Science.gov

Sample records for femtosecond fluorescence upconversion

  1. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    SciTech Connect

    Zhang, X.-X.; Wuerth, C.; Resch-Genger, U.; Zhao, L.; Ernsting, N. P.; Sajadi, M.

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  2. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  3. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: a mechanistic study using femtosecond fluorescence up-conversion technique.

    PubMed

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-28

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4(')-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and∕or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π∗ character may also decay via intersystem crossing to the n-π∗ triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents. PMID:23464152

  4. Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption.

    PubMed

    Yao, Yunhua; Xu, Cheng; Zheng, Ye; Yang, Chengshuai; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2016-07-21

    The upconversion luminescence of rare-earth ions has attracted considerable interest because of its important applications in photoelectric conversion, color display, laser device, multiplexed biolabeling, and security printing. Previous studies mainly explored the upconversion luminescence generation through excited state absorption, energy transfer upconversion, and photon avalanche under the continuous wave laser excitation. Here, we focus on the upconversion luminescence generation through a nonresonant multiphoton absorption by using the intense femtosecond pulsed laser excitation and study the upconversion luminescence intensity control by varying the femtosecond laser phase and polarization. We show that the upconversion luminescence of rare-earth ions under the intense femtosecond laser field excitation is easy to be obtained due to the nonresonant multiphoton absorption through the nonlinear interaction between light and matter, which is not available by the continuous wave laser excitation in previous works. We also show that the upconversion luminescence intensity can be effectively controlled by varying the femtosecond pulsed laser phase and polarization, which can open a new technological opportunity to generate and control the upconversion luminescence of rare-earth ions and also can be further extended to the relevant application areas. PMID:27367751

  5. Ultrafast fluorescence spectroscopy via upconversion applications to biophysics.

    PubMed

    Xu, Jianhua; Knutson, Jay R

    2008-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed.

  6. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. PMID:27236725

  7. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  8. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Zhixu; Yao, Chuanfei; Wang, Shunbin; Zheng, Kezhi; Xiong, Liangming; Luo, Jie; Lv, Dajuan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-04-01

    We report enhanced upconversion (UC) fluorescence in Tm3+ doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ˜1050 to ˜2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the 3H4 → 3H6 transition of Tm3+ was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ˜4.1 times. The enhancement was due to the spectral broadening in the TDTMF under the pumping of the 1560 nm femtosecond fiber laser.

  9. Femtosecond study of ultrafast fluorescence resonance energy transfer in a catanionic vesicle

    NASA Astrophysics Data System (ADS)

    Kumar Das, Atanu; Mondal, Tridib; Kumar Sasmal, Dibyendu; Bhattacharyya, Kankan

    2011-08-01

    Ultrafast fluorescence resonance energy transfer (FRET) in a catanionic [sodium dodecyl sulfate (SDS)-dodecyltrimethyl ammonium bromide (DTAB)] vesicle is studied by femtosecond up-conversion. The vesicles (diameter ˜400 nm for SDS-rich and ˜250 nm for DTAB-rich vesicles) are much larger than the SDS and DTAB micelles (diameter ˜4 nm). In both micelle and vesicles, FRET occurs in multiple time scales and the time scales of FRET correspond to a donor-acceptor distance varying between 12 and 36 Å.

  10. Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence.

    PubMed

    Sarkar, Suprabhat; Gandla, Dayakar; Venkatesh, Yeduru; Bangal, Prakriti Ranjan; Ghosh, Sutapa; Yang, Yang; Misra, Sunil

    2016-08-21

    Facile synthesis of 2-10 nm-sized graphene quantum dots (GQDs) from graphite powder by organic solvent-assisted liquid exfoliation using a sonochemical method is reported in this study. Synthesized GQDs are well dispersed in organic solvents like ethyl acetoacetate (EAA), dimethyl formamide (DMF) and also in water. MALDI-TOF mass spectrometry reveals its selective mass fragmentation. Detailed characterizations by various techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) confirm the formation of disordered, functional GQDs. Density functional theory (DFT) calculation confirms HOMO-LUMO energy gap variation with changing size and functionalities. Photoluminescence (PL) properties of as-prepared GQDs were studied in detail. The ensemble studies of GQDs showed excellent photoluminescence properties comprising normal and upconverted fluorescence, delayed fluorescence and room-temperature phosphorescence. PL decay dynamics of GQDs has been explored using time-correlated single-photon technique (TCSPC) as well as femtosecond fluorescence upconversion technique. In vitro cytotoxicity study reveals its biocompatibility and high cell viability (>91%) even at high concentration (400 μg mL(-1)) of GQDs in Chinese Hamster Ovary (CHO) cells. PMID:27302411

  11. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Wu, Yuanyuan; Zhu, Yihua; Yang, Xiaoling; Jiang, Xin; Xiao, Jingfan; Zhang, Yuanxing; Li, Chunzhong

