. PMID:23165061

  4. Magnetic and fluorescent Gd2O3:Yb(3+)/Ln(3+) nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy.

    PubMed

    Liu, Jun; Huang, Long; Tian, Xiumei; Chen, Xiaoming; Shao, Yuanzhi; Xie, Fukang; Chen, Dihu; Li, Li

    The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products can serve as good MRI contrast agents. The bright upconversion luminescence of the products allows their use as fluorescence nanoprobes for live cells imaging. We also utilized the luminescence-emission capability of the UCNs for the activation of a photosensitizer to achieve significant PDT results. To the best of our knowledge, this study is the first use of lanthanide-doped Gd2O3 UCNs in a theranostics application. This investigation provides a useful platform for the development of Gd2O3-based UCNs for clinical diagnosis, treatment, and imaging-guided therapy of cancer.

  5. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy

    PubMed Central

    Liu, Jun; Huang, Long; Tian, Xiumei; Chen, Xiaoming; Shao, Yuanzhi; Xie, Fukang; Chen, Dihu; Li, Li

    2017-01-01

    The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products can serve as good MRI contrast agents. The bright upconversion luminescence of the products allows their use as fluorescence nanoprobes for live cells imaging. We also utilized the luminescence-emission capability of the UCNs for the activation of a photosensitizer to achieve significant PDT results. To the best of our knowledge, this study is the first use of lanthanide-doped Gd2O3 UCNs in a theranostics application. This investigation provides a useful platform for the development of Gd2O3-based UCNs for clinical diagnosis, treatment, and imaging-guided therapy of cancer. PMID:28031709

  6. Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, non-conservative, harmonic and optical forces

    NASA Astrophysics Data System (ADS)

    Nome, Rene A.; Sorbello, Cecilia; Jobbágy, Matías; Barja, Beatriz C.; Sanches, Vitor; Cruz, Joyce S.; Aguiar, Vinicius F.

    2017-03-01

    The stochastic dynamics of individual co-doped Er:Yb upconversion nanoparticles (UCNP) were investigated from experiments and simulations. The UCNP were characterized by high-resolution scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Single UCNP measurements were performed by fluorescence upconversion micro-spectroscopy and optical trapping. The mean-square displacement (MSD) from single UCNP exhibited a time-dependent diffusion coefficient which was compared with Brownian dynamics simulations of a viscoelastic model of harmonically bound spheres. Experimental time-dependent two-dimensional trajectories of individual UCNP revealed correlated two-dimensional nanoparticle motion. The measurements were compared with stochastic trajectories calculated in the presence of a non-conservative rotational force field. Overall, the complex interplay of UCNP adhesion, thermal fluctuations and optical forces led to a rich stochastic behavior of these nanoparticles.

  7. Fabricating upconversion fluorescent nanoparticles modified substrate for dynamical control of cancer cells and pathogenic bacteria.

    PubMed

    Li, Huanhuan; Chen, Quansheng; Zhao, Jiewen; Urmila, Khulal

    2016-09-07

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in the field of biomedicine because of their unique upconverting capability by converting near infrared (NIR) excitation to visible or ultraviolet (UV) emission. Here, we developed a novel UCNP-based substrate for dynamic capture and release of cancer cells and pathogenic bacteria under NIR-control. The UCNPs harvest NIR light and convert it to ultraviolet light, which subsequently result in the cleavage of photoresponsive linker (PR linker) from the substrate, and on demand allows the release of a captured cell. The results show that after seeding cells for 5 h, the cells were efficiently captured on the surface of the substrate and ˜89.4% of the originally captured S. aureus was released from the surface after exposure to 2 W/cm(2) NIR light for 30 min, and ˜92.1% of HepG2 cells. These findings provide a unique platform for exploring an entirely new application field for this promising luminescent nanomaterial.

  8. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi

    2013-05-01

    Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.

  9. Variations in fluorescence quantum yield of basic fuchsin with silver nanoparticles prepared by femtosecond laser ablation.

    PubMed

    Pathrose, Bini; Sahira, H; Nampoori, V P N; Radhakrishnan, P; Mujeeb, A

    2014-07-15

    Nano structured noble metals have very important applications in diverse fields such as photovoltaics, catalysis, electronic and magnetic devices, etc. In the present work, the application of dual beam thermal lens technique is employed for the determination of the absolute fluorescence quantum yield of the triaminotriphenylmethane dye, basic fuchsin in the presence of silver sol is studied. Silver sol is prepared by femtosecond laser ablation. It is observed that the presence of silver sol decreases the fluorescence quantum efficiency. The observed results are in line with the conclusion that the reduction in quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. It is also observed that the presence of silver sol enhances the thermal lens signal which makes its detection easier at any concentration.

  10. Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging.

    PubMed

    Wang, Yejun; Capps, Cade; Kulatilaka, Waruna D

    2017-02-15

    Ultrashort-pulse (femtosecond-duration) two-photon laser-induced fluorescence (fs-TPLIF) of an inert gas tracer krypton (Kr) is investigated. A detailed spectroscopic study of fluorescence channels followed by the 5p'←←4p excitation of Kr at 204.1 nm is reported. The experimental line positions in the 750-840 nm emission region agree well with the NIST Atomic Spectra Database. The present work provides an accurate listing of relative line strengths in this spectral region. In the range of laser pulse energies investigated, a quadratic dependence was observed between the Kr-TPLIF signal and the laser pulse energy. The single-laser-shot 2D TPLIF images recorded in an unsteady jet demonstrate the potential of using fs excitation at 204.1 nm for mixing and flow diagnostic studies using Kr as an inert gas tracer.

  11. Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization.

    PubMed

    Zeng, Songjun; Wang, Haibo; Lu, Wei; Yi, Zhigao; Rao, Ling; Liu, Hongrong; Hao, Jianhua

    2014-03-01

    Visualization of blood vessel of lung can improve the detection of the lung and pulmonary vascular diseases. However, research on visualization of blood vessel of lung using the new generation upconversion nanoprobes is still scarce. Herein, high quality hexagonal phase NaLuF4:Gd/Yb/Er nanorods were synthesized by a simple hydrothermal method through doping Gd(3+). Doping Gd can not only promote the phase transformation from cubic to hexagonal and the shape evolution from microtube to rod-like, but also provide an additional magnetic properties for biomedical application. The as-prepared nanorods were further converted to water solubility by treating with HCl for eliminating the capped oleic acid. The ligand-free nanorods were successfully used for high-contrast upconversion fluorescent bioimaging of HeLa cells. Moreover, the in vivo synergistic upconversion fluorescent and X-ray imaging of nude mice were demonstrated by subcutaneously and intravenously administrated the ligand-free nanorods. The X-ray signals were matched well with the upconversion signal, indicating the successfully synergistic bioimaging. The ex-vivo X-ray and upconversion fluorescent imaging of various organs revealed that the nanorods were mainly accumulated in liver and lung. More importantly, the blood vessel of the lung can be readily visualized when these ligand-free nanorods are intravenously injected. Apart from the synergistic X-ray and upconversion bioimaging, the ligand-free nanorods can also possess excellent paramagnetic property for potential magnetic resonance imaging contrast agent. Our results have demonstrated the enhanced visualization of blood vessel of lung performed by dual-modal bioimaging of X-ray and upconversion fluorescence, revealing the great promise of these nanoprobes in angiography imaging. Such a new technique enables the integration of the two bioimaging techniques by combining their collective strengths and minimizing their shortcomings.

  12. Femtosecond Fluorescence Spectra of Tryptophan in Human γ-Crystallin Mutants: Site-Dependent Ultrafast Quenching

    PubMed Central

    Xu, Jianhua; Chen, Jiejin; Toptygin, Dmitri; Tcherkasskaya, Olga; Callis, Patrik; King, Jonathan; Brand, Ludwig; Knutson, Jay R.

    2012-01-01

    The eye lens crystallin proteins are subject to UV irradiation throughout life, and the photochemistry of damage proceeds through the excited state; thus, their tryptophan (Trp) fluorescence lifetimes are physiologically important properties. The time resolved fluorescence spectra of single Trps in human γD- and γS-crystallins have been measured with both an upconversion spectrophotofluorometer on the 300fs to 100ps time scale, and a time correlated single photon counting apparatus on the 100ps to 10ns time scale, respectively. Three Trps in each wild type protein were replaced by phenylalanine, leading to single-Trp mutants: W68-only and W156-only of HγD- and W72-only and W162-only of HγS-crystallin. These proteins exhibit similar ultrafast signatures: positive definite decay associated spectra (DAS) for 50 – 65ps decay constants that indicate dominance of fast, heterogeneous quenching. The quenched population (judged by amplitude) of this DAS differs among mutants. Trps 68, 156 in human γD- and Trp72 in human γS-crystallin are buried, but water can reach amide oxygen and ring HE1 atoms through narrow channels. QM-MM simulations of quenching by electron transfer predict heterogeneous decay times from 50–500 ps that agree with our experimental results. Further analysis of apparent radiative lifetimes allow us to deduce that substantial subpopulations of Trp are fully quenched in even faster (sub-300 fs) processes for several of the mutants. The quenching of Trp fluorescence of human γD- and γS-crystallin may protect them from ambient light induced photo damage. PMID:19919143

  13. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

    PubMed

    Liu, Chunyan; Gao, Zhenyu; Zeng, Jianfeng; Hou, Yi; Fang, Fang; Li, Yilin; Qiao, Ruirui; Shen, Lin; Lei, Hao; Yang, Wensheng; Gao, Mingyuan

    2013-08-27

    Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.

  14. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  15. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  16. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  17. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the

  18. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wu, Xuening; Wang, Shuo

    2015-11-01

    A novel fluorescence immunoassay to detect fluoroquinolones in animal-derived foods was developed for the first time by use of upconversion nanoparticles as signal-probe labels. The bioassay system was established by the use of coating-antigen-modified polystyrene particles as immune-sensing probes for separation and anti-norfloxacin monoclonal antibody conjugated with carboxyl-functionalized NaYF4:Yb,Er upconversion nanoparticles which were prepared via a pyrolysis method and a subsequent ligand exchange process as fluorescent-signal probes (emission intensity recorded at 542 nm with excitation at 980 nm). Under optimized conditions, detection of fluoroquinolones was performed easily. The detection limit of this fluorescence immunoassay for norfloxacin, for example, was 10 pg mL(-1), within a wide linear range of 10 pg mL(-1) to 10 ng mL(-1) (R (2)  = 0.9959). For specificity analysis, the data obtained indicate this method could be applied in broad-spectrum detection of fluoroquinolones. The recoveries of norfloxacin-spiked animal-derived foods ranged from 82.37 to 132.22 %, with coefficients of variation of 0.24-25.06 %. The extraction procedure was rapid and simple, especially for milk samples, which could be analyzed directly without any pretreatment. In addition, the results obtained with the method were in good agreement with those obtained with commercial ELISA kits. The fluorescence immunoassay was more sensitive, especially with regard to the detection limit in milk samples (0.01 ng mL(-1) for norfloxacin): it was 50-fold more sensitive than commercial ELISA kits (0.5 ng mL(-1) for norfloxacin). The results show the proposed fluorescence immunoassay was facile, sensitive, and interference free, and is an alternative method for the quantitative detection of fluoroquinolone residues in animal-derived foods.

  19. Facial Layer-by-Layer Engineering of Upconversion Nanoparticles for Gene Delivery: Near-Infrared-Initiated Fluorescence Resonance Energy Transfer Tracking and Overcoming Drug Resistance in Ovarian Cancer.

    PubMed

    Lin, Min; Gao, Yan; Diefenbach, Thomas J; Shen, Jacson K; Hornicek, Francis J; Park, Yong Il; Xu, Feng; Lu, Tian Jian; Amiji, Mansoor; Duan, Zhenfeng

    2017-03-08

    Development of multidrug resistance (MDR) contributes to the majority of treatment failures in clinical chemotherapy. We report facial layer-by-layer engineered upconversion nanoparticles (UCNPs) for near-infrared (NIR)-initiated tracking and delivery of small interfering RNA (siRNA) to enhance chemotherapy efficacy by silencing the MDR1 gene and resensitizing resistant ovarian cancer cells to drug. Layer-by-layer engineered UCNPs were loaded with MDR1 gene-silencing siRNA (MDR1-siRNA) by electrostatic interaction. The delivery vehicle enhances MDR1-siRNA cellular uptake, protects MDR1-siRNA from nuclease degradation, and promotes endosomal escape for silencing the MDR gene. The intrinsic photon upconversion of UCNPs provides an unprecedented opportunity for monitoring intracellular attachment and release of MDR1-siRNA by NIR-initiated fluorescence resonance energy transfer occurs between donor UCNPs and acceptor fluorescence dye-labeled MDR1-siRNA. Enhanced chemotherapeutic efficacy in vitro was demonstrated by cell viability assay. The developed delivery vehicle holds great potential in delivery and imaging-guided tracking of therapeutic gene targets for effective treatment of drug-resistant cancers.

  20. Coupling CARS with multiphoton fluorescence and high harmonic generation imaging modalities using a femtosecond laser source

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Slipchenko, Mikhail N.; Zhu, Jiabin; Buhman, Kimberly K.; Cheng, Ji-Xin

    2009-02-01

    Multimodal nonlinear optical imaging has opened new opportunities and becomes a powerful tool for imaging complex tissue samples with inherent 3D spatial resolution.. We present a robust and easy-to-operate approach to add the coherent anti-stokes Raman scattering (CARS) imaging modality to a widely used multiphoton microscope. The laser source composed of a Mai Tai femtosecond laser and an optical parametric oscillator (OPO) offers one-beam, two-beam and three-beam modalities. The Mai Tai output at 790 nm is split into two beams, with 80% of the power being used to pump the OPO. The idler output at 2036 nm from OPO is doubled using a periodically poled lithium niobate (PPLN) crystal. This frequency-doubled idler beam at 1018 nm is sent through a delay line and collinearly combined with the other Mai Tai beam for CARS imaging on a laser-scanning microscope. This Mai Tai beam is also used for multiphoton fluorescence and second harmonic generation (SHG) imaging. The signal output at 1290 nm from OPO is used for SHG and third-harmonic generation (THG) imaging. External detectors are installed for both forward and backward detection, whereas two internal lamda-scan detectors are employed for microspectroscopy analysis. This new system allows vibrationally resonant CARS imaging of lipid bodies, SHG imaging of collagen fibers, and multiphoton fluorescence analysis in fresh tissues. As a preliminary application, the effect of diacylglycerol acyltransferase 1 (DGAT1) deficiency on liver lipid metabolism in mice was investigated.

  1. Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames.

    PubMed

    Richardson, Daniel R; Roy, Sukesh; Gord, James R

    2017-02-15

    Two-photon, planar laser-induced fluorescence (TP-PLIF) of carbon monoxide was performed in steady and driven flames using femtosecond (fs) laser pulses at 1 kHz. Excitation radiation at 230.1 nm (full-width at half-maximum bandwidth of 270  cm-1) was used to pump many rovibrational two-photon transitions in the B1+←X1+ system. Visible fluorescence in the range 362-516 nm was captured using an image intensifier and high-speed camera. The signal dependence on excitation energy and wavelength is presented. Photolytic interferences from the ultraviolet laser were explored in a sooting diffusion flame. Using an excitation laser intensity of 1010  W/cm2, negligible photolytic interferences were observed, and PLIF imaging of dynamic flame events was performed at 1 kHz.

  2. Adaptive Control of Two-Photon Excitation of Green Fluorescent Protein with Shaped Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Nabekawa, Yasuo; Suda, Akira; Oishi, Yu; Mizuno, Hideaki; Miyawaki, Atsushi; Midorikawa, Katsumi

    For many years, it has been believed that a Fourier-transform-limited (FTL) laser pulse is the most effective light source for the generation of nonlinear phenomena, since the FTL pulse has the shortest pulse duration, that is, the highest intensity, that can be limited by the spectral width due to the principle of uncertainty. Recently, many reports have been published on the adaptive control of nonlinear phenomena with shaped femtosecond excitation laser pulses [1, 2]. Their reports have shown that the modification of the spectral and temporal phases of excitation pulses can increase or decrease the probabilities and efficiencies of such nonlinear phenomena. This method has been widely applied to studies on the active control of molecular motions or chemical reactions [3,4]. Considering further novel biological applications, we focus on the two-photon excited fluorescence (TPEF) of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. GFP is spontaneously fluorescent and is relatively nontoxic compared with other organic dyes used as optical markers. Therefore, it has been widely used as a "tag" material for the fluorescence observation of living cells [5]. Two-photon excitation microscopy (TPEM) is a powerful tool for biological real-time observation due to its various advantages, such as a clear contrast, good S/N ratio, and high spatial resolution [7]. From a practical point of view, however, there is a serious problem with TPEM, which is the photobleaching of a dye. The intensity of a fluorescence signal decreases significantly during observation. One of the reasons for this is that the chromophore structure is degraded by intense excitation laser pulses that are required for efficient two-photon excitation. In this study, therefore, we attempted to determine the optimal phase for maximizing the fluorescence efficiency of a GFP variant with excitation laser pulses of minimal intensity. We considered that GFP can be an ideal dye for the

  3. ``Molecular spectrometers'' in the condensed phase: local THz-FIR response from femtosecond fluorescence

    NASA Astrophysics Data System (ADS)

    Ernsting, Nikolaus

    2011-03-01

    We examine dye molecules whose color depends on the polarity of the environment. Following fast optical excitation, their fluorescence band typically red-shifts by 0.5 eV on femtosecond to nanosecond time scales. This ``dynamic Stokes shift'' reflects the joint molecular and environmental reorganisation of the system. Solvation dynamics has been studied for decades in the hope that the dynamics of the environment itself can be extracted. We contribute with two research lines: (1) development of rigid polar solvation probes whose vibrational response is removed from that of water, for example, and (2) fluorescence techniques which measure the dynamic Stokes shifts more precisely. Two results will be shown. The frequency-dependent permittivity ɛ (ω) of water surrounding N-Methyl-6-Quinolone is extracted up to about 100 cm-1 from the time-resolved fluorescence shift R(t). The key consists in an analytical connection ɛ (ω) --> R(t) which is needed for data fitting. Measurements with the cryoprotectant disaccharide trehalose in water serve to establish the method. Its unique feature is locality, i . e . the possibility to measure ɛ (ω) around a supramolecular structure with a covalently connected or embedded probe. THz vibrational activity of a biopolymer is thus measured locally, on the effective length scale for polar solvation, with an embedded molecular probe. For this purpose 2-hydroxy-7-nitro-fluorene was linked into a 13mer duplex opposite an abasic site. The NMR solution structure shows that the fluorene moiety occupies a well-defined position in place of a base-pair. The dynamic Stokes shifts for solution in H2 O and D2 O are quantified. Their difference is much larger than expected for free water, suggesting that only bound water is observed. A weak 26 cm-1 spectral oscillation of the emission band is observed which is not present when the probe is free in solution, and is therefore caused by the supramolecular structure (DNA and hydration water).

  4. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  5. Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study.

    PubMed

    Chang, Chih-Wei; Lu, Ying-Chih; Wang, Tsai-Te; Diau, Eric Wei-Guang

    2004-08-18

    Measurements of anisotropy of femtosecond fluorescence after direct excitation of the S1(n,pi*) state of azobenzene in hexane and ethylene glycol solutions have been carried out to address the controversy about inversion and rotation in the mechanism of photoisomerization. The observed anisotropies in hexane decay to a nonzero asymptotic level with a relaxation period the same as that for slow decay of the corresponding biexponential transient; this effect is attributed to involvement of the out-of-plane CNNC-torsional motion on approach to a twisted conical intersection along the "rotation channel" that depolarizes the original in-plane transition moment. In contrast, when the rotational channel becomes substantially hindered in ethylene glycol, the anisotropies show no discernible decay feature, but the corresponding transients show prominent decays attributed to involvement of in-plane symmetric motions; the latter approach a planar-sloped conical intersection along a "concerted inversion channel" for efficient internal conversion through vibronic coupling. The proposed mechanism is consistent with theoretical calculations and rationalizes both results on quantum yields and ultrafast observations.

  6. Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4 : Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells

    PubMed Central

    Mi, Congcong; Zhang, Jingpu; Gao, Huanyu; Wu, Xianlong; Wang, Meng; Wu, Yingfan; Di, Yueqin; Xu, Zhangrun; Mao, Chuanbin; Xu, Shukun

    2011-01-01

    A new kind of magnetic/luminescent multifunctional nanoparticles was synthesized by covalently linking multiple carboxyl-functionalized superparamagnetic Fe3O4 nanoparticles and individual amino-functionalized silica-coated fluorescent NaYF4 : Yb,Er up-conversion nanoparticles (UCNPs). The resultant nanocomposites bear active carboxylic and amino groups on the surface that were proved to be chemically active and useful for further facile bioconjugation with biomolecules. The UCNPs in the nanocomposite particles can emit visible light in response to the irradiation by near infrared (NIR) light, enabling the application of the nanocomposites in bioimaging. X-Ray diffraction, infrared spectroscopy, transmission electron microscopy, luminescence spectroscopy, and magnetometry were applied to characterize the multifunctional nanocomposites. The nanocomposites exhibited good superparamagnetic and excellent green up-conversion photoluminescent properties that can be exploited in magnetic separation and guiding as well as bioimaging. Due to the presence of active functional groups on the nanocomposite surface, the Fe3O4/NaYF4 : Yb,Er magnetic/luminescent nanocomposites were successfully conjugated with a protein called transferrin, which specifically recognizes the transferrin receptors overexpressed on HeLa cells, and can be employed for biolabeling and fluorescent imaging of HeLa cells. Because NIR light can penetrate biological samples with good depth without damaging them and can avoid autofluorescence from them, the presence of both NIR-responsive UCNPs and superparamagnetic nanoparticles in the nanocomposite particles will enable the practical application of the nanocomposites in bioimaging and separation. PMID:20648340

  7. Upconversion fluorescence and its thermometric sensitivity of Er3+:Yb3+ co-doped SrF2 powders prepared by combustion synthesis

    NASA Astrophysics Data System (ADS)

    Rakov, Nikifor; Maciel, Glauco S.; Xiao, Mufei

    2014-09-01

    Upconversion fluorescence of co-doped Er3+:Yb3+:SrF2 powders prepared by combustion synthesis was investigated under near-infrared ( λ = 980 nm) continuous wave laser excitation. Surface morphology of the samples and structures of the Er3+:Yb3+:SrF2 powders were studied with scanning electronic microscopy, energy dispersive x-ray, and x-ray powder diffraction. The spectrum of the fluorescence contains bands centered at ~410, ~522, ~545 and ~660 nm, corresponding respectively to transitions from upper levels 2H9/2, 2H11/2, 4S3/2 and 4F9/2 to the ground state 4I15/2, which can be identified as 4 f-4 f transitions from Er3+ excited states. In addition, the fluorescence is found sensitive to the temperature, which suggests that an optical temperature sensor would be feasible. The maximum sensitivity of the proposed sensor was found 0.00396 K-1.

  8. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  9. Controllable optical modulation of blue/green up-conversion fluorescence from Tm(3+) (Er(3+)) single-doped glass ceramics upon two-step excitation of two-wavelengths.

    PubMed

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-04-03

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm(3+) (Er(3+)) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8-1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas.

  10. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy.

    PubMed

    Dong, Haifeng; Tang, Songsong; Hao, Yansong; Yu, Haizhu; Dai, Wenhao; Zhao, Guifeng; Cao, Yu; Lu, Huiting; Zhang, Xueji; Ju, Huangxian

    2016-02-10

    Small size molybdenum disulfide (MoS2) quantum dots (QDs) with desired optical properties were controllably synthesized by using tetrabutylammonium-assisted ultrasonication of multilayered MoS2 powder via OH-mediated chain-like Mo-S bond cleavage mode. The tunable up-bottom approach of precise fabrication of MoS2 QDs finally enables detailed experimental investigations of their optical properties. The synthesized MoS2 QDs present good down-conversion photoluminescence behaviors and exhibit remarkable up-conversion photoluminescence for bioimaging. The mechanism of the emerging photoluminescence was investigated. Furthermore, superior (1)O2 production ability of MoS2 QDs to commercial photosensitizer PpIX was demonstrated, which has great potential application for photodynamic therapy. These early affording results of tunable synthesis of MoS2 QDs with desired photo properties can lead to application in fields of biomedical and optoelectronics.

  11. Ultraviolet upconversion fluorescence of Er3+ in Yb3+/Er3+-codoped Gd2O3 nanotubes.

    PubMed

    Zheng, Kezhi; Zhao, Dan; Zhang, Daisheng; Liu, Zhenyu; Qin, Weiping

    2011-11-01

    Under 980 nm excitation, room-temperature ultraviolet (UV) upconversion (UC) emissions of Er3+ from the 4G(9/2), 2K(13/2), and 2P(3/2) states were observed in Gd2O3:Yb3+/Er3+ nanotubes, which were synthesized via a simple wet-chemical route at low temperature and ambient pressure followed by a subsequent heat treatment at 800 degrees C. The experimental results exhibited that these UV emissions came from four-photon UC processes. In the Gd2O3:Yb3+/Er3+ nanocrystals, the energy transfers (ETs) from Yb3+ to Er3+ played important roles in populating the high-energy states of Er3+ ions. This material provides a possible candidate for building UV compact solid-state lasers or fiber lasers.

  12. Single and two-photon fluorescence control of Er{sup 3+} ions by phase-shaped femtosecond laser pulse

    SciTech Connect

    Zhang, Shian Ding, Jingxin; Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong; Xu, Shuwu; Qiu, Jianrong

    2014-01-06

    We experimentally demonstrate the control of the single and two-photon fluorescence (SPF and TPF) in Er{sup 3+} ions by shaping the femtosecond laser pulse with a π or square phase modulation. With the low laser intensity (8.4 × 10{sup 10} W/cm{sup 2}), SPF keeps a constant while TPF is effectively suppressed by the two control schemes. With the high laser intensity (1.2 × 10{sup 13} W/cm{sup 2}), both SPF and TPF are simultaneously enhanced or suppressed by the π phase modulation, and SPF is enhanced while TPF is effectively suppressed by the square phase modulation. The up/down-conversion fluorescence enhancement, suppression, or tuning by the optical control method can greatly expand its applications in various related fields.

  13. Coherent photon interference elimination and spectral correction in femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy.

    PubMed

    Dang, Wei; Mao, Pengcheng; Weng, Yuxiang

    2013-07-01

    We report an improved setup of femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) with a 210 fs temporal response. The system employs a Cassegrain objective to collect and focus fluorescence photons, which eliminates the interference from the coherent photons in the fluorescence amplification by temporal separation of the coherent photons and the fluorescence photons. The gain factor of the Cassegrain objective-assisted FNOPAS is characterized as 1.24 × 10(5) for Rhodamine 6G. Spectral corrections have been performed on the transient fluorescence spectra of Rhodamine 6G and Rhodamine 640 in ethanol by using an intrinsic calibration curve derived from the spectrum of superfluorescence, which is generated from the amplification of the vacuum quantum noise. The validity of spectral correction is illustrated by comparisons of spectral shape and peak wavelength between the corrected transient fluorescence spectra of these two dyes acquired by FNOPAS and their corresponding standard reference spectra collected by the commercial streak camera. The transient fluorescence spectra of the Rhodamine 6G were acquired in an optimized phase match condition, which gives a deviation in the peak wavelength between the retrieved spectrum and the reference spectrum of 1.0 nm, while those of Rhodamine 640 were collected in a non-optimized phase match condition, leading to a deviation in a range of 1.0-3.0 nm. Our results indicate that the improved FNOPAS can be a reliable tool in the measurement of transient fluorescence spectrum for its high temporal resolution and faithfully corrected spectrum.

  14. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.

    PubMed

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-10-01

    In this work, we presented a novel dual fluorescence resonance energy transfer (FRET) system for the simultaneous detection of Pb(2+) and Hg(2+). This system employed two color upconversion nanoparticles (UCNPs) as the donors, and controlled gold nanoparticles (AuNPs) as the acceptors. The two donor-acceptor pairs were fabricated by hybridizing the aptamers and their corresponding complementary DNA. Thus, the green and red upconversion fluorescence could be quenched because of a good overlap between the UCNPs fluorescence emission and the AuNPs absorption spectrum. In the presence of Pb(2+) and Hg(2+), the aptamers preferred to bind to their corresponding analytes and formed a G-quadruplexes structure for Pb(2+) and the hairpin-like structure for Hg(2+). As a result, the dual FRET was disrupted, and the green and red upconversion fluorescence was restored. Under optimized experimental conditions, the relative fluorescence intensity increased as the metal ion concentrations were increased, allowing for the quantification of Pb(2+) and Hg(2+). The relationships between the fluorescence intensity and plotting logarithms of ion concentrations were linear in the range from 0.1 to 100 nM for Pb(2+) and 0.5 to 500 nM for Hg(2+), and the detection limits of Pb(2+) and Hg(2+) were 50 pM and 150 pM, respectively. As a practical application, the aptasensor was used to monitor Pb(2+) and Hg(2+) levels in naturally contaminated samples and human serum samples. Ultimately, this type of dual FRET could be used to detect other metal ions or contaminants in food safety analysis and environment monitoring.

  15. Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids

    SciTech Connect

    Walla, P.J.; Yom, J.; Krueger, B.P.; Fleming, G.R.

    2000-05-18

    The two-photon excitation (TPE) spectrum of light-harvesting complex II (LHC II) has been measured in the spectral region of 1,000--1,600 nm, corresponding to one-photon wavelengths of 500--800 nm. The authors observed a band with an origin at {approximately}2 x 660 nm (ca. 15,100 {+-} 300 cm{sup {minus}1}) and a maximum at {approximately}2 x 600 nm. The line shape and origin of this band strongly suggest that the observed signal is due to the two-photon-allowed S{sub 1} state of the energy-transferring carotenoids (Car ) in LHC II. The authors also report the time dependence of the upconverted chlorophyll (Chl) fluorescence after TPE at the maximum of the observed band. Surprisingly, a fast rise of 250 {+-} 50 fs followed by a multiexponential decay on the picosecond time scale was observed. This result provides strong indication that there is a fast energy transfer even from the dipole-forbidden Car S{sub 1} state to the Chl's. The sub picosecond energy transfer from the Car S{sub 1} state is likely a consequence of the large number of energy-accepting Chls in van der Waals contact with the central Car's in LHC II. They also present upconversion data of the Car S{sub 2}, Chl a, and Chl b fluorescence observed after one-photon excitation into the dipole-allowed Car S{sub 2} state. The lifetime of the Car S{sub 2} state is {approximately}120 {+-} 30 fs. With the observed time constants they are able to calculate quantum yields for the different possible pathways contributing to the overall Car to Chl energy transfer in LHC II.

  16. Processing window for femtosecond laser microsurgery and fluorescence imaging of an arterial tissue hosted in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Li, Jianzhao; Herman, Peter R.

    2016-02-01

    We study the exposure limitations of femtosecond laser microsurgery and multiphoton imaging in a microfluidic chip environment, assessing damage thresholds at various interfaces as well as interference from bubble formation in the hosting solution. Both heat accumulation and incubation effects from multipulse laser exposures at 1-MHz repetition rate were evaluated. For demonstration, three microsurgery approaches of laser scribing, percussion drilling and trepanning were applied to arterial walls loaded in vitro in a lab-on-a-chip device. We report that deleterious effects from interface damage and microbubble formation can be avoided to offer laser processing windows for damage-free fluorescence imaging and precise microsurgery of live tissue hosted inside small microfluidic chambers.

  17. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  18. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy

    NASA Astrophysics Data System (ADS)

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M.; Kang, Yuejun

    2016-04-01

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency.A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. Electronic supplementary information (ESI) available: Experimental details and figures. See DOI: 10.1039/c6nr00150e

  19. Intense 1.54 {mu}m fluorescence of Er{sup 3+}/Yb{sup 3+} codoped phosphate glass and the three-photon phenomenon of near infrared upconversion luminescence

    SciTech Connect

    Luo Lanjun; Song Feng; Yu Xiaochen; Wang Wentao; Ming Chengguo; Han Lin; Yu Yin; Wu Hao; Tian Jianguo

    2010-02-15

    Transparent P{sub 2}O{sub 5}-CaO-Na{sub 2}O glasses codoped with Er{sup 3+} and Yb{sup 3+} ions were fabricated by high-temperature melting technique. Strong near infrared and visible upconversion luminescence were observed under 975 nm laser diode excitation, and the luminescence processes were explained in details. For 1.54 {mu}m band, the calculated peak emission cross sections is 1.04x10{sup -20} cm{sup 2}, and it is better than that in germinate, tellurite, silicate, and other phosphate glasses. The near infrared upconversion emission around 828 nm contains two-photon and three-photon processes, and it is attributed to the transition {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 13/2}, which enhances the population of the upper level for 1.54 {mu}m laser emission and reduces the energy loss due to upconversion. Efficient near infrared fluorescence indicates Er{sup 3+}/Yb{sup 3+} codoped phosphate glass is a promising laser and amplifier material.

  20. Valence state change and defect centers induced by infrared femtosecond laser in Yb:YAG crystals

    SciTech Connect

    Wang, Xinshun Liu, Yang; Zhao, Panjuan; Guo, Zhongyi; Li, Yan; Qu, Shiliang

    2015-04-21

    The broad band upconversion luminescence in Yb{sup 3+}:YAG crystal has been observed in experiments under the irradiation of focused infrared femtosecond laser. The dependence of the fluorescence intensity on the pump power shows that the upconversion luminescence is due to simultaneous two-photon absorption process, which indicates that the broad emission bands at 365 and 463 nm could be assigned to the 5d → 4f transitions of Yb{sup 2+} ions and the one at 692 nm could be attributed to the electron-hole recombination process on (Yb{sup 2+}-F{sup +}) centers. The absorption spectra of the Yb:YAG crystal samples before and after femtosecond laser irradiation, and after further annealing reveal that permanent valence state change of Yb ions from Yb{sup 3+} to Yb{sup 2+} and (Yb{sup 2+}-F{sup +}) centers have been induced by infrared femtosecond laser irradiation in Yb{sup 3+}:YAG crystal.

  1. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  2. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    SciTech Connect

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. The remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.

  3. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    SciTech Connect

    He, Tingchao; Sreejith, Sivaramapanicker; Zhao, Yanli; Gao, Yang; Grimsdale, Andrew C.; Lin, Xiaodong E-mail: hdsun@ntu.edu.sg; Sun, Handong E-mail: hdsun@ntu.edu.sg

    2015-03-16

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonic generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.

  4. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    NASA Astrophysics Data System (ADS)

    He, Tingchao; Sreejith, Sivaramapanicker; Gao, Yang; Grimsdale, Andrew C.; Zhao, Yanli; Lin, Xiaodong; Sun, Handong

    2015-03-01

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonic generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.

  5. Enhanced two-photon absorption and fluorescence upconversion in Thioflavin T micelle-type aggregates in glycerol/water solution

    NASA Astrophysics Data System (ADS)

    Donnelly, Julie; Vesga, Yuly; Hernandez, Florencio E.