    2014-03-01

    Here, we report a simple and ultrasensitive upconversion fluorescent strip sensor based on NaYF4:Yb,Er nanoparticles (NPs) and the lateral flow immunochromatographic assay (LFIA). Carboxyl-modified β-NaYF4:Yb,Er NPs were successfully synthesized by a facile one-pot solvothermal approach, upon further coupling with monoclonal antibody, the resultant UCNPs-antibody conjugates probes were used in LFIA and served as signal vehicles for the fluorescent reporters. V. anguillarum was used as a model analyte to demonstrate the use of this strip sensor. The limit of the detection for the fluorescent strip was determined as 102 CFU mL-1, which is 100 times lower than those displayed by enzyme-linked immunosorbent assays, while the time needed for the detection was only 15 min. Furthermore, no cross-reaction with other eight pathogens was found, indicating the good specificity of the strip. This developed LFIA would offer the potential as a useful tool for the quantification of pathogens analysis in the future.

  12. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  13. The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.

    PubMed

    Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong

    2015-02-01

    Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.

  14. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  15. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  16. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  17. Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy

    NASA Astrophysics Data System (ADS)

    Wei, Yanchun; Chen, Qun; Wu, Baoyan; Xing, Da

    2014-09-01

    The combination of diagnostics and therapeutics is growing rapidly in cancer treatment. Here, using upconversion nanoparticles coated with chitosan conjugated with a targeting molecule and loaded with indocyanine green (ICG), an excitation-selectable nanoprobe with highly integrated functionalities, including the emission of visible and near-infrared (NIR) light, strong optical absorption in the NIR region and high photostability was developed. After injected in mice, the nanoprobes targeted to the tumor vascular system. NIR lasers (980 and 808 nm) were then selectively applied to the mice. The results show that, the emitted upconversion fluorescence and NIR fluorescence can be used in a complementary manner for high signal/noise ratio and sensitive tumor imaging for more precise tumor localization; Highly effective photothermal therapy can be realized using 808 nm laser irradiation. The upconversion fluorescence at 654 nm is useful for monitoring treatment effect during thermal therapy. In summary, using the nanoprobes, outstanding therapeutic efficacy could be realized and the nanofabrication strategy would highlight the promise of upconversion nanoparticles in cancer theranostics.

  18. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  19. A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhai, Yiwen; Zhang, Hui; Zhang, Lingling; Dong, Shaojun

    2016-05-01

    A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to Prussian white nanoparticles leading to a decrease of the absorption spectrum, was chosen as the target. And we were able to determine the concentration of sulfite in aqueous solution with a low detection limit and a broad linear relationship.A high performance fluorescence switching system triggered electrochemically by Prussian blue with upconversion nanoparticles was proposed. We synthesized a kind of hexagonal monodisperse β-NaYF4:Yb3+,Er3+,Tm3+ upconversion nanoparticle and manipulated the intensity ratio of red emission (at 653 nm) and green emission at (523 and 541 nm) around 2 : 1, in order to match well with the absorption spectrum of Prussian blue. Based on the efficient fluorescence resonance energy transfer and inner-filter effect of the as-synthesized upconversion nanoparticles and Prussian blue, the present fluorescence switching system shows obvious behavior with high fluorescence contrast and good stability. To further extend the application of this system in analysis, sulfite, a kind of important anion in environmental and physiological systems, which could also reduce Prussian blue to

  20. Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid.

    PubMed

    Fang, Aijin; Wu, Qiongqiong; Lu, Qiujun; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-12-15

    A new upconversion colorimetric and ratiometric fluorescence detection method for uric acid (UA) has been designed. Yb(3+), Er(3+) and Tm(3+) co-doped NaYF4 nanoparticles (UCNPs) was synthesized. The co-doped NaYF4 nanoparticles, emit upconversion fluorescence with four typical emission peaks centered at 490nm, 557nm, 670nm and 705nm under the 980nm near-infrared (NIR) irradiation. The ZnFe2O4 magnetic nanoparticles (MNPs) possessing excellent peroxidase-like activity was prepared and used to catalyze oxidation the coupling of N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt (TOPS) and 4-amino-antipyrine (4-AAP) in the presence of H2O2 to form purple products (compound 1) which has a characteristic absorption peak located at 550nm. The upconversion fluorescence at 557nm was quenched by the compound 1 while the upconversion emission at 705nm was essentially unchanged, the fluorescence ratio ((I557/I705)0/(I557/I705)) is positively proportional to UA concentration in existence of uricase. More importantly, colorimetric signal can be easily observed and applied to directly distinguish the concentration of UA by the naked eye. Under the optimized conditions, the linear range of colorimetric and ratiometric fluorescence sensing towards UA was 0.01-1mM, the detection limits were as low as 5.79μM and 2.86μM (S/N=3), respectively. The proposed method has been successfully applied to the analysis of UA in human serum. These results indicate that the colorimetric and ratiometric fluorescence dual-readout assay method has great potential for applications in physiological and pathological diagnosis. PMID:27471157

  1. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles.