    2016-09-01

    In this article, we report the systematic characterization of the two-photon absorption of ThT in different mixtures of glycerol/water solution. The relationships of TPA peak position and amplitude revealed a dependence on particle size suggesting that the curious trend observed in TPA with changing glycerol content can be attributed to the presence of micelle-type aggregates. Consequently, the relatively strong TPA cross-section (δTPA = 300 GM) obtained in 8.75% glycerol/water solutions could be attributed to the immobilization of dye molecules and the strong coupling of the molecular transition dipoles in micelle-type aggregates. This enhancement of TPA, in addition to the already reported significant fluorescence quantum yield of ThT attached to brain tissue, is expected to boost the application of this compound for in vitro and perhaps in vivo high resolution multiphoton bioimaging of amyloids in brain tissue.

  6. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy.

    PubMed

    Schmidt, B; Sobotta, C; Heinz, B; Laimgruber, S; Braun, M; Gilch, P

    2005-01-07

    The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.

  7. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  8. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.

    PubMed

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  9. Local environment inside a novel aromatic micelle investigated by steady-state and femtosecond fluorescence spectroscopy of an encapsulated solvatochromic probe.

    PubMed

    Sartin, Matthew M; Kondo, Kei; Yoshizawa, Michito; Takeuchi, Satoshi; Tahara, Tahei

    2016-12-21

    The local environment within a recently developed anthracene-shelled micelle (ASM), which is a micelle-like nanocapsule composed of anthracene-embedded amphiphiles, was investigated by steady-state and time-resolved spectroscopy of an encapsulated solvatochromic fluorescent probe molecule, coumarin 153 (C153). The absorption maximum of encapsulated C153 (452 nm) is more red-shifted than that of free C153 in water, indicating a highly polar environment inside the micelle. Despite this, the fluorescence Stokes shift of encapsulated C153 (∼3700 cm(-1)) is substantially smaller than that of free C153 in water. Femtosecond time-resolved broadband fluorescence measurements further showed that the dynamic Stokes shift is completed within 1 ps, revealing that the reorganization of the micelle interior following photoexcitation of the C153 probe is characterized by a sub-picosecond, limited-amplitude response. The femtosecond fluorescence anisotropy data showed that the orientational diffusion of the host-guest complex is slower (860 ps) than that of the empty micelle (510 ps), suggesting that the micelle structure is flexible enough to expand when the guest molecule is accommodated and that the micelle rotates with the encapsulated guest molecule. This softness of the micelles further allows some of them to simultaneously encapsulate two C153 molecules, as evidenced by the appearance of blue-shifted, H-dimer-like absorption and fluorescence bands. Based on these steady-state and femtosecond time-resolved spectroscopic data, we discuss the electronic state of C153 and micelle structure as well as the host-guest interaction in this novel flexible synthetic nanocapsule.

  10. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    SciTech Connect

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-15

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  11. Upconversion Spectrophotofluorometry

    PubMed Central

    Biesso, Arianna; Xu, Jianhua; Knutson, Jay R.

    2014-01-01

    As the other chapters attest, sensitivity of fluorescent molecules to their local environment has created powerful tools in the study of molecular biology, particularly in the study of protein, DNA, and lipid dynamics. Surprisingly, even events faster than the nanosecond lifetimes of fluorophores are important in protein function, and in particular, events lasting just a few ps reflect on water motion and the coupled dynamics of proteins. These ultrafast phenomena can best be studied by using the same laser that excites fluorescence to also “strobe” the emission, providing sub-picosecond time slices of the action. We explain the strobing “upconversion” technique and some limits on its execution. PMID:24108631

  12. Photo-annealing effect of gamma-irradiated erbium-doped fibre by femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Hsiung Chang, Sheng; Liu, Ren-Young; Lin, Chu-En; Chou, Fong-In; Tai, Chao-Yi; Chen, Chii-Chang

    2013-12-01

    In this work, a photo-annealing effect of gamma-irradiated erbium-doped glass fibre is investigated. Two commercial erbium-doped fibres (EDFs) with different doping concentrations were sealed inside a chamber with a cobalt-60 gamma source for 6 h to give an accumulated dose of 3.18 kGy. A tunable femtosecond pulsed laser with a repetition rate of 80 MHz was then used to pump EDF to generate 1550 nm fluorescence and green up-conversion emission, resulting in the annealing effect of the gamma-irradiated EDF. The fluorescence power of gamma-irradiated EDF with a moderate level of doping was almost returned to the initial state by photo-annealing, unlike that of a heavily doped EDF. This finding may facilitate the development of anti-irradiated superfluorescence fibre source for space navigation.

  13. Synthesis of NIR-Responsive NaYF₄:Yb,Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates.

    PubMed

    Wang, Meng; Zhu, Ye; Mao, Chuanbin

    2015-06-30

    Fingerprints at crime scenes are usually latent. The powder-dusting method is the most commonly used procedure for developing latent fingerprints in forensic science. However, the traditional powder-dusting method has characteristics of low sensitivity, low contrast, high background noise, and high autofluorescence interference. To overcome the drawbacks faced by the traditional method, we first optimized an oleic acid-based solvothermal approach for the synthesis of NaYF4:Yb,Er fluorescent upconversion nanoparticles (UCNPs) with the highest possible fluorescence intensity under near-infrared (NIR) irradiation. To optimize the synthesis, we studied the effects of the reaction time, reaction temperature, and volume of oleic acid on the size, phase composition, and UC fluorescence intensity of the UCNPs. We then used the resultant UCNPs to fluorescently label the fingerprints on various smooth substrates to improve the development of latent fingerprints because the UCNPs could undergo excitation under 980 nm NIR light to emit visible light. Latent fingerprints on three major types of smooth substrates were studied, including those with a single background color (transparent glass, white ceramic tiles, and black marbles), with multiple background colors (marbles with different complex surface patterns) and with strong background autofluorescence (note papers, Chinese paper money, and plastic plates). Compared with fingerprint development using traditional powders such as bronze powder, magnetic powder, and green fluorescent powder, our development procedure using UCNPs is facile and exhibits very high sensitivity, high contrast, low background interference, and low autofluorescence interference. This work shows that UCNPs synthesized under optimized conditions are a versatile fluorescent label for the facile development of fingerprints and can find their practical applications in forensic sciences.

  14. High efficiency upconversion nanophosphors for high-contrast bioimaging.

    PubMed

    Alkahtani, Masfer H; Alghannam, Fahad S; Sanchez, Carlos; Gomes, Carmen L; Liang, Hong; Hemmer, Philip R

    2016-12-02

    Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er(+3), Yb(+3) nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm(-2) excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er(+3), Yb(+3) nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-to-noise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.

  15. High efficiency upconversion nanophosphors for high-contrast bioimaging

    NASA Astrophysics Data System (ADS)

    Alkahtani, Masfer H.; Alghannam, Fahad S.; Sanchez, Carlos; Gomes, Carmen L.; Liang, Hong; Hemmer, Philip R.

    2016-12-01

    Upconversion nanoparticles (UCNPs) are of interest because they allow suppression of tissue autofluorescence and are therefore visible deep inside biological tissue. Compared to upconversion dyes, UCNPs have a lower pump intensity threshold, better photostability, and less toxicity. Recently, YVO4: Er+3, Yb+3 nanoparticles were shown to exhibit strong up-conversion luminescence with a relatively low 10 kW cm-2 excitation intensity even in water, which makes them excellent bio-imaging candidates. Herein, we investigate their use as internal probes in insects by injecting YVO4 : Er+3, Yb+3 nanoparticles into fire ants as a biological model, and obtain 2D optical images with 980 nm illumination. High-contrast images with high signal-to-noise ratio are observed by detecting the up-conversion fluorescence as the excitation laser is scanned.

  16. Upconversion color tunability and white light generation in Tm 3+/Ho 3+/Yb 3+ doped aluminum germanate glasses

    NASA Astrophysics Data System (ADS)

    Gong, Hua; Yang, Dianlai; Zhao, Xin; Yun Bun Pun, Edwin; Lin, Hai

    2010-02-01

    Tm 3+/Ho 3+/Yb 3+ triply doped aluminum germanate glasses exhibiting multicolor upconversion fluorescences have been fabricated and characterized. Efficient three-photon blue upconversion emission of Tm 3+ and two-photon green and red upconversion fluorescences of Ho 3+ have been observed. The strong red emission of Ho 3+, which is more than eight times higher than that of the green emission, is desirable in achieving high color rendering index. By varying the excitation power of the 974 nm wavelength laser diode, a series of white fluorescences with a large range of correlated color temperature ( CCT) was obtained, and the fluorescence colors can be tuned from yellowish white to warm white, pure white, cool white, and bluish white with different CCT. The upconversion color tunability via pump power adjustment will promote the development of three-dimensional solid-state displays and upconversion illumination devices.

  17. Upconversion in solar cells

    PubMed Central

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  18. Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Liu, Hongrong; Lu, Wei; Wang, Haibo; Rao, Ling; Yi, Zhigao; Zeng, Songjun; Hao, Jianhua

    2013-06-01

    In this work, we developed a novel and biocompatible dual-modal nanoprobe based on single-phase amine-functionalized BaYF5:Yb/Er nanoparticles (NPs) for upconversion (UC) fluorescence and in vivo computed X-ray tomography (CT) bioimaging for the first time. High-quality water-soluble amine-functionalized BaYF5:Yb/Er NPs with an average size of 24 nm were synthesized by a facile environmentally friendly hydrothermal method for simultaneous synthesis and surface functionalization. Structure investigation based on the Rietveld refinement method revealed that the as-synthesized BaYF5:Yb/Er NPs present a cubic phase structure, which differs from the previously reported tetragonal structure. Under 980 nm excitation, high-contrast green and red UC emissions were observed from HeLa cells incubated with these amine-functionalized NPs. The UC spectra measured from the NPs incubated with HeLa cells presented only green and red UC emissions without any autofluorescence, further revealing that these NPs are ideal candidates for fluorescent bioimaging. In addition, the cell cytotoxicity test showed low cell toxicity of these NPs. These amine-functionalized NPs were also successfully used as CT agents for in vivo CT imaging because of the efficient X-ray absorption efficiency of Ba and doped Yb ions. A prolonged (2 h) signal enhancement of the spleen in a mouse was observed in CT imaging, which can improve the detection of splenic diseases. More importantly, the simultaneous X-ray and UC in vivo bioimaging was demonstrated in a nude mouse for the first time, indicating the as-prepared UCNPs can be successfully used as dual-modal bioprobes. These results demonstrate that BaYF5:Yb/Er NPs are ideal nanoprobes for dual-modal fluorescent/CT bioimaging with low cytotoxicity, non-autofluorescence, and enhanced detection of the spleen.

  19. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode.

    PubMed

    Yang, Yanmin; Mi, Chao; Su, Xianyuan; Jiao, Fuyun; Liu, Linlin; Zhang, Jiao; Yu, Fang; Li, Xiaodong; Liu, Yanzhou; Mai, Yaohua

    2014-04-01

    Multiple ultraviolet (UV) emission bands have been obtained in Er3+ doped BaGd2ZnO5 phosphor under the excitation of a 532 nm solid-state laser, and the emission peaks at 217, 254, 278, 296, 314, 348, 374 and 394 nm were determined to stem from the high-energy states 4D(1/2), 4D(7/2), 2H(9/2), 2P(1/2), 2P(3/2), 4G(7/2), 4G(11/2), 4H(9/2) of trivalent erbium, respectively. Some UV emission bands in the UVC region can be observed when the sample was excited by commercial green (529 nm) and blue (460 nm) LED. In view of the small size, low-drive voltage and price of LED, UVC upconversion phosphor BaGd2ZnO5:Er3+ excited by visible LED has potential application in environmental sciences.

  20. Multiple temperature effects on up-conversion fluorescences of Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} and high thermal sensitivity

    SciTech Connect

    Cao, B. S.; Wu, J. L.; Wang, X. H.; He, Y. Y.; Feng, Z. Q.; Dong, B. E-mail: bscao@dlnu.edu.cn; Rino, L.

    2015-08-15

    We report multiple temperature effects on green and red up-conversion emissions in Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} phosphors. With increasing temperature, the decrease of the red emission from {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2}, the increase of green emission from {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and another unchanged green emission from {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (S{sub max}) and optimum operating temperature (T{sub max}) are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  1. Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines

    NASA Astrophysics Data System (ADS)

    Dayal, S.; Królicki, R.; Lou, Y.; Qiu, X.; Berlin, J. C.; Kenney, M. E.; Burda, C.

    2006-07-01

    The first real-time observation of the early events during energy transfer from a photoexcited CdSe nanoparticle to an attached phthalocyanine molecule are presented in terms of a femtosecond spectroscopic pump-probe study of the energy transfer in conjugates of CdSe nanoparticles (NPs) and silicon phthalocyanines (Pcs) with 120 fs time resolution. Four different silicon phthalocyanines have been conjugated to CdSe NPs. All of these have proven potential for photodynamic therapy (PDT). In such NP-Pc conjugates efficient energy transfer (ET) from CdSe NPs to Pcs occurs upon selective photoexcitation of the NP moiety. Spectral analysis as well as time-resolved fluorescence up-conversion measurements revealed the structure and dynamics of the investigated conjugates. Femtosecond transient differential absorption (TDA) spectroscopy was used for the investigation of the non-radiative carrier and ET dynamics. The formation of excitons, trapped carriers states, as well as stimulated emission was monitored in the TDA spectra and the corresponding lifetimes of these states were recorded. The time component for energy transfer was found to be between 15 and 35 ps. The ET efficiencies are found to be 20-70% for the four Pc conjugates, according to fluorescence quenching experiments. Moreover, as a result of the conjugation between NP and the Pcs the photoluminescence efficiency of the Pc moieties in the conjugates do not strictly follow the quantum yields of the bare phthalocyanines.

  2. Excited state structural events of a dual-emission fluorescent protein biosensor for Ca²⁺ imaging studied by femtosecond stimulated Raman spectroscopy.

    PubMed

    Wang, Yanli; Tang, Longteng; Liu, Weimin; Zhao, Yongxin; Oscar, Breland G; Campbell, Robert E; Fang, Chong

    2015-02-12

    Fluorescent proteins (FPs) are luminescent biomolecules that emit characteristic hues upon irradiation. A group of calmodulin (CaM)-green FP (GFP) chimeras have been previously engineered to enable the optical detection of calcium ions (Ca(2+)). We investigate one of these genetically encoded Ca(2+) biosensors for optical imaging (GECOs), GEM-GECO1, which fluoresces green without Ca(2+) but blue with Ca(2+), using femtosecond stimulated Raman spectroscopy (FSRS). The time-resolved FSRS data (<800 cm(-1)) reveal that initial structural evolution following 400 nm photoexcitation involves small-scale coherent proton motions on both ends of the chromophore two-ring system with a <250 fs time constant. Upon Ca(2+) binding, the chromophore adopts a more twisted conformation in the protein pocket with increased hydrophobicity, which inhibits excited-state proton transfer (ESPT) by effectively trapping the protonated chromophore in S1. Both the chromophore photoacidity and local environment form the ultrafast structural dynamics basis for the dual-emission properties of GEM-GECO1. Its photochemical transformations along multidimensional reaction coordinates are evinced by distinct stages of FSRS spectral evolution, particularly related to the ∼460 and 504 cm(-1) modes. The direct observation of lower frequency modes provides crucial information about the nuclear motions preceding ESPT, which enriches our understanding of photochemistry and enables the rational design of new biosensors.

  3. A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion.

    PubMed

    Duan, Pengfei; Yanai, Nobuhiro; Kimizuka, Nobuo

    2014-11-07

    To resolve the biggest problem in visible-to-UV photon upconversion based on sensitized triplet-triplet annihilation-the quenching of upconverted fluorescence by sensitizers-we discovered a superior sensitizer with less UV absorption intensity that enables highly efficient, low-power (0.78 mW cm(-2)) visible-to-UV upconversion.

  4. Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses

    PubMed Central

    Muramatsu, Sotaro; Yanagihara, Masahiro; Asaka, Toru; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2016-01-01

    Abstract We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140–230 nm with blue shift and broadening of spectrum. PMID:27877915

  5. Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses.

    PubMed

    Muramatsu, Sotaro; Yanagihara, Masahiro; Asaka, Toru; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2016-01-01

    We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140-230 nm with blue shift and broadening of spectrum.

  6. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    PubMed

    Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra

    2010-03-11

    The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.

  7. High-efficiency simultaneous three-photon absorption upconversion luminescence of a terbium-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Yang, Runlan; Zou, Hui; Shen, Xiao; Zheng, Jiajin; Wei, Wei

    2016-12-01

    In this paper, high-efficiency green upconversion luminescence from a terbium (Tb3+)-doped germanate glass is reported. The upconversion luminescence involved a simultaneous three-photon absorption process. Compared with an emission spectrum excited at 377 nm, the upconversion luminescence bands of Tb3+ pumped by an fs laser showed a slight red-shift. This was ascribed to the redistribution of glass composition when the glass sample was exposed to the high-intensity laser, which results in the aggregation of Tb3+ around the laser-exposed focal region, which in turn results in the slight red-shift of luminescence. The upconversion luminescence intensities at 540, 590, and 620 nm strongly depended on the polarization angle of the femtosecond laser, which was ascribed to the different transmittances of a half-wavelength plate at different polarization angles, which results in the regularity change in fs laser power.

  8. Optical transitions and frequency upconversion emission of Er 3+ions in novel lead-bismuthate glass

    NASA Astrophysics Data System (ADS)

    Sun, Hongtao; Dai, Shixun; Zhang, Debao; Xu, Shiqing; Zhang, Junjie; Hu, Lili; Jiang, Zhonghong

    2004-12-01

    Er 3+-doped strontiam lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt analysis was performed on the absorption spectrum and the transition probabilities, excited state lifetimes, and the fluorescence branching ratios were calculated and discussed. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H→4I, 4S→4I, and 4F→4I, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions.

  9. Photon upconversion sensitized by a Ru(II)-pyrenyl chromophore

    PubMed Central

    Deng, Fan; Lazorski, Megan S.; Castellano, Felix N.

    2015-01-01

    The near-visible-to-blue singlet fluorescence of anthracene sensitized by a ruthenium chromophore with a long-lived triplet-excited state, [Ru(5-pyrenyl-1,10-phenanthroline)3](PF6)2, in acetonitrile was investigated. Low intensity non-coherent green light was used to selectively excite the sensitizer in the presence of micromolar concentrations of anthracene generating anti-Stokes, singlet fluorescence in the latter, even with incident power densities below 500 μW cm−2. The resultant data are consistent with photon upconversion proceeding from sensitized triplet–triplet annihilation (TTA) of the anthracene acceptor molecules, confirmed through transient absorption spectroscopy as well as static and dynamic photoluminescence experiments. Additionally, quadratic-to-linear incident power regimes for the upconversion process were identified for this composition under monochromatic 488 nm excitation, consistent with a sensitized TTA mechanism ultimately producing the anti-Stokes emission characteristic of anthracene singlet fluorescence. PMID:25987571

  10. Blue upconversion thulium laser

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh C.; Faulkner, George E.; Weber, Michael E.; Dulick, Michael

    1990-04-01

    We report a blue emission upconversion solid-state laser based on Tm3+:YLF. Under double resonance excitation at 780.8 nm (near-ir) and 648.8 nm (red), the Tm3+ ion is sequentially excited from the 3H6 ground state to the 1D2 excited state through the 3H4 intermediate level. The laser output at 450 and 453 nm corresponds to the 1D2 -> 3F4 transitions of Tm3+ ions in YLF.

  11. Infrared upconversion for astronomical applications.

    PubMed

    Abbas, M M; Kostiuk, T; Ogilvie, K W

    1976-04-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle ir spectral range. Theoretical values for the performance parmeters of an upconversion system for astronomical observations are evaluated in terms of the conversion efficiencies, spectral resolution, field of view minimum detectable source brightness, and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates are given of the expected optimum sensitivity of an upconversion device that may be built with presently available components.

  12. Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Roy, Sukesh; Kulatilaka, Waruna D.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.; Gord, James R.

    2017-01-01

    Femtosecond, two-photon-absorption laser-induced fluorescence (fs-TALIF) is employed to measure space- and time-resolved distributions of atomic hydrogen and oxygen in moderate-pressure, non-equilibrium, nanosecond-duration pulsed-discharge plasmas. Temporally and spatially resolved hydrogen and oxygen TALIF images are obtained over a range of low-temperature plasmas in mixtures of helium and argon at 100 Torr total pressure. The high-peak-intensity, low-average-energy fs pulses combined with the increased spectral bandwidth compared to traditional ns-duration laser pulses provide a large number of photon pairs that are responsible for the two-photon excitation, which results in an enhanced TALIF signal. Krypton and xenon TALIF are used for quantitative calibration of the hydrogen and oxygen concentrations, respectively, with similar excitation schemes being employed. This enables 2D collection of atomic-hydrogen and -oxygen TALIF signals with absolute number densities ranging from 2  ×  1012 cm-3 to 6  ×  1015 cm-3 and 1  ×  1013 cm-3 to 3  ×  1016 cm-3, respectively. These 2D images are the first application of TALIF imaging in moderate-pressure plasma discharges. 1D self-consistent modeling predictions show agreement with experimental results within the estimated experimental error of 25%. The present results can be used to further the development of higher fidelity kinetic models while quantifying plasma-source characteristics.

  13. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.

    PubMed

    Su, Qianqian; Feng, Wei; Yang, Dongpeng; Li, Fuyou

    2017-01-17

    Resonance energy transfer (RET) describes the process that energy is transferred from an excited donor to an acceptor molecule, leading to a reduction in the fluorescence emission intensity of the donor and an increase in that of the acceptor. By this technique, measurements with the good sensitivity can be made about distance within 1 to 10 nm under physiological conditions. For this reason, the RET technique has been widely used in polymer science, biochemistry, and structural biology. Recently, a number of RET systems incorporated with nanoparticles, such as quantum dots, gold nanoparticles, and upconversion nanoparticles, have been developed. These nanocrystals retain their optical superiority and can act as either a donor or a quencher, thereby enhancing the performance of RET systems and providing more opportunities in excitation wavelength selection. Notably, lanthanide-doped upconversion nanophosphors (UCNPs) have attracted considerable attention due to their inherent advantages of large anti-Stoke shifts, long luminescence lifetimes, and absence of autofluorescence under low energy near-infrared (NIR) light excitation. These nanoparticles are promising for the biodetection of various types of analytes. Undoubtedly, the developments of those applications usually rely on resonance energy transfer, which could be regarded as a flexible technology to mediate energy transfer from upconversion phosphor to acceptor for the design of luminescent functional nanoplatforms. Currently, researchers have developed many RET-based upconversion nanosystems (RET-UCNP) that respond to specific changes in the biological environments. Specifically, small organic molecules, biological molecules, metal-organic complexes, or inorganic nanoparticles were carefully selected and bound to the surface of upconversion nanoparticles for the preparation of RET-UCNP nanosystems. Benefiting from the advantage and versatility offered by this technology, the research of RET

  14. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics.

    PubMed

    Cates, Stephanie L; Cates, Ezra L; Cho, Min; Kim, Jae-Hong

    2014-02-18

    The objective of this study was to develop visible-to-ultraviolet C (UVC) upconversion ceramic materials, which inactivate surface-borne microbes through frequency amplification of ambient visible light. Ceramics were formed by high-temperature sintering of compacted yttrium silicate powders doped with Pr(3+) and Li(+). In comparison to previously reported upconversion surface coatings, the ceramics were significantly more durable and had greater upconversion efficiency under both laser and low-power visible light excitation. The antimicrobial activity of the surfaces under diffuse fluorescent light was assessed by measuring the inactivation of Bacillus subtilis spores, the rate of which was nearly 4 times higher for ceramic materials compared to the previously reported films. Enhanced UVC emissions were attributed to increased material thickness as well as increased crystallite size in the ceramics. These results represent significant advancement of upconversion surfaces for sustainable, light-activated disinfection applications.

  15. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    PubMed

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.

  16. Intramolecular charge transfer with the planarized 4-cyanofluorazene and its flexible counterpart 4-cyano-N-phenylpyrrole. Picosecond fluorescence decays and femtosecond excited-state absorption.

    PubMed

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara A; Demeter, Attila; Machinek, Reinhard; Noltemeyer, Mathias; Zachariasse, Klaas A

    2008-09-11

    The fluorescence spectrum of the rigidified 4-cyanofluorazene (FPP4C) in n-hexane consists of a dual emission from a locally excited (LE) and an intramolecular charge-transfer (ICT) state, with an ICT/LE fluorescence quantum yield ratio of Phi'(ICT)/Phi(LE) = 3.3 at 25 degrees C. With the flexible 4-cyano- N-phenylpyrrole (PP4C) in n-hexane, such an ICT reaction also takes place, with Phi'(ICT)/Phi(LE) = 1.5, indicating that for this reaction, a perpendicular twist of the pyrrole and benzonitrile moieties is not required. The ICT emission band of FPP4C and PP4C in n-hexane has vibrational structure, but a structureless band is observed in all other solvents more polar than the alkanes. The enthalpy difference Delta H of the LE --> ICT reaction in n-hexane, -11 kJ/mol for FPP4C and -7 kJ/mol for PP4C, is determined by analyzing the temperature dependence of Phi'(ICT)/Phi(LE). Using these data, the energy E(FC,ICT) of the Franck-Condon ground state populated by the ICT emission is calculated, 41 (FPP4C) and 40 kJ/mol (PP4C). These large values for E(FC,ICT) lead to the conclusion that with FPP4C and PP4C, direct ICT excitation, bypassing LE, does not take place. FPP4C has an ICT dipole moment of 15 D, similar to that of PP4C (16 D). Picosecond fluorescence decays allow the determination of the ICT lifetime, from which the radiative rate constant k'(f)(ICT) is derived, with comparable values for FPP4C and PP4C. This shows that an argument for a twisted ICT state of PP4C cannot come from k'(f)(ICT). After correction for the solvent refractive index and the energy of the emission maximum nu(max)(ICT), it appears that k'(f)(ICT) is solvent-polarity-independent. Femtosecond transient absorption with FPP4C and PP4C in n-hexane reveals that the ICT state is already nearly fully present at 100 fs after excitation, in rapid equilibrium with LE. In MeCN, the ICT state of FPP4C and PP4C is likewise largely developed at this delay time, and the reaction is limited by dielectric

  17. Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd(WO{sub 4}){sub 2}(Nd:KGW) by femtosecond laser writing

    SciTech Connect

    Liu Xiaoyu; Qu Shiliang; Tan Yang; Chen Feng

    2011-02-20

    We report on the preservation of fluorescence and Raman gain in low-repetition-rate femtosecond laser written buried channel waveguides in neodymium-doped KGd(WO{sub 4}){sub 2}. The propagation loss index, profile reconstruction, and calculation of the modal intensity distribution by the beam propagation method of the waveguide are presented. Microluminescence spectra of the waveguides show that the fluorescence properties of Nd{sup 3+} ions are not significantly affected by the waveguide formation processing, which indicates a fairly good potential for further laser actions in a compact device. Micro-Raman spectra are also performed to reveal the preservation of the characteristic 768 and 901 cm{sup -1} Raman mode intensities in the guiding regions.

  18. A femtosecond study of excitation-wavelength dependence of solvation dynamics in a vesicle.

    PubMed

    Sen, Pratik; Ghosh, Subhadip; Mondal, Sudip Kumar; Sahu, Kalyanasis; Roy, Durba; Bhattacharyya, Kankan; Tominaga, Keisuke

    2006-07-17

    The dependence of fluorescence and solvation dynamics of coumarin 480 (C480) in a dimyristoyl-phosphatidylcholine (DMPC) vesicle on excitation wavelength (lambda(ex)) was studied with femtosecond fluorescence upconversion. The study revealed an ultrafast 1.5-ps component of solvation that was not detected earlier. C480 exhibits pronounced red-edge excitation shift (REES) by 10 nm in a DMPC vesicle. This is due to the microheterogeneity of the lipid vesicle. In lipids, the probe is distributed in different locations with varying static and dynamic electrostatic responses. Solvent relaxation becomes faster and the amount of dynamic Stokes shift decreases with increasing lambda(ex). For excitation at the red end (lambda(ex) = 430 nm), the solvation time was found to be 1.5 ps. However, for excitation at the blue end, (lambda(ex) = 390 nm), there are two substantially slower components of 250 and 2000 ps. It seems that for lambda(ex) = 390 nm, the major contribution to total emission is due to the probe (C480) molecules in the hydrophobic and restricted locations inside the lipid bilayer. Excitation at 430 nm preferentially selects the probe molecules in a highly mobile environment (water pool of the lipid).

  19. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  20. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Wang, Chao; Liu, Zhuang

    2012-12-01

    Upconversion nanoparticles (UCNPs), particularly lanthanide-doped nanocrystals, which emit high energy photons under excitation by the near-infrared (NIR) light, have found potential applications in many different fields, including biomedicine. Compared with traditional down-conversion fluorescence imaging, the NIR light excited upconversion luminescence (UCL) imaging relying on UCNPs exhibits improved tissue penetration depth, higher photochemical stability, and is free of auto-fluorescence background, which promises biomedical imaging with high sensitivity. On the other hand, the unique upconversion process of UCNPs may be utilized to activate photosensitive therapeutic agents for applications in cancer treatment. Moreover, the integration of UCNPs with other functional nanostructures could result in the obtained nanocomposites having highly enriched functionalities, useful in imaging-guided cancer therapies. This review article will focus on the biomedical imaging and cancer therapy applications of UCNPs and their nanocomposites, and discuss recent advances and future prospects in this emerging field.

  1. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  2. Use of upconverting fluorescent nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dev K.; Zhang, Yong

    2012-02-01

    Lanthanide doped nanocrystals with upconversion fluorescence emission have been synthesized. The surface of these nanocrystals are modified to render them water dispersible and biocompatible. Use of these nanocrystals for bioimaging introduces many advantages, for example, minimum photo-damage to biological samples, weak auto-fluorescence, high detection sensitivity, high light penetration depth, etc. Here, we use upconversion nanocrystals to label cancer cells and demonstrate confocal imaging of the labeled cells implanted in mouse muscle.

  3. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  4. Remarkable effects of solvent and substitution on the photo-dynamics of cytosine: a femtosecond broadband time-resolved fluorescence and transient absorption study.

    PubMed

    Ma, Chensheng; Cheng, Chopen Chan-Wut; Chan, Chris Tsz-Leung; Chan, Ruth Chau-Ting; Kwok, Wai-Ming

    2015-07-15

    Cytosine (Cyt) among all the nucleic acid bases features the most complex and least understood nonradiative deactivation, a process that is crucially important for its photostability. Herein, the excited state dynamics of Cyt and a series of its N1- and C5-derivatives, including the full set of Cyt nucleosides and nucleotides in DNA and RNA and the nucleosides of 5-methyl cytosine, 5-methylcytidine and 2'-deoxy-5-methylcytidine, have been investigated in water and in methanol employing femtosecond broadband time-resolved fluorescence coupled with fs transient absorption spectroscopy. The results reveal remarkable state-specific effects of the substitution and solvent in tuning distinctively the timescales and pathways of the nonradiative decays. For Cyt and the N1-derivatives, the nonradiative deactivations occur in a common two-state process through three channels, two from the light-absorbing ππ* state with respectively the sub-picosecond (∼0.2 ps) and the picosecond (∼1.5 ps) time constant, and the third is due to an optically dark nπ* state with the lifetime ranging from several to hundreds of picoseconds depending on solvents and substitutions. Compared to Cyt, the presence of the ribose or deoxyribose moiety at the N1 position of N1-derivatives facilitates the formation of the nπ* at the sub-picosecond timescale and at the same time increases its lifetime by ∼4-6 times in both water and methanol. In sharp contrast, the existence of the methyl group at the C5 position of the C5-derivatives eliminates completely the sub-picosecond ππ* channel and the channel due to the nπ*, but on the other hand slows down the decay of the ππ* state which after relaxation exhibits a single time constant of ∼4.1 to ∼7.6 ps depending on solvents. Varying the solvent from water to methanol accelerates only slightly the decay of the ππ* state in all the compounds; while for Cyt and its N1-derivatives, this change of solvent also retards strongly the n

  5. Photochemical Upconversion: A Physical or Inorganic Chemistry Experiment for Undergraduates Using a Conventional Fluorimeter

    ERIC Educational Resources Information Center

    Wilke, Bryn M.; Castellano, Felix N.

    2013-01-01

    Photochemical upconversion is a regenerative process that transforms lower-energy photons into higher-energy light through two sequential bimolecular reactions, triplet sensitization of an appropriate acceptor followed by singlet fluorescence producing triplet-triplet annihilation derived from two energized acceptors. This laboratory directly…

  6. Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region.

    PubMed

    Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D; Kennis, John T M; Groot, Marie Louise

    2012-05-07

    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.

  7. Upconversion processes in Yb-sensitized Tm:ZBLAN

    SciTech Connect

    Carrig, T.J.; Cockroft, N.J.

    1996-10-01

    A spectroscopic study of 22 rare-earth-ion doped ZBLAN (fluorozirconate) glass was done to study feasibility of sensitizing Tm:ZBLAN with Yb to facilitate development of an efficient, conveniently pumped blue upconversion fiber laser. it was found that, under single-color pumping, 480 nm emission from Tm{sup 3+} was strongest when Yb,Tm:ZBLAN is excited at 975 nm; the strongest blue blue emission was obtained from a glass sample with 2.0 wt% Yb + 0.3 wt% Tm. Also, for weak 975 nm pump intensities, strength of blue upconversion emission can be greatly enhanced by simultaneously pumping at 785 nm. This increased upconversion efficiency is due to reduced number of energy transfer steps needed to populate the Tm{sup 3+} {sup 1}G{sub 4} energy level. Measurements of fluorescence lifetimes vs dopant concentration were also made for Yb{sup 3+}, Tm{sup 3+}, and Pr{sup 3+} transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm{sup 3+} and Pr{sup 3+} in ZBLAN is also described.

  8. Femtosecond to nanosecond dynamics of 2,2'-bipyridine-3,3'-diol inside the nano-cavities of molecular containers.

    PubMed

    Gavvala, Krishna; Sengupta, Abhigyan; Koninti, Raj Kumar; Hazra, Partha

    2014-01-21

    Femtosecond fluorescence upconversion measurements are employed to elucidate the mechanism of ultrafast double proton transfer dynamics of BP(OH)2 inside molecular containers (cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD)). Femtosecond up-converted signals of BP(OH)2 in water consist of growth followed by a long decay component (~650 ps). The appearance of the growth component (~35 ps) in the up-converted signal indicates the presence of a two-step sequential proton transfer process of BP(OH)2 in water. Surprisingly, the up-converted signal of BP(OH)2 inside the CB7 nano-cavity does not exhibit any growth component characteristic of a two-step sequential process. Interestingly, the growth component exists inside the nano-cavity of β-CD (having similar cavity size as that of CB7), inferring the presence of a two-step sequential process of PT inside the β-CD nano-cavity. The different features of PT dynamics of BP(OH)2 in the above mentioned two macrocyclic hosts may be attributed to the presence and absence of water solvation network surrounding the BP(OH)2 inside the nano-cavities of β-CD and CB7, respectively. Finally, docking and DFT calculations have been employed in deciphering the molecular pictures of the interactions between BP(OH)2 and the macrocyclic host.