    PubMed

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-01

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2ng·ml(-1), and in the effective detection range 0.2 to 100ng·ml(-1), good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil. PMID:27124091

  2. Quantifying Aflatoxin B1 in peanut oil using fabricating fluorescence probes based on upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Cuicui; Li, Huanhuan; Koidis, Anastasios; Chen, Quansheng

    2016-08-01

    Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2 ng·ml- 1, and in the effective detection range 0.2 to 100 ng·ml- 1, good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

  3. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  4. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-01

    The paper presents the growth of hexagonal NaYF4:Yb3+, Tm3+ nanocrystals with tunable sizes induced by different contents of doped Yb3+ ions (10%–99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb3+ ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm2. More importantly, the obvious short-wave (300–500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  5. Controllable self-assembly of NaREF4 upconversion nanoparticles and their distinctive fluorescence properties.

    PubMed

    Liu, Xiaoxia; Ni, Yaru; Zhu, Cheng; Fang, Liang; Kou, Jiahui; Lu, Chunhua; Xu, Zhongzi

    2016-07-22

    The paper presents the growth of hexagonal NaYF4:Yb(3+), Tm(3+) nanocrystals with tunable sizes induced by different contents of doped Yb(3+) ions (10%-99.5%) using the thermal decomposition method. These nanoparticles, which have different sizes, are then self-assembled at the interface of cyclohexane and ethylene and transferred onto a normal glass slide. It is found that the size of nanoparticles directs their self-assembly. Due to the appropriate size of 40.5 nm, 15% Yb(3+) ions doped nanoparticles are able to be self-assembled into an ordered inorganic monolayer membrane with a large area of about 10 × 10 μm(2). More importantly, the obvious short-wave (300-500 nm) fluorescence improvement of the ordered 2D self-assembly structure is observed to be relative to disordered nanoparticles, which is because intrinsic absorption and scattering of upconversion nanoparticles leads to the self-loss of fluorescence, especially the short-wave fluorescence inside the disordered structure, and the relative emission of short-wave fluorescence is reduced. The construction of a 2D self-assembly structure can effectively avoid this and improve the radiated short-wave fluorescence, especially UV photons, and is able to direct the design of new types of solid-state optical materials in many fields.

  6. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins.

    PubMed

    Chen, Quansheng; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF4:Yb/Ho/Gd and NaYF4:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF4 nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001-0.1 ng ml(-1) with the limit of detection (LOD) of 0.001 ng ml(-1). Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. PMID:27619096

  7. Energy levels and upconversion fluorescence in trivalent thulium-doped yttrium scandium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Seltzer, Michael D.; Hills, Marian E.; Stevens, Sally B.; Morrison, Clyde A.

    1993-02-01

    Absorption spectra of Tm(3+) ions in yttrium scandium aluminum garnet are reported between 1.9 microns and 0.25 micron at 4 K. Laser-excited fluorescence was observed at 4 K from Tm(3+)(4f12) multiplet manifolds 1D2, 1G4, 3F2, and 3H4 to the ground-state manifold 3H6. Emission from 1D2 and 1G4 also includes transitions to Stark levels in manifolds 3F4 and 3H5. Upconversion excited fluorescence was observed between 1D2 and 3F4 at 10 K. Analysis of the fluorescence emission confirms assignments given to individual Stark levels based on an analysis of the absorption spectra. A crystal-field splitting calculation was carried out in which a parameterized Hamiltonian (including Coulombic, spin-orbit, and crystal-field terms in D2 symmetry) was diagonalized for all multiplets of the Tm(3+)(4f12) configuration. The rms deviation between 42 experimental and calculated Stark levels was 8/cm.

  8. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-08-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases.Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the

  9. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect.

    PubMed

    Fang, Aijin; Long, Qian; Wu, Qiongqiong; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    Sudan dyes are banned as food additives due to the carcinogenicity of their metabolites in the human body. Therefore, it is of great significance for sensitive detection of Sudan dyes. This paper reports a novel nanosensor for Sudan dyes detection based on fluorescence (FL) quenching of hexadecyl trimethyl ammonium bromide (CTAB) stabilized upconversion nanoparticles (UCNPs) through the inner filter effect (IFE). In the presence of Sudan I-IV, the fluorescence emission of UCNPs was effectively quenched due to the absorption bands of Sudan I-IV largely covered the emission bands of UCNPs. Under the optimized conditions, the FL was quenched with Sudan concentration over the range of 0.05-40, 0.01-20, 0.01-40 and 0.05-40 μg/mL for Sudan I-IV, respectively. The corresponding limit of detection is 15.1, 2.83, 3.52 and 16.7 ng/mL (at 3σ/slope) respectively. Meanwhile, the nanosensor shows good selectivity, sensitivity and can be successfully applied to detection of Sudan in chili powder samples. PMID:26653433

  10. Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Zhang, Yong

    2011-09-01

    Upconversion nanoparticles (UCNs) are nanoparticles that are excited in the near infrared (NIR) region with emission in the visible or NIR regions. This makes these particles attractive for use in biological imaging as the NIR light can penetrate the tissue better with minimal absorption/scattering. This paper discusses the study of the depth to which cells can be imaged using these nanoparticles. UCNs with NaYF4 nanocrystals doped with Yb3 + , Er3 + (visible emission)/Yb3 + , Tm3 + (NIR emission) were synthesized and modified with silica enabling their dispersion in water and conjugation of biomolecules to their surface. The size of the sample was characterized using transmission electron microscopy and the fluorescence measured using a fluorescence spectrometer at an excitation of 980 nm. Tissue phantoms were prepared by reported methods to mimic skin/muscle tissue and it was observed that the cells could be imaged up to a depth of 3 mm using the NIR emitting UCNs. Further, the depth of detection was evaluated for UCNs targeted to gap junctions formed between cardiac cells.

  11. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect.

    PubMed

    Fang, Aijin; Long, Qian; Wu, Qiongqiong; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    Sudan dyes are banned as food additives due to the carcinogenicity of their metabolites in the human body. Therefore, it is of great significance for sensitive detection of Sudan dyes. This paper reports a novel nanosensor for Sudan dyes detection based on fluorescence (FL) quenching of hexadecyl trimethyl ammonium bromide (CTAB) stabilized upconversion nanoparticles (UCNPs) through the inner filter effect (IFE). In the presence of Sudan I-IV, the fluorescence emission of UCNPs was effectively quenched due to the absorption bands of Sudan I-IV largely covered the emission bands of UCNPs. Under the optimized conditions, the FL was quenched with Sudan concentration over the range of 0.05-40, 0.01-20, 0.01-40 and 0.05-40 μg/mL for Sudan I-IV, respectively. The corresponding limit of detection is 15.1, 2.83, 3.52 and 16.7 ng/mL (at 3σ/slope) respectively. Meanwhile, the nanosensor shows good selectivity, sensitivity and can be successfully applied to detection of Sudan in chili powder samples.

  12. Research on the fluorescence emission from water vapor induced by femtosecond filamentation in air

    NASA Astrophysics Data System (ADS)

    Li, He; Jiang, Yuanfei; Li, Shuchang; Chen, Anmin; Li, Suyu; Jin, Mingxing

    2016-10-01

    Our experiments show that initial energy and humidity strongly influences the water vapor fluorescence induced by ultrashort intense femtosecond laser pulses. It is found that the fluorescence signal can be enhanced by both increasing the humidity in the case of fixed energy and increasing the pulse energy in the case of fixed humidity. In addition, water vapor fluorescence emission in the linear polarization is stronger than that in the circular polarization due to the higher dissociation efficiency of linearly polarized pulses. The mechanism of water vapor fluorescence emission during femtosecond filamentation is discussed based on the analysis of these phenomena.

  13. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications.

  14. Spatiotemporal control of degenerate multiphoton fluorescence microscopy with delay-tunable femtosecond pulse pairs

    NASA Astrophysics Data System (ADS)

    Das, Dhiman; Bhattacharyya, Indrajit; Goswami, Debabrata

    2016-07-01

    Selective excitation of a particular fluorophore in an ensemble of different fluorophores with overlapping fluorescence spectra is shown to be dependent on the time delay of femtosecond pulse pairs in multiphoton fluorescence microscopy. In particular, the two-photon fluorescence behavior of the Texas Red and DAPI dye pair inside Bovine Pulmonary Artery Endothelial (BPAE) cells depends strongly on the center wavelength of the laser, as well as the delay between two identical laser pulses in one-color femtosecond pulse-pair excitation scheme. Thus, we present a novel design concept using pairs of femtosecond pulses at different central wavelengths and tunable pulse separations for controlling the image contrast between two spatially and spectrally overlapping fluorophores. This femtosecond pulse-pair technique is unique in utilizing the variation of dye dynamics inside biological cells as a contrast mode in microscopy of different fluorophores.

  15. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  16. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  17. Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8 - 1 {mu}m in silica fibres

    SciTech Connect

    Anashkina, E A; Andrianov, A V; Kim, A V

    2013-03-31

    We consider different mechanisms of nonlinear frequency up-conversion of femtosecond pulses emitted by an erbium fibre system ({lambda} = 1.5 {mu}m) to the range of 0.8 - 1.2 {mu}m in nonlinear silica fibres. The generation efficiency and the centre frequencies of dispersive waves are found as functions of the parameters of the fibre and the input pulse. Simple analytical estimates are obtained for the spectral distribution of the intensity and the frequency shift of a wave packet in the region of normal dispersion during the emission of a high-order soliton under phase matching conditions. In the geometrical optics approximation the frequency shifts are estimated in the interaction of dispersive waves with solitons in various regimes. (extreme light fields and their applications)

  18. Singlet-based photon upconversion in multichromophore organic thin films (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Weingarten, Daniel H.; LaCount, Michael; Rumbles, Garry; van de Lagemaat, Jao; Lusk, Mark T.; Shaheen, Sean E.