  9. Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation.

    PubMed

    Yang, Jianping; Deng, Yonghui; Wu, Qingling; Zhou, Jing; Bao, Haifeng; Li, Qiang; Zhang, Fan; Li, Fuyou; Tu, Bo; Zhao, Dongyuan

    2010-06-01

    Mesoporous silica encapsulating upconversion luminescence NaYF(4) nanorods with uniform core-shell structures have been successfully synthesized by the surfactant-assistant sol-gel process. The thickness of ordered mesoporous silica shells can be adjusted from 50 to 95 nm by varying the amount of hydrolyzed silicate oligomer precursors from tetraethyl orthosilicate (TEOS), which further influences the BET surface area, pore volume, and the luminescence intensity. After coated with mesoporous silica shells, the hydrophobic nanorods is rendered to hydropholic simultaneously. The obtained beta-NaYF(4)@SiO(2)@mSiO(2) core-shell nanorods possess high surface area (71.2-196 m(2) g(-1)), pore volume (0.07-0.17 cm(3) g(-1)), uniform pore size distribution (2.3 nm), and accessible channels. Furthermore, the uniform core-shell nanorods show strong upconversion luminescence property similar to the hexagonal upconversion cores. The open mesopores can not only provide convenient transmission channels but also offer the huge location for accommodation of large molecules, such as fluorescent dyes and quantum dots. The secondary-excitation fluorescence of Rhodamine B is generated from the upconversion rare-earth fluoride nanorods cores to the fluorescent dyes loaded in the mesoporous silica shells.

  10. Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods

    PubMed Central

    Liu, Xin; Yuan Lei, Dang

    2015-01-01

    The geometry and dimension of a gold nanorod (GNR) are optimally designed to enhance the fluorescence intensity of a lanthanide-doped upconversion nanocrystal placed in close proximity to the GNR. A systematic study of the electromagnetic interaction between the upconversion emitter of three energy levels and the GNR shows that the enhancement effect arising from localized electric field-induced absorption can be balanced by the negative effect of electronic transition from an intermediate state to the ground state of the emitter. The dependence of fluorescence enhancement on the emitter-GNR separation is investigated, and the results demonstrate a maximum enhancement factor of 120 folds and 160 folds at emission wavelengths 650 and 540 nm, respectively. This is achieved at the emitter-GNR separation ranging from 5 to 15 nm, depending on the initial quantum efficiency of the emitter. The modified upconversion luminescence behavior by adjusting the aspect ratio of the GNR and the relative position of the emitter indicates the dominate role of excitation process in the total fluorescence enhancement. These findings are of great importance for rationally designing composite nanostructures of metal nanoparticles and upconversion nanocrystals with maximized plasmonic enhancement for bioimaging and sensing applications. PMID:26468686

  11. Photon upconversion with directed emission

    NASA Astrophysics Data System (ADS)

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-08-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix.

  12. Photon upconversion with directed emission

    PubMed Central

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  13. Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses

    NASA Astrophysics Data System (ADS)

    Zhu, C. L.; Pun, E. Y. B.; Wang, Z. Q.; Lin, H.

    2017-02-01

    Visible upconversion photons have been quantified precisely in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive aluminum germanate (NMAG) glasses, and effective red and green upconversion emissions generated from Ho3+ and Er3+ were illustrated in contrast. The emission photon numbers are identified as a positive correlation with the laser power densities, and stronger dominance of red emission in the Ho3+/Yb3+ doped NMAG glasses and more effectiveness of photon generation in Er3+/Yb3+ doped case were proved. When the power density is 1227 W/cm2, the absolute quantum yields for red and green (660 and 548 nm) upconversion fluorescences are derived to be 2.41 × 10-5 and 0.17 × 10-5 in Ho3+/Yb3+ doped NMAG glasses, and the ones (665 and 548 nm) in Er3+/Yb3+ doped NMAG glasses are 4.26 × 10-5 and 1.44 × 10-5. The macroscopic quantization of red and green upconversion emissions in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive NMAG glasses provides the original referenced data for developing upconversion waveguide-typed irradiation light sources.

  14. Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.

    2014-01-01

    We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.

  15. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  16. The dependence of the ultrafast relaxation kinetics of the S(2) and S(1) states in beta-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies.

    PubMed

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-07

    The ultrafast relaxation kinetics of all-trans-beta-carotene homologs with varying numbers of conjugated double bonds n(n=7-15) and lycopene (n=11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S(2)(1(1)B(u) (+)) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S(1)(2(1)A(g) (-)) state were observed by the time-resolved absorption measurements. The dependence of the S(1) relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S(2) have a minimum at n=9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S(2) relaxation rates can be explained by the presence of an intermediate state (here called the S(x) state) located between the S(2) and S(1) states at large values of n (such as n=11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S(2)-->S(x)-->S(1)-->S(0). A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  17. Superresolved femtosecond laser nanosurgery of cells

    PubMed Central

    Pospiech, Matthias; Emons, Moritz; Kuetemeyer, Kai; Heisterkamp, Alexander; Morgner, Uwe

    2011-01-01

    We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %. PMID:21339872

  18. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2010-09-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  19. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2011-02-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  20. Femtosecond spectral holography

    NASA Astrophysics Data System (ADS)

    Weiner, Andrew M.; Leaird, Daniel E.; Reitze, David H.; Paek, Eung G.

    1992-10-01

    Storage, recall, and processing of shaped femtosecond waveforms are achieved by performing spectral holography within a femtosecond pulse shaping apparatus. Time reversal, as well as correlation and convolution, of femtosecond temporal signals is demonstrated. Applications of this technique to matched filtering, dispersion compensation, encryption and decoding, and femtosecond waveform synthesis are also discussed. The work extends the powerful principles of holographic signal processing, which have been used extensively for pattern recognition and filtering of two-dimensional spatial signals, to the femtosecond time domain.

  1. Femtosecond spectral holography

    SciTech Connect

    Weiner, A.M.; Leaird, D.E.; Reitze, D.H.; Paek, E.G. )

    1992-10-01

    Storage, recall, and processing of shaped femtosecond waveforms are achieved by performing spectral holography within a femtosecond pulse shaping apparatus. Time reversal, as well as correlation and convolution, of femtosecond temporal signals is demonstrated. Applications of this technique to matched filtering, dispersion compensation, encryption and decoding, and femtosecond waveform synthesis are also discussed. The work extends the powerful principles of holographic signal processing, which have been used extensively for pattern recognition and filtering of two-dimensional spatial signals, to the femtosecond time domain. 44 refs.

  2. Gold nanorod plasmonic upconversion microlaser.

    PubMed

    Shi, Ce; Soltani, Soheil; Armani, Andrea M

    2013-01-01

    Plasmonic-photonic interactions have stimulated significant interdisciplinary interest, leading to rapid innovations in solar design and biosensors. However, the development of an optically pumped plasmonic laser has failed to keep pace due to the difficulty of integrating a plasmonic gain material with a suitable pump source. In the present work, we develop a method for coating high quality factor toroidal optical cavities with gold nanorods, forming a photonic-plasmonic laser. By leveraging the two-photon upconversion capability of the nanorods, lasing at 581 nm with a 20 μW threshold is demonstrated.

  3. Blue-green upconversion laser

    SciTech Connect

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  4. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  5. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  6. Controlling upconversion nanocrystals for emerging applications.

    PubMed

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  7. Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications

    PubMed Central

    Wang, Meng; Abbineni, Gopal; Clevenger, April; Mao, Chuanbin; Xu, Shukun

    2011-01-01

    New generation fluorophores, also termed upconversion nanoparticles (UCNPs), have the ability to convert near infrared radiations with lower energy into visible radiations with higher energy via a non-linear optical process. Recently, these UCNPs have evolved as alternative fluorescent labels to traditional fluorophores, showing great potential for imaging and biodetection assays in both in vitro and in vivo applications. UCNPs exhibit unique luminescent properties, including high penetration depth into tissues, low background signals, large Stokes shifts, sharp emission bands, and high resistance to photo-bleaching, making UCNPs an attractive alternative source for overcoming current limitations in traditional fluorescent probes. In this review, we discuss the recent progress in the synthesis and surface modification of rare earth doped UCNPs with a specific focus on their biological applications. PMID:21419877

  8. Study on up-conversion emissions of Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4

    NASA Astrophysics Data System (ADS)

    Cao, Chunyan; Qin, Weiping; Zhang, Jisen

    2010-02-01

    The Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb 3+/Tm 3+ co-doped GdF 3 sample crystallized well and was orthorhombic phase, and the Yb 3+/Tm 3+ co-doped NaGdF 4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb 3+ transferred energies to Tm 3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm 3+ simultaneously transferred energies to Gd 3+, which finally resulted in ultraviolet up-conversion emissions of Gd 3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd 3+ and Tm 3+ in the Yb 3+/Tm 3+ co-doped GdF 3 and NaGdF 4 samples were compared studied, too.

  9. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection.

    PubMed

    Jin, Birui; Wang, Shurui; Lin, Min; Jin, Ying; Zhang, Shujing; Cui, Xingye; Gong, Yan; Li, Ang; Xu, Feng; Lu, Tian Jian

    2017-04-15

    Pathogenic bacteria cause serious harm to human health, which calls for the development of advanced detection methods. Herein, we developed a novel detection platform based on fluorescence resonance energy transfer (FRET) for rapid, ultrasensitive and specific bacteria detection, where gold nanoparticles (AuNPs, acceptor) were conjugated with aptamers while upconversion nanoparticles (UCNPs, donor) were functionalized with corresponding complementary DNA (cDNA). The spectral overlap between UCNPs fluorescence emission and AuNPs absorption enables the occurrence of FRET when hybridizing the targeted aptamer and cDNA, causing upconversion fluorescence quenching. In the presence of target bacteria, the aptamers preferentially bind to bacteria forming a three-dimensional structure and thereby dissociate UCNPs-cDNA from AuNPs-aptamers, resulting in the recovery of upconversion fluorescence. Using the UCNPs based FRET aptasensor, we successfully detected Escherichia coli ATCC 8739 (as a model analyte) with a detection range of 5-10(6)cfu/mL and detection limit of 3cfu/mL. The aptasensor was further used to detect E. coli in real food and water samples (e.g., tap/pond water, milk) within 20min. The novel UCNPs based FRET aptasensor could be used to detect a broad range of targets from whole cells to metal ions by using different aptamer sequences, holding great potential in environmental monitoring, medical diagnostics and food safety analysis.

  10. Femtosecond-Pulsed Plasmonic Nanotweezers

    PubMed Central

    Roxworthy, Brian J.; Toussaint, Kimani C.

    2012-01-01

    We demonstrate for the first time plasmonic nanotweezers based on Au bowtie nanoantenna arrays (BNAs) that utilize a femtosecond-pulsed input source to enhance trapping of both Rayleigh and Mie particles. Using ultra-low input power densities, we demonstrate that the high-peak powers associated with a femtosecond source augment the trap stiffness to 2x that of nanotweezers employing a continuous-wave source, and 5x that of conventional tweezers using a femtosecond source. We show that for trapped fluorescent microparticles the two-photon response is enhanced by 2x in comparison to the response without nanoantennas. We also demonstrate tweezing of 80-nm diameter Ag nanoparticles, and observe an enhancement of the second-harmonic signal of ~3.5x for the combined nanoparticle-BNA system compared to the bare BNAs. Finally, under select illumination conditions, fusing of Ag nanoparticles to the BNAs is observed which holds potential for in situ fabrication of three-dimensional, bimetallic nanoantennas. PMID:22993686

  11. Sensitive Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.

  12. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  13. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  14. All-or-none switching of photon upconversion in self-assembled organogel systems.

    PubMed

    Duan, Pengfei; Asthana, Deepak; Nakashima, Takuya; Kawai, Tsuyoshi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-02-22

    Aggregation-induced photon upconversion (iPUC) based on a triplet-triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor-acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor-acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.

  15. Upconversion in Er3+-doped Bi2O3-Li2O-BaO-PbO tertiary glass.

    PubMed

    Tripathi, Garima; Rai, Vineet Kumar; Rai, D K; Rai, S B

    2007-04-01

    Radiative properties of Er3+-doped tertiary bismuth glass has been analyzed by the Judd-Ofelt theory. NIR to visible upconversion in the Er3+-doped glass has been reported. The mechanism for the upconversion is explained on the basis of quadratic dependence on excitation power and on the energy-matching scheme. Energy transfer is noted as the dominant process including the long-lived 4I11/2 level as the intermediate state for the green and red upconversion emissions. The effect of temperature on the fluorescence intensity of the two bands due to 2H11/2-->4I15/2 and 4S3/2-->4I15/2 transitions as well as on the transitions due to Stark components of the 4S3/2 level have been monitored and it is concluded that their intensity ratio may serve as better temperature sensing device.

  16. Blue upconversion luminescence in 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Liang; Sun, Jinchao; Qian, Yannan; Zhang, Yushen; Xu, Yanling

    2012-03-01

    The effect of Yb 3 + concentration on the fluorescence of 12 CaO·7 Al 2O 3:Tm 3 + /Yb 3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G 4 → 3H 6 of Tm 3 + . The ratio of blue to red emission increases with the increasing of Yb 3 + and remains constant at 10 mol% Yb 3 + . The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al 2O 3:1 mol% Tm 3 + /10 mol% Yb 3 + can emit high-purity blue light.

  17. Optical temperature sensor through infrared excited blue upconversion emission in Tm3 +/Yb3 + codoped Y2O3

    NASA Astrophysics Data System (ADS)

    Li, Dongyu; Wang, Yuxiao; Zhang, Xueru; Yang, Kun; Liu, Lu; Song, Yinglin

    2012-04-01

    An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K- 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.

  18. Dopant distribution in a Tm(3+)-Yb(3+) codoped silica based glass ceramic: an infrared-laser induced upconversion study.

    PubMed

    Lahoz, F; Martin, I R; Mendez-Ramos, J; Nunez, P

    2004-04-01

    The optically active dopant distribution in a Tm(3+)-Yb(3+) doped silica based glass ceramic sample has been investigated. A systematic analysis of the upconversion fluorescence of the Tm(3+)-Yb(3+) codoped glass and glass ceramic has been performed at room temperature. Tm(3+) and Yb(3+) single doped glass and glass ceramics have also been included in the study. Upon infrared excitation at 790 nm into the (3)H(4) level of the Tm(3+) ions a blue upconversion emission is observed, which is drastically increased in the Yb(3+) codoped samples. A rate equation model confirmed the energy transfer upconversion mechanism. Based on these results, the temporal dynamic curves of the levels involved in the upconversion process, (3)H(4), (2)F(5/2), and (1)G(4) were interpreted in the glass ceramic samples. The contribution of the optically active Tm(3+) and Yb(3+) ions in the crystalline and in the vitreous phase of the glass ceramic was distinguished and the ratio of Tm(3+) ions in the crystalline phase could be quantified for the 1 mol % Tm(3+)-2.5 mol % Yb(3+) glass ceramic. A surprising result was obtained for that concentration: the main contribution to the upconversion emission of the glass ceramic is due to Tm(3+)-Yb(3+) ions in the vitreous phase.

  19. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope.

    PubMed

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  20. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  1. A femtosecond study of photoinduced electron transfer from dimethylaniline to coumarin dyes in a cetyltrimethylammonium bromide micelle

    SciTech Connect

    Ghosh, Subhadip; Sahu, Kalyanasis; Mondal, Sudip Kumar; Sen, Pratik; Bhattacharyya, Kankan

    2006-08-07

    Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline to coumarin dyes in cetyltrimethylammonium bromide (CTAB) micelle is studied using femtosecond upconversion spectroscopy. The rate of PET in a CTAB micelle is found to be highly nonexponential with components much faster ({approx}10 ps) than the slow components of solvation dynamics. The ultrafast components of electron transfer exhibits a bell-shaped dependence on the free energy change which is similar to the Marcus inversion.

  2. The characteristic saturation phenomenon of upconversion luminescence in holmium ytterbium-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Song, Zengfu; Sawanobori, Naruhito; Ohtsuka, Masaaki; Li, Xiaowen; Wang, Yafei; Xu, Xiaoling; He, Chenjuan; Ma, Hui; Chen, Ying; Zhu, Jianyang

    2008-11-01

    The upconversion luminescence of holmium Ho 3+ ion sensitized by ytterbium Yb 3+ ion in Ho 3+Yb 3+-co-doped oxyfluoride glass Ho(0.1)Yb(5):FOG is investigated in this paper. A plenty of upconversion luminescence lines are measured out. The upconversion mechanism of Ho(0.1)Yb(5):FOG, when excited by 960 nm laser, is the energy transfer from Yb 3+ to Ho 3+ ion. A very weak 795.5 nm common photoemission fluorescence is detected, which is recognized as the 5I 4→ 5I 8 fluorescence transition based on careful measurement, calculation and analysis. And moreover, a novel characteristic upconversion luminescence saturation phenomenon is found. It is that the log F-log P curve of upconversion fluorescence vs. pumping laser power is a straight line, and meanwhile the slopes of these double-logarithmic F- P plots are smaller than normal multi-photon relation clearly. When pumping laser spot is increased, the slopes of these double logarithmic F- P plots could be enhanced noticeably from small value to near the normal multi-photon relation value. The mechanism of this characteristic saturation phenomenon is the energy expansion resulted from energy resonant migration among Yb 3+ ions.

  3. Dispersing upconversion nanocrystals in a single silicon microtube

    PubMed Central

    Li, Hanyang; Wang, Yan; Li, Hui; Zhang, Yundong; Yang, Jun

    2016-01-01

    Nanocrystals of Ln3+ (Ln = Yb, Tm and Ho) doped β-NaLuF4 with average diameter about 200 nm are dispersed in silica-based microtube (MT) by a simple flame heating method. The fabricated microtube has a diameter range from 2 μm to 30 μm and lengths up to hundreds microns. The fluorescence of upconversion nanocrystals (UCNCs) can propagate along a single MT and couple into another MT through evanescent field. The guiding performance of the single UCNCs doped MT is measured to prove that it can be used as an active waveguide. Moreover, optical temperature sensing based on the single UCNCs-MT is also demonstrated, and the sensitivity of UCNCs-MT is significantly enough for thermometry applications in the range of 298–383 K. PMID:27779210

  4. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification.

    PubMed

    Qiu, Peiyu; Zhou, Na; Chen, Hengyu; Zhang, Chunlei; Gao, Guo; Cui, Daxiang

    2013-12-07

    Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.

  5. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 2. Unusual photophysical properties.

    PubMed

    Shi, Xinghua; Abbyad, Paul; Shu, Xiaokun; Kallio, Karen; Kanchanawong, Pakorn; Childs, William; Remington, S James; Boxer, Steven G

    2007-10-30

    In the preceding accompanying paper [Shu, X., et al. (2007) Biochemistry 46, 12005-12013], the 1.5 A resolution crystal structure of green fluorescent protein (GFP) variant S65T/H148D is presented, and the possible consequences of an unusual short hydrogen bond (femtosecond time-resolved emission of this variant at pH 5.6 by ultrafast fluorescence upconversion spectroscopy. Following excitation at 400 nm, green fluorescence is observed at 510 nm with a rise on a time scale that is faster than the 170 fs instrument response. Time-resolved emission spectra at 140 K also exhibit the immediate appearance of green fluorescence, and this extremely fast process is hardly affected by deuteration of exchangeable protons. These results appear to be dramatically different from those of wild-type GFP, in which the green fluorescence at 508 nm is produced on the picosecond time scale as a result of excited-state proton transfer from the state that is excited at 400 nm. The unique features observed in S65T/H148D and apparent ultrafast excited-state proton transfer are discussed in light of evidence for multiple states underlying the band at around 415 nm, as suggested by steady-state fluorescence spectra. The behavior of these different states may explain the novel photophysical properties observed for this GFP variant, including the ultrafast green fluorescence and the absence of completely matched decay in blue fluorescence. It is speculated that two different orientations of the Asp introduced at position 148, not distinguishable by chromatography, mass spectrometry, or X-ray crystallography, give rise to the two functionally distinct populations.

  6. Particle-size Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes.

    PubMed

    Muhr, Verena; Würth, Christian; Kraft, Marco; Buchner, Markus; Resch-Genger, Ute; Baeumner, Antje J; Hirsch, Thomas

    2017-03-22

    Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand exchange procedure. Time-resolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios the FRET efficiency decreased by an increasing competition of non-radiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles.

  7. Up-conversion processes in Yb-sensitized Tm:ZBLAN

    NASA Astrophysics Data System (ADS)

    Carrig, Timothy J.; Cockroft, Nigel J.

    1996-11-01

    A systematic spectroscopic study of 22 rate-earth-ion doped ZBLAN glass samples was conducted to investigate the feasibility of sensitizing Tm:ZBLAN with Yb to facilitate the development of an efficient and conveniently pumped blue upconversion fiber laser. It was determined that, under conditions of single-color pumping, 480 nm emission from Tm3+ is strongest when Yb, Tm:ZBLAN is excited at a wavelength of approximately 975 nm. In this case, the strongest blue emission was obtained from a ZBLAN glass sample with a nominal dopant concentration of approximately 2.0 wt percent Yb + 0.3 wt percent Tm. Additionally, it was demonstrated that for weak 975 nm pump intensities, the strength of the blue upconversion emission can be greatly enhanced by simultaneously pumping at approximately 785 nm. This increase in upconversion efficiency is due to a reduction in the number of energy transfer steps needed to populate the Tm3+ 1G4 energy level. Measurements of fluorescence lifetimes as a function of dopant concentration wee also made for Yb3+, and Pr3+ transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm3+ and Pr3+ in ZBLAN is also described.

  8. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  9. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-03

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.

  10. Micromachining using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Toenshoff, Hans K.; Ostendorf, Andreas; Nolte, Stefan; Korte, Frank; Bauer, Thorsten

    2000-11-01

    Femtosecond laser systems have been proved to be effective tools for high precision micro-machining. Almost all solid materials can be processed with high precision. The dependence on material properties like thermal conductivity, transparency, heat- or shock sensitivity is strongly reduced and no significant influence on the remaining bulk material is observed after ablation using femtosecond laser pulses. In contrast to conventional laser processing, where the achievable precision is reduced due to a formed liquid phase causing burr formation, the achievable precision using femtosecond pulses is only limited by the diffraction of the used optics. Potential applications of this technique, aincluding the structuring of biodegradable polymers for cardiovascular implants, so-called stents, as well as high precision machining of transparent materials are presented.

  11. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect

    Castellano, Felix N.

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  12. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications.

    PubMed

    Lin, Min; Zhao, Ying; Wang, ShuQi; Liu, Ming; Duan, ZhenFeng; Chen, YongMei; Li, Fei; Xu, Feng; Lu, TianJian

    2012-01-01

    Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.

  13. Photon Upconversion Through Tb(3+) -Mediated Interfacial Energy Transfer.

    PubMed

    Zhou, Bo; Yang, Weifeng; Han, Sanyang; Sun, Qiang; Liu, Xiaogang

    2015-10-28

    A strategy of interfacial energy transfer upconversion is demonstrated through the use of a terbium (Tb(3+) ) dopant as energy donor or energy migrator in core-shell-structured nanocrystals. This mechanistic investigation presents a new pathway for photon upconversion, and, more importantly, contributes to the better control of energy transfer at the nanometer length scale.

  14. High-resolution spectroscopy with a femtosecond laser frequency comb.

    PubMed

    Gerginov, V; Tanner, C E; Diddams, S A; Bartels, A; Hollberg, L

    2005-07-01

    The output of a mode-locked femtosecond laser is used for precision single-photon spectroscopy of 133Cs in an atomic beam. By changing the laser's repetition rate, the cesium D1 (6s 2S(1/2)-->6p 2P(1/2)) and D2 (6s 2S(1/2)-->6p 2P(3/2)) transitions are detected and the optical frequencies are measured with accuracy similar to that obtained with a cw laser. Control of the femtosecond laser repetition rate by use of the atomic fluorescence is also implemented, thus realizing a simple cesium optical clock.

  15. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    PubMed Central

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing. PMID:22736958

  16. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing.

    PubMed

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  17. Fluorescence excitation by enhanced plasmon upconversion under continuous wave illumination

    NASA Astrophysics Data System (ADS)

    Tasgin, Mehmet Emre; Salakhutdinov, Ildar; Kendziora, Dania; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Lazzarino, Marco; Bek, Alpan

    2016-09-01

    We demonstrate effective background-free continuous wave nonlinear optical excitation of molecules that are sandwiched between asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that near infrared photons are converted to visible photons through efficient plasmonic second harmonic generation. Our theoretical model and simulations demonstrate that Fano resonances may be responsible for being able to observe nonlinear conversion using a continuous wave light source. We show that nonlinearity enhancement of plasmonic nanostructures via coupled quantum mechanical oscillators such as molecules can be several orders larger as compared to their classical counterparts.

  18. Photon upconversion sensitized nanoprobes for sensing and imaging of pH

    NASA Astrophysics Data System (ADS)

    Arppe, Riikka; Näreoja, Tuomas; Nylund, Sami; Mattsson, Leena; Koho, Sami; Rosenholm, Jessica M.; Soukka, Tero; Schäferling, Michael

    2014-05-01

    Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an upconverting nanoparticle (UCNP) and a fluorogenic pH-dependent dye pHrodo™ Red that was covalently bound to the aminosilane surface of the nanoparticles. The sensitized fluorescence of the pHrodo™ Red dye increases strongly with decreasing pH. By referencing the pH-dependent emission of pHrodo™ Red with the pH-insensitive upconversion photoluminescence of the UCNP, we developed a pH-sensor which exhibits a dynamic range from pH 7.2 to 2.5. The applicability of the introduced pH nanosensor for pH imaging was demonstrated by imaging the two emission wavelengths of the nanoprobe in living HeLa cells with a confocal fluorescence microscope upon 980 nm excitation. This demonstrates that the presented pH-nanoprobe can be used as an intracellular pH-sensor due to the unique features of UCNPs: excitation with deeply penetrating near-infrared light, high photostability, lack of autofluorescence and biocompatibility due to an aminosilane coating.Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an

  19. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  20. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    PubMed

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  1. Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions.

    PubMed

    Shehata, Nader; Meehan, Kathleen; Hassounah, Ibrahim; Hudait, Mantu; Jain, Nikhil; Clavel, Michael; Elhelw, Sarah; Madi, Nabil

    2014-01-01

    This paper introduces a new synthesis procedure to form erbium-doped ceria nanoparticles (EDC NPs) that can act as an optical medium for both up-conversion and down-conversion in the same time. This synthesis process results qualitatively in a high concentration of Ce(3+) ions required to obtain high fluorescence efficiency in the down-conversion process. Simultaneously, the synthesized nanoparticles contain the molecular energy levels of erbium that are required for up-conversion. Therefore, the synthesized EDC NPs can emit visible light when excited with either UV or IR photons. This opens new opportunities for applications where emission of light via both up- and down-conversions from a single nanomaterial is desired such as solar cells and bio-imaging.

  2. Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue

    PubMed Central

    Nadort, Annemarie; Sreenivasan, Varun K. A.; Song, Zhen; Grebenik, Ekaterina A.; Nechaev, Andrei V.; Semchishen, Vladimir A.; Panchenko, Vladislav Y.; Zvyagin, Andrei V.

    2013-01-01

    The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs), enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm) depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein) dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement. PMID:23691012

  3. Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications

    NASA Astrophysics Data System (ADS)

    Sun, Lining; Wei, Zuwu; Chen, Haige; Liu, Jinliang; Guo, Jianjian; Cao, Ming; Wen, Tieqiao; Shi, Liyi

    2014-07-01

    Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents.Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents. Electronic supplementary information (ESI) available: Up-conversion luminescence spectra of UCNC-Er and UCNC-Er-FA, UCNC-Tm and UCNC-Tm-FA. Confocal luminescence imaging data collected as a series along the Z optical axis. See DOI: 10.1039/c4nr02312a

  4. Surgical applications of femtosecond lasers.

    PubMed

    Chung, Samuel H; Mazur, Eric

    2009-10-01

    Femtosecond laser ablation permits non-invasive surgeries in the bulk of a sample with submicrometer resolution. We briefly review the history of optical surgery techniques and the experimental background of femtosecond laser ablation. Next, we present several clinical applications, including dental surgery and eye surgery. We then summarize research applications, encompassing cell and tissue studies, research on C. elegans, and studies in zebrafish. We conclude by discussing future trends of femtosecond laser systems and some possible application directions.

  5. Femtosecond laser materials processing

    NASA Astrophysics Data System (ADS)

    Banks, Paul S.; Stuart, Brent C.; Komashko, Aleksey M.; Feit, Michael D.; Rubenchik, Alexander M.; Perry, Michael D.

    2000-05-01

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biological materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  6. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  7. Non-collinear upconversion of infrared light.

    PubMed

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2014-11-17

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid-infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which includes non-collinear interaction. We derive here a general theory providing the far field of the upconverted light when two arbitrary fields interact inside a nonlinear crystal. Theoretical predictions are experimentally verified for incoherent radiation and subsequently applied to previously published data with good agreement.

  8. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  9. Solar upconversion with plasmonic hot carriers

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer A.

    Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. Placed behind a solar cell, upconverting materials convert lower-energy photons transmitted through the cell to higher-energy above-bandgap photons that can then be absorbed by the cell and contribute to photocurrent. Because the upconverter is electrically isolated from the active cell, it need not be current-matched to the cell, nor will it add mid-gap recombination pathways. Calculations have indicated that single-junction cell efficiencies can exceed 44% upon addition of an upconverter - a significant improvement over the maximum cell efficiency of 30% without an upconverter. However, due to the low quantum efficiencies and narrow absorption bandwidths of existing upconverters, such significant cell improvements have yet to be observed experimentally. In this presentation, we will describe an entirely new solar upconverting scheme based on hot-carrier injection from a plasmonic absorber to an adjacent semiconductor. The plasmonic system both induces upconversion based on injection of hot-electrons and hot-holes and also enhances light-matter interactions. Low-energy photons incident on a plasmonic particle generate hot electrons and hot holes, which are injected into a semiconducting quantum well and subsequently radiatively recombine. Importantly, the bandgap of the quantum well can be higher than the energy of the incident photon, enabling emission of a higher-energy photon than that absorbed. First, we present analytic calculations showing that efficiencies as high as 25% are possible, significantly higher than existing solid-state upconverters, which are only 2-5% efficient. We also describe how further improvements in the efficiency are possible by employing materials and geometries that allow for more efficient carrier injection. Then, we describe experiments on InGaN/GaN quantum wells decorated with Au disks. On their own, the In

  10. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  11. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  12. Femtosecond Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Peng, Jiahui; Wang, Lei; Sokolov, Alexei

    2004-10-01

    Optical tweezers has drawn much attention of people since recent years, which shows great advantages on biological applications due to quite straightforward ideas and simple configurations. Optical tweezers rely upon the extremely high gradient in the electric field produced near the beam waist of a tightly focused laser beam, which creates a force sufficient to trap micron-sized dielectric particles in three dimensions.(J.E. Molloy and M.J. Padgett, Light, Action: Optical Tweezers, Contemporary P)hysics, 43 241 (2002). We applied a femtosecond laser on optical tweezers as light source and got successfully ``optical trapping'' and ``optical tweezers.'' Further, due to the characters of short pulse width and extremely high intensity of laser, femtosecond optical tweezers may direct us to new optics field. Under such strong intensity many non-linear optical phenomena could be observable, such like optical Kerr effect, stimulated Raman effect and so on. Our work will shows that it may be applied into the recently proposed FAST CAR (Femtosecond Adaptive Spectroscopic Techniques for Coherent Anti-Stokes Raman Spectroscopy) by M. Scully et. al.(M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, ``FAST CARS: Engineering a Laser Spectroscopic Technique for Rapid Identification of Bacterial Spores,'' Proceedings of NASE (2002).)

  13. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  14. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  15. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    PubMed Central

    Min, Yuanzeng; Li, Jinming; Liu, Fang; Padmanabhan, Parasuraman; Yeow, Edwin K. L.; Xing, Bengang

    2014-01-01

    Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs), which can be excited by near-infrared (NIR) laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  16. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  17. Energy transfer upconversion in ? and ? doped ? crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jouart, Jean-Pierre; Mary, Gérard

    1998-01-01

    A comparative spectroscopic study for 0953-8984/10/2/027/img10 and 0953-8984/10/2/027/img11 doped 0953-8984/10/2/027/img12 crystals has been realised at liquid nitrogen temperature. The 0953-8984/10/2/027/img10 single-doped sample shows principally blue emission corresponding to the 0953-8984/10/2/027/img14 transition, whereas the 0953-8984/10/2/027/img11 codoped sample gives rise to a very efficient green emission which is ascribed to the 0953-8984/10/2/027/img16 transition. The total integrated upconversion emission intensity (including blue and green emissions) for the codoped crystal is three times more intense than that of the 0953-8984/10/2/027/img10 doped one, while the ratio for green emission rises to 27. The green emission in the codoped sample results mainly from the 0953-8984/10/2/027/img18 mixed centre, whereas the blue emission is essentially due to the 0953-8984/10/2/027/img19 pair. Two energy transfer upconversion mechanisms have been proposed and are discussed in the paper.

  18. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  19. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yujia; Lu, Yiqing; Yang, Xusan; Zheng, Xianlin; Wen, Shihui; Wang, Fan; Vidal, Xavier; Zhao, Jiangbo; Liu, Deming; Zhou, Zhiguang; Ma, Chenshuo; Zhou, Jiajia; Piper, James A.; Xi, Peng; Jin, Dayong

    2017-02-01

    Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the

  20. Photon Upconversion at Crystalline Organic-Organic Heterojunctions.

    PubMed

    Oldenburg, Michael; Turshatov, Andrey; Busko, Dmitry; Wollgarten, Stephanie; Adams, Michael; Baroni, Nicolò; Welle, Alexander; Redel, Engelbert; Wöll, Christof; Richards, Bryce S; Howard, Ian A

    2016-10-01

    Triplet transfer across a surface-anchored metal-organic-framework heterojunction is demonstrated by the observation of triplet-triplet annihilation photon -upconversion in a sensitizer-emitter heterostructure. Upconversion thresholds under 1 mW cm(-2) are achieved. In the broader context, the double-electron-exchange mechanism of triplet transfer indicates that the heterojunction quality is sufficient for electrons to move between layers in this solution-processed crystalline heterostructure.