    2015-10-01

    Solid-state energy upconversion has many potential applications, from nonlinear photonics and biophotonics to expanding the spectrum available for solar energy harvest. In organic molecular systems, upconversion is frequently done in solution to mitigate aggregation-induced photoluminescence quenching or to facilitate the diffusion of triplet donors in Triplet-Triplet Annihilation (TTA) systems. Here we demonstrate an organic thin film upconversion system utilizing two-photon absorption (TPA) properties to improve upconversion efficiency. In blend films of Stilbene-420 and Rhodamine 6G we observe a tenfold increase in up-converted fluorescence compared to the fluorescence yield of TPA in pristine stilbene films. While TPA normally has quadratic dependence on excitation intensity, these blend films exhibit sub-quadratic intensity dependence, indicating a combination of linear and quadratic upconversion processes and dramatically improving upconversion efficiency at lower excitation intensities. This improvement in intensity dependence allows for relatively efficient upconversion upon excitation by a nanosecond laser pulse, in contrast to the more expensive femtosecond lasers generally required for excitation in TPA microscopy and similar systems. Time-resolved photoluminescence decay measurements reveal that all excited states involved in this upconversion process are singlets, which indicates the potential for reduced energy losses when compared to TTA upconversion systems and their inherent intersystem-crossing energy losses. We observe emission from both the Rhodamine 6G donor molecules and Stilbene-420 acceptor molecules, indicating the presence of prompt fluorescence from the donor as well as upconversion to the acceptor, and FRET losses from acceptor back to donor. By fitting to a kinetic model we extract rates for these competing processes.

  19. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.

  20. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma.

    PubMed

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-09-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co(2+), leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases. PMID:26222243

  1. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting.

    PubMed

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-21

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. PMID:27119377

  2. Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Meinardi, F.

    2008-04-01

    The efficiency of the upconversion-induced delayed fluorescence in a solution of multicomponent organic systems is limited by two steps of the overall process: (i) a triplet-triplet energy transfer between a phosphorescent donor and an emitting acceptor, and (ii) a bimolecular acceptor triplet-triplet annihilation generating acceptor singlet excited states from which the high-energy emission takes place. In this work, the energy transfer process has been investigated in a model system constituted by solutions of Pt(II)octaethylporphyrin, which acts as a donor, and 9,10 diphenylanthracene, which acts as an acceptor. At low temperature, the experimental data have been interpreted in the frame of a pure Dexter energy transfer by using the Perrin approximation. A Dexter radius as large as 26.5 Å has been found. At room temperature, the fast diffusion of the molecules in the solution is no longer negligible, which gives rise to a strong increase in the energy transfer rates.

  3. Deoxycholate induced tetramer of αA-crystallin and sites of phosphorylation: Fluorescence correlation spectroscopy and femtosecond solvation dynamics

    NASA Astrophysics Data System (ADS)

    Chowdhury, Aritra; Mojumdar, Supratik Sen; Choudhury, Aparajita; Banerjee, Rajat; Das, Kali Pada; Sasmal, Dibyendu Kumar; Bhattacharyya, Kankan

    2012-04-01

    Structure and dynamics of acrylodan labeled αA-crystallin tetramer formed in the presence of a bile salt (sodium deoxycholate, NaDC) has been studied using fluorescence correlation spectroscopy (FCS) and femtosecond up-conversion techniques. Using FCS it is shown that, the diffusion constant (Dt) of the αA-crystallin oligomer (mass ˜800 kDa) increases from ˜35 μm2 s-1 to ˜68 μm2 s-1. This corresponds to a decrease in hydrodynamic radius (rh) from ˜6.9 nm to ˜3.3 nm. This corresponds to about 10-fold decrease in molecular mass to ˜80 kDa and suggests formation of a tetramer (since mass of αA-crystallin monomer is ˜20 kDa). The steady state emission maximum and average solvation time (<τs>) of acrylodan labeled at cysteine 131 position of αA-crystallin is markedly affected on addition of NaDC, while the tryptophan (trp-9) becomes more exposed. This suggests that NaDC binds near the cys-131 and makes the terminal region of αA-crystallin exposed. This may explain the enhanced auto-phosphorylation activity of αA-crystallin near the terminus of the 173 amino acid protein (e.g., at the threonine 13, serine 45, or serine 169 and 172) and suggests that phosphorylation at ser-122 (close to cys-131) is relatively less important.

  4. Materials Integrating Photochemical Upconversion.

    PubMed

    McCusker, Catherine E; Castellano, Felix N

    2016-04-01

    This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet-triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement.

  5. Materials Integrating Photochemical Upconversion.

    PubMed

    McCusker, Catherine E; Castellano, Felix N

    2016-04-01

    This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet-triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement. PMID:27573144

  6. Phase-Dependent Enhancement of the Green-Emitting Upconversion Fluorescence in LaVO4:Yb(3+), Er(3+).

    PubMed

    Zhang, Feng; Li, Guoqiang; Zhang, Weifeng; Yan, Yu Li

    2015-08-01

    The phase-dependent upconversion luminescence properties of LaVO4:Er(3+) were studied to provide new insights into the design of new upconversion materials with high efficiency. Er(3+)-, Yb(3+)/Er(3+)-doped t-LaVO4 microcrystals were successfully synthesized by the disodium ethylenediaminetetraacetic acid (Na2EDTA)-assisted hydrothermal method. X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometer (ICP-OES), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, luminescence spectroscopy, and thermogravimetric analysis (TGA) were used to characterize the samples. The results indicated that t-LaVO4 presents sheaf-like morphology, and the possible formation mechanism for these sheaves was proposed on the basis of time-dependent experiments. Furthermore, the phase-dependence (i.e., monoclinic- and tetragonal-type) upconversion luminescence properties were systematically studied, and the upconversion mechanisms were proposed according to spectral, pump power, and the concentration of Yb(3+) dependence analyses. It is worthwhile pointing out that the Er(3+)-doped t-LaVO4 exhibits a brighter green emission, which is approximately 10 times that of m-LaVO4:Er(3+) using a continuous 980 nm laser diode as the excitation source. This remarkable improvement was rationally analyzed on the basis of the composition, crystal structures, Raman spectra, morphology, and size. The comparative experiments suggest that the local structure of Er(3+) was considered as an important reason for the higher fluorescence intensity of t-LaVO4:Er(3+), which was also confirmed by the results of density functional theory (DFT) calculations. PMID:26203901

  7. Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm.

    PubMed

    Guhur, A; Jackson, S D

    2010-09-13

    We demonstrate a highly efficient and high power Ho(3+)-doped fluoride glass fiber laser that is resonantly pumped with a Tm(3+)-doped silicate glass fiber laser operating at 2.051 µm. The laser operates at 2080 nm and generated 6.66 W at a slope efficiency of 72%. We observe strong visible upconversion fluorescence centered at a variety of wavelengths including 491 nm which results from three sequential energy transfer upconversion processes; the fluorescence to pump energy ratio for this emission is one the largest reported to date. PMID:20940907

  8. Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm.

    PubMed

    Guhur, A; Jackson, S D

    2010-09-13

    We demonstrate a highly efficient and high power Ho(3+)-doped fluoride glass fiber laser that is resonantly pumped with a Tm(3+)-doped silicate glass fiber laser operating at 2.051 µm. The laser operates at 2080 nm and generated 6.66 W at a slope efficiency of 72%. We observe strong visible upconversion fluorescence centered at a variety of wavelengths including 491 nm which results from three sequential energy transfer upconversion processes; the fluorescence to pump energy ratio for this emission is one the largest reported to date.

  9. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng

    2016-05-01

    Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a

  10. Synthesis of fluorescent nanocarbons by femtosecond laser induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Agatsuma, Naoki; Fujimatsu, Yusei; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Fluorescent Carbon nanoparticles (CNPs) with tunable emission are successfully synthesized from the water suspension of graphene oxide by the femtosecond laser irradiation. The luminescence properties were controllable by doping nitrogen into CNPs in the presence of an ammonia molecule. We have also confirmed that CNPs with diamond structure were directly precipitated from the solvent molecules such as cyclohexane.

  11. A novel label-free upconversion fluorescence resonance energy transfer-nanosensor for ultrasensitive detection of protamine and heparin.

    PubMed

    Long, Qian; Zhao, Jiangna; Yin, Bangda; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-05-15

    A novel label-free fluorescence nanosensor was developed for ultrasensitive detection of protamine and heparin based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The FRET system was formed by the electrostatic adsorption of AuNPs on UCNPs, and the fluorescence of UCNPs was significantly quenched. When protamine was added to the mixture of UCNPs-AuNPs, the AuNPs interacted with protamine and then desorbed from the surface of UCNPs and aggregated, resulting in the recovery of the fluorescence of UCNPs. On the addition of both protamine and heparin, the FRET system formed owing to the stronger interaction between heparin and protamine than that with AuNPs, leading to a marked fluorescence quenching of UCNPs. The concentrations of protamine and heparin were proportional to the changes of the fluorescence of UCNPs. The linear response range was obtained over the concentration ranges of 0.02 to 1.2μg/ml and 0.002 to 2.0μg/ml with low detection limits of 6.7 and 0.7ng/ml for protamine and heparin, respectively. Simultaneous measurement of protamine and heparin in human serum can be achieved, suggesting that the nanosensor can be used in a complex biological sample matrix.