  1. Preparation and up-conversion luminescence properties of LaOBr:Yb3+/Er3+ nanofibers via electrospinning.

    PubMed

    Ma, Wenwen; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-11-01

    LaOBr:Yb(3+)/Er(3+) nanofibers were synthesized for the first time by calcinating electrospun PVP/[La(NO3)3 + Er(NO3)3 + Yb(NO3)3 + NH4 Br] composites. The morphology and properties of the final products were investigated in detail using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffractometry (XRD) and fluorescence spectroscopy. The results indicate that LaOBr:Yb(3+)/Er(3+) nanofibers are tetragonal in structure with a space group of P4/nmm. The diameter of LaOBr:Yb(3+)/Er(3+) nanofibers is ~ 147 nm. Under the excitation of a 980-nm diode laser, LaOBr:Yb(3+)/Er(3+) nanofibers emit strong green and red up-conversion emission centering at 519, 541 and 667 nm, ascribed to the (2)H11/2, (4)S3/2 → (4) I(15/2) and (4)F9/2 → (4)I(15/2) energy-level transitions of Er(3+) ions, respectively. The up-conversion luminescent mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is advanced. Moreover, near-infrared emission of LaOBr:Yb(3+)/Er(3+) nanofibers is obtained under the excitation of a 532-nm laser. The formation mechanism of LaOBr:Yb(3+)/Er(3+) nanofibers is proposed. LaOBr:Yb(3+)/Er(3+) nanofibers could be important up-conversion luminescent materials.

  2. Fluorophore discrimination by tracing quantum interference in fluorescence microscopy

    SciTech Connect

    De, Arijit Kumar; Roy, Debjit; Goswami, Debabrata

    2011-01-15

    We show fluorescence-detected quantum interference in a microscope setup and demonstrate selective enhancement or suppression of fluorophores using femtosecond pulse-pair excitation with periodic modulation of the interpulse phase.

  3. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.

    PubMed

    Wei, Ruoyan; Wei, Zuwu; Sun, Lining; Zhang, Jin Z; Liu, Jinliang; Ge, Xiaoqian; Shi, Liyi

    2016-01-13

    Iron ion (Fe(3+)) which is the physiologically most abundant and versatile transition metal in biological systems, has been closely related to many certain cancers, metabolism, and dysfunction of organs, such as the liver, heart, and pancreas. In this Research Article, a novel Nile red derivative (NRD) fluorescent probe was synthesized and, in conjunction with polymer-modified core-shell upconversion nanoparticles (UCNPs), demonstrated in the detection of Fe(3+) ion with high sensitivity and selectivity. The core-shell UCNPs were surface modified using a synthesized PEGylated amphiphilic polymer (C18PMH-mPEG), and the resulting mPEG modified core-shell UCNPs (mPEG-UCNPs) show good water solubility. The overall Fe(3+)-responsive upconversion luminescence nanostructure was fabricated by linking the NRD to the mPEG-UCNPs, denoted as mPEG-UCNPs-NRD. In the nanostructure, the core-shell UCNPs, NaYF4:Yb,Er,Tm@NaGdF4, serve as the energy donor while the Fe(3+)-responsive NRD as the energy acceptor, which leads to efficient luminescence resonance energy transfer (LRET). The mPEG-UCNPs-NRD nanostructure shows high selectivity and sensitivity for detecting Fe(3+) in water. In addition, benefited from the good biocompatibility, the nanostructure was successfully applied for detecting Fe(3+) in living cells based on upconversion luminescence (UCL) from the UCNPs. Furthermore, the doped Gd(3+) ion in the UCNPs endows the mPEG-UCNPs-NRD nanostructure with effective T1 signal enhancement, making it a potential magnetic resonance imaging (MRI) contrast agent. This work demonstrates a simple yet powerful strategy to combine metal ion sensing with multimodal bioimaging based on upconversion luminescence for biomedical applications.

  4. Dualistic temperature sensing in Er3 +/Yb3 + doped CaMoO4 upconversion phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal; Tiwari, S. P.; Rai, V. K.

    2017-02-01

    Temperature sensing performance of Er3 +/Yb3 + doped CaMoO4 phosphor prepared via polyol method is reported herein. The X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy are done to confirm the phase, structure and purity of the synthesized phosphor. The infrared to green upconversion emission is investigated using 980 nm diode laser excitation along with its dependence on input pump power and external temperature. The temperature dependent fluorescence intensity ratio of two upconversion emission bands assigned to 2H11/2 → 4I15/2 (530 nm) and 4S3/2 → 4I15/2 (552 nm) transitions has shown two distinct slopes in the studied temperature range - 300 to 760 K and therefore, dual nature of temperature sensitivity is observed in this phosphor. This phenomenon in rare earth doped materials is either scarcely reported or overlooked. The material has shown higher sensitivity in the high temperature region (535 K < T < 760 K) with a maximum of 7.21 × 10- 3 K- 1 at 535 K. The results indicate potential of CaMoO4: Er3 +/Yb3 + phosphor in high temperature thermometry.

  5. Upconversion properties of Er3+-doped oxyfluoride glass-ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Kiran Kumar, K.; Jayasankar, C. K.

    2014-03-01

    Er3+-doped oxyfluoride glass and glass-ceramics containing SrF2 nanocrystals have been prepared and investigated their spectroscopic and luminescence properties. The formation of SrF2 nanocrystals in glass-ceramics were confirmed by Xray diffraction (XRD) and transmission electron microscopy (TEM). Judd-Ofelt parameters have been evaluated from absorption spectra of the Er3+-doped glass, which in turn used to predict radiative properties for the fluorescent levels of Er3+ ions. The intensities of both Stokes and upconversion (anti-Stokes) emissions significantly increase with increase of the size of the fluoride crystals in the glass matrix. The mechanism of green and red upconversion emissions have been ascribed to two photon processes. The lifetime of the 4S3/2 level of the Er3+ ions in glass-ceramics is found to be slightly higher than that of the counter glass, which may be due to the incorporation of Er3+ ions into the low phonon sites of SrF2 nanocrystals.

  6. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  7. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    PubMed Central

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-01-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0–7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems. PMID:27934889

  8. Dynamics of the higher lying excited states of cyanine dyes. An ultrafast fluorescence study.

    PubMed

    Guarin, Cesar A; Villabona-Monsalve, Juan P; López-Arteaga, Rafael; Peon, Jorge

    2013-06-20

    The electronic relaxation dynamics of the second singlet excited states of several cyanine dyes was studied through the femtosecond fluorescence up-conversion technique. Our interest in these molecules comes from the potential applications of systems with upper excited singlet states with a long lifetime, which can include electron and energy transfer from the higher lying singlets after one- or two-photon absorption. We studied three series of cyanines with 4-quinolyl, 2-quinolyl, or benzothiazolyl type end groups, each with varying sp(2) carbon conjugation lengths in the methinic bridge. The dynamics after electronic excitation to singlet states above the fluorescent state vary significantly as a function of cyanine structure and conjugation length. In particular, for the 4-quinolyl series the cyanine with an intermediate conjugation length (three methinic carbons) has the slowest S2 decays with lifetimes of 5.4 ps in ethanol and 6.6 ps in ethylene glycol. On the other hand, we observed that the 2-quinolyl family has S2 decay times in the subpicosecond range independent of the conjugation length between the end groups. The slowest internal conversion was observed for the benzothiazolyl type cyanine with five methinic carbons, with an S2 lifetime of 17.3 ps in ethanol. For the planar cyanines of this study we observed for the first time a clear systematic trend in the S2 decay times which closely follow the energy gap law. It was also demonstrated that a slow S2 decay is as well observed upon excitation through degenerate two-photon absorption with near-IR pulses. The present study isolates the most important variables for the design of cyanines with long S2 lifetimes.

  9. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite

    NASA Astrophysics Data System (ADS)

    Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou

    2015-02-01

    Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in

  10. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  11. Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Dietze, Daniel R; Mathies, Richard A

    2016-05-04

    Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects.

  12. Fabrication of a novel nanocomposite Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er for large enhancement upconversion luminescence.

    PubMed

    Yin, Dongguang; Cao, Xianzhang; Zhang, Lu; Tang, Jingxiu; Huang, Wenfeng; Han, Yanlin; Wu, Minghong

    2015-06-28

    Upconversion nanocrystals have a lot of advantages over other fluorescent materials. However, their applications are still limited due to their comparatively low upconversion luminescence (UCL). In the present study, a novel nanocomposite of Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er for enhancing UCL was fabricated successfully, and its morphology, crystalline phase, composition, and fluorescent property were investigated. It is interesting to find that the Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er and Ag@SiO2-NaLuF4:Yb,Gd,Er nanocomposites showed high UCL enhancements of 52- and 10-fold compared to the control of Ag-free nanocomposite SiO2-NaLuF4:Yb,Gd,Er, respectively. The enhancement of 52-fold is greater than those reported in our previous studies and some papers. Moreover, the measured life times of the Ag-presented nanocrystals were longer than that of Ag-absent counterparts. These enhancements of UCL can be ascribed to the effect of metal-enhanced fluorescence, which is caused by the enhancement of the local electric field. The UCL intensity of Ag/graphene@SiO2-NaLuF4:Yb,Gd,Er was 5.2-fold higher than that of Ag@SiO2-NaLuF4:Yb,Gd,Er, indicating that graphene presented in the fabricated nanocomposite structure favors metal-enhanced UCL. The small-sized Ag nanoparticles anchored on the graphene sheet mutually enhanced each other's polarizability and surface plasmon resonance, resulting in a big metal-enhanced UCL. This study provides a new strategy for effectively enhancing the UCL of upconversion nanocrystals. The enhancement potentially increases the overall upconversion nanocrystal detectability for highly sensitive biological, medical, and optical detections.

  13. CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence.

    PubMed

    Wang, Junzhong; Lin, Ming; Yan, Yongli; Wang, Zhe; Ho, Paul C; Loh, Kian Ping

    2009-08-19

    Arsenic(II) sulfide (AsS)-coated CdSe core-shell nanocrystals can be prepared by a cluster-complex deposition approach under mild conditions. At 60 degrees C, growth of an AsS shell onto a CdSe nanocrystal can be realized through the crystallization of a cluster complex of AsS/butylamine in a mixed solvent of isopropanol/chloroform. The new, type I core-shell nanocrystal exhibits markedly enhanced one-photon fluorescence as well two-photon upconversion fluorescence. The nanocrystals can be used for infrared-excited upconversion cellular labeling.

  14. Upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses.

    PubMed

    Xu, Shiqing; Fang, Dawei; Zhang, Zaixuan; Jiang, Zhonghong

    2005-11-01

    To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses were investigated under 980 nm excitation. The results showed that upconversion blue and red emission intensities of Tm(3+) first increase, reach its maximum at Tm(2)O(3)%=0.1 mol %, and then decrease with increasing Tm(2)O(3) content. The effect of Tm(2)O(3) content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm(3+).

  15. Photon upconversion for thin film solar cells

    NASA Astrophysics Data System (ADS)

    de Wild, J.

    2012-09-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part that cannot be absorbed by the solar cells, because the photon energy is too low. This conversion of light is done by so called upconversion, which means that lower energy photons are converted into higher energy photons that can be absorbed by the solar cell. The upconverters used in this thesis are those based on lanthanide ions doped in crystalline hosts. Lanthanide ions have very specific absorption and emission lines, which means that by choosing an appropriate ion one can convert any arbitrary wavelength. One of the most important aspects when one wants to apply upconverters onto solar cells is the light intensity necessary for efficient conversion. Because the upconversion process requires two photons to make a new, higher energy photon, the conversion process is non-linearly dependent on the light intensity. This is the main limitation for practical applications. Therefore, next to applying upconverters onto solar cells also more fundamental questions are addressed in this thesis, for instance, the question what determines efficient conversion. At first the upconverter materials in different hosts are characterized and investigated. The host material influences non-radiative decays, the absorption strength, the lifetime and the energy transfer rate between the lanthanide ions. By investigating two upconverter hosts with small differences (α and β-NaYF4 doped with Er3+ and Yb3+), we have tried to investigate the origin of the difference in upconversion efficiency. For this, emission and absorption spectra are measured under the same conditions and concentrations of the lanthanide ions. Also the absorption strength on the upconverter efficiency is investigated

  16. NIR to VUV: Seven-Photon Upconversion Emissions from Gd(3+) Ions in Fluoride Nanocrystals.

    PubMed

    Zheng, Kezhi; Qin, Weiping; Cao, Chunyan; Zhao, Dan; Wang, Lili

    2015-02-05

    Here we show that a near-infrared (NIR) diode laser is capable of generating vacuum ultraviolet (VUV) emissions in fluoride nanocrystals through photon upconversion (UC) processes. By using Yb(3+) and Tm(3+) as sensitizers, we successfully obtained the VUV photons with the energy exceeding 6 eV in YF3: Yb, Tm, and Gd nanocrystals. The seven photon UC fluorescence from the (6)GJ → (8)S7/2 transitions of Gd(3+) ions and the possible VUV UC mechanism were reported along with the calculation of the branching ratio under different pumping power excitation. Practically, it offers a promising solution for VUV light generation without cryogens and expensive instrumentations. Fundamentally, the extremely high-order UC processes will intrigue great interest in exploring unusual high-energy radiative transitions in rare earth ions.

  17. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    NASA Astrophysics Data System (ADS)

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Fischer, Joachim; Nann, Thomas; Wegener, Martin

    2015-03-01

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  18. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    SciTech Connect

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Nann, Thomas; Fischer, Joachim; Wegener, Martin

    2015-03-30

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  19. One-step solvothermal synthesis of targetable optomagnetic upconversion nanoparticles for in vivo bimodal imaging.

    PubMed

    Wang, Xu; Chen, Jia-Tong; Zhu, Haomiao; Chen, Xueyuan; Yan, Xiu-Ping

    2013-11-05

    Bionanoparticles and nanostructures with high biocompatibility and stability, low toxicity, diversification of imaging modality, and specificity of targeting to desired organs or cells are of great interest in nanobiology and medicine. However, integrating all of these desired features into a single bionanoparticle, which can be applied to biomedical applications and eventually in clinical prediagnosis and therapy, is still a challenge. We herein report a facile one-step solvothermal approach to fabricate targetable and biocompatible β-NaYF4:Yb,Gd,Tm upconversion nanoparticles (UCNPs) with bimodal-signals (near-infrared (NIR) fluorescence and magnetic resonance (MR) signals) using hyaluronic acid (HA) as a multifunctional molecule. The prepared UCNPs with low toxicity are successfully applied for in vitro and in vivo targeted tumor imaging. The developed biomimetic surface modification approach for the synthesis of biomolecule-guided multifunctional UCNPs holds great potential applications in medical diagnostics and therapy.

  20. Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/ Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer

    PubMed Central

    Pan, Liyuan; He, Meng; Ma, Jiebing; Tang, Wei; Gao, Guo; He, Rong; Su, Haichuan; Cui, Daxiang

    2013-01-01

    Upconversion nanocrystals with small size and strong fluorescent signals own great potential in applications such as biomolecule-labeling, in vivo tracking and molecular imaging. Herein we reported that NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with small size and strong fluorescent signals were controllably synthesized by oleic acid (OA)/ ionic liquid (IL) two-phase system for targeted fluorescent imaging of gastric cancer in vivo. The optimal synthesis condition of NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals by OA/IL two-phase system was established, adding more metal ion such as Na+ ion could facilitate the size control and crystal-phase transition, more importantly, markedly enhancing fluorescent intensity of beta-phase nanocrystals compared with traditional methods. Alpha-phase NaYbF4, 2%Tm upconversion nanocrystals with less than 10nm in diameter and beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with 30 nm or so in diameter and strong fluorescent signals were obtained, these synthesized nanocrystals exhibited very low cytotoxicity. Folic acid-conjugated silica-modified beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals were prepared, could actively target gastric cancer tissues implanted into nude mice in vivo, and realized targeted fluorescent imaging. Folic acid-conjugated silica-modified NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals show great potential in applications such as targeted near infared radiation fluorescent imaging, magnetic resonance imaging and targeted therapy of gastric cancer in the near future. PMID:23471455

  1. High-efficiency infrared-to-visible upconversion of Er3 + in BaCl2

    NASA Astrophysics Data System (ADS)

    Wang, Yuhu; Ohwaki, Junichi

    1993-07-01

    Highly efficient infrared-to-visible upconversion has been observed in Er3+-doped BaCl2 phosphors. The composition optimized for maximum green emission was around 25ErCl3 (mol %), which contains 5-15 mol % more active Er3+ ions than those in the conventional Er3+-doped fluoride phosphors. Pumped by a 0.8 μm laser diode with a power density of ˜3 W/cm2, chloride (25ErCl3-75BaCl2) shows a very bright green emission with the intensity being two orders of magnitude larger than that of the commercially available IR sensor card on which an optimized fluoride phosphor Y0.8Er0.2F3 is pasted. A 0.97 μm laser diode excitation on the chloride yielded blue (0.49 μm), green (0.55 μm), and red (0.66 μm) fluorescences, visually exhibited as a bright greenish-white emission. The visible fluorescence excited by 0.8, 0.97, or 1.5 μm laser diodes shows quadratic or cubic dependencies on the excitation power over the entire power range for the chlorides but lower dependences for the fluoride. The differences in the upconversion characteristics between the chlorides and fluoride are discussed in terms of the rate equations and attributed principally to the different Er3+...Er3+ interionic energy transfer probability and the different multiphonon decay rate from the excited states of Er3+ in these matrices.

  2. Experimental demonstration of photon upconversion via cooperative energy pooling.

    PubMed

    Weingarten, Daniel H; LaCount, Michael D; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T; Shaheen, Sean E

    2017-03-15

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.

  3. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    PubMed

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  4. Low Power Upconversion Mixer for Medical Remote Sensing

    PubMed Central

    Lioe, De Xing; Shafie, Suhaidi; Tan, Gim Heng

    2014-01-01

    This work presents the design of a low power upconversion mixer adapted in medical remote sensing such as wireless endoscopy application. The proposed upconversion mixer operates in ISM band of 433 MHz. With the carrier power of −5 dBm, the proposed mixer has an output inferred 1 dB compression point of −0.5 dBm with a corresponding output third-order intercept point (OIP3) of 7.1 dBm. The design of the upconversion mixer is realized on CMOS 0.13 μm platform, with a current consumption of 594 μA at supply voltage headroom of 1.2 V. PMID:25133266

  5. Experimental demonstration of photon upconversion via cooperative energy pooling

    NASA Astrophysics Data System (ADS)

    Weingarten, Daniel H.; Lacount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.

    2017-03-01

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.

  6. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  7. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  8. Fabrication and evaluation of chitosan/NaYF4:Yb(3+)/Tm(3+) upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF4:Yb(3+)/Tm(3+) UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF4:Yb(3+)/Tm(3+) composite beads (CS/NaYF4:Yb(3+)/Tm(3+) CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF4:Yb(3+)/Tm(3+) UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF4:Yb(3+)/Tm(3+) UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF4:Yb(3+)/Tm(3+) CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance.

  9. Optical high temperature sensor based on enhanced green upconversion emissions in Er3+-Yb3+-Li+ codoped TiO2 powders.

    PubMed

    Cao, B S; He, Y Y; Sun, Y; Song, M; Dong, B

    2011-11-01

    The Er3+-Yb3+-Li+ codoped TiO2 powders have been prepared by sol-gel method. The strong enhancement of green and red upconversion emissions were obtained for Er3+-Yb3+ codoped TiO2 by additional Li+ codoping and investigated using 976 nm semiconductor laser diode excitation. The enhanced upconversion emissions by the addition of Li+ resulted from the formation of Li compound with lower crystal field symmetry. The fluorescence intensity ratio (FIR) of green upconversion emissions from the transitions of 2H(11/2) --> 4I(15/2) and 4S(3/2) --> 4I(15/2) of Er3+ in the Er3+-Yb3+-Li+ codoped TiO2 has been studied as a function of temperature in the range of 300-925 K, and the maximum sensitivity was determined to be 0.0025 K(-1). Er3+-Yb3+-Li+ codoped TiO2 material with the highest operating temperature up to 925 K, has higher temperature sensitivity and fluorescence efficiency being a promising candidate for applications in optical high temperature sensor.

  10. Filamentation assisted generation of tunable multicolored femtosecond sidebands based on cascaded four-wave mixing

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Liu, Jun; Li, Fangjia; Shen, Xiong; Li, Ruxin

    2015-05-01

    Tunable intense multicolored femtosecond sidebands are generated in a 0.1 mm-thick sapphire plate based on cascaded four-wave mixing (CFWM) by using a spectrally broadened pulse from filamentation in air and a 806 nm fundamental pulse from a Ti:sapphire laser amplifier. By using the filamentation to extend the spectrum of one incident pulse, the experimental setup is compact and inexpensive. Furthermore, the spectra of the sidebands can be conveniently tuned by varying the input power for the filamentation generation, and even the second-order frequency upconversion sideband can maintain its output power higher than 0.2 mW during the process of tuning. The generated sidebands are observed with a spectral range from 500 to 950 nm, and each spectrum has a full width half maximum (FWHM) bandwidth above 37 nm, which have potential applications in ultrafast spectroscopy and microscopy.

  11. Direct femtosecond laser waveguide writing inside zinc phosphate glass.

    PubMed

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Reis, Signo T; Brow, Richard K; Krol, Denise M

    2011-04-25

    We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscopy.

  12. An experimental design approach for hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microcrystal: UV emission optimization

    NASA Astrophysics Data System (ADS)

    Kaviani Darani, Masoume; Bastani, Saeed; Ghahari, Mehdi; Kardar, Pooneh

    2015-11-01

    Ultraviolet (UV) emissions of hydrothermally synthesized NaYF4: Yb3+, Tm3+ upconversion crystals were optimized using the response surface methodology experimental design. In these experimental designs, 9 runs, two factors namely (1) Tm3+ ion concentration, and (2) pH value were investigated using 3 different ligands. Introducing UV upconversion emissions as responses, their intensity were separately maximized. Analytical methods such as XRD, SEM, and FTIR could be used to study crystal structure, morphology, and fluorescent spectroscopy in order to obtain luminescence properties. From the photo-luminescence spectra, emissions centered at 347, 364, 452, 478, 648 and 803 nm were observed. Some results show that increasing each DOE factor up to an optimum value resulted in an increase in emission intensity, followed by reduction. To optimize UV emission, as a final result to the UV emission optimization, each design had a suggestion.

  13. Nanoparticle fluorescence based technology for biological applications.

    PubMed

    Chen, Wei

    2008-03-01

    Fluorescence is widely used in biological detection and imaging. The emerging luminescent nanoparticles or quantum dots provide a new type of biological agents that can improve these applications. The advantages of luminescent nanoparticles for biological applications include their high quantum yield, color availability, good photo-stability, large surface-to-volume ratio, surface functionality, and small size. In this review article, we first introduce quantum size confinement, photoluminescence and upconversion luminescence of nanoparticles, then describe the preparation and conjugation of water soluble nanoparticles and introduce the applications of luminescence nanoparticles for in vitro and in vivo imaging, fluorescence resonance energy based detection, and the applications of luminescence nanoparticles for photodynamic activation.

  14. Femtosecond photography lessons

    NASA Astrophysics Data System (ADS)

    Fanchenko, S. D.

    1999-06-01

    Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.

  15. Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation.

    PubMed

    Simpson, D A; Gibbs, W E; Collins, S F; Blanc, W; Dussardier, B; Monnom, G; Peterka, P; Baxter, G W

    2008-09-01

    The spectroscopic properties of Tm(3+)/Yb(3+) co-doped silica fibers under excitation at 980 nm are reported. Three distinct up-conversion fluorescence bands were observed in the visible to near infra-red regions. The blue and red fluorescence bands at 475 and 650 nm, respectively, were found to originate from the (1)G(4) level of Tm(3+). A three step up-conversion process was established as the populating mechanism for these fluorescence bands. The fluorescence band at 800 nm was found to originate from two possible transitions in Tm(3+); one being the transition from the (3)H(4) to (3)H(6) manifold which was found to dominate at low pump powers; the other being the transition from the (1)G(4) to (3)H(6) level which dominates at higher pump powers. The fluorescence lifetime of the (3)H(4) and (3)F(4) levels of Tm(3+) and (2)F(5/2) level of Yb(3+) were studied as a function of Yb(3+) concentration, with no significant energy back transfer from Tm(3+) to Yb(3+) observed.

  16. Investigation on up-conversion luminescence properties of novel transparent Ho3+-Tm3+-Yb3+ co-doped oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bo; Han, Wan-lei; Xu, Fang; Song, Ying-lin

    2011-06-01

    In the present letter, the transparent oxyfluoride glass ceramics containing Ho3+-Tm3+-Yb3+:NaYF4 were successfully prepared by melt-quenching at 1400°C and subsequent heating at 650-680°C for 1~2 hours . X-ray diffraction (XRD) with Cu Kα radiation (λ=0.154nm) investigation revealed that NaYF4 nano-crystals in the glass ceramics was fabricated. Their sizes were determined by Sherrer's equation. The emission spectra red green and blue up-conversion (UC) under 980nm laser diode (LD) pumping and absorption spectra were measured. Luminescence measurements confirmed the partition of RE ions in nano-crystals NaYF4. The blue red and green UC radiations correspond to the transitions 1G4-3H6, 1G4-3H4 of Tm3+, 5F4, 5S2-5I8, 5F5-5I8, of Ho3+ ions, respectively. This is similar to that in Tm3+-Yb3+ and/or Ho3+-Yb3+ co-doped glass ceramics. To obtain upconversion fluorescence mechanisms, upconversion fluorescence intensity versus LD pump power were analyzed in view of energy levels of rare earth. Up-conversion mechanisms were discussed and the ratio between red, green and blue UC emission bands was found to be varied as a function of temperature of heat treatment and pump power. This result could be mainly attributed to the cross-relaxation between Ho3+ ions. The excellent optical properties and its convenient, low-cost synthesis of the present glass ceramic imply that it is an excellent substitution material for the unobtainable bulk NaYF4 crystal and may have potentially applications in tunable visible laser or many other fields.

  17. Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells

    SciTech Connect

    Il'ina, I V; Ovchinnikov, A V; Chefonov, O V; Sitnikov, D S; Agranat, Mikhail B; Mikaelyan, A S

    2013-04-30

    IR femtosecond laser pulses were used for microsurgery of a cell membrane aimed at local and short-duration change in its permeability and injection of specified extracellular substances into the cells. The possibility of noncontact laser delivery of the propidium iodide fluorescent dye and the pEGFP plasmid, encoding the green fluorescent protein, into the cells with preservation of the cell viability was demonstrated. (extreme light fields and their applications)

  18. Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding

    PubMed Central

    Schafer, Dawn; Gibson, Emily A.; Salim, Evan A.; Palmer, Amy E.; Jimenez, Ralph; Squier, Jeff

    2011-01-01

    A simple fabrication technique to create all silicon/glass microfluidic devices is demonstrated using femtosecond laser ablation and anodic bonding. In a first application, we constructed a cell counting device based on small angle light scattering. The counter featured embedded optical fibers for multiangle excitation and detection of scattered light and/or fluorescence. The performance of the microfluidic cell counter was benchmarked against a commercial fluorescence-activated cell sorter. PMID:19365429

  19. Femtosecond optomagnetism in dielectric antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Rasing, Th

    2017-02-01

    Optical femtosecond manipulation of magnetic order is attractive for the development of new concepts for ultrafast magnetic recording. Theoretical and experimental investigations in this research area aim at establishing a physical understanding of magnetic media in light-induced non-equilibrium states. Such a quest requires one to adjust the theory of magnetism, since the thermodynamical concepts of elementary excitations and spin alignment determined by the exchange interaction are not applicable on the femtosecond time-scale after the photo-excitation. Here we report some key milestones concerning the femtosecond optical control of spins in dielectric antiferromagnets, whose spin dynamics is by nature faster than that of ferromagnets and can be triggered even without any laser heating. The recent progress of the opto-magnetic effect in the sub-wavelength regime makes this exciting research area even more promising, in terms of both fundamental breakthroughs and technological perspectives.

  20. Transition Metal-Involved Photon Upconversion.

    PubMed

    Ye, Shi; Song, En-Hai; Zhang, Qin-Yuan

    2016-12-01

    Upconversion (UC) luminescence of lanthanide ions (Ln(3+)) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln(3+), transition metal (TM) ions, e.g., Mn(2+), usually possess a single broadband emission due to its 3d(5) electronic configuration. Wavelength-tuneable single UC emission can be achieved in some TM ion-activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln(3+) can be modulated by TM ions (specifically d-block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln(3+) owing to the well-shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d(0) ion-containing hosts (d(0) normally viewed as charged anion groups, such as MoO6(6-) and TiO4(4-)) may also have a strong influence on the electric dipole transition of Ln(3+), resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide-ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln(3+) tuned by TM or d(0) ions, and the UC of d(0) ion-centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices.

  1. Transition Metal‐Involved Photon Upconversion

    PubMed Central

    Song, En‐Hai

    2016-01-01

    Upconversion (UC) luminescence of lanthanide ions (Ln3+) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln3+, transition metal (TM) ions, e.g., Mn2+, usually possess a single broadband emission due to its 3d 5 electronic configuration. Wavelength‐tuneable single UC emission can be achieved in some TM ion‐activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln3+ can be modulated by TM ions (specifically d‐block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln3+ owing to the well‐shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d 0 ion‐containing hosts (d 0 normally viewed as charged anion groups, such as MoO6 6‐ and TiO4 4‐) may also have a strong influence on the electric dipole transition of Ln3+, resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide‐ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln3+ tuned by TM or d 0 ions, and the UC of d 0 ion‐centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices. PMID:27981015

  2. Two-step photon up-conversion solar cells.

    PubMed

    Asahi, Shigeo; Teranishi, Haruyuki; Kusaki, Kazuki; Kaizu, Toshiyuki; Kita, Takashi

    2017-04-06

    Reducing the transmission loss for below-gap photons is a straightforward way to break the limit of the energy-conversion efficiency of solar cells (SCs). The up-conversion of below-gap photons is very promising for generating additional photocurrent. Here we propose a two-step photon up-conversion SC with a hetero-interface comprising different bandgaps of Al0.3Ga0.7As and GaAs. The below-gap photons for Al0.3Ga0.7As excite GaAs and generate electrons at the hetero-interface. The accumulated electrons at the hetero-interface are pumped upwards into the Al0.3Ga0.7As barrier by below-gap photons for GaAs. Efficient two-step photon up-conversion is achieved by introducing InAs quantum dots at the hetero-interface. We observe not only a dramatic increase in the additional photocurrent, which exceeds the reported values by approximately two orders of magnitude, but also an increase in the photovoltage. These results suggest that the two-step photon up-conversion SC has a high potential for implementation in the next-generation high-efficiency SCs.

  3. Ultrasensitive Detection of Prostate-Specific Antigen and Thrombin Based on Gold-Upconversion Nanoparticle Assembled Pyramids.

    PubMed

    Hao, Tiantian; Wu, Xiaoling; Xu, Liguang; Liu, Liqiang; Ma, Wei; Kuang, Hua; Xu, Chuanlai

    2017-03-29

    Self-assembled nanostructures have been used for the detection of numerous cancer biomarkers. In this study, a gold-upconversion-nanoparticle (Au-UCNP) pyramid based on aptamers is fabricated to simultaneously detect thrombin and prostate-specific antigen (PSA) using surface-enhanced Raman scattering (SERS) and fluorescence, respectively. The higher the concentration of thrombin, the lower the intensity of SERS. PSA connected with the PSA aptamer leads to an increase in fluorescence intensity. The limit of detection of thrombin and PSA reaches 57 × 10(-18) and 0.032 × 10(-18) m, respectively. In addition, the pyramid also exhibits great target specificity. The results of human serum target detection demonstrate that the Au-UCNP pyramid is an excellent choice for the quantitative determination of cancer biomarkers, and is feasible for the early diagnosis of cancer.

  4. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  5. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2014-02-01

    Mid-infrared microscopy and spectroscopy is interesting due to its medical, biological and chemical applications. Spectromicroscopy can be used for histopathology, sample analysis and diagnosis. The ability to do spectromicroscopy in the 2.5 to 4.5 μm wavelength range where many organic molecules have their fundamental vibrations, with the addition of sufficient spectroscopic resolution to resolve these bands, can e.g. potentially allow for diagnostics without the need for staining of the sample. On a longer timeframe, mid-IR spectromicroscopy has the potential for in-vivo diagnostics, combining morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion process. Multispectral images for a region of interest can be obtained by XY-scanning this region of interest within the field of view of the mid-IR upconversion system. Thus, the whole region of interest can be imaged with all available converter wavelengths, and the spectral representation becomes equal for all points in the image. In addition, the range of converted/imaged wavelengths can be tuned continuously by changing the temperature of the crystal, or discretely by using a different poling channel in the PPLN crystal.

  6. Blue Upconversion Luminescence in Tm3+/Yb3+ Codoped CaWO4 Polycrystals

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Ling; Wang, Yun-Long; Shi, Lian-Sheng; Tan, Xiang

    2013-08-01

    We investigate the upconversion emission of CaWO4:Tm3+/Yb3+ polycrystals prepared by the high-temperature solid-state method. The crystal structure of the polycrystals is characterized by means of x-ray diffraction. Under the excitation of a 980 nm continuous wave diode laser, the samples show intense blue upconversion emissions centered at 473 nm, corresponding to the 1G4→3H6 transition of Tm3+. The dependence of the upconversion emission intensity on the pump power of a laser diode is measured, and the results indicate that the two-photon and three-photon processes contribute simultaneously to the blue upconversion emissions. The possible multi-photon upconversion process and upconversion mechanisms are discussed.

  7. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.

  8. Ophthalmic applications of femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Kurtz, Ron M.; Spooner, Greg J. R.; Sletten, Karin R.; Yen, Kimberly G.; Sayegh, Samir I.; Loesel, Frieder H.; Horvath, Christopher; Liu, HsiaoHua; Elner, Victor; Cabrera, Delia; Muenier, Marie-Helene; Sacks, Zachary S.; Juhasz, Tibor; Miller, Doug L.; Williams, A. R.

    1999-06-01

    We investigated three potential femtosecond laser ophthalmic procedures: intrastromal refractive surgery, transcleral photodisruptive glaucoma surgery and photodisruptive ultrasonic lens surgery. A highly reliable, all-solid-state system was used to investigate tissue effects and demonstrate clinical practicality. Compared with longer duration pulses, femtosecond laser-tissue interactions are characterized by smaller and more deterministic photodisruptive energy thresholds, smaller shock wave and cavitation bubble sizes. Scanning a 5 (mu) spot below the target tissue surface produced contiguous tissue effects. Various scanning patterns were used to evaluate the efficacy, safety, and stability of three intrastromal refractive procedures in animal eyes: corneal flap cutting, keratomileusis, and intrastromal vision correction (IVC). Superior dissection and surface quality results were obtained for the lamellar procedures. IVC in rabbits revealed consistent, stable pachymetric changes, without significant inflammation or corneal transparency degradation. Transcleral photodisruption was evaluated as a noninvasive method for creating partial thickness scleral channels to reduce elevated intraocular pressure associated with glaucoma. Photodisruption at the internal scleral surface was demonstrated by focusing through tissue in vitro without collateral damage. Femtosecond photodisruptions nucleated ultrasonically driven cavitation to demonstrate non-invasive destruction of in vitro lens tissue. We conclude that femtosecond lasers may enable practical novel ophthalmic procedures, offering advantages over current techniques.

  9. Plastic optofluidic chip fabricated by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Martínez Vázquez, R.; Eaton, S. M.; Cerullo, G.; Ramponi, R.; Osellame, R.

    2012-03-01

    We have fabricated entirely by femtosecond micromachining a plastic optofluidic chip with integrated microfluidics and optical excitation/detection. First a microfluidic channel and two fiber grooves were ablated on one surface of the PMMA substrate. In order to collect and focus the fluorescence signal onto a detector, two binary Fresnel lenses were micromachined on the back surface of the substrate. The operatio of the integrated optofluidic chip was demonstrated by filling the channel with different Rhodamine 6G solution, and a limit of detection of 50 nM was achieved.

  10. Observation of bistable upconversion emission in Tm,Yb codoped yttria nanocrystal

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Zhang, X. L.; Peng, Y. F.; Nie, M.; Jiang, B.; Zhang, X. W.; Li, R. M.

    2010-11-01

    Nonlinear upconversion emission properties in Tm and Yb codoped yttria nanocrystal have been studied under 973 nm laser excitation. Intrinsic bistability and hysteresis have been observed for the bright blue upconversion luminescence of Tm3+ ions at room temperature. The mechanism of the Tm3+ bistable emission is mainly related to laser-induced local thermal effects which cause the enhancement of sequential multi-photon energy transfer upconversion of Yb3+-Tm3+ pairs.

  11. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  12. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore.

    PubMed

    Hsieh, Cheng-Chih; Chou, Pi-Tai; Shih, Chun-Wei; Chuang, Wei-Ti; Chung, Min-Wen; Lee, Junghwa; Joo, Taiha

    2011-03-09

    Initiated by excited-state intramolecular proton transfer (ESIPT) reaction, an overall reaction cycle of 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI), an analogue of the core chromophore of the green fluorescent protein (GFP), has been investigated. In contrast to the native GFP core, 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (p-HBDI), which requires hydrogen-bonding relay to accomplish proton transfer in vivo, o-HBDI possesses a seven-membered-ring intramolecular hydrogen bond and thus provides an ideal system for mimicking an intrinsic proton-transfer reaction. Upon excitation, ESIPT takes place in o-HBDI, resulting in a ∼600 nm proton-transfer tautomer emission. The o-HBDI tautomer emission, resolved by fluorescence upconversion, is comprised of an instantaneous rise to a few hundred femtosecond oscillation in the early relaxation stage. Frequency analysis derived from ultrashort pulse gives two low-frequency vibrations at 115 and 236 cm(-1), corresponding to skeletal deformation motions associated with the hydrogen bond. The results further conclude that ESIPT in o-HBDI is essentially triggered by low-frequency motions and may be barrierless along the reaction coordinate. Femtosecond UV/vis transient absorption spectra also provide supplementary evidence for the structural evolution during the reaction. In CH(3)CN, an instant rise of a 530 nm transient is resolved, which then undergoes 7.8 ps decay, accompanied by the growth of a rather long-lived 580 nm transient species. It is thus concluded that following ESIPT the cis-proton transfer isomer undergoes cis-trans-isomerization. The results of viscosity-dependent dynamics are in favor of the one-bond-flip mechanism, which is in contrast to the volume-conserving isomerization behavior for cis-stilbene and p-HBDI. Further confirmation is given by the picosecond-femtosecond transient IR absorption spectra, where several new and long-lived IR bands in the range of 1400

  13. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles.

    PubMed

    Zhao, Yafei; Wei, Ruoyan; Feng, Xin; Sun, Lining; Liu, Panpan; Su, Yongxiang; Shi, Liyi

    2016-08-24

    Ultrathin graphite-like carbon nitride (g-C3N4) nanosheets have attracted considerable attention due to the enhanced intrinsic photoabsorption and photoresponse with respect to bulk g-C3N4. For the first time, a dual-mode of down- and upconversion luminescent g-C3N4 nanopaper with high optical transparency and mechanical robustness was successfully fabricated through a simple thermal evaporation process using chitosan as a green cross-linking agent. The dual-mode of down- and upconversion fluorescence emission originated from the amino terminated ultrathin g-C3N4 nanosheets functionalized with carboxylic acid modified multicolored rare-earth upconversion nanoparticles (cit-UCNPs) via EDC/NHS coupling chemistry. The homogeneously distributed cit-UCNPs@g-C3N4 nanoconjugates with excellent hydrophilicity displayed good film-forming ability and structural integrity; thus, the photoluminescence of each ingredient was substantially maintained. Results indicated that the freestanding chitosan cross-linked cit-UCNPs@g-C3N4 luminescent nanopaper possessed high transmittance, excellent mechanical properties, and remarkable dual-mode emission. The smart design of high performance luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with multicolored UCNPs offers a potential strategy to immobilize other multifunctional luminescent materials for easily recognizable and hardly replicable anticounterfeiting fields.

  14. Different dynamics of ultraviolet upconversion in Tm3+:ZBLAN glass under blue laser excitation

    NASA Astrophysics Data System (ADS)

    Yang, Haigui; Gao, Jinsong

    2013-10-01

    Ultraviolet upconversion luminescence around 292 nm, 350 nm and 363 nm in Tm3+:ZBLAN glass was observed clearly by pulsed excitation at 464 nm. Upconversion dynamics was discussed in detail by an analysis of the measured intensity dependence, decay curves and excitation spectra of upconversion luminescence, from which it was clarified that upconversion luminescence around 292 nm and 350 nm from 1I6 level was attributed to excited state absorption, while that around 363 nm from 1D2 level was attributed to energy transfer process.

  15. Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser

    SciTech Connect

    Meshalkin, Yu P; Myachin, A Yu; Bakhareva, S S; Svetlichnyi, Valerii A; Kopylova, T N; Reznichenko, A V; Dolotov, S M; Ponomarenko, E P

    2003-09-30

    Two-photon fluorescence was observed for 18 organic dyes in a polymethyl methacrylate (PMMA) matrix excited by a femtosecond Ti:sapphire laser. The product of the cross section for two-photon absorption by the quantum yield of fluorescence (two-photon fluorescence cross section) is estimated by comparing it with fluorescence of Rhodamine 6G in ethanol. Using this parameter, dyes are selected that exhibit the most intense fluorescence in PMMA and their concentrations in PMMA are optimised. Coumarin and rhodamine dyes in polymer matrices are proposed for using as visualisers of femtosecond radiation of a Ti:sapphire laser and as detectors in self-triggering systems. (active media. lasers)

  16. A femtosecond stimulated Raman loss (fSRL) microscope for highly sensitive bond-selective imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Delong; Slipchenko, Mikhail N.; Yue, Shuhua; Li, Junjie; Cheng, Ji-Xin

    2011-03-01

    We demonstrate nonlinear vibrational imaging of isolated Raman bands by detecting femtosecond pulse stimulated Raman loss. Femtosecond pulse excitation produces a stimulated Raman loss signal that is 12 times larger than what picosecond pulse excitation produces. The strong signal allowed real-time, bond-selective imaging of deuterated palmitic acid-d31 inside live cells, and 3D sectioning of fat storage in live C. elegans. With the high peak power provided by femtosecond pulses, this system is highly compatible with other nonlinear optical modalities such as two-photon excited fluorescence. With most of the excitation power contributed by the Stokes beam in the 1.0 - 1.2 μm wavelength range, photodamage of biological samples was not observed.

  17. Synthesis of Gd2O3:Ho3+/Yb3+ upconversion nanoparticles for latent fingermark detection on difficult surfaces

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tiwari, S. P.; Singh, A. K.; Kumar, K.

    2016-07-01

    Infrared to visible upconversion fluorescent nanoparticles of Gd2O3 codoped with Ho3+/Yb3+ ions are synthesized via thermal decomposition process. The X-ray diffraction analysis of as-synthesized nanoparticles and annealed sample at 1000 °C has shown body-centered cubic phase of Gd2O3. The synthesized phosphor has shown intense green emission upon 980-nm excitation. High-contrast latent fingermarks on some difficult semi-porous and non-porous surfaces under 980-nm diode laser excitation were developed through powder dusting and colloidal solution spraying techniques and the results are compared with the commercial green luminescent fingermark powder. The latent fingermarks were developed on transparent (biological glass slides), single-color (aluminum foil) and multicolor (plywood, plastic bottle and book cover page) background surfaces. The present study depicts that the upconversion-based latent fingermarks detection using Gd2O3:Ho3+/Yb3+ phosphor material is suitable over the other conventional powders and has potential for practical applications in forensic science.

  18. NIR to NIR upconversion in KYb2F7: RE3+ (RE = Tm, Er) nanoparticles for biological imaging

    NASA Astrophysics Data System (ADS)

    Pedraza, F.; Yust, B.; Tsin, A.; Sardar, D.

    2014-03-01

    Until recently, many contrast agents widely used in biological imaging have absorbed and emitted in the visible region, limiting their usefulness for deeper tissue imaging. In order to push the boundaries of deep tissue imaging with non-ionizing radiation, contrast agents in the near infrared (NIR) regime, which is not strongly absorbed or scattered by most tissues, are being sought after. Upconverting nanoparticles (UCNPs) are attractive candidates since their upconversion emission is tunable with a very narrow bandwidth and they do not photobleach or blink. The upconversion produced by the nanoparticles can be tailored for NIR to NIR by carefully choosing the lanthanide dopants and dopant ratios such as KYb2F7: RE3+ (RE = Tm, Er). Spectroscopic characterization was done by analyzing absorption, fluorescence, and quantum yield data. In order to study the toxicity of the nanoparticles Monkey Retinal Endothelial Cells (MREC) were cultivated in 24 well plates and then treated with nanoparticles at different concentrations in triplicate to obtain the optimal concentration for in vivo experiments. It will be shown that these UCNPs do not elicit a strong toxic response such as quantum dots and some noble metal nanoparticles. 3-D optical slices of nanoparticle treated fibroblast cells were imaged using a confocal microscope where the nucleus and cytoplasm were stained with DAPI and Alexa Fluor respectively. These results presented support the initial assumption, which suggests that KYb2F7: RE3+ would be excellent candidates for NIR contrast agents.

  19. Intense ultraviolet and blue upconversion emissions in Yb 3+-Tm 3+ codoped stoichiometric Y 7O 6F 9 powder

    NASA Astrophysics Data System (ADS)

    Ma, Mo; Xu, Changfu; Yang, Liwen; Ren, Guozhong; Lin, Jianguo; Yang, Qibin

    2011-09-01

    Stoichiometric Y 7O 6F 9 powder codoped with Yb 3+-Tm 3+ was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF 3 nanoparticles can be completely oxidized into orthorhombic Y 7O 6F 9 powder. Under the excitation of a 980 nm laser, Y 7O 6F 9 powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF 3, Y 7O 6F 9 and Y 2O 3 powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y 7O 6F 9 and the main phonon vibration of Y 7O 6F 9 lies at 472 cm -1, which is far lower that of Y 2O 3 (at 708 cm -1). Our results indicate that orthorhombic rare earth ions doped Y 7O 6F 9 is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.

  20. Oxyfluoroborate host glass for upconversion application: phonon energy calculation

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2016-04-01

    Reducing the glass phonon energy is an essential procedure to achieve high efficient radiative upconversion process. The degree of covalence of chemical bonds is responsible for the high oscillator strength of intracenter transitions in rare-earth ions. So, conversion covalent to ionic glass character is proposed as a structure-sensitive criterion that controls the phonon energy of the glasses. A series of oxyfluoro aluminum-borate host glasses used for upconversion application is prepared by the conventional melt-quenching technique. Through lithium oxide substitution by lithium fluoride, the ionic-covalent property of Li+ ion successes to regulate the band gap energies of the studied glasses. Furthermore, a new method to determine the glass phonon energy is offered.

  1. Functionalized Upconversion Nanoparticles: Versatile Nanoplatforms for Translational Research

    PubMed Central

    Chen, Feng; Bu, Wenbo; Cai, Weibo; Shi, Jianlin

    2013-01-01

    The design, application, and translation of targeted multimodality molecular imaging probes based on nanotechnology has attracted increasing attentions during the last decade and will continue to play vital roles in cancer diagnosis and personalized medicine. With the growing awareness of drawbacks of traditional organic dyes and quantum dots, biocompatible lanthanide ion doped upconversion nanoparticles have emerged as promising candidates for clinically translatable imaging probes, owing to their unique features that are suitable for future targeted multimodal imaging in living subjects. In this review, we summarized the recent advances in the field of functionalized upconversion nanoparticles (f-UCNP) for biological imaging and therapy in vivo, and discussed the future research directions, obstacles ahead, and the potential use of f-UCNP in translational research. PMID:24206131

  2. Upconversion imaging using an all-fiber supercontinuum source.

    PubMed

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter; Leick, Lasse; Pedersen, Christian

    2016-06-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 μm with upconversion detection. The infrared signal is used to probe a sample and mixed with a synchronized 1550 nm laser pulse inside a lithium niobate (LiNbO3) crystal. The signal is thus upconverted to the 860-970 nm range and acquired on a standard silicon CCD array at a rate of 22 frames per second. In our implementation, spatial features in the sample plane as small as 55 μm could be resolved.

  3. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  4. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  5. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  6. Femtosecond photon-counting receiver

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-05-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulsewidth measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  7. Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor.

    PubMed

    Yadav, R S; Verma, R K; Bahadur, A; Rai, S B

    2015-02-25

    We report the structural and optical properties of Yb(3+), Pr(3+) co-doped Y2O3 nano-phosphor synthesized through solution combustion method. The structural studies reveal the nano-crystalline structure of the sample. The energy dispersive spectroscopy (EDS) measurements confirm the presence of Y, O, Pr and Yb elements in the sample. Fourier transform infrared studies show the vibrational features of the samples. The fluorescence spectra of the samples have been monitored on excitation with 976 nm and the intense green upconversion emission observed at 552 nm is due to (3)P0→(3)H5 electronic transition. The concentration of Pr(3+) ion in the sample is optimized and the fluorescence intensity is maximum at 0.08 mol% of Pr(3+). The power dependence studies reveal the involvement of two photons in the emission process. The possible mechanism of upconversion has been discussed on the basis of schematic energy level diagram. The sample annealed at higher temperature enhances the fluorescence intensity up to 8 times and this enhancement is discussed in terms of the removal of optical quenching centers. The nano-phosphor can be applicable in the field of display devices and green laser.

  8. Excitonic luminescence upconversion in a two-dimensional semiconductor

    DOE PAGES

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; ...

    2015-12-21

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closelymore » matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.« less

  9. Excitonic luminescence upconversion in a two-dimensional semiconductor

    SciTech Connect

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Dery, Hanan; Yao, Wang; Xu, Xiaodong

    2015-12-21

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closely matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.

  10. Upconversion imaging using short-wave infrared picosecond pulses.

    PubMed

    Mathez, Morgan; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm-both with a pulse width of 1 ps and a pulse repetition rate of 21.7 MHz. Due to synchronization of high peak-power pulses, efficient upconversion is achieved in a single-pass setup that employs a bulk lithium niobate crystal. Optimizing the temporal overlap of the pulses for high upconversion efficiency enables us to exploit a relatively large pump beam diameter to upconvert a wider range of signal spatial frequencies in the crystal. The 1877 nm signal is converted into 849 nm-enabling an image to be acquired by a silicon CCD camera. The measured size of the smallest resolvable element of this imaging system is consistent with the value predicted by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination.

  11. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect

    Not Available

    2011-06-22

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  12. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  13. Energy up-conversion and trapping: Dynamics of 5f states of Bk sup 4+ in CeF sub 4

    SciTech Connect

    Liu, G.K.; Beitz, J.V.

    1991-01-01

    Energy transfer mechanisms of excited 5f states of Bk{sup 4+} (0.05 atom %) in CeF{sub 4} containing circa 0.95 atom % Cf{sup 4+} have been investigated at 4 K. The observed anti-Stokes fluorescence arises from both up-conversion and two-photon excitation. Nonexponential decays of Stokes fluorescence are ascribed to both excitation-excitation annihilation and site-dependent trapping processes and, therefore, are not describable by the Inokuti-Hirayama or exciton annihilation models. Based on the Forster-Dexter energy transfer theory, a new model is developed to fit the observed fluorescence decay data. 16 refs., 3 figs.

  14. Photodegradation and photocuring in the operation of a blue upconversion fiber laser

    SciTech Connect

    Qin Guanshi; Huang Shenghong; Feng Yan; Shirakawa, A.; Musha, M.; Ueda, Ken-ichi

    2005-06-15

    Photodegradation and photocuring effects were investigated in the operation of a Tm{sup 3+}-doped blue upconversion fiber laser. Our experimental results indicate that a competition between photodegradation and photocuring greatly affects the maximum output power of a blue upconversion fiber laser.

  15. Laser diode pumped 106 mW blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Sanders, S.; Waarts, R. G.; Mehuys, D. G.; Welch, D. F.

    1995-09-01

    A laser diode pumped Tm3+-doped ZBLAN fiber upconversion laser is demonstrated with blue output power levels up to 106 mW. Differential optical-to-optical conversion efficiencies up to 30% are measured with respect to pump power coupled into the upconversion fiber. A single spatial mode blue output beam is demonstrated, with an M2 value of 1.4.

  16. IR-stimulated visible fluorescence in pink and brown diamond.

    PubMed

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.

  17. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells.

    PubMed

    Ma, Lina; Liu, Fuyao; Lei, Zhen; Wang, Zhenxin

    2017-01-15

    Herein, a novel upconversion@polydopamine core@shell nanoparticle (termed as UCNP@PDA NP) -based aptameric biosensor has been fabricated for the quantitative analysis of cytochrome c (Cyt c) inside living cells, which comprises an UCNP@PDA NP, acting as an internal reference and fluorescence quenching agent, and Cy3 modified aptamer enabling ratiometric quantitative Cyt c measurement. After the hybridization of Cy3 labeled aptamer with amino-terminated single DNA on the UCNP@PDA NP surface (termed as UCNP@PDA@AP), the fluorescence of Cy3 can be efficiently quenched by the PDA shell. With the spontaneous cellular uptake of UCNP@PDA@AP, the Cyt c aptamer dissociates from UCNP@PDA NP surface through formation of aptamer-Cyt c complex, resulting in concomitant activation of the Cy3 fluorescence. High amount of Cyt c leads to high fluorescence emission, enabling direct visualization/measurement of the Cyt c by fluorescence microscopy/spectroscopy. The steady upconversion luminescent (UCL) signals can be employed not only for intracellular imaging, but also as an internal reference for evaluating intracellular Cyt c amount using the ratio of fluorescence intensity of Cy3 with the UCL intensity of UCNP. The UCNP@PDA@AP shows a reasonable detection limit (20nM) and large dynamic range (50nM to 10μM, which covers the literature reported values (1-10μM) for cytosolic Cyt c in apoptotic cells) for detecting Cyt c in buffer with excellent selectivity. In addition, the UCNP@PDA@AP has been successfully used to monitor etoposide induced intracellular releasing of Cyt c, providing the possibility for cell-based screening of apoptosis-inducing drugs.

  18. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis.

    PubMed

    Yang, Weifeng; Li, Xiyan; Chi, Dongzhi; Zhang, Hongjie; Liu, Xiaogang

    2014-12-05

    Photovoltaics and photocatalysis are two significant applications of clean and sustainable solar energy, albeit constrained by their inability to harvest the infrared spectrum of solar radiation. Lanthanide-doped materials are particularly promising in this regard, with tunable absorption in the infrared region and the ability to convert the long-wavelength excitation into shorter-wavelength light output through an upconversion process. In this review, we highlight the emerging applications of lanthanide-doped upconversion materials in the areas of photovoltaics and photocatalysis. We attempt to elucidate the fundamental physical principles that govern the energy conversion by the upconversion materials. In addition, we intend to draw attention to recent technologies in upconversion nanomaterials integrated with photovoltaic and photocatalytic devices. This review also provides a useful guide to materials synthesis and optoelectronic device fabrication based on lanthanide-doped upconversion materials.

  19. Characterization of conjugates of NaYF4:Yb,Er,Gd upconversion nanoparticle with aluminium phthalocyanines

    NASA Astrophysics Data System (ADS)

    Watkins, Zane; Uddin, Imran; Britton, Jonathan; Nyokong, Tebello

    2017-02-01

    NaYF4:Er/Yb/Gd upconversion nanoparticles (UCNP) capped with amino groups were covalently attached to chloro aluminium tetrasulphonated phthalocyanine (ClAlTSPc) and chloro aluminium tetracarboxy phthalocyanine (ClAlTCPc). The conjugates were characterized using different techniques such as infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). There was a decrease in the intensity of fluorescence emission spectra of the UCNPs at 658 nm in the presence of the phthalocyanines. This decrease indicates an energy transfer between the donor UCNP and conjugated accepting phthalocyanine (Pc), due to Förster resonance energy transfer (FRET). FRET efficiencies of 18% and 21% for ClAlTSPc and ClAlTCPc, respectively, were obtained. Oxygen generation by ClAlTSPc following FRET was proved.

  20. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Cao, Wenbin; Li, Shunbo; Wen, Weijia

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF4:Yb3+, Er3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  1. Micromachining of Silicon Carbide using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Farsari, M.; Filippidis, G.; Zoppel, S.; Reider, G. A.; Fotakis, C.

    2007-04-01

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude.

  2. Time-Resolved Down-Conversion of 2-Aminopurine in a DNA Hairpin: Fluorescence Anisotropy and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Tourón Touceda, Patricia; Gelot, Thomas; Crégut, Olivier; Léonard, Jérémie; Haacke, Stefan

    2013-03-01

    Femtosecond fluorescence anisotropy decay measured by type II difference frequency generation provides new insight into the local structural dynamics of ΔP(-)PBS fragments of the HIV- 1 DNA primary binding sequence, labeled with 2-aminopurine.

  3. Upconversion Nanoparticles for Security Printing and CdSe QDs for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Baride, Aravind

    Upconversion is an anti-Stokes luminescence process, in which NIR excitation results in visible emission. Lanthanide ions, such as Yb3+ , Er3+ and Tm3+ ions, doped in beta-NaYF 4 crystals exhibit upconversion. Doped NaYF4 nanocrystals retain the bulk-like upconversion property in colloidal dispersions. The doping composition influences both the spectral output and efficiency of the upconversion emission. Red, green and blue primary color upconversion ink formulations were prepared using upconversion nanoparticles. We optimized the Er/Tm doping composition to produce spectrally pure red emitting nanoparticles. RGB upconversion inks were printed on various substrates and chromaticity of the printed features was investigated. Upconversion inks printed on substrates are not visible to the naked eye under ambient conditions, but the printed features appear upon 980 nm excitation. The upconversion inks, because of covertness, have numerous security printing and anti-counterfeiting applications. Colors produced by combinations of primary colors involving blue are excitation power density dependent. We evaluated the relation between the print density, excitation power density and chromaticity of the prints. In addition to NIR-to-visible inks, we also developed NIR-to-NIR inks for security printing systems. Spectrally pure NIR-to-NIR (980nm-to-800nm) emission was achieved by optimization of Yb/Tm doping composition. We demonstrated excitation and capture of NIR-to-NIR images from upconversion prints coated with NIR transparent materials. The upconversion inks described so far were prepared in non-polar ink bases. We also prepared upconversion inks in polar solvent bases. As synthesized nanoparticles are capped with oleic acid ligands. Polar solvent dispersibility of the nanoparticles was achieved by post-synthetic ligand exchange techniques. Polar-solvent-based upconversion inks were printed with a piezo inkjet and a thermal inkjet printer. In a second project, we

  4. Upconversion effective enhancement by producing various coordination surroundings of rare-Earth ions.

    PubMed

    Huang, Qingming; Yu, Han; Ma, En; Zhang, Xinqi; Cao, Wenbing; Yang, Chengang; Yu, Jianchang

    2015-03-16

    In this manuscript, we present a simple route to enhance upconversion (UC) emission by producing two different coordination sites of trivalent cations in a matrix material and adjusting crystal field asymmetry by Hf(4+) co-doping. A cubic phase, Y3.2Al0.32Yb0.4Er0.08F12, with these structural characteristics was synthesized successfully by introducing a small ion (Al(3+)) into YF3. X-ray diffraction (XRD), nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), X-ray spectroscopy (XPS), and fluorescence spectrophotometry (FS) were employed for its crystalline structure and luminescent property analysis. As a result, the coordination environments of the rare-earth ions were varied more obviously than a hexagonal NaYF4 matrix with the same Hf(4+) co-doping concentration, with vertical comparison, UC luminescent intensities of cubic Y3.2Al0.32Yb0.4Er0.08F12 were largely enhanced (∼32-80 times greater than that of different band emissions), while the maximum enhancement of hexagonal NaYF4 was by a factor of ∼12. According to our experimental results, the mechanism has been demonstrated involving the crystalline structure, crystal field asymmetry, luminescence lifetime, hypersensitive transition, and so on. The study may be helpful for the design and fabrication of high-performance UC materials.

  5. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles.

    PubMed

    Rao, Lang; He, Zhaobo; Meng, Qian-Fang; Zhou, Ziyao; Bu, Lin-Lin; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2017-02-01

    Upconversion nanoparticles (UCNPs), with fascinating optical and chemical features, are a promising new generation of fluorescent probes. Although UCNPs have been widely used in diagnosis and therapy, there is an unmet need for a simple and effective surface engineering method that can produce cancer-targeting UCNPs. Here, we show that by coating particles with macrophage membranes, it becomes possible to utilize the adhesion between macrophages and cancer cells for effective cancer targeting. Natural macrophage membranes along with their associated membrane proteins were reconstructed into vesicles and then coated onto synthetic UCNPs. The resulting macrophage membrane-camouflaged particles (MM-UCNPs) exhibited effective cancer targeting capability inherited from the source cells and were further used for enhanced in vivo cancer imaging. Finally, the blood biochemistry, hematology testing and histology analysis results suggested a good in vivo biocompatibility of MM-UCNPs. The combination of synthetic nanoparticles with biomimetic cell membranes embodies a novel design strategy toward developing biocompatible nanoprobes for potential clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 521-530, 2017.

  6. Upconversion Nanoparticle-Based Förster Resonance Energy Transfer for Detecting DNA Methylation

    PubMed Central

    Kim, Seockjune; Hwang, Sang-Hyun; Im, Su-Gyeong; Lee, Min-Ki; Lee, Chang-Hun; Son, Sang Jun; Oh, Heung-Bum

    2016-01-01

    Aberrant methylation of a crucial CpG island is the main mechanism for the inactivation of CDKN2A in the early stages of carcinogenesis. Therefore, the detection of DNA methylation with high sensitivity and specificity is important, and various detection methods have been developed. Recently, upconversion nanoparticles (UCNPs) have been found to display a high signal-to-noise ratio and no photobleaching, making them useful for diagnostic applications. In this pilot study, we applied UCNPs to the detection of CDKN2A methylation and evaluated the feasibility of this system for use in molecular diagnostics. DNA PCR was performed using biotinylated primers, and the PCR amplicon was then intercalated with SYTOX Orange dye, followed by incubation with streptavidin-conjugated UCNPs. Fluorescence detection of the Förster resonance energy transfer (FRET) of the UCNPs (MS-UC-FRET) was then performed, and the results were compared to those from real-time PCR (RQ-PCR) and pyrosequencing. Detection by MS-UC-FRET was more sensitive than that by either RQ-PCR or pyrosequencing. Our results confirmed the success of our MS-UC-FRET system for detecting DNA methylation and demonstrated the potential application of this system in molecular diagnostics. PMID:27517925

  7. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Jiang, Danyu; Yang, Wei; Wang, Dandan; Zheng, Huiping; Du, Yuansheng; Li, Xi; Li, Qiang

    2017-02-01

    Ag2S quantum dots (QDs) coated with thioglycolic acid (Ag2S QDs-TGA) have been synthesized in an organic solvent via a stepwise addition of reagents. When excited by a 980 nm laser, the near-infrared-emitting colloidal Ag2S QDs-TGA exhibit upconversion luminescence (UCL). The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces. Hence, upon dilution of the solution, the PL intensity initially increased before subsequently decreasing, accompanied by a blue shift in the PL spectra. The PL phenomena can be attributed to the increase in the amount of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET) and re-emission of the surface energy level. The relations between the emission intensity of Ag2S QDs-TGA and the excitation power are investigated, and the results confirm that the UCL in Ag2S QDs-TGA can be ascribed to a two-photon-assisted absorption process via a real energy state.

  8. Energy transfer and upconversion of Sm3+ ions in YAlO3

    NASA Astrophysics Data System (ADS)

    Malinowski, M.; Kaczkan, M.; Turczyński, S.

    2017-01-01

    Sm3+ doped YAlO3 (YAP) single crystals were prepared by the micro-pulling down method. Emission spectra as well as luminescence decay curves for these crystals were recorded at temperatures ranging from 10 K to 300 K. Based on the low temperature spectra the energies of the Stark levels for several multiplets were determined. The fluorescence decay curves have been measured as a function of concentration and temperature and are found to exhibit single exponential nature at lowest concentration of 0.1 at.% but are strongly non-exponential at concentrations above 1 at.%. This concentration quenching of the Sm3+ ion emission was ascribed to resonant cross-relaxation. The non-exponential decay rates were successfully fitted to Inokuti-Hirayama model for s = 6 indicating that the nature of the energy transfer process among the Sm3+ ions is of electric dipole-dipole type. Cross-relaxation rates were experimentally determined as a function of activator concentration and used to evaluate and to model the decays. The critical distances and energy transfer microparameter for the transfer processes were given. After pulsed 925-975 nm infra-red excitation upconverted yellow-orange emission has been generated at room temperature in Sm3+:YAP crystals. Dynamics of the involved excited states have been analyzed and the responsible upconversion mechanism was proposed to be energy transfer.

  9. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2016-03-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  10. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

    PubMed Central

    Chen, Cailing

    2016-01-01

    Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794

  11. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  12. Towards sub-femtosecond emission

    NASA Astrophysics Data System (ADS)

    Bach, Roger; Hansen, Peter; Batelaan, Herman; Hilbert, Shawn

    2010-03-01

    To manipulate femtosecond pulses of electrons new electron optical elements are needed. For example, if a source has a lower limit in the duration of the electron pulses that it generates, then aan electron optical element that can reduce the pulse duration could be useful. An example of this is the proposed ``temporal lens '' [1]. To detect the short electron pulses one also needs new elements. Attempts to use the ponderomotive interaction between the electron pulse and a second laser pulse will be presented [2]. Alternatively, we have started to explore a plasmonics structure provided by the Capasso group to make a fast electron switch. This has the potential to be useful both for switching, shaping and detecting the electron pulse. Finally, the experimental parameters and detection ideas for quantum degeneracy will be discussed. [1] S. Hilbert, B. Barwick, K. Uiterwaal, H. Batelaan, A. Zewail, ``Temporal lenses for attosecond and femtosecond electron pulses'', Proceedings of the National Academy of Sciences, p. 10558, vol. 106, (2009). [2] L. Kreminskaya, C. Corder, V. Engquist, O. Golovin, P. Hansen, H. Batelaan, A. I. Khizhnyak, G. A. Swartzlander, Jr., ``Laser Beam Shaping: Donut Mode Formation by Interference.'' Laser Beam Shaping X (Proceedings Volume) Proceedings of SPIE Volume: 7430.

  13. Study of upconversion in PCFs with high erbium concentration

    NASA Astrophysics Data System (ADS)

    Berdejo, Víctor; Vallés, Juan A.; Rebolledo, Miguel Á.; Diez, Antonio; Martin, Juan C.; Sanchez-Martin, José A.; Álvarez, José M.; Andrés, Miguel V.

    2011-09-01

    We report on a comparison of characterization techniques for high concentration erbium-doped photonic crystal fibres (PCFs). A highly erbium-doped-silica PCF was fabricated and an amplifier based on the PCF was built. Then, measurements on the amplifier output optical powers were carried out. To model the amplifier, three different formalisms were assumed for the Er3+-ion upconversion mechanism and the numerical results were fitted to the experimental ones. The sets of best-fit parameters are compared and the use of these techniques for active PCF characterisation is discussed.

  14. Z-scan Measurement of Upconversion in Er:YAG

    DTIC Science & Technology

    2010-12-01

    of each manifold, e.g.   22414313212121 NCWNWNWNNfNfh I td Nd upae    . (1) Here, N1 (N2) is the population of the 4I15/2 (4I13/2...manifold, I is the laser intensity,  is the absolute cross section, fa ( fe ) is the probability that an ion in the 4I15/2 (4I13/2) manifold is in a...sublevel that can absorb (emit) a laser photon, Wij is the relaxation rate from level i to level j, and Cup is the upconversion coefficient. Also

  15. Dual channel fluorescence engineering on the nano-patterened metamaterial (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Tseng, Ming Lun; Tsai, Wei Yi; Chen, Ting-Yu; Chien, Yihsin; Chang, Yun-Chorng; Tsai, Din Ping

    2016-09-01

    Upconversion fluorescence from Lanthanide-doped nanocrystals has attracted widespread interests because of its greatly potential applications in various fields, such as photonic crystal lasers, material science, biological therapy, and so on. However, the relatively low quantum yield (typically < 5%) is the major limitation for upconversion nanocrystals. Meanwhile, in addition to the chemical methods, plasmonic structures have been adopted as another strategy to improve the radiation efficiency and control the relaxation process of the upcovnersion nanocrystals. We designed the anti-symmetric split ring resonators with various periods and the fishnet structures. The surface plasmon resonance peaks of the structure shift as the periods varies. For example, in a multi-layered plamsonic metasurface with the period of 250nm, both the electric and magnetic modes could be generated simultaneously when excited by the incident light with proper polarization. This plasmonic structure provides two different channels for the enhancement of upconversion fluorescence. The resonance peak of 650nm is magnetic resonance mode, while the peak of 980nm is electric resonance mode. The resonance peak of 980nm coincides with the absorption band of the Lanthanide-dopoed nanocrystal, and the peak of 650nm matches with its emission band. We found that the upconversion fluorescence intensity could be enhanced more than 10 times when the electric resonance frequency of the metasurface matches with the absorption band of the upconversion nanocrystals, while the magnetic mode overlaps with its emission band. This is due to the local density of optical states was significantly enhanced by the plasmonic metasurface. The detailed results and mechanism will be discussed.

  16. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti{sup 3+}:Sapphire

    SciTech Connect

    Apostolopoulos, V.; Laversenne, L.; Colomb, T.; Depeursinge, C.; Salathe, R.P.; Pollnau, M.; Osellame, R.; Cerullo, G.; Laporta, P.