  12. Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection

    PubMed Central

    2016-01-01

    We developed a sensor for the detection of specific microRNA (miRNA) sequences that was based on graphene quantum dots (GQDs) and ssDNA-UCNP@SiO2. The proposed sensor exploits the interaction between the sp2 carbon atoms of the GQD, mainly π–π stacking, and the DNA nucleobases anchored on the upconversion nanoparticles (UCNPs). This interaction brings the GQD to the surface of the ssDNA-UCNP@SiO2 system, enhancing the upconversion emission. On the other hand, hybridization of the single-stranded DNA (ssDNA) chains anchored on the nanoparticles with their complementary miRNA sequences blocks the capacity of the UCNPs to interact with the GQD through π–π stacking. That gives as result a reduction of the fluorescent enhancement, which is dependent on the concentration of miRNA sequences. This effect was used to create a sensor for miRNA sequences with a detection limit of 10 fM. PMID:27153453

  13. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  14. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  15. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods.

  16. Upconversion Nanoparticles and Monodispersed Magnetic Polystyrene Microsphere Based Fluorescence Immunoassay for the Detection of Sulfaquinoxaline in Animal-Derived Foods.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wang, Junping; Wu, Xuening; Wang, Shuo

    2016-05-18

    A novel fluorescence immunoassay for detecting sulfaquinoxaline (SQX) in animal-derived foods was developed using NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) conjugated with antibodies as fluorescence signal probes, and monodisperse magnetic polystyrene microspheres (MMPMs) modified with coating antigen as immune-sensing capture probes for trapping and separating the signal probes. Based on a competitive immunoassay format, the detection limit of the proposed method for detecting SQX was 0.1 μg L(-1) in buffer and 0.5 μg kg(-1) in food samples. The recoveries of SQX in spiked samples ranged from 69.80 to 133.00%, with coefficients of variation of 0.24-25.06%. The extraction procedure was fast, simple, and environmentally friendly, requiring no organic solvents. In particular, milk samples can be analyzed directly after simple dilution. This method has appealing properties, such as sensitive fluorescence response, a simple and fast extraction procedure, and environmental friendliness, and could be applied to detecting SQX in animal-derived foods. PMID:27134048

  17. A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum.

    PubMed

    Xu, Sai; Xu, Shihan; Zhu, Yongsheng; Xu, Wen; Zhou, Pingwei; Zhou, Chunyang; Dong, Biao; Song, Hongwei

    2014-11-01

    There has been great progress in the development of fluorescence biosensors based on quantum dots (QDs) for the detection of lead ions. However, most methods are detecting lead ions in aqueous solution rather than in human serum due to the influence of protein autofluorescence in serum excited by visible light. Thus, we developed a novel fluorescence resonance energy transfer (FRET) biosensor by choosing the upconversion NaYF4:Yb(3+)/Tm(3+) nanoparticles as the energy donor and the CdTe QDs as the energy acceptor for lead ion detection. It is the first near infrared (NIR)-excited fluorescent probe for determination of lead ions in serum that is capable of overcoming self-luminescence from serum excitation with visible light. The sensor also shows high selectivity, a low detection limit (80 nm) and good linear Stern-Volmer characteristics (R = 0.996), both in the buffer and serum. This biosensor has great potential for versatile applications in lead ion detection in biological and analytical fields. PMID:25184968

  18. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-10-15

    We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluorescence signal. We find good agreement between the theoretical results and the experimental data, showing that such data can be used to get further insight into the effective focal volume during filamentation of femtosecond laser pulses in transparent media.

  19. Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity

    NASA Astrophysics Data System (ADS)

    Guo, Hai; Li, Zhengquan; Qian, Haisheng; Hu, Yong; Niagara Muhammad, Idris

    2010-03-01

    Rational combination of different functional lanthanide materials within a single nanocrystal presents a feasible way to develop a multifunctional nanoplatform for various biomedical applications. The conventional methods of synthesizing and integrating two kinds of material together generally involve laborious procedures, whilst codoping different functional ions inside a single lanthanide nanocrystal usually results in a decrease in both its fluorescence and its magnetic resonance relaxivity. Here, we present a seed-mediated synthetic route to prepare core-shell structured NaY F4:Y b, Er/NaGdF4 nanocrystals. Epitaxial growth of a gadolinium layer on an upconversion lanthanide seed not only improves its upconversion fluorescence, but also creates a paramagnetic shell with high magnetic resonance relaxivity. The prepared nanocrystals are uniform in size, stable in water and easy for conjugation after modification, which may have the potential to serve as a versatile imaging tool for smart detection or diagnosis in future biomedical engineering.