    2004-08-16

    We have employed femtosecond laser writing in order to induce refractive-index changes and waveguides in Ti{sup 3+}-doped sapphire. Doping the sapphire crystal with an appropriate ion significantly reduces the threshold for creating structural changes, thus enabling the writing of waveguide structures. Passive and active buried channel waveguiding is demonstrated and images of the guided modes, propagation-loss values, fluorescence spectra, and output efficiencies are presented. The guiding area is located around the laser-damaged region, indicating that the guiding effect is stress induced. Refractive-index changes are measured by digital holography. Proper active doping should enable femtosecond processing and waveguide writing in various crystalline materials.

  17. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  18. Temperature Dependence of Triplet–Triplet Annihilation Upconversion in Phospholipid Membranes

    PubMed Central

    2017-01-01

    Understanding the temperature dependency of triplet–triplet annihilation upconversion (TTA-UC) is important for optimizing biological applications of upconversion. Here the temperature dependency of red-to-blue TTA-UC is reported in a variety of neutral PEGylated phospholipid liposomes. In these systems a delicate balance between lateral diffusion rate of the dyes, annihilator aggregation, and sensitizer self-quenching leads to a volcano plot, with the maximum upconversion intensity occurring near the main order–disorder transition temperature of the lipid membrane. PMID:28059523

  19. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  20. Upconversion luminescence in BaMoO4:Pr3+ phosphor for display devices

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2015-08-01

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO4:Pr3+ powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  1. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  2. A femtosecond Raman generator for long wavelength two-photon and third harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Trägârdh, J.; Schniete, J.; Parsons, M.; McConnell, G.

    2016-12-01

    We demonstrate a femtosecond single pass Raman generator based on an YVO4 crystal pumped by a high energy fiber laser at a wavelength of 1064 nm and a repetition rate of 1 MHz. The Raman generator shifts the pump wavelength to 1175 nm, in a broadband spectrum, making it suitable for multi-photon microscopy. We use the Raman generator for third harmonic generation imaging of live plant specimens as well as for two-photon fluorescence imaging of red fluorescent protein expressing HeLa cells. We demonstrate that the photo-damage to a live specimen is low.

  3. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    PubMed

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  4. Mercaptopropionic acid-capped Mn2+:ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications†

    PubMed Central

    Zhao, Bingxia; Yao, Yulian; Yang, Kai; Rong, Pengfei; Huang, Peng; An, Xiao; Li, Zhiming; Chen, Xiaoyuan

    2015-01-01

    Doped quantum dots (d-dots) can serve as fluorescent biosensors and biolabels for biological applications. Our study describes a synthesis of mercaptopropionic acid (MPA)-capped Mn2+:ZnSe/ZnO d-dots through a facile, cost-efficient hydrothermal route. The as-prepared water-soluble d-dots exhibit strong emission at ca. 580 nm, with a photoluminescence quantum yield (PLQY) as high as 31%, which is the highest value reported to date for such particles prepared via an aqueous route. They also exhibit upconversion emission when excited at 800 nm. With an overall diameter of around 6.7 nm, the d-dots could gain access to the cell nucleus without any surface decoration, demonstrating their promising broad applications as fluorescent labels. PMID:25189675

  5. Highly efficient Yb3+/Tm3+ co-doped NaYF4 nanotubes: Synthesis and intense ultraviolet to infrared up-conversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Wang, Y.; Deng, J. Q.; Wang, J.; Ni, S. C.

    2014-02-01

    Nanocrystals of up-conversion (UC) phosphor Yb3+/Tm3+ co-doped NaYF4 are prepared by a facile hydrothermal method using oleic acid as a stabilizing agent. The as-prepared nanocrystals are of hexagonal phase, and have tube-like morphology and strong ultraviolet (UV) and blue UC fluorescence intensity, which have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence spectroscopy. The effect of Yb3+ concentration on the UC emission properties is also analyzed. Our results reveal that the intensity of emission peaks can be controlled by varying the Yb3+ concentration and these NaYF4 nanotubes are highly efficient host material. The as-prepared NaYF4 nanotubes show potential applications in UV compact solid state lasers and multi-channel fluorescent label.

  6. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-01

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm.

  7. Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2017-01-01

    An interfacial coordination nanoparticle successfully exhibited an upconversion blue emission excited by very low-power light irradiation, such as sunlight. The interfacial complex was composed of Yb ions and indigo dye, which formed a nano-ordered thin shell layer on a Tm2O3 nanoparticle. At the surface of the Tm2O3 particle, the indigo dye can be excited by non-laser excitation at 640 nm, following the intramolecular energy transfer from the indigo dye to the Yb ions. Additionally, the excitation energy of the Yb ion was upconverted to the blue emission of the Tm ion at 475 nm. This upconversion blue emission was achieved by excitation with a CW Xe lamp at an excitation power of 0.14 mW/cm2, which is significantly lower than the solar irradiation power of 1.4 mW/cm2 at 640 ± 5 nm. PMID:28134295

  8. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  9. Frequency Up-Conversion Photon-Type Terahertz Imager

    NASA Astrophysics Data System (ADS)

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-05-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  10. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  11. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  12. Chemical aerosol detection using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Alexander, Dennis R.; Rohlfs, Mark L.; Stauffer, John C.

    1997-07-01

    Many chemical warfare agents are dispersed as small aerosol particles. In the past, most electro-optical excitation and detection schemes have used continuous or pulsed lasers with pulse lengths ranging from nanoseconds to microseconds. In this paper, we present interesting ongoing new results on femtosecond imaging and on the time dependent solutions to the scattering problem of a femtosecond laser pulse interacting with a single small aerosol particle. Results are presented for various incident pulse lengths. Experimental imaging results using femtosecond pulses indicate that the diffraction rings present when using nanosecond laser pulses for imaging are greatly reduced when femtosecond laser pulses are used. Results are presented in terms of the internal fields as a function of time and the optical size parameter.

  13. REVIEW: Optical frequency standards and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Baklanov, E. V.; Pokasov, P. V.

    2003-05-01

    A review is presented of the state of the art in a new direction in quantum electronics based on the use of femtosecond lasers for precision frequency measurements and the development of optical frequency and time standards.

  14. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  15. High energy femtosecond pulse compression

    NASA Astrophysics Data System (ADS)

    Lassonde, Philippe; Mironov, Sergey; Fourmaux, Sylvain; Payeur, Stéphane; Khazanov, Efim; Sergeev, Alexander; Kieffer, Jean-Claude; Mourou, Gerard

    2016-07-01

    An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

  16. Optofluidic integrated cell sorter fabricated by femtosecond lasers.

    PubMed

    Bragheri, F; Minzioni, P; Martinez Vazquez, R; Bellini, N; Paiè, P; Mondello, C; Ramponi, R; Cristiani, I; Osellame, R

    2012-10-07

    The main trend in optofluidics is currently towards full integration of the devices, thus improving automation, compactness and portability. In this respect femtosecond laser microfabrication is a very powerful technology given its capability of producing both optical waveguides and microfluidic channels. The current challenge in biology is the possibility to perform bioassays at the single cell level to unravel the hidden complexity in nominally homogeneous populations. Here we report on a new device implementing a fully integrated fluorescence-activated cell sorter. This non-invasive device is specifically designed to operate with a limited amount of cells but with a very high selectivity in the sorting process. Characterization of the device with beads and validation with human cells are presented.

  17. Exciton Mobility in Organic Photovoltaic Heterojunctions from Femtosecond Stimulated Raman.

    PubMed

    Hoffman, David P; Leblebici, Sibel Y; Schwartzberg, Adam M; Mathies, Richard A

    2015-08-06

    Exciton mobility is crucial to organic photovoltaic (OPV) efficiency, but accurate, quantitative measures and therefore precise understanding of this process are currently lacking. Here, we exploit the unique capabilities of femtosecond stimulated Raman spectroscopy (FSRS) to disentangle the signatures of the bulk and interfacial donor response in a bulk heterojunction composed of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and phenyl-C61-butyric acid methyl ester (PCBM). Surprisingly, we find that donor excitons are very mobile for the first ∼300 fs following excitation (before thermalization) even though their overall lifetime is significantly longer (170 ps). A sharp decrease in mobility occurs after the system relaxes out of the Franck-Condon (FC) region. From this observation we predict that any polymer lacking a significant resonance Raman effect and fluorescence Stokes shift, indicating slow FC relaxation and small reorganization energy, will make an efficient OPV material.

  18. Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery.

    PubMed

    Han, Sanyang; Samanta, Animesh; Xie, Xiaoji; Huang, Ling; Peng, Juanjuan; Park, Sung Jin; Teh, Daniel Boon Loong; Choi, Yongdoo; Chang, Young-Tae; All, Angelo Homayoun; Yang, Yanmei; Xing, Bengang; Liu, Xiaogang

    2017-03-10

    Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprising hairpin-DNA-modified gold nanoparticles is presented. This approach imparts the upconversion nanoprobes with excellent biocompatibility and circumvents the problem of particle agglomeration. By combining single-band anti-Stokes near-infrared emission and the photothermal effect mediated by the coupling of gold to upconversion nanoparticles, a simple, versatile nanoparticulate system for simultaneous deep-tissue imaging and drug molecule release in vivo is demonstrated.

  19. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-04-07

    An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular crystals, and metal-organic frameworks (MOFs). The control over their assembly structures allows for unexpected air-stability and maximum upconversion quantum yield at weak solar irradiance that has never been achieved by the conventional molecular diffusion-based mechanism. The introduction of the "self-assembly" concept offers a new perspective in photon upconversion research and triplet exciton science, which show promise for numerous applications ranging from solar energy conversion to chemical biology.

  20. Recent Progress in 808 nm Excited Upconversion Nanomaterials as Multifunctional Nanoprobes for Visualized Theranostics in Cancers.

    PubMed

    Zeng, Leyong; Wu, Di; Tian, Ying; Pan, Yuanwei; Wu, Aiguo; Zhang, Jinchao; Lu, Guangming

    2017-03-20

    Near-infrared (NIR) light responsive nanomaterials have attracted considerable attention due to their location in the biological window. Especially, lanthanide-doped nanomaterials exhibit unique upconversion luminescence (UCL) properties with low background interference and long luminescence lifetime, which makes them promising in imaging diagnosis of cancers. Compared with traditional upconversion nanomaterials excited by 980 nm laser, 808 nm excitation can overcome the disadvantages of high heating effect and weak penetration depth induced by excitation source. Therefore, developing 808 nm excited upconversion nanoprobes will be important for the in vivo bio-imaging and visualized theranostics of tumors in deep-tissue. In the review paper, we systematically summarized the synthesis strategy and luminescence modulation of Nd3+-sensitized upconversion nanomaterials under 808 nm excitation, discussed the influence of excitation source on heating effect and penetration depth, and particularly focused on their applications in UCL imaging, multi-modal imaging and imaging-guided therapy of cancers.

  1. Blue and white upconversion emissions of rare-earth ions-doped oxyfluoride phosphors

    NASA Astrophysics Data System (ADS)

    Pang, Tao; Cao, Wanghe; Xing, Mingming; Feng, Wei; Xu, Shujing

    2010-05-01

    A blue emitting upconversion phosphor based on Yb 3+ and Tm 3+ codoped oxyfluoride is reported. Under the excitation of a single 980 nm diode laser with the power density of 5.56 W/cm 2, the upconversion luminescence brightness can reaches to 13053 mcd/m 2, which is much stronger than that of commercial Y 2O 2S:Yb, Tm phosphors (8194 mcd/m 2). The research of upconversion mechanism indicates that cooperating sensitization dominates the emissions at 479 and 645 nm, while the emission at 454 nm results from the combination of cooperating sensitization and phonon-assisted energy transfer from Yb 3+ to Tm 3+. Also, bright upconversion white light is obtained by tri-doping of Er 3+, Tm 3+ and Yb 3+. Because the blue (main emission at 479 nm), green and red emissions are two-photon process, the white light is not sensitive to the pumping power.

  2. Up-conversion and Photoluminescence in Er3+ Single Crystal MgAl-spinel

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Sarakovskis, A.; Skvortsova, V.

    Traditional and up-conversion luminescence of MgAl2O4 single crystal doped with erbium ions obtained by the Verneuil method has been investigated. The time resolved spectral measurements of the green and red up-conversion luminescence bands show that a build-up part is present in the up-conversion luminescence kinetics. This means that energy transfer process is involved in the creation of the luminescence. Considering rather small concentration of Er3+ in the material (0.12 mass %), the expected up-conversion mechanism should be excited state absorption since the average distance between erbium ions is high. The above-mentioned considerations suggest that clustering of the activator ions is present in the material, which is supported by SEM analysis.

  3. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  4. Live cell opto-injection by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Bintig, W.; Ngezahayo, A.; Ertmer, W.; Lubatschowski, H.; Heisterkamp, A.

    2007-02-01

    Fluorescence imaging of cells and cell organelles requires labeling by fluorophores. The labeling of living cells is often done by transfection of fluorescent proteins. Viral vectors are transferring the DNA into the cell. To avoid the use of viruses, it is possible to perforate the cell membrane for example by electro-shocks, the so called electroporation, so that the fluorescent proteins can diffuse into the cell. This method causes cell death in up to 50% of the treated cells because the damage of the outer membrane is too large. A less lethal perforation of the cell membrane with high efficiency can be realized by femtosecond (fs) laser pulses. Transient pores are created by focusing the laser beam for some milliseconds on the membrane. Through this pore, the proteins can enter into the cell. This was demonstrated in a proof of principle experiment for a few cells, but it is essential to develop an opto-perforation system for large numbers of cells in order to obtain statistically significant samples for biological experiments. The relationship between pulse energy, irradiation time, repetition rate and efficacy of the transfer of a chromophor into the cells as well as the viability of the cells was analysed. The cell viability was observed up to 90 minutes after manipulation.

  5. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  6. Internal upconversion and doubling of an optical parametric oscillator to extend the tuning range.

    NASA Technical Reports Server (NTRS)

    Campillo, A. J.

    1972-01-01

    Efficient extension of the tuning range of a 1.09-1.95-micron parametric oscillator to 0.435-0.975 microns by upconversion and doubling internally to the oscillator cavity is reported. Unlike previously studied external mixing, internal upconversion and doubling yielded uniform powers of 30 and 60 kW, respectively, over the entire extended tuning range with an unfocused 2-mm ruby laser pump beam of 750 kW.-

  7. Very low threshold green lasing in microspheres by up-conversion of IR photons

    NASA Astrophysics Data System (ADS)

    von Klitzing, W.; Jahier, E.; Long, R.; Lissillour, F.; Lefèvre-Seguin, V.; Hare, J.; Raimond, J.-M.; Haroche, S.

    2000-04-01

    A green up-conversion laser is demonstrated in a 120 µm diameter microsphere of Er 3+-doped ZBLAN at room temperature. Lasing occurs around 540 nm with a 801 nm diode laser pump. The lasing threshold of only 30 µW of absorbed power is over two orders of magnitude lower than the lowest previously observed in IR-visible up-conversion lasing (Funk D S et al 1997 Electron. Lett. 33 1958-60).

  8. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence.

    PubMed

    Adhikari, Aniruddha; Sahu, Kalyanasis; Dey, Shantanu; Ghosh, Subhadip; Mandal, Ujjwal; Bhattacharyya, Kankan

    2007-11-08

    Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL.

  9. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery

    NASA Astrophysics Data System (ADS)

    Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogel, Alfred

    2016-07-01

    The wavelength dependence of the threshold for femtosecond optical breakdown in water provides information on the interplay of multiphoton, tunneling, and avalanche ionization and is of interest for parameter selection in laser surgery. We measured the bubble threshold from ultraviolet to near-infrared wavelengths and found a continuous decrease of the irradiance threshold with increasing wavelength λ . Results are compared to the predictions of a numerical model that assumes a band gap of 9.5 eV and considers the existence of a separate initiation channel via excitation of valence band electrons into a solvated state followed by rapid upconversion into the conduction band. Fits to experimental data yield an electron collision time of ≈1 fs and an estimate for the capacity of the initiation channel. Using that collision time, the breakdown dynamics were explored up to λ = 2 μ m . The irradiance threshold first continues to decrease but levels out for wavelengths longer than 1.3 μ m . This opens promising perspectives for laser surgery at wavelengths around 1.3 and 1.7 μ m , which are attractive because of their large penetration depth into scattering tissues.

  10. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells.

    PubMed

    Zhou, Yi; Pei, Wenbo; Wang, Chenyuan; Zhu, Jixin; Wu, Jiansheng; Yan, Qinyu; Huang, Ling; Huang, Wei; Yao, Cheng; Loo, Joachim Say Chye; Zhang, Qichun

    2014-09-10

    Hypochlorous acid (HOCl), a reactive oxygen species (ROS) produced by myeloperoxidase (MPO) enzyme-mediated peroxidation of chloride ions, acts as a key microbicidal agent in immune systems. However, misregulated production of HOCl could damage host tissues and cause many inflammation-related diseases. Due to its biological importance, many efforts have been focused on developing fluorescent probes to image HOCl in living system. Compared with those conventional fluorescent probes, up-conversion luminescence (UCL) detection system has been proven to exhibit a lot of advantages including no photo-bleaching, higher light penetration depth, no autofluorescence and less damage to biosamples. Herein, we report a novel water-soluble organic-nano detection system based on rhodamine-modified UCNPs for UCL-sensing HOCl. Upon the interaction with HOCl, the green UCL emission intensity in the detection system were gradually decreased, but the emissions in the NIR region almost have no change, which is very important for the ratiometric UCL detection of HOCl in aqueous solution. More importantly, RBH1-UCNPs could be used for the ratiometric UCL visualization of HOCl released by MPO-mediated peroxidation of chloride ions in living cells. This organic-nano system could be further developed into a novel next-generation imaging technique for bio-imaging HOCl in living system without background noise.

  11. Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres.

    PubMed

    Dai, Yunlu; Ma, Ping'an; Cheng, Ziyong; Kang, Xiaojiao; Zhang, Xiao; Hou, Zhiyao; Li, Chunxia; Yang, Dongmei; Zhai, Xuefeng; Lin, Jun

    2012-04-24

    In this study, we report a new controlled release system based on up-conversion luminescent microspheres of NaYF(4):Yb(3+)/Er(3+) coated with the smart hydrogel poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P(NIPAM-co-MAA)) (prepared using 5 mol % of MAA) shell. The hybrid microspheres show bright up-conversion fluorescence under 980 nm laser excitation, and turbidity measurements show that the low critical solution temperature of the polymer shell is thermo- and pH-dependent. We have exploited the hybrid microspheres as carriers for Doxorubicin hydrochloride (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is pH-triggered thermally sensitive. Changing the pH to mildly acidic condition at physiological temperature deforms the structure of the shell, causing the release of a large number of DOX from the microspheres. The drug-loaded microspheres exhibit an obvious cytotoxic effect on SKOV3 ovarian cancer cells. The endocytosis process of drug-loaded microspheres is observed using confocal laser scanning microscopy and up-conversion luminescence microscopy. Meanwhile, the as-prepared NaYF(4):Yb(3+)/Er(3+)@SiO(2)@P(NIPAM-co-MAA) microspheres can be used as a luminescent probe for cell imaging. In addition, the extent of drug release can be monitored by the change of up-conversion emission intensity. These pH-induced thermally controlled drug release systems have potential to be used for in vivo bioimaging and cancer therapy by the pH of the microenvironment changing from 7.4 (normal physiological environment) to acidic microenvironments (such as endosome and lysosome compartments) owing to endocytosis.

  12. Enhanced up-conversion and temperature-sensing behaviour of Er(3+) and Yb(3+) co-doped Y2Ti2O7 by incorporation of Li(+) ions.

    PubMed

    Singh, B P; Parchur, A K; Ningthoujam, R S; Ramakrishna, P V; Singh, S; Singh, P; Rai, S B; Maalej, R

    2014-11-07

    Y2Ti2O7:Er(3+)/Yb(3+) (EYYTO) phosphors co-doped with Li(+) ions were synthesized by a conventional solid-state ceramic method. X-ray diffraction studies show that all the Li(+) co-doped EYYTO samples are highly crystalline in nature with pyrochlore face centred cubic structure. X-ray photon spectroscopy studies reveal that the incorporation of Li(+) ions creates the defects and/or vacancies associated with the sample surface. The effect of Li(+) ions on the photoluminescence up-conversion intensity of EYYTO was studied in detail. The up-conversion study under ∼976 nm excitation for different concentrations of Li(+) ions showed that the green and red band intensities were significantly enhanced. The 2 at% Li(+) ion co-doped EYYTO samples showed nearly 15- and 8-fold enhancements in green and red band up-converted intensities compared to Li(+) ion free EYYTO. The process involved in the up-conversion emission was evaluated in detail by pump power dependence, the energy level diagram, and decay analysis. The incorporation of Li(+) ions modified the crystal field around the Er(3+) ions, thus improving the up-conversion intensity. To investigate the sensing application of the synthesized phosphor materials, temperature-sensing performance was evaluated using the fluorescence intensity ratio technique. Appreciable temperature sensitivity was obtained using the synthesized phosphor material, indicating its applicability as a high-temperature-sensing probe. The maximum sensitivity was found to be 0.0067 K(-1) at 363 K.

  13. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  14. Quantum frequency up-conversion of continuous variable entangled states

    NASA Astrophysics Data System (ADS)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-01

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  15. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    PubMed

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  16. Targeted transfection of stem cells with sub-20 femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; König, Karsten; Bueckle, Rainer; Isemann, Andreas; Tempea, Gabriel

    2008-06-23

    Multiphoton microscopes have become important tools for non-contact sub-wavelength three-dimensional nanoprocessing of living biological specimens based on multiphoton ionization and plasma formation. Ultrashort laser pulses are required, however, dispersive effects limit the shortest pulse duration achievable at the focal plane. We report on a compact nonlinear laser scanning microscope with sub-20 femtosecond 75 MHz near infrared laser pulses for nanosurgery of human stem cells and two-photon high-resolution imaging. Single point illumination of the cell membrane was performed to induce a transient nanopore for the delivery of extracellular green fluorescent protein plasmids. Mean powers of less than 7 mW (<93 pJ) and low millisecond exposure times were found to be sufficient to transfect human pancreatic and salivary gland stem cells in these preliminary studies. Ultracompact sub-20 femtosecond laser microscopes may become optical tools for nanobiotechnology and nanomedicine including optical stem cell manipulation.

  17. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  18. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged. PMID:27873888

  19. Femtosecond Broadband Stimulated Raman: A New Approach for High-Performance Vibrational Spectroscopy

    PubMed Central

    McCAMANT, DAVID W.; KUKURA, PHILIPP; MATHIES, RICHARD A.

    2005-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is a new technique that produces high-quality vibrational spectra free from background fluorescence. FSRS combines a narrow-bandwidth picosecond Raman pump pulse with an ∼80 fs continuum probe pulse to produce stimulated Raman spectra from the pump-induced gain in the probe spectrum. The high intensity of the Raman pump combined with the broad bandwidth of the probe produces high signal-to-noise vibrational spectra with very short data acquisition times. FSRS spectra of standard solutions and solvents such as aqueous Na2SO4, aqueous KNO3, methanol, isopropanol, and cyclohexane are collected in seconds. Furthermore, stimulated Raman spectra can be obtained using just a single pump–probe pulse pair that illuminates the sample for only ∼1 ps. Fluorescence rejection is demonstrated by collecting FSRS spectra of dyes (rhodamine 6G, chlorophyll a, and DTTCI) with varying degrees of fluorescence background and resonance enhancement. The high signal-to-noise, short data acquisition time, fluorescence rejection, and high spectral and temporal resolution of femtosecond stimulated Raman spectroscopy make it a valuable new vibrational spectroscopic technique. PMID:14658143

  20. Plasmon-enhanced light harvesting of chlorophylls on near-percolating silver films via one-photon anti-Stokes upconversion.

    PubMed

    Wang, Ya-Lan; Nan, Fan; Liu, Xiao-Li; Zhou, Li; Peng, Xiao-Niu; Zhou, Zhang-Kai; Yu, Ying; Hao, Zhong-Hua; Wu, Yan; Zhang, Wei; Wang, Qu-Quan; Zhang, Zhenyu

    2013-01-01

    There exists a wealth of means of efficient utilization of solar energy in nature, with photosynthesis of chlorophylls as a prime example. Separately, artificially structured plasmonic materials are versatile in light harvesting and energy conversion. Using a simple and scalable design of near-percolating silver nanostructures, we demonstrate that the light-harvesting efficiency of chlorophylls can be drastically enhanced by tuning the plasmon frequency of the constituent silver nanoparticles to coincide with the maximal photon flux of sunlight. In particular, we show that the photon upconversion efficiency can be readily enhanced by over 20 folds, with the room-temperature fluorescence quantum yield increased by a factor of 2.63. The underlying mechanism for the upconversion enhancement is attributed to a one-electron-per-photon anti-Stokes process, involving absorption of a characteristic phonon mode of the chlorophylls. These findings suggest that chlorophylls can serve as molecular building blocks for high-efficiency light harvesting and solar energy conversion.

  1. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  2. Femtosecond lasers for microsurgery of cornea

    NASA Astrophysics Data System (ADS)

    Vartapetov, Sergei K.; Khudyakov, D. V.; Lapshin, Konstantin E.; Obidin, Aleksei Z.; Shcherbakov, Ivan A.

    2012-03-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ~400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s-1. At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  3. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  4. Femtosecond dynamics of cluster expansion

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2010-03-01

    Noble gas clusters irradiated by intense ultrafast laser expand quickly and become typical plasma in picosecond time scale. During the expansion, the clustered plasma demonstrates unique optical properties such as strong absorption and positive contribution to the refractive index. Here we studied cluster expansion dynamics by fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The refractive index measured by frequency domain interferometry (FDI) shows the transient positive peak of refractive index due to clustered plasma. By separating it from the negative contribution of the monomer plasma, we are able to determine the cluster fraction. The absorption measured by a delayed probe shows the contribution from clusters of various sizes. The plasma resonances in the cluster explain the enhancement of the absorption in our isothermal expanding cluster model. The cluster size distribution can be determined. A complete understanding of the femtosecond dynamics of cluster expansion is essential in the accurate interpretation and control of laser-cluster experiments such as phase-matched harmonic generation in cluster medium.

  5. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  6. Femtosecond LIBS studies of nitropyrazoles

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, E.; Sunku, Sreedhar; Tewari, Surya P.; Manoj Kumar, G.; Venugopal Rao, S.

    2013-05-01

    We present our initial experimental results from the LIBS studies of pyrazole, 1-nitropyrazole, 3-nitropyrazole, 3,4- dinitropyrazole and 1-methyl- 3,4,5 trinitro pyrazole recorded with femtosecond pulses and performed in argon atmosphere. CN molecular bands in three different spectral regions of 357 nm-360 nm, 384 nm-389 nm and 414 nm -423 nm, C2 swan bands near 460 nm-475 nm, 510 nm- 520 nm and 550 nm-565 nm were observed. The C peak at 247.82 nm, H peak at 656.2 nm have also been observed along with several peaks of O and N. CN/C2, CN/C, C2/C and C2/N ratios were measured from the average of 25 spectra obtained in argon. The effect of number of nitro groups on the atomic and molecular emission has been evaluated. A gate delay of 100 ns and a gate width of 800 ns were used for collecting the spectra.

  7. Visible and ultraviolet upconversion emission in LiNbO3 triply doped with Tm3+, Yb3+, and Nd3+

    NASA Astrophysics Data System (ADS)

    Li, Ai-Hua; Zheng, Zhi-Ren; Lü, Qiang; Sun, Liang; Liu, Wei-Long; Wu, Wen-Zhi; Yang, Yan-Qiang; Lü, Tian-Quan

    2009-01-01

    Visible and ultraviolet upconversion (UC) emission is observed under 800 nm femtosecond laser excitation in LiNbO3 crystals triply doped with Tm3+, Yb3+, and Nd3+ at room temperature. Energy transfer (ET) from Nd3+ to Yb3+ then to Tm3+ is very important in this UC emission process. The overlapping between the emissions of D12→F34 and G14→H36, which makes up of blue emission band, is confirmed by transient investigation. From the pump energy dependence investigation, it is known that the dominant populating mechanism for the G14 state is the two-photon process, and that for D12 is the three-photon process. In our UC emission model, the G14 state is populated by the ET of F25/2(Yb3+)+H34(Tm3+)→F27/2(Yb3+)+G14(Tm3+), D12 state is populated by the ET of F32+H34→D12+H36 among Tm3+ ions. For LiNbO3 crystals doped with Tm3+ to the concentration of 0.9 mol %, the measured lifetimes of G14 and D12 are ˜80 and 4 μs.

  8. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  9. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  10. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  11. Dispersive Fourier transformation femtosecond stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Dobner, Sven; Fallnich, Carsten

    2016-11-01

    We present the first proof-of-principle spectroscopic measurements with purely passive dispersive Fourier transformation femtosecond stimulated Raman scattering. In femtosecond stimulated Raman scattering, the full Raman scattering spectrum is efficiently obtained, as all Raman transitions are coherently excited with the combination of a narrow-bandwidth and a broad-bandwidth (femtosecond) pulse at once. Currently, the detection speed of the spectra is limited by the read-out time of classical, comparably slow CCD-based spectrometers. We show a reduction in the acquisition time of Raman signatures by applying the dispersive Fourier transformation, a method employing wavelength-to-time transformation, in order to record the spectral composition of a single pulse with a single fast photodiode. This arrangement leads to an acquisition time of Raman signatures, scaling inversely with the repetition frequency of the applied laser system, which in our case corresponds to the order of microseconds.

  12. Tissue Imaging and Multidimensional Spectroscopy Using Shaped Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Warren, Warren

    2007-03-01

    We use rapidly updatable, femtosecond pulse shaping and multidimensional spectroscopy to make new targets accessible by nonlinear optical imaging. For example, we observe two-photon absorption (TPA), sum frequency absorption (SFA) and self phase modulation (SPM)). Detection of TPA and related effects, such as the local quantum yield (fluorescence/absorption) permits direct observation of important endogenous molecular markers which are invisible in multiphoton fluorescence microscopy; it also permits excitation in the long-wavelength water windows which have significantly reduced scattering, but little endogenous two-photon fluorescence. The fundamental problem is that at the powers one might reasonably apply to tissue (e.g. 5 mW from a modelocked laser) typically 10-6of the light is removed by TPA, with the rest lost to scattering and linear absorption; and SPM does not broaden the spectrum in the dramatic way associated with (for example) continuum generation. A variety of solutions to these problems using femtosecond pulse shaping will be presented. The simplest solution, which uses amplitude modulation of a fs pulse train, has led to high quality microscopic images of the melanin distribution in melanotic lesions, and has led to discrimination between the different types of melanin in melanosomes. Shaping individual pulses instead of the envelope permits high sensitivity detection of both SPM and TPA via spectral hole refilling combined with heterodyne detection. We manufacture laser pulses with a narrow (ca. 3 nm) spectral hole, which can only be refilled by nonlinear processes; TPA causes refilling 180 degrees out of phase with the wings of the pulse, SPM is 90 degrees out of phase. By inserting a phase-coherent pedestal in the hole, then repeating the experiment with a different phase on a timescale rapid compared to any physiological processes, we can extract the phase of the refilling, hence the relative contributions of SPM and TPA. This method can

  13. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis.

    PubMed

    Fan, Zetan; Zhou, Shixin; Garcia, Cesar; Fan, Louzhen; Zhou, Jiangbing

    2017-04-03

    Cancer remains a major cause of morbidity and mortality around the world. Improved cancer treatment requires enhancement of cancer diagnosis and detection. To achieve this goal, here we report a novel imaging probe, pH-responsive fluorescent graphene quantum dots (pRF-GQDs). pRF-GQDs were prepared by electrolysis of graphite rods in sodium p-toluenesulfonate acetonitrile solution. The resulting pRF-GQDs, which have minimal toxicity, display a sharp fluorescence transition between green and blue at pH 6.8, a pH matching the acidic extracellular microenvironment in solid tumors. We found that this unique fluorescence switch property allows tumors to be distinguished from normal tissues. In addition to fluorescence, pRF-GQDs also exhibit upconversion photoluminescence (UCPL). We demonstrate that the combination of UCPL and fluorescence switch enables detection of solid tumors of different origin at an early developmental stage. Therefore, pRF-GQDs have great potential to be used as a universal probe for fluorescence-guided cancer surgery and cancer diagnosis.

  14. Photostimulation of astrocytes with femtosecond laser pulses.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Liu, Xiuli; Lv, Xiaohua; Zhou, Wei; Luo, Qingming; Zeng, Shaoqun

    2009-02-02

    The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

  15. Facile Co-Assembly of a Dipeptide-Based Organogel toward Efficient Triplet-Triplet Annihilation Photonic Upconversion.

    PubMed

    Liu, Xingcen; Fei, Jinbo; Zhu, Pengli; Li, Junbai

    2016-10-06

    By one-step molecular co-assembly, a diphenylalanine-based photonic upconversion organogel was constructed within 20 seconds. Impressively, such an assembled system exhibits green-to-blue triplet-triplet annihilation upconversion with a relative quantum yield of 12 % even under ambient conditions.

  16. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  17. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement.

  18. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun; Narro-García, R.; Sekino, Tohru; Lee, Soo Wohn

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} and Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.

  19. Competition of multiple filaments during the propagation of intense femtosecond laser pulses

    SciTech Connect

    Hosseini, S.A.; Luo, Q.; Ferland, B.; Liu, W.; Chin, S.L.; Kosareva, O.G.; Panov, N.A.; Kandidov, V.P.; Akoezbek, N.

    2004-09-01

    We observed a universal phenomenon of the competition among multiple filaments generated during the propagation of intense femtosecond laser pulses in air. We show that the fluorescence signal from the excitation of nitrogen molecules inside the plasma channel contains important information pertaining to the formation and interaction of multiple filaments. The detected backscattered nitrogen fluorescence from inside the filaments yielded irregular changes from shot to shot which cannot be explained by fluctuation arising from the initial laser pulse itself. Numerical simulations reveal a complex dynamics of multiple filament propagation and interaction dynamics that depends strongly on the initial perturbations of the laser beam. The irregular changes of the fluorescence signal are attributed to the interference between adjacent hot spots that evolve into filaments which give rise to new hot spots (filaments) in between, and thus give the appearance of the fusion or branching of filaments.

  20. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  1. Enhancement of the up-conversion luminescence from NaYF4:Yb3+,Tb3+

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Laihinen, Tero; Laamanen, Taneli; Lastusaari, Mika; Pihlgren, Laura; Rodrigues, Lucas C. V.; Soukka, Tero

    2014-04-01

    The synthesis conditions of the Yb3+ and Tb3+ co-doped NaYF4 were optimized by reducing the number of washings to include only ethanol. The avoidance of the loss of amorphous NaF prior to post-annealing of the as-prepared materials resulted in the enhancement of the otherwise rather weak up-conversion from Tb3+ by 1-2 orders of magnitude. At the same time, the temperature of formation of the hexagonal NaRF4 phase with high up-conversion could be lowered by 100 °C down to 350 °C. This improvement in up-conversion was concluded to result from the better stoichiometry of the material without washing with water. The deficit of Na+ would result in the excess of fluoride which, although not as fatal to the luminescence as the fluoride vacancies, has serious implications to the up-conversion intensity. A further enhancement in the up-conversion luminescence was observed to be due to the Er3+ ion impurity frequently associated with high-concentration Yb3+ materials. The mechanism involving the unintentional Er3+ sensitizer and the resonance energy transfer in the Yb3+-Er3+-Tb3+ co-doped NaYF4 were discussed based on the energy level schemes of the Yb3+, Er3+, and Tb3+ ions in NaYF4.

  2. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-11-28

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

  3. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  4. Optical properties and frequency upconversion fluorescence in a Tm3+ -doped alkali niobium tellurite glass

    NASA Astrophysics Data System (ADS)

    Poirier, Gadiaere; L.; Cassanjes, Fabia C.; de Araújo, Cid B.; Jerez, Vladimir A.; Ribeiro, Sidney J. L.; Messaddeq, Younes; Poulain, Marcel

    2003-03-01

    Optical spectroscopic properties of Tm3+-doped 60TeO2-10GeO2-10K2O-10Li2O-10Nb2O5 glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition 1D2→3F4 of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (1D2→3F4) and emission at 790 nm (3H4→3H6). The radiative lifetimes of levels 1D2 and 3H4 were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions.

  5. NIR-induced highly sensitive detection of latent finger-marks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state.

    PubMed

    Wang, Meng; Li, Ming; Yang, Mingying; Zhang, Xiaomei; Yu, Aoyang; Zhu, Ye; Qiu, Penghe; Mao, Chuanbin

    2015-06-01

    The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.

  6. NIR-induced highly sensitive detection of latent finger-marks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state

    PubMed Central

    Wang, Meng; Li, Ming; Yang, Mingying; Zhang, Xiaomei; Yu, Aoyang; Zhu, Ye; Qiu, Penghe; Mao, Chuanbin

    2016-01-01

    The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences. PMID:27818741

  7. White upconversion luminescence in Tm3+/Ho3+/Yb3+ triply doped K+-Na+ ion-exchanged aluminum germanate glass channel waveguide

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2013-01-01

    Rare-earth ions doped K+-Na+ ion-exchanged aluminum germanate (NMAG) glass channel waveguides have been designed and fabricated. Under 980 nm laser pumping, an intense upconversion white light transmission trace was observed in Tm3+/Ho3+/Yb3+ triply doped NMAG glass channel waveguide and a high-brightness light spot was achieved from the output end of the fiber connected to the waveguide channel. The fluorescent colors were diverse and located within or near the white region in CIE chromaticity diagram under various pumping powers. These admirable results indicate that Tm3+/Ho3+/Yb3+ triply doped NMAG channel waveguide is a promising light source for medical and high-precision processing illumination.

  8. Multi-functionality of fluorescent nanocrystals in glass ceramics

    PubMed Central

    Schweizer, S.; Henke, B.; Miclea, P.T.; Ahrens, B.; Johnson, J.A.

    2012-01-01

    Thermal processing of as-made fluorozirconate glasses, which were additionally doped with rare-earth and chlorine ions, results in the formation of fluorescent nanocrystals therein. For medical applications, the glasses were doped with divalent europium ions as the fluorescent rare-earth ion, while trivalent neodymium was used to develop up-conversion systems. The samples were annealed up to 290 °C to initiate the growth of hexagonal or orthorhombic phase BaCl2 nanocrystals therein. Upon annealing some of the rare-earth ions were incorporated into the BaCl2 nanocrystals leading to enhanced fluorescence properties. The particle diameters were in the range of a few nanometers to several tens of nanometers. PMID:23637567

  9. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  10. Femtosecond laser fabricated microfluorescence-activated cell sorter for single cell recovery

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Nava, G.; Yang, T.; Minzioni, P.; Martinez Vazquez, R.; Bellini, N.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2014-03-01

    Manipulation, sorting and recovering of specific live cells from samples containing less than a few thousand cells is becoming a major hurdle in rare cell exploration such as stem cell research or cell based diagnostics. Moreover the possibility of recovering single specific cells for culturing and further analysis would be of great impact in many biological fields ranging from regenerative medicine to cancer therapy. In recent years considerable effort has been devoted to the development of integrated and low-cost optofluidic devices able to handle single cells, which usually rely on microfluidic circuits that guarantee a controlled flow of the cells. Among the different microfabrication technologies, femtosecond laser micromachining (FLM) is ideally suited for this purpose as it provides the integration of both microfluidic and optical functions on the same glass chip leading to monolithic, robust and portable devices. Here a new optofluidic device is presented, which is capable of sorting and recovering of single cells, through optical forces, on the basis of their fluorescence and. Both fluorescence detection and single cell sorting functions are integrated in the microfluidic chip by FLM. The device, which is specifically designed to operate with a limited amount of cells but with a very high selectivity, is fabricated by a two-step process that includes femtosecond laser irradiation followed by chemical etching. The capability of the device to act as a micro fluorescence-activated cell sorter has been tested on polystyrene beads and on tumor cells and the results on the single live cell recovery are reported.

  11. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Peng Hui; Salcedo, Walter J.; Pichaandi, Jothirmayanantham; van Veggel, Frank C. J. M.; Brolo, Alexandre G.

    2015-10-01

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold

  12. All-optical in situ histology of brain tissue with femtosecond laser pulses.

    PubMed

    Tsai, Philbert S; Blinder, Pablo; Squier, Jeffrey A; Kleinfeld, David

    2013-04-01

    This protocol describes the application of laser pulses to image and ablate neuronal tissue for the purpose of automated histology. The histology is accomplished in situ using serial two-photon imaging of labeled tissue and removal of the imaged tissue with amplified, femtosecond pulses. Together with the use of endogenous fluorescent indicators and/or deep penetration of antibody labels and organic dyes, this method may be used to automatically image, reconstruct, and vectorize structures of interest across millimeter to centimeter regions of brain with micrometer resolution.

  13. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  14. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-01

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  15. Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

    PubMed

    Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang

    2011-04-25

    This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction.

  16. Video rate passive millimeter-wave imager utilizing optical upconversion with improved size, weight, and power

    NASA Astrophysics Data System (ADS)

    Martin, Richard D.; Shi, Shouyuan; Zhang, Yifei; Wright, Andrew; Yao, Peng; Shreve, Kevin P.; Schuetz, Christopher A.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2015-05-01

    In this presentation we will discuss the performance and limitations of our 220 channel video rate passive millimeter wave imaging system based on a distributed aperture with optical upconversion architecture. We will cover our efforts to reduce the cost, size, weight, and power (CSWaP) requirements of our next generation imager. To this end, we have developed custom integrated circuit silicon-germanium (SiGe) low noise amplifiers that have been designed to efficiently couple with our high performance lithium niobate upconversion modules. We have also developed millimeter wave packaging and components in multilayer liquid crystal polymer (LCP) substrates which greatly improve the manufacturability of the upconversion modules. These structures include antennas, substrate integrated waveguides, filters, and substrates for InP and SiGe mmW amplifiers.

  17. Enhanced 2D-image upconversion using solid-state lasers.

    PubMed

    Pedersen, Christian; Karamehmedović, Emir; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2009-11-09

    Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.

  18. The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Alyatkin, Sergey; Asharchuk, Ilya; Khaydukov, Kirill; Nechaev, Andrey; Lebedev, Oleg; Vainer, Yuri; Semchishen, Vladimir; Khaydukov, Evgeny

    2017-01-01

    The mechanism of upconversion at the nanoscale is still under discussion. In this paper, we report on the experimental results of anti-Stokes luminescence kinetics in the upconversion nanoparticles of β-NaYF4: 20%Yb3+; 0.6%Tm3+. The parameters of the luminescence kinetics were found to be unambiguously dependent on the number of excitation quanta n, which are necessary for certain transitions between the energy states of thulium ions. The observed correlation has been explained by means of the long-lasting energy migration between the ytterbium ions. The spread in time between the luminescent maxima of the corresponding thulium transitions not only shows the nonlinear character of upconversion, but also reveals the time scale of energy migration as well. From these, we derive that the conventional Förster formalism applied to the estimation of energy transfer efficiency in UCNP-fluorophore pairs can provide misleading results.

  19. Plasmon enhanced upconversion for applications in solar energy harvesting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Wounjhang

    2016-09-01

    Rare-earth activated upconversion material is receiving renewed attention for their potential applications in bioimaging and solar energy conversion. Plasmon resonance can enhance the upconversion efficiency but the enhancement mechanism remained unclear due to the inherent complexity of upconversion process. In this study, we synthesized NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs) and modified the surface with an amphiphilic polymer, (poly(maleic anhydride-alt-octadecene) (PMAO), which makes UCNPs water-soluble and negatively charged. This in turn enables electrostatic self-assembly of UCNPs. We fabricated silver nanograting using laser-interference lithography and deposited 3 monolayers of UNCPs by polyelectrolyte-mediated layer-by-layer self-assembly process. It is noted that all the fabrication processes are scalable. We then conducted a comprehensive photoluminescence (PL) and transient PL spectroscopy. We observed up to 39x enhancement in PL intensity. A combination of numerical simulations, rate equation analysis and transient PL spectroscopy revealed that the total enhancement is made of 3.1x absorption enhancement and 2.7x energy transfer rate enhancement. The absorption enhancement makes the most contribution because the upconverted PL intensity varies quadratically with the absorption. This study represents the first experimental observation of plasmon enhanced energy transfer rate in UCNPs. It contributes to the long debate on the plasmon enhancement of Förster energy transfer process. Finally, we developed a new numerical modeling tool that can faithfully simulate the highly non-uniform light absorption and carrier generation in the plasmon enhanced photovoltaic devices. We used the tool to precisely predict the performance of photovoltaic devices incorporating plasmon enhanced upconversion and offer guidelines for upconversion photovoltaic devices.

  20. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Deng, Renren; Xie, Xiaoji; Huang, Ling; Liu, Xiaogang

    2016-03-01

    Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications.Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00812g

  1. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    NASA Astrophysics Data System (ADS)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2014-02-01

    Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source. It is, however, straightforward to increase the incoherent power by increasing the receiving aperture of the upconversion unit i.e. the diameter of the upconversion laser beam. Hence, the optimal conversion efficiency for incoherent light is not achieved by tightly focused beams. In this paper we show that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against experiments. We finally discuss how it can be used to design and predict system performance and how incoherent upconversion can be used for mid-IR spectroscopy and imaging.

  2. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.

    PubMed

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed.

  3. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    PubMed Central

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  4. Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection

    PubMed Central

    Shi, Yu; Shi, Bingyang; Dass, Arun V. Everest; Lu, Yiqing; Sayyadi, Nima; Kautto, Liisa; Willows, Robert D.; Chung, Roger; Piper, James; Nevalainen, Helena; Walsh, Bradley; Jin, Dayong; Packer, Nicolle H.

    2016-01-01

    Prostate cancer is one of the male killing diseases and early detection of prostate cancer is the key for better treatment and lower cost. However, the number of prostate cancer cells is low at the early stage, so it is very challenging to detect. In this study, we successfully designed and developed upconversion immune-nanohybrids (UINBs) with sustainable stability in a physiological environment, stable optical properties and highly specific targeting capability for early-stage prostate cancer cell detection. The developed UINBs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and luminescence spectroscopy. The targeting function of the biotinylated antibody nanohybrids were confirmed by immunofluorescence assay and western blot analysis. The UINB system is able to specifically detect prostate cancer cells with stable and background-free luminescent signals for highly sensitive prostate cancer cell detection. This work demonstrates a versatile strategy to develop UCNPs based sustainably stable UINBs for sensitive diseased cell detection. PMID:27874051

  5. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  6. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-05

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  7. Near-infrared (NIR) up-conversion optogenetics

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  8. Background free imaging of upconversion nanoparticle distribution in human skin

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Anissimov, Yuri G.; Zhao, Jiangbo; Nechaev, Andrei V.; Nadort, Annemarie; Jin, Dayong; Prow, Tarl W.; Roberts, Michael S.; Zvyagin, Andrei V.

    2013-06-01

    Widespread applications of nanotechnology materials have raised safety concerns due to their possible penetration through skin and concomitant uptake in the organism. This calls for systematic study of nanoparticle transport kinetics in skin, where high-resolution optical imaging approaches are often preferred. We report on application of emerging luminescence nanomaterial, called upconversion nanoparticles (UCNPs), to optical imaging in skin that results in complete suppression of background due to the excitation light back-scattering and biological tissue autofluorescence. Freshly excised intact and microneedle-treated human skin samples were topically coated with oil formulation of UCNPs and optically imaged. In the first case, 8- and 32-nm UCNPs stayed at the topmost layer of the intact skin, stratum corneum. In the second case, 8-nm nanoparticles were found localized at indentations made by the microneedle spreading in dermis very slowly (estimated diffusion coefficient, Dnp=3-7×10-12 cm2.s-1). The maximum possible UCNP-imaging contrast was attained by suppressing the background level to that of the electronic noise, which was estimated to be superior in comparison with the existing optical labels.

  9. Near-infrared (NIR) up-conversion optogenetics

    PubMed Central

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-01-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650–1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system. PMID:26552717

  10. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-10-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.

  11. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    PubMed Central

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-01-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions. PMID:27731350

  12. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  13. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior.

    PubMed

    Zhao, Bing; Qi, Ning; Zhang, Ke-Qin; Gong, Xiao

    2016-06-01

    Solar cells containing upconversion nanoparticles (UCNPs) used as a power source in biomedical nanosystems have attracted great interest. However, such solar cells further need to be developed because their substrate materials should be biocompatible, flexible and highly luminescent. Here, we report that freestanding silk fibroin (SF) films containing a mesh of silver nanowires (AgNWs) and β-NaYF4:Yb,Er nanocrystals with metal-enhanced fluorescence behavior can be fabricated. The freestanding composite films exhibit properties such as good optical transparency, conductivity and flexibility. Furthermore, they show significantly enhanced upconversion fluorescence due to surface plasmon polaritons (SPPs) of AgNWs compared to the SF-UCNP films without AgNWs. The freestanding composite films with metal-enhanced fluorescence behavior show great promise for future applications in self-powered nanodevices such as cardiac pacemakers, biosensors and nanorobots.

  14. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers.

    PubMed

    Booth, I J; Archambault, J L; Ventrudo, B F

    1996-03-01

    Photodegradation has been observed in Tm(3+)-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below ~650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C.

  15. Photodegradation of near-infrared-pumped Tm{sup 3+}-doped ZBLAN fiber upconversion lasers

    SciTech Connect

    Booth, I.J.; Archambault, J.; Ventrudo, B.F.

    1996-03-01

    Photodegradation has been observed in Tm{sup 3+}-doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below {approximately}650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100{degree}C. {copyright} {ital 1996 Optical Society of America.}

  16. Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: modeling and experiments

    NASA Astrophysics Data System (ADS)

    Qin, G.; Huang, S.; Feng, Y.; Shirakawa, A.; Musha, M.; Ueda, K.-I.

    2006-01-01

    Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers was investigated by a simple model. Based on our experimental results on blue fiber lasers, we discuss the effects of photodegradation and photocuring, fiber length, the reflectivity of the coupler mirror and fiber core diameter on further enhancement of blue fiber laser, respectively. The optimal parameters (including fiber length, fiber core diameter and the reflectivity of the coupler mirror) for the operation of high power (>1 W) blue fiber laser were presented through simple numerical simulations, which are valuable for the future design of high power blue upconversion fiber laser.

  17. Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers

    NASA Astrophysics Data System (ADS)

    Booth, Ian J.; Archambault, Jean-Luc; Ventrudo, Brian F.

    1996-03-01

    Photodegradation has been observed in Tm3+ -doped ZBLAN fiber lasers pumped with laser diodes at 1135 nm. After upconversion lasing at 482 nm, the fiber develops color centers that absorb strongly at wavelengths below \\similar 650 nm, affecting further upconversion lasing. The rate of damage formation is strongly dependent on the pump power level and on the thulium concentration. The color centers are bleached by intense blue light but recover with thermal excitation and can be removed by thermal annealing at temperature near 100 degrees C .

  18. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  19. Recent Progress on Plasmon-Enhanced Fluorescence

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Zhang, Zhenglong; Zheng, Hairong; Sun, Mentao

    2015-12-01

    The optically generated collective electron density waves on metal-dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle's surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

  20. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  1. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    SciTech Connect

    Wang, Yu; Li, Shunbo; Wen, Weijia

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  2. Controllable synthesis and upconversion emission of ultrasmall lanthanide-doped Sr2GdF7 nanocrystals

    NASA Astrophysics Data System (ADS)

    Xiang, Lijun; Ren, Guozhong; Mao, Yifu; He, Jin; Su, Rui

    2015-11-01

    The effect of rare-earth ions content on the phase structure, crystal size and morphology of SrF2-GdF3 system were studied under solvothermal conditions. By tuning the molar ratio of reactants, tetragonal phase Sr2GdF7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of reaction conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were investigated. The results reveal that apropos Gd3+ ions content (0.30-0.45 mmol) is favorable to the formation of pure phase Sr2GdF7 NCs with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. Following Yb3+, Er3+, Tm3+ and Ho3+ ions doping, the Sr2GdF7 NCs show intense green, yellow, and white-color UC emission under the excitation of a 980 nm laser, and the doping concentration of lanthanide ions was optimized, which makes the NCs show maximum intensities under the excitation of a 980 nm laser.

  3. Stand-off detection and classification of CBRNe using a Lidar system based on a high power femtosecond laser

    NASA Astrophysics Data System (ADS)

    Izawa, Jun; Yokozawa, Takeshi; Kurata, Takao; Yoshida, Akihiro; Mastunaga, Yasushi; Somekawa, Toshihiro; Eto, Shuzo; Manago, Naohiro; Horisawa, Hideyuki; Yamaguchi, Shigeru; Fujii, Takashi; Kuze, Hiroaki

    2014-10-01

    We propose a stand-off system that enables detection and classification of CBRNe (Chemical, Biological, Radioactive, Nuclear aerosol and explosive solids). The system is an integrated lidar using a high-power (terawatt) femtosecond laser. The detection and classification of various hazardous targets with stand-off distances from several hundred meters to a few kilometers are achieved by means of laser-induced breakdown spectroscopy (LIBS) and two-photon fluorescence (TPF) techniques. In this work, we report on the technical considerations on the system design of the present hybrid lidar system consisting of a nanosecond laser and a femtosecond laser. Also, we describe the current progress in our laboratory experiments that have demonstrated the stand-off detection and classification of various simulants. For the R and N detection scheme, cesium chloride aerosols have successfully been detected by LIBS using a high-power femtosecond laser. For the B detection scheme, TPF signals of organic aerosols such as riboflavin have clearly been recorded. In addition, a compact femtosecond laser has been employed for the LIBS classification of organic plastics employed as e-simulants.

  4. Up-conversion emission in KGd(WO 4 ) 2 single crystals triply-doped with Er 3+ /Yb 3+ /Tm 3+ , Tb 3+ /Yb 3+ /Tm 3+ and Pr 3+ /Yb 3+ /Tm 3+ ions

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Majchrowski, A.; Michalski, E.; Głuchowski, P.

    2011-09-01

    Triply-doped single crystals KGd(WO 4) 2:Er 3+/Yb 3+/Tm 3+, KGd(WO 4) 2:Tb 3+/Yb 3+/Tm 3+ and KGd(WO 4) 2:Pr 3+/Yb 3+/Tm 3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb 3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host's conduction band and other possible defects of the KGd(WO 4) 2 crystal lattice in the up-conversion processes.

  5. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Grachev, Pavel V.; Romanishkin, Igor D.; Kuznetsov, Sergei V.; Rozhnova, Julia A.; Yasyrkina, Daria S.; Fedorov, Pavel P.; Loschenov, Victor B.

    2016-09-01

    The great interest in upconversion nanoparticles exists due to their high efficiency under multiphoton excitation. However, when these particles are used in scanning microscopy, the upconversion luminescence causes a streaking effect due to the long lifetime. This article describes a method of upconversion microparticle luminescence lifetime determination with help of modified Lucy-Richardson deconvolution of laser scanning microscope (LSM) image obtained under near-IR excitation using nondescanned detectors. Determination of the upconversion luminescence intensity and the decay time of separate microparticles was done by intensity profile along the image fast scan axis approximation. We studied upconversion submicroparticles based on fluoride hosts doped with Yb3+-Er3+ and Yb3+-Tm3+ rare earth ion pairs, and the characteristic decay times were 0.1 to 1.5 ms. We also compared the results of LSM measurements with the photon counting method results; the spread of values was about 13% and was associated with the approximation error. Data obtained from live cells showed the possibility of distinguishing the position of upconversion submicroparticles inside and outside the cells by the difference of their lifetime. The proposed technique allows using the upconversion microparticles without shells as probes for the presence of OH- ions and CO2 molecules.

  6. Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Zhaofeng; Zeng, Songshan; Yu, Jingfang; Ji, Xiaoming; Zeng, Huidan; Xin, Shuangyu; Wang, Yuhua; Sun, Luyi

    2015-05-01

    In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er3+,Yb3+ nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er3+,Yb3+ nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications.In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er3+,Yb3+ nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er3+,Yb3+ nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications. Electronic supplementary information (ESI) available: Crystal structure analysis, UV-Vis absorption spectra, SEM micrographs, surface micro-structure investigation, biocompatibility of Lu5O4F7: Er3+, Yb3+, as well as morphology and upconversion properties of the control sample NaYF4: Er3+, Yb3+. See DOI: 10.1039/c5nr01008j

  7. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.

    PubMed

    Dobner, Sven; Groß, Petra; Fallnich, Carsten

    2013-06-28

    We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in experiments to two established techniques, namely femtosecond stimulated Raman scattering and femtosecond Raman induced Kerr-effect spectroscopy.

  8. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    SciTech Connect

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan; Liu, Yang; Tong, Cuiyan; Zhang, Xing; Kang, Zhenhui

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  9. Absolute fluorescence measurements > 1000 nm: setup design, calibration and standards (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Resch-Genger, Ute; Würth, Christian; Pauli, Jutta; Hatami, Soheil; Kaiser, Martin

    2016-03-01

    There is an increasing interest in optical reporters like semiconductor quantum dots and upconversion nanophosphors with emission < 1000 nm for bioanalysis, medical diagnostics, and safety barcodes and hence, in reliable fluorescence measurements in this wavelength region, e.g., for the comparison of material performance and the rational design of new nanomaterials with improved properties [1-4]. The performance of fluorescence measurements < 800 nm and especially < 1000 nm is currently hampered by the lack of suitable methods and standards for the simple determination of the wavelength-dependent spectral responsivity of fluorescence measuring systems and the control of measured emission spectra and intensities [3-5]. This is of special relevance for nanocrystalline emitters like quantum dots and rods as well as for upconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Here, we present the design of an integrating sphere setup for the absolute measurement of emission spectra and quantum yields in the wavelength region of 650 to 1600 nm and its calibration as well as examples for potential fluorescence standards from different reporter classes for the control of the reliability of such measurements [5]. This includes new spectral fluorescence standards for the wavelength region of 650 nm to 1000 nm as well as a set of quantum yield standards covering the wavelength region from 400 nm to 1000 nm.

  10. UPCONVERSION LUMINESCENCE ENHANCEMENT OF NaYF4:Yb3+, Er3+ NANOPARTICLES ON INVERSE OPAL SURFACE

    NASA Astrophysics Data System (ADS)

    Liao, Jiayan; Yang, Zhengwen; Wu, Hangjun; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2014-01-01

    LaPO4 inverse opal photonic crystals with different photonic band gaps were fabricated by template-assisted method. The Yb3+/Er3+ co-doped NaYF4 nanoparticles were deposited on the surfaces of the inverse opals, and their up-conversion emission properties were investigated. The upconversion emissions of Yb3+/Er3+ co-doped NaYF4 nanoparticles on the inverse opal surfaces have been enhanced when the upconversion emission bands of the nanoparticles are in the range of photonic band gaps of the inverse opals, which is attributed to an efficient and selective reflection of photonic band gaps.

  11. Upconversion luminescence in BaMoO{sub 4}:Pr{sup 3+} phosphor for display devices

    SciTech Connect

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2015-08-28

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO{sub 4}:Pr{sup 3+} powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  12. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  13. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  14. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  15. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  16. Near-infrared (NIR) optogenetics using up-conversion system

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  17. Strain-sensitive upconversion for imaging biological forces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lay, Alice; Wisser, Michael; Lin, Yu; Narayan, Tarun; Krieg, Michael; Atre, Ashwin; Goodman, Miriam; Dionne, Jennifer A.

    2016-09-01

    Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.

  18. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    SciTech Connect

    Smits, K. Sarakovskis, A.; Grigorjeva, L.; Millers, D.; Grabis, J.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonal or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.

  19. White up-conversion luminescence of NaYF4:Yb3+,Pr3+,Er3+

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Laamanen, Taneli; Laihinen, Tero; Lastusaari, Mika; Pihlgren, Laura; Rodrigues, Lucas C. V.

    2014-08-01

    Photon up-conversion which yields higher energy emission by stacking lower energy photons is possible only with specific rare earth ions. Despite this, it has several potential applications. NaYF4 with Yb3+,Er3+ co-doping has been recognized as one of the most feasible materials for efficient up-conversion luminescence. In this work, the up-conversion luminescence of the Pr3+-Er3+ combination was studied using sensitization by Yb3+. Emission was observed in the visible including blue, green, yellow, orange and red. These are due to the 3P0,1 → 3H4-6,3F2-4 and 1D2 → 3H4 (Pr3+) as well as 2H11/2,4S3/2,4F9/2 → 4I15/2 (Er3+) transitions. Concentration quenching of the Pr3+ luminescence was observed already with 1 mol-% due to many cross-relaxation processes. With naked eye, the up-conversion luminescence was seen as white light. The CIE chromaticity coordinates are close to those of the standard illuminant F4 which represents warm white.

  20. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    NASA Astrophysics Data System (ADS)

    Corr, L. R.; Ma, D. T.

    2016-08-01

    Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact) area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system) dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  1. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    SciTech Connect

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K.

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  2. Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection.

    PubMed

    Xue, Meng; Zhu, Xingjun; Qiu, Xiaochen; Gu, Yuyang; Feng, Wei; Li, Fuyou

    2016-07-20

    Upconversion luminescence nanomaterials have shown great potential in biological and physical applications because of their unique properties. However, limited research exists on the cooperative sensitization upconversion emission in Tb(3+) ions over Er(3+) ions and Tm(3+) ions because of its low efficiency. Herein, by optimizing the doping ratio of sensitizer and activator to maximize the utilization of the photon energy and introducing the CaF2 inert shell to shield sensitizer from quenchers, we synthesize ultrasmall NaYbF4:Tb@CaF2 nanoparticles with a significant enhancement (690-fold) in cooperative sensitization upconversion emission intensity, compared with the parent NaYbF4:Tb. The lifetime of Tb(3+) emission in NaYbF4:Tb@CaF2 nanoparticles is prolonged extensively to ∼3.5 ms. Furthermore, NaYbF4:Tb@CaF2 was applied in in vitro and in vivo bioimaging. The presented luminescence enhancement strategy provides cooperative sensitization upconversion with new opportunities for bioapplication.

  3. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  4. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Frontiera, Renee R; Henry, Anne-Isabelle; Gruenke, Natalie L; Van Duyne, Richard P

    2011-05-19

    Surface-enhanced Raman spectroscopy (SERS) and femtosecond stimulated Raman spectroscopy (FSRS) have revolutionized the Raman spectroscopy field. SERS provides spectroscopic detection of single molecules, and FSRS enables the acquisition of Raman spectra on the ultrafast time scale of molecular motion. Here, we present the first successful combination of these two techniques, demonstrating surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) using gold nanoantennas with embedded reporter molecules. Using a picosecond Raman and femtosecond probe pulse, the time- and ensemble-averaged enhancement factor is estimated to be in the range of 10(4)-10(6). We report the line shapes, power dependence, and magnitude of the SE-FSRS signal and discuss contributions to sample degradation on the minute time scale. With these first successful proof-of-principle experiments, time-resolved SE-FSRS techniques can now be rationally attempted with the goals of investigating the dynamics of plasmonic materials as well as examining the contributions of environmental heterogeneities by probing more homogeneous molecular subsets.

  5. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation.

    PubMed

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu S M; Blandin, Pierre; Chon, James W M; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew H A; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed.

  6. Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser.

    PubMed

    Luo, Fangfang; Qian, Bin; Lin, Geng; Xu, Jian; Liao, Yang; Song, Juan; Sun, Haiyi; Zhu, Bin; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan

    2010-03-15

    The redistribution of elements in a multicomponent oxyfluoride glass is induced by a 250 kHz femtosecond laser. Elemental distribution in the cross section of the modified region along the laser propagation axis is analyzed by an electron microprobe analyzer. The results indicate that the relative concentrations of network formers of the glass are higher in the central area of the modified region and lower in the periphery of the modified region compared with the unirradiated areas. However, the relative concentrations of network modifiers are as opposed to that of network formers. Fluorescence spectra confirm that the distribution of fluorescence intensity of Yb(3+) in the modified region is consistent with that of its concentration. The effects of spherical aberration of the incident beam on the elemental redistribution are also discussed.

  7. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    PubMed Central

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114

  8. In vivo micro-lesion of single dendrite with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Masi, A.; Diana, G.; Buffelli, M.; Pavone, F. S.

    2007-07-01

    Recently, two-photon microscopy has been used for high spatial resolution imaging of the intact neocortex in living rodents. In this work we used near-IR femtosecond laser pulses for a combination of two-photon microscopy and microdissection on fluorescently-labeled neuronal structures in living mice. Three-dimensional reconstructions of dendrites expressing the green fluorescence protein were made in the cortex of GFP-M and YFP-H transgenic mice. Afterwards, single dendrites were laser-dissected irradiating the structure with a high femtosecond laser energy dose. We report that laser dissection can be performed with micrometric precision and without any visible collateral damage of the surrounding neuronal structures. After laser irradiation, one part of the severed dendrite underwent degeneration and disappeared within 5 hours. Using a chronically implanted glass window, we performed long-term imaging in the area of the dissected dendrite. Images of the long-term morphological changes in the neuronal network after dendritic lesioning will be provided. Laser microdissection of selected structures of the neuronal branching in vivo represents a promising tool for neurobiological research.

  9. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity.

    PubMed

    Turunen, S; Käpylä, E; Terzaki, K; Viitanen, J; Fotakis, C; Kellomäki, M; Farsari, M

    2011-12-01

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  10. Femtosecond excitonic relaxation dynamics of perovskite on mesoporous films of Al₂O₃ and NiO nanoparticles.

    PubMed

    Hsu, Hung-Yu; Wang, Chi-Yung; Fathi, Amir; Shiu, Jia-Wei; Chung, Chih-Chun; Shen, Po-Shen; Guo, Tzung-Fang; Chen, Peter; Lee, Yuan-Pern; Diau, Eric Wei-Guang

    2014-08-25

    The excitonic relaxation dynamics of perovskite adsorbed on mesoporous thin films of Al2O3 and NiO upon excitation at 450 nm were investigated with femtosecond optical gating of photoluminescence (PL) via up-conversion. The temporal profiles of emission observed in spectral region 670-810 nm were described satisfactorily with a composite consecutive kinetic model and three transient components representing one hot and two cold excitonic relaxations. All observed relaxation dynamics depend on the emission wavelength, showing a systematic time-amplitude correlation for all three components. When the NiO film was employed, we observed an extent of relaxation proceeding through the non-emissive surface state larger than through the direct electronic relaxation channel, which quenches the PL intensity more effectively than on the Al2O3 film. We conclude that perovskite is an effective hole carrier in a p-type electrode for NiO-based perovskite solar cells showing great performance.

  11. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  12. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation.

    PubMed

    Weigel, A; Dobryakov, A; Klaumünzer, B; Sajadi, M; Saalfrank, P; Ernsting, N P

    2011-04-07

    In blue-light photoreceptors using flavin (BLUF), the signaling state is formed already within several 100 ps after illumination, with only small changes of the absorption spectrum. The accompanying structural evolution can, in principle, be monitored by femtosecond stimulated Raman spectroscopy (FSRS). The method is used here to characterize the excited-state properties of riboflavin and flavin adenine dinucleotide in polar solvents. Raman modes are observed in the range 90-1800 cm(-1) for the electronic ground state S(0) and upon excitation to the S(1) state, and modes >1000 cm(-1) of both states are assigned with the help of quantum-chemical calculations. Line shapes are shown to depend sensitively on resonance conditions. They are affected by wavepacket motion in any of the participating electronic states, resulting in complex amplitude modulation of the stimulated Raman spectra. Wavepackets in S(1) can be marked, and thus isolated, by stimulated-emission pumping with the picosecond Raman pulses. Excited-state absorption spectra are obtained from a quantitative comparison of broadband transient fluorescence and absorption. In this way, the resonance conditions for FSRS are determined. Early differences of the emission spectrum depend on excess vibrational energy, and solvation is seen as dynamic Stokes shift of the emission band. The nπ* state is evidenced only through changes of emission oscillator strength during solvation. S(1) quenching by adenine is seen with all methods in terms of dynamics, not by spectral intermediates.

  13. Sub-10 nm Sr2LuF7:Yb/Er@Sr2GdF7@SrF2 Up-Conversion Nanocrystals for Up-Conversion Luminescence-Magnetic Resonance-Computed Tomography Trimodal Bioimaging.

    PubMed

    Chen, Cailing; Liu, Jianhua; Chen, Ying; Li, Chunguang; Liu, Xiaomin; Huang, He; Liang, Chen; Lou, Yue; Shi, Zhan; Feng, Shouhua

    2017-02-22

    Herein, sub-10 nm core-shell nanocrystals (NCs), which select Sr2LuF7:Yb/Er as core, Sr2GdF7 as middle shell, and SrF2 as an outermost shell, were synthesized by a seed-mediated growth process. The NCs possess good crystallinity, morphology, and up-conversion luminescent properties. After modification by polyethylenimine branched (PEI), in vitro cell up-conversion imaging with low autofluorescence was realized. Due to the presence of Gd(3+) ions, in vivo magnetic resonance (MR) imaging was also achieved with these designed NCs. More significantly, these special core-shell NCs exhibited high contrast in in vivo X-ray computed tomography (CT) imaging because of their good X-ray absorption ability. These results indicate that the core-shell up-conversion NCs can serve as promising contrast agents for up-conversion luminescence-MR-CT trimodal bioimaging.