  20. Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications

    PubMed Central

    Li, Xiyu; Zhu, Jingxian; Man, Zhentao; Ao, Yingfang; Chen, Haifeng

    2014-01-01

    Rare-earth Yb3+ and Ho3+ co-doped fluorapatite (FA:Yb3+/Ho3+) crystals were prepared by hydrothermal synthesis, and their structure, upconversion properties, cell proliferation and imaging were investigated. The synthesized crystals, with a size of 16 by 286 nm, have a hexagonal crystal structure of classic FA and a Ca/Yb/Ho molar ratio of 100/16/2.1. Several reasonable Yb3+/Ho3+ -embedding lattice models along the fluorine channel of the FA crystal cell are proposed for the first time, such as models for (Ca7YbHo©)(PO4)6F2 and (Ca6YbHoNa2)(PO4)6F2. The activated FA:Yb3+/Ho3+ crystals were found to exhibit distinct upconversion fluorescence. The 543- and 654-nm signals in the emission spectra could be assigned, respectively, to the 5F4 (5S2) - 5I8 and 5F5 - 5I8 transitions of holmium via 980-nm near-infrared excitation and the energy transfer of ytterbium. After the surfaces were grafted with hydrophilic dextran, the crystals displayed clear fluorescent cell imaging. Thus, the prepared novel FA:Yb3+/Ho3+ upconversion fluorescent crystals have potential applications in the biomedical field. PMID:24658285

  1. Two-photon fluorescence imaging and femtosecond laser microsurgery to study drosophila dorsal closure

    NASA Astrophysics Data System (ADS)

    Thayil K. N., Anisha; Pereira, Andrea; Mathew, Manoj; Artigas, David; Martín Blanco, Enrique; Loza-Alvarez, Pablo

    2008-02-01

    Dorsal closure is a key morphogenic process that occurs at the last stages of Drosophila melanogaster embryogenesis. It involves a well coordinated rearrangement and movement of tissues that resemble epithelial wound healing in mammals. The cell dynamics and intracellular signaling pathways that accompany hole closure are expected to be similar during would healing providing a model system to study epithelial healing. Here we demonstrate the use of two-photon fluorescence microscope together with femtosecond laser ablation to examine the epithelial wound healing during embryonic dorsal closure. By using tightly focused NIR femtosecond pulses of subnanojoule energy we are able to produce highly confined microsurgery on the epithelial cells of a developing embryo. We observed that drosophila epidermis heals from the laser wounds with increased activity of actin near the wound edges.

  2. Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595

    NASA Astrophysics Data System (ADS)

    Schüttrigkeit, Tanja A.; Feilitzsch, Till von; Kompa, Christian K.; Lukyanov, Konstantin A.; Savitsky, Alexander P.; Voityuk, Alexander A.; Michel-Beyerle, Maria E.

    2006-04-01

    Femtosecond time-resolved spectroscopy is applied to study the mechanism of the light-induced increase of fluorescence quantum yield of the initially non-fluorescent (dark) chromoprotein asFP595. Spectroscopic and kinetic characteristics of this unique fluorescence "kindling" phenomenon are: (i) the small Stokes shift of the dark chromophore consistent with either the zwitterion or the anion; (ii) the singlet excited state of the dark chromophore decaying predominantly with a time constant of ˜320 fs corresponding to a fluorescence quantum yield ΦFl ⩽ 10 -4. Since ground state recovery occurs on the same time scale, this radiationless channel is assigned to internal conversion; (iii) the formation of the fluorescent species depending on the sequential absorption of two photons with a delay significantly exceeding the excitation pulse duration of 150 fs; (iv) the fluorescent species showing a red-shift of ˜20 nm in absorption and emission, and an excited state lifetime of 2.2 ns. The ultrafast internal conversion of the excited dark state is attributed to the proximity of the S 0 and S 1 potential energy surfaces favored by the non-planarity of the chromophore as revealed in recent X-ray structures. Competing with internal conversion two different transformations of the chromophore structure are suggested which may be identified in a future X-ray structural analysis of the the photoconverted fluorescent state. The predominant kindling mechanism may be either (i) trans- cis isomerization or (ii) proton transfer between an excited zwitterion and the protein cleft. For mechanism (ii) the large dipole moment change of about 11 D upon S 0-S 1 excitation of the chromophore would be crucial in order to initiate protein relaxation and deprotonation of a zwitterion. Both mechanisms are assumed to lead to a metastable planar structure responsible for the long-lived fluorescence of the chromophore "kindled" at high light intensities.

  3. Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization.

    PubMed

    Zeng, Songjun; Wang, Haibo; Lu, Wei; Yi, Zhigao; Rao, Ling; Liu, Hongrong; Hao, Jianhua

    2014-03-01

    Visualization of blood vessel of lung can improve the detection of the lung and pulmonary vascular diseases. However, research on visualization of blood vessel of lung using the new generation upconversion nanoprobes is still scarce. Herein, high quality hexagonal phase NaLuF4:Gd/Yb/Er nanorods were synthesized by a simple hydrothermal method through doping Gd(3+). Doping Gd can not only promote the phase transformation from cubic to hexagonal and the shape evolution from microtube to rod-like, but also provide an additional magnetic properties for biomedical application. The as-prepared nanorods were further converted to water solubility by treating with HCl for eliminating the capped oleic acid. The ligand-free nanorods were successfully used for high-contrast upconversion fluorescent bioimaging of HeLa cells. Moreover, the in vivo synergistic upconversion fluorescent and X-ray imaging of nude mice were demonstrated by subcutaneously and intravenously administrated the ligand-free nanorods. The X-ray signals were matched well with the upconversion