  14. Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Teitelboim, Ayelet; Oron, Dan

    2016-09-01

    Upconversion (UC) is a nonlinear process in which two, or more, long wavelength photons are converted to a shorter wavelength photon. This process is based on sequential absorption of two or more photons, involving metastable, long lived intermediate energy states, thus is not restricted to upconversion of coherent laser radiation as a non-coherent process. Hence, requirements for UC processes are long lived excited states, a ladder like arrangement of energy levels and a mechanism inhibiting cooling of the hot charge carrier. UC holds great promise for bioimaging, enabling spatially resolved imaging in a scattering specimen and for photovoltaic devices as a mean to surpass the Shockley-Queisser efficiency limit. Here, we present a novel luminescence upconversion nano-system based on colloidal semiconductor double quantum dots, consisting of a NIR-emitting component and a visible emitting component separated by a tunneling barrier in a spherical onion-like geometry. These dual near-infrared and visible emitting core/shell/shell PbSe/CdSe/CdS nanocrystals are shown to upconvert a broad range of NIR wavelengths to visible emission at room temperature, covering a spectral range where there are practically no alternative upconversion systems. The synthesis is a three-step process, which enables versatility and tunability of both the visible emission color and the NIR absorption edge. Using this method one can achieve a range of desired upconverted emission peak positions with a suitable NIR band gap. The physical mechanism for upconversion in this structure, as well as possible extensions and improvements will be discussed. 1 (1) Teitelboim, A.; Oron, D. ACS Nano 2015, acsnano.5b05329.

  15. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications

    SciTech Connect

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M.; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near Infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) have recently been proposed in order to broaden the absorption range and to boost upconversion efficiency. However, implementing this strategy has been limited only to bare core UCNP structures that are faintly luminescent. Herein, we report on an approach to achieve significantly enhanced upconversion luminescence in dye-sensitized core-active shell UCNPs with a broadened absorption range via the doping of ytterbium ions in the UCNP shell in order to bridge the energy transfer from the dye to the UCNP core. As a result, we have been able to synergize the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement). The absolute quantum yield of our dye-sensitized core/active shell UCNPs at 800 nm was determined to be ~6% at 2 W/cm2, about 33 times larger than the highest value reported to date for existing 800 nm excitable UCNPs. Moreover, for the first time, by using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a wavelength that is compatible with deep tissue penetrable near the infrared wavelength at 800 nm. Finally, amphiphilic triblock copolymer, Pluronic F127 coatings permit the transfer of hydrophobic UCNPs into water, resulting in water-soluble nanoparticles with well-preserved optical property in aqueous solution. We believe that this research offers a new solution to enhance upconversion efficiency for photonic and biophotonic purposes and opens up new opportunities to use UCNPs as a NIR relay for optogenetic applications.

  16. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization

    NASA Astrophysics Data System (ADS)

    Pominova, D. V.; Ryabova, A. V.; Linkov, K. G.; Romanishkin, I. D.; Kuznetsov, S. V.; Rozhnova, J. A.; Konov, V. I.; Loschenov, V. B.

    2016-08-01

    Emission spectral properties and quantum efficiency of upconversion particles NaYF4, SrF2, LaF3, BaF2 i CaF2, doped with rare earth ions pair Yb3+-Er3+ were studied using continuous wave (CW) and pulsed periodic excitation modes in the near infrared (NIR) spectral range. Analysis of the obtained results showed that the intensity ratio of upconversion luminescence in green and red spectral ranges depends on excitation pulse duration. Thus, by changing the pulse duration the spectral properties of upconversion luminescence can be controlled. Crystals with higher phonon energy are more sensitive to the change of pumping mode. Interpretation of results was performed on the rate equation model basis. Using numerical methods for all energy levels involved in the upconversion process the population and depopulation dynamics were obtained with respect to the duration of the excitation pulses. It was shown that about 30 ms was required for the complete population of 4F9/2 state, from which the luminescence in the red spectral range occurs. When the pulse duration was less than 30 ms, the 4F9/2 population did not reach a steady state and the intensity of the luminescence in the red part of the spectrum was reduced. The theoretical dependence of the upconversion luminescence intensity in the green and red ranges of the excitation pulse duration for NaYF4:Yb0.2-Er0.02 composition was obtained and demonstrates good agreement with the experimental results.

  17. Femtosecond Carrier Dynamics in Aluminum Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Ulman, Morrison

    The femtosecond dynamics of electrons and holes in AlGaAs are studied by combining femtosecond laser spectroscopy and ensemble Monte Carlo simulation. A femtosecond pulsed laser system is used to investigate ultrafast dynamics in the semiconductor via pump-probe spectroscopy. An ultrashort optical pulse focussed on the sample excites a transient carrier distribution. The evolution of this distribution is determined from transmission measurements of a probe pulse which is delayed for some time after the exciting ("pump") pulse. The delay between the pump and probe pulses is varied in sub-femtosecond steps so the measurement time resolution is limited only by the laser pulse duration which is 40 femtoseconds. The nonlinear optical response of the material is caused by the dynamics of electrons and holes. They are characterized by an energy distribution function. In thermal equilibrium the distribution function is the Fermi function multiplied by the density of states. After optical excitation, however, the distribution is non-thermal. In fact its shape reflects the spectrum of the exciting optical pulse and the allowed optical transitions in the system. The non-equilibrium distribution thermalizes in approximately 100 fs and cools to the lattice temperature in about 1000 fs. Pump-probe data are measurements of pump pulse induced changes in the transmission of the probe pulse through the sample. These data do not directly reveal the underlying carrier distributions, however. Accurate modelling is complicated by the need to take into account several optical transitions and many carrier relaxation mechanisms. In collaboration with theorists at the University of Florida we are able to establish correspondence between our experimental results and predicted carrier distributions through the use of ensemble Monte Carlo simulations. The theory fits the data well and and may be used to predict behavior in future experiments and possibly AlGaAs optoelectronic devices. (Copies

  18. Femtosecond study on the isomerization dynamics of NK88. II. Excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Vogt, Gerhard; Nuernberger, Patrick; Gerber, Gustav; Improta, Roberto; Santoro, Fabrizio

    2006-07-01

    The molecule 3,3'-diethyl-2,2'-thiacyanine isomerizes after irradiation with light of the proper wavelength. After excitation, it undergoes a transition, in which one or more conical intersections are involved, back to the ground state to form different product photoisomers. The dynamics before and directly after the transition back to the ground state is investigated by transient absorption spectroscopy in a wavelength region of 360-950nm, as well as by fluorescence upconversion. It is shown that the excited-state dynamics are governed by two time scales: a short one with a decay time of less than 2ps and a long one with about 9ps. A thorough comparison of the experimental results with those of configuration interaction singles and time-dependent density functional theory calculations suggests that these dynamics are related to two competing pathways differing in the molecular twisting on the excited surface after photoexcitation. From the experimental point of view this picture arises taking into account the time scales for ground-state bleach, excited-state absorption, stimulated emission, fluorescence, and assumed hot ground-state absorption both in the solvent methanol and ethylene glycol.

  19. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing

    NASA Astrophysics Data System (ADS)

    Zou, Haixia; Jin, Fengmin; Song, Xiaoyan; Xing, Jinfeng

    2017-04-01

    The introduction of a thick shell structure has been widely used to enhance the emission intensity of upconversion nanoparticles (UCNPs). However, a thick shell could increase the distance between UCNPs and photosensitizers, which is not favourable to the generation of singlet oxygen (1O2) in photodynamic therapy (PDT) due to the low fluorescence resonance energy transfer (FRET) efficiency. In this study, we used a facile method to prepare UCNPs that the emission intensity could increase with the shell thickness decreasing, which facilitated the efficient FRET between UCNPs and photosensitizers. In detail, the Nd3+-doped UCNPs with different dopant concentration of Yb3+ were prepared and characterized firstly. The Ir/g (intensity of red luminescence to green luminescence) was tuned to increase largely by precisely controlling Yb3+ concentration in core-shell, which could make UCNPs effectively activate methylene blue (MB). Then, a unique procedure was used to prepare NaYF4:Yb/Er/Nd@NaYF4:Nd (Yb3+:30%) core-shell nanoparticles with different shell thickness by tuning the amount of the core. The upconversion luminescence (UCL) intensity of those UCNPs enhanced dramatically with the shell thickness decreasing. Furthermore, UCNPs and MB were encapsulated into SiO2 nanoparticles. FRET efficiency between UCNPs and MB largely increased with the shell thickness of UCNPs decreasing. Correspondingly, the efficiency of 1O2 generation obviously increased. We provided a new method to optimize the UCL intensity and FRET efficiency at the same time to produce 1O2 efficiently.

  20. Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF5:Ln(3+) (Ln = Yb/Er/Eu) nanophosphors.

    PubMed

    Li, Honglan; Liu, Guixia; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2016-08-03

    A series of Yb(3+), Er(3+), and Eu(3+) ions doped BaGdF5 dual-mode (down-conversion (DC) and upconversion (UC)) luminescent nanophosphors were successfully prepared by a simple one-step hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometry (EDS), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime measurements, and vibrating sample magnetometry (VSM) were utilized to characterize the samples. Under 274 nm UV light excitation, BaGd0.78-zF5:0.2Yb(3+),0.02Er(3+),zEu(3+) phosphors emitted orange emission. Under 980 nm NIR irradiation, intense up-converted visible green emissions were observed in BaGdF5:Yb(3+),Er(3+)/Eu(3+) samples. The mechanism of UC emissions involved two-photon absorption. In the Yb(3+),Er(3+),Eu(3+) co-doped BaGdF5 phosphors, the energy transfer processes from Gd(3+) to Eu(3+) and from Yb(3+) to Er(3+) were discussed. Tunable colors were visualised with the help of the Commission Internationale de L'Eclairage (CIE) chromaticity diagram and the processes responsible for the DC and UC emissions were discussed in detail. The enhanced up-conversion luminescence of Yb(3+),Er(3+)/Eu(3+) co-doped BaGdF5 nanophosphors (NPs) was realized by modifying the trisodium citrate (Cit(3-)) surfactant. Moreover, the as-prepared samples exhibited paramagnetic properties at room temperature. This type of multifunctional orange-green emitting nanophosphor has promising applications in solid state lasers, lighting, MRI, anti-counterfeiting, biolabels, and so on.

  1. Magnetic tuning of upconversion luminescence in Au/NaGdF4:Yb(3+)/Er(3+) nanocomposite.

    PubMed

    Dai, Gangtao; Zhong, Zhiqiang; Wu, Xiaofeng; Zhan, Shiping; Hu, Shigang; Hu, Pan; Hu, Junshan; Wu, Shaobing; Han, Junbo; Liu, Yunxin

    2017-04-18

    Lanthanide-doped upconversion nanoparticles (UCNPs) NaGdF4:Yb(3+)/Er(3+) have received increasing attention due to their unique optical-magnetic bifunctional properties. Here, we show that the luminescent intensity from NaGdF4:Yb(3+)/Er(3+) nanoparticles decreases monotonously with increasing the applied magnetic field from 0 to 37.1 T, while plasmon-enhanced upconversion luminescence in Au/NaGdF4:Yb(3+)/Er(3+) nanocomposite is independent of a magnetic field lower than 6 T. The surface plasmon resonances could compensate for the energetic mismatching between the excitation light and the energy-level gaps induced by magnetic field and enhance the radiative efficiency, which is the main factor for achieving this stable upconversion emission in this nanocomposite under a magnetic field not higher than 6 T. These findings provide a novel route for exploring the magnetic control of upconversion luminescence in lanthanide-doped bifunctional nanoparticles.

  2. Magnetic tuning of upconversion luminescence in Au/NaGdF4:Yb3+/Er3+ nanocomposite

    NASA Astrophysics Data System (ADS)

    Dai, Gangtao; Zhong, Zhiqiang; Wu, Xiaofeng; Zhan, Shiping; Hu, Shigang; Hu, Pan; Hu, Junshan; Wu, Shaobing; Han, Junbo; Liu, Yunxin

    2017-04-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) NaGdF4:Yb3+/Er3+ have received increasing attention due to their unique optical-magnetic bifunctional properties. Here, we show that the luminescent intensity from NaGdF4:Yb3+/Er3+ nanoparticles decreases monotonously with increasing the applied magnetic field from 0 to 37.1 T, while plasmon-enhanced upconversion luminescence in Au/NaGdF4:Yb3+/Er3+ nanocomposite is independent of a magnetic field lower than 6 T. The surface plasmon resonances could compensate for the energetic mismatching between the excitation light and the energy-level gaps induced by magnetic field and enhance the radiative efficiency, which is the main factor for achieving this stable upconversion emission in this nanocomposite under a magnetic field not higher than 6 T. These findings provide a novel route for exploring the magnetic control of upconversion luminescence in lanthanide-doped bifunctional nanoparticles.

  3. Experimental demonstration of hot carrier upconversion using Au, Ag, and GaN/InGaN quantum wells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Naik, Gururaj V.; Welch, Alex J.; Dionne, Jennifer A.

    2016-09-01

    Plasmon resonances in metallic nanoparticles result in enhanced light absorption and hot carrier generation. Although hot carriers are short-lived, their energy can be extracted in optical form resulting in photon upconversion. Two low energy photons absorbed by a plasmonic nanostructure, create a hot electron and a hot hole. These hot carriers get injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a higher energy photon resulting in photon upconversion. This process involves injection of an electron and a hole across the same interface making it charge neutral. The upconversion emission has a linear dependence on the incident light intensity, making it promising for applications requiring low power operation. Theoretical studies show that a silver/semiconductor system can have an ideal efficiency of 25%. Our experimental demonstration of this new scheme utilizes GaN/InGaN quantum wells decorated with both silver and gold. The use of two metals reduces band-bending in the semiconductor. Illuminating the sample with light spanning wavelengths of 500-540 nm produces upconversion photoluminescence centered at 435 nm. Control samples including undecorated quantum wells and metal nanostructures on a glass substrate do not show any upconversion ruling out possibilities of upconversion in individual materials. Further, the linear dependence of the upconverted light intensity with incident intensity rules out any non-linear or Auger mediated mechanisms. We will describe how this hot carrier upconversion process promises to be broadband, tunable, and more efficient than existing solid-state upconversion schemes, and discuss potential applications in solar energy, security, and photodetection applications.

  4. Blue and green up-conversion in ZBLAN Tm3+,Yb3+-codoped glasses pumped with LD 970-nm laser

    NASA Astrophysics Data System (ADS)

    Cao, Wanghe; Kan, Shidong; Zang, Chuanyi

    1998-08-01

    The quality of synthesized ZBLAN:Tm3+,Yb3+ glasses is analyzed and an efficient up-concentration in the blue and green light of Tm3+ containing different concentration ratio of Tm3+:Yb3+ demonstrated under LD 970 nm pumping. The up-conversion process of Tm3+ in ZBLAN:Tm3+,Yb3+ glasses are presented. The up-conversion in green can be limited restrained by the concentration of Yb3+.

  5. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  6. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in Na(x)REF(3+x) Nanocrystals.

    PubMed

    Dong, Hao; Sun, Ling-Dong; Wang, Ye-Fu; Ke, Jun; Si, Rui; Xiao, Jia-Wen; Lyu, Guang-Ming; Shi, Shuo; Yan, Chun-Hua

    2015-05-27

    Efficient tailoring of upconversion emissions in lanthanide-doped nanocrystals is of great significance for extended optical applications. Here, we present a facile and highly effective method to tailor the upconversion selectivity by engineering the local structure of lanthanides in Na(x)REF(3+x) nanocrystals. The local structure engineering was achieved through precisely tuning the composition of nanocrystals, with different [Na]/[RE] ([F]/[RE]) ratio. It was found that the lattice parameter as well as the coordination number and local symmetry of lanthanides changed with the composition. A significant difference in the red to green emission ratio, which varied from 1.9 to 71 and 1.6 to 116, was observed for Na(x)YF(3+x):Yb,Er and Na(x)GdF(3+x):Yb,Er nanocrystals, respectively. Moreover, the local structure-dependent upconversion selectivity has been verified for Na(x)YF(3+x):Yb,Tm nanocrystals. In addition, the local structure induced upconversion emission from Er(3+) enhanced 9 times, and the CaF2 shell grown epitaxially over the nanocrystals further promoted the red emission by 450 times, which makes it superior as biomarkers for in vivo bioimaging. These exciting findings in the local structure-dependent upconversion selectivity not only offer a general approach to tailoring lanthanide related upconversion emissions but also benefit multicolor displays and imaging.

  7. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism.

  8. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  9. Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency.

    PubMed

    Yu, Jia; Yang, Yulin; Fan, Ruiqing; Liu, Danqing; Wei, Liguo; Chen, Shuo; Li, Liang; Yang, Bin; Cao, Wenwu

    2014-08-04

    New near-infrared (NIR)-to-green upconversion nanoparticles of Ho(3+)-Yb(3+)-F(-) tridoped TiO2 (UC-F-TiO2) were designed and fabricated via the hydrosol-hydrothermal method. Under 980 nm NIR excitation, UC-F-TiO2 emit strong green upconversion fluorescence with three emission bands at 543, 644, and 751 nm and convert the NIR light in situ to the dye-sensitive visible light that could effectively reduce the distance between upconversion materials and sensitizers; thus, they minimize the loss of the converted light. Our results show that this UC-F-TiO2 offers excellent opportunities for the other types of solar cells applications, such as organic solar cells, c-Si solar cells, multijunction solar cells, and so on. When integrating the UC-F-TiO2 into dye-sensitized solar cells (DSSCs), superior total energy conversion efficiency was achieved. Under AM1.5G light, open-circuit voltage reached 0.77 ± 0.01 V, short-circuit current density reached 21.00 ± 0.69 mA cm(-2), which resulted in an impressive overall energy conversion efficiency of 9.91 ± 0.30%, a 37% enhancement compared to DSSCs with pristine TiO2 photoanode.

  10. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  11. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  12. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  13. Colorizing metals with femtosecond laser pulses

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-28

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  14. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  15. Electron Vortices in Femtosecond Multiphoton Ionization

    NASA Astrophysics Data System (ADS)

    Pengel, D.; Kerbstadt, S.; Johannmeyer, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2017-02-01

    Multiphoton ionization of potassium atoms with a sequence of two counter-rotating circularly polarized femtosecond laser pulses produces vortex-shaped photoelectron momentum distributions in the polarization plane describing Archimedean spirals. The pulse sequences are produced by polarization shaping and the three-dimensional photoelectron distributions are tomographically reconstructed from velocity map imaging measurements. We show that perturbative ionization leads to electron vortices with c6 rotational symmetry. A change from c6 to c4 rotational symmetry of the vortices is demonstrated for nonperturbative interaction.

  16. Colorizing metals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  17. Femtosecond compressed-nitrogen Raman laser

    NASA Astrophysics Data System (ADS)

    Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.

    2017-01-01

    We have estimated the minimum laser pulse duration at which stimulated Raman scattering in gases is possible. Femtosecond Ti : sapphire laser pulses have been converted to the first Stokes in compressed nitrogen using double-pulse pumping of a gas-filled capillary tube by orthogonally polarised chirped pulses. We have obtained 980-nm Stokes pulses of 51 fs duration. The energy conversion efficiency was 12% at a pulse repetition rate of 1 kHz and average laser output power of 2 W.

  18. Spatiotemporal rogue events in femtosecond filamentation

    SciTech Connect

    Majus, D.; Jukna, V.; Valiulis, G.; Dubietis, A.; Faccio, D.

    2011-02-15

    We present experimental and numerical investigations of optical extreme (rogue) event statistics recorded in the regime of femtosecond pulse filamentation in water. In the spectral domain, the extreme events manifest themselves as either large or small extremes of the spectral intensity, justified by right- or left-tailed statistical distributions, respectively. In the time domain, the observed extreme events are associated with pulse splitting and energy redistribution in space and therefore are exquisitely linked to three-dimensional, spatiotemporal dynamics and formation of the X waves.

  19. Femtosecond laser crystallization of amorphous Ge

    SciTech Connect

    Salihoglu, Omer; Aydinli, Atilla; Kueruem, Ulas; Gul Yaglioglu, H.; Elmali, Ayhan

    2011-06-15

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm{sup -1} as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  20. Femtosecond laser crystallization of amorphous Ge

    NASA Astrophysics Data System (ADS)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  1. Observation of ultrafast Q-band fluorescence in horse heart cytochrome c in reduced and oxidized forms

    NASA Astrophysics Data System (ADS)

    Suemoto, Tohru; Ebihara, Hideaki; Nakao, Hiroyuki; Nakajima, Makoto

    2011-01-01

    The dynamics of fluorescence from horse heart cytochrome c is investigated in reduced (ferrous) and oxidized (ferric) forms by a streak camera and an up-conversion technique under B-band excitation at 415 nm. In the reduced form, we found the Q-band emission at 550 and 600 nm originated from the S1 state in a short time range. A very broad continuum observed from 440 to 660 nm had only shown a slow component and was assigned to impurity. In the reduced form, the lifetime of S1 was determined to be 120 fs by using the up-conversion technique. In the oxidized form, the S1 lifetime was estimated to be 21 fs. These values are consistent with the values estimated from the quantum yield in order of their magnitude.

  2. Tuning calcium biosensors with a single-site mutation: structural dynamics insights from femtosecond Raman spectroscopy.

    PubMed

    Tachibana, Sean R; Tang, Longteng; Wang, Yanli; Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2017-03-08

    Fluorescent protein biosensors are popular reporters for biological processes and life sciences, but their fundamental working mechanisms remain unclear. To characterize the functional fluorescence events on their native timescales, we implemented wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) to shed light on a blue-green emission-ratiometric fluorescent protein based Ca(2+) biosensor with a single Pro377Arg mutation. The transient Raman modes of the embedded chromophore from ca. 1000-1650 cm(-1) exhibit characteristic intensity and frequency dynamics which infer the underlying atomic motions and photochemical reaction stages. Our experimental study reveals the hidden structural inhomogeneity of the protein local environment upon Ca(2+) binding with the mutated arginine residue trapping multiple chromophore subpopulations, which manifest distinct time constants of ∼16 and 90 ps for excited state proton transfer (ESPT) following 400 nm photoexcitation. The altered ESPT reaction pathways and emission properties of the Ca(2+) biosensor represent the foundational step of rationally designing advanced fluorescent protein biosensors to tune their functionalities by site-specifically altering the local environment (e.g., the active site) of the embedded chromophore.

  3. Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties.

    PubMed

    Zhang, Fan; Li, Jing; Shan, Jiong; Xu, Lei; Zhao, Dongyuan

    2009-10-19

    High-quality rare-earth fluorides, alpha-NaMF(4) (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and beta-NaMF(4) (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130-230 degrees C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic alpha-NaMF(4) to hexagonal phase beta-NaMF(4). Upon adjustment of the amount of NaOH, NaF, M(3+), and ethanol, the morphologies for the beta-NaMF(4) nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower-patterned disk. Simultaneously, the size of the rare-earth fluoride crystals is variable from 5 nm to several micrometers. A combination of "diffusion-controlled growth" and the "organic-inorganic interface effect" is proposed to understand the formation of the nanocrystals. An ideal "1D growth" of rare-earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube- and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike beta-NaMF(4) nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by "1D/2D ripening". Multicolor up-conversion fluorescence is also successfully realized in the Yb(3+)/Er(3+) (green, red) and Yb(3+)/Tm(3+) (blue) co-doped alpha-NaYF(4) nanocrystals and beta-NaYF(4) nanoarrays by excitation in the NIR region (980 nm).

  4. Near-Infrared-to-Visible Photon Upconversion Enabled by Conjugated Porphyrinic Sensitizers under Low-Power Noncoherent Illumination.

    PubMed

    Olivier, Jean-Hubert; Bai, Yusong; Uh, Hyounsoo; Yoo, Hyejin; Therien, Michael J; Castellano, Felix N

    2015-06-04

    We report four supermolecular chromophores based on (porphinato)zinc(II) (PZn) and (polypyridyl)metal units bridged via ethyne connectivity (Pyr1RuPZn2, Pyr1RuPZnRuPyr1, Pyr1RuPZn2RuPyr1, and OsPZn2Os) that fulfill critical sensitizer requirements for NIR-to-vis triplet-triplet annihilation upconversion (TTA-UC) photochemistry. These NIR sensitizers feature: (i) broad, high oscillator strength NIR absorptivity (700 nm < λ(max(NIR)) < 770 nm; 6 × 10(4) M(-1) cm(-1) < extinction coefficient (λ(max(NIR))) < 1.6 × 10(5) M(-1) cm(-1); 820 cm(-1) < fwhm < 1700 cm(-1)); (ii) substantial intersystem crossing quantum yields; (iii) long, microsecond time scale T1 state lifetimes; and (iv) triplet states that are energetically poised for exergonic energy transfer to the molecular annihilator (rubrene). Using low-power noncoherent illumination at power densities (1-10 mW cm(-2)) similar to that of terrestrial solar photon illumination conditions, we demonstrate that Pyr1RuPZn2, Pyr1RuPZn2RuPyr1, and Pyr1RuPZnRuPyr1 sensitizers can be used in combination with the rubrene acceptor/annihilator to achieve TTA-UC: these studies represent the first examples whereby a low-power noncoherent NIR light source drives NIR-to-visible upconverted fluorescence centered in a spectral window within the bandgap of amorphous silicon.

  5. Study of upconversion in highly Er-doped photonic crystal fibers through laser-transient dynamics

    NASA Astrophysics Data System (ADS)

    Martín, J. C.; Vallés, J. A.; Berdejo, V.; Rebolledo, M. A.; Díez, A.; Sánchez-Martín, J. A.; Andrés, M. V.

    2014-10-01

    The dynamic response after pump switch-on of a 980 nm pumped-ring laser based on an active photonic crystal fiber with an Er3+ ion concentration of ≈1020 ions cm-3 was registered. Then a numerical fitting procedure of a theoretical model was followed to the experimental values of the relaxation oscillation parameters as a function of the input pump power. Non-radiative energy-transfer mechanisms’ coefficients: homogeneous upconversion coefficient (Cup) and critical radii for upconversion (Ru) and migration (Rm) were determined. The calculated best-fit coefficients (Cup = 1.3  ×  10-24 m3 s-1, Ru = 9  ×  10-10 m, Rm = 13  ×  10-10 m) were compared to those obtained with other steady-state and dynamic characterization techniques.

  6. Upconversion emission properties of CeO2: Tm3+, Yb3+ inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo

    2014-10-01

    The ordered and disordered templates were assembled by vertical deposition of polystyrene microspheres. The CeO2: Tm3+, Yb3+ precursor solution was used to infiltrate into the voids of the ordered and disordered templates, respectively. Then the ordered and disordered templates were calcined at 950°C in an air furnace, and the CeO2: Tm3+, Yb3+ inverse opals were obtained. The upconversion emissions from CeO2: Tm3+, Yb3+ inverse opals were suppressed due to the photon trapping caused by Bragg reflection of lattice planes when the upconversion emission band was in the range of the photonic band gaps in the inverse opals.

  7. Enhanced upconversion luminescence of NaYF4:Yb, Er microprisms via La3+ doping

    NASA Astrophysics Data System (ADS)

    Fu, Junxiang; Zhang, Xiaozeng; Chao, Zhicong; Li, Zibo; Liao, Jinsheng; Hou, Dejian; Wen, Herui; Lu, Xiaoneng; Xie, Xinrong

    2017-02-01

    A series of β-NaYF4: Yb, Er micro-prisms codoped with La3+(0-30 at%) were synthesized via hydrothermal process. Upon 980 nm excitation at room temperature, 20 mol% La3+ codoped sample shows a maximum upconversion emission intensity. Excitation power density dependencies of UC luminescence and the decay curves were investigated. The UCPL decay is evidently monoexponential for all samples and La3+ doping did not significantly change the decay time. In this particular case, we found the napierian logarithm of the UC emission intensity (lnI) had a good linear relationship with the cell lattice parameters. This correlation may be helpful for design and fabrication of high performance upconversion materials.

  8. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    NASA Astrophysics Data System (ADS)

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-02-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1–2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane.

  9. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    PubMed Central

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-01-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1–2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane. PMID:26924009

  10. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  11. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.

    PubMed

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy.

  12. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  13. Brillouin optical time-domain reflectometry using up-conversion single-photon detector

    NASA Astrophysics Data System (ADS)

    Xia, Haiyun; Shangguan, Mingjia; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Zheng, Mingyang; Xie, Xiuping; Dou, Xiankang; Zhang, Qiang; Pan, Jian-Wei

    2016-12-01

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) using an up-conversion photon-counting detector and an all-fiber structure Fabry-Perot scanning interferometer is demonstrated with shot-noise limited performance. Taking advantage of ultra-low noise equivalent power of the up-conversion photon-counting detector and high spectral resolution of the interferometer, the Brillouin spectra along a polarization maintaining fiber (PMF) are analyzed in the optical frequency domain directly. In contrast with heterodyne BOTDR, photon-counting BOTDR has better EM compatibility and faster speed in data processing. In experiments, using peak input power of 20 dBm, temperature profile along a 9 km PMF is retrieved according to the Brillouin shifts, with spatial/temporal resolution of 2 m/15 s. The precision is 0.7 °C at the leading end and 1.2 °C at the trailing end.

  14. Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yinyin; Liu, Bei; Deng, Xiaoran; Huang, Shanshan; Hou, Zhiyao; Li, Chunxia; Lin, Jun

    2015-04-01

    Core-shell structured Nd3+-sensitized NaYF4:Yb/Nd/Er@NaYF4:Nd@mSiO2 nanoparticles (NPs) were designed and synthesized. The NaYF4:Yb/Nd/Er@NaYF4:Nd core imparts the nanomaterials with luminescence properties for upconversion optical imaging under 808 nm laser irradiation, whereas the mesoporous SiO2 shell allows the nanomaterials to be loaded with anticancer drug doxorubicin (DOX). In vivo toxicity assessment has confirmed that the NPs have low systematic toxicity in healthy mice. In vivo antitumor activity shows that the nanocomposites exhibit greater antitumor efficacy than pure DOX. As a result, the composite nanomaterials can serve as nanotheranostic materials for synchronous upconversion luminescence imaging under 808 nm laser irradiation, and as anticancer drug delivery vehicles, so as to integrate the diagnosis and treatment of cancers in vivo.

  15. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals.

    PubMed

    Mauser, Nina; Piatkowski, Dawid; Mancabelli, Tobia; Nyk, Marcin; Mackowski, Sebastian; Hartschuh, Achim

    2015-04-28

    We present tip-enhanced upconversion photoluminescence (PL) images of Er(3+)- and Yb(3+)-doped NaYF4 nanocrystals on glass substrates with subdiffraction spatial resolution. Tip-sample distance dependent measurements clearly demonstrate the near-field origin of the image contrast. Time-resolved PL measurements show that the tip increases the spontaneous emission rate of the two emission channels of Er(3+) in the visible region. Very efficient enhancement of upconversion PL is discussed in the context of the two-photon nature of the excitation process and homoenergy transfer between the ions within the nanocrystals. Comparison between different nanocrystals and tips shows a strong influence of the tip shape on the image contrast that becomes particularly relevant for the larger dimensions of the investigated nanocrystals.

  16. Upconversion energy transfer in Yb3+/Tm3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Żmojda, J.; Dorosz, D.; Kochanowicz, M.; Dorosz, J.

    2011-06-01

    The paper presents energy transfer in tellurite glass from the system TeO2 - GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 doped with Yb3+/Tm3+ ions. Under the excitation of 976 nm laser a strong blue emission (477 nm) corresponding to the transition 1G4 --> 3H6 in thulium ions was observed. Analysing the influence of the content of Tm3+ ions on the level of luminescence obtained by the mechanism of upconversion it was established that the most effective energy transfer between Yb 3+--> Tm3+ ions took place in the matrix doped in the following proportion: 1 Yb3+:0.1 Tm3+ (%mol). Based on the non-resonant process of energy transfer between Yb3+ and Tm3+ ions the mechanism of upconversion was discussed.

  17. Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    NASA Astrophysics Data System (ADS)

    Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.

    Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise

  18. Enhanced up-conversion of entangled photons and quantum interference under a localized field in nanostructures.

    PubMed

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Nakatani, Masatoshi; Ishihara, Hajime

    2014-04-04

    We theoretically investigate the up-conversion process of two entangled photons on a molecule, which is coupled by a cavity or nanoscale metallic structure. Within one-dimensional input-output theory, the propagators of the photons are derived analytically and the up-conversion probability is calculated numerically. It is shown that the coupling with the nanostructure clearly enhances the process. We also find that the enhancement becomes further pronounced for some balanced system parameters, such as the quantum correlation between photons, radiation decay, and coupling between the nanostructure and molecule. The nonmonotonic dependencies are reasonably explained in view of quantum interference between the coupled modes of the whole system. This result indicates that controlling quantum interference and correlation is crucial for few-photon nonlinearity, and provides a new guidance to wide variety of fields, e.g., quantum electronics and photochemistry.

  19. Ecophotonics: assessment of temperature gradient in aquatic organisms using up-conversion luminescent particles

    NASA Astrophysics Data System (ADS)

    Volkova, E. K.; Yanina, I. Yu; Popov, A. P.; Bykov, A. V.; Gurkov, A. N.; Borvinskaya, E. V.; Timofeyev, M. A.; Meglinski, I. V.

    2017-02-01

    In the frameworks of developing ecophotonics, we consider the possibility of applying luminescence spectroscopy for monitoring conditions of aquatic organisms, aimed at the study and prognosis of the effect of human activity and climate changes on the environment. The method of luminescence spectroscopy in combination with anti-Stokes luminophores (up-conversion particles) used as optical sensors is used for the noninvasive assessment of the temperature gradient in the internal tissues of aquatic organisms. It is shown that the temperature dependence of the intensity ratio observed in the maxima of the luminescence spectrum bands of the particles Y2O3 : Yb, Er, administered in a biological object, is linear. This fact offers a possibility of using the up-conversion particles for assessing the metabolic activity of different tissues, including those in the framework of ecological monitoring.

  20. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly

    PubMed Central

    Ye, Xingchen; Collins, Joshua E.; Kang, Yijin; Chen, Jun; Chen, Daniel T. N.; Yodh, Arjun G.; Murray, Christopher B.

    2010-01-01

    We report a one-pot chemical approach for the synthesis of highly monodisperse colloidal nanophosphors displaying bright upconversion luminescence under 980 nm excitation. This general method optimizes the synthesis with initial heating rates up to 100 °C/minute generating a rich family of nanoscale building blocks with distinct morphologies (spheres, rods, hexagonal prisms, and plates) and upconversion emission tunable through the choice of rare earth dopants. Furthermore, we employ an interfacial assembly strategy to organize these nanocrystals (NCs) into superlattices over multiple length scales facilitating the NC characterization and enabling systematic studies of shape-directed assembly. The global and local ordering of these superstructures is programmed by the precise engineering of individual NC’s size and shape. This dramatically improved nanophosphor synthesis together with insights from shape-directed assembly will advance the investigation of an array of emerging biological and energy-related nanophosphor applications. PMID:21148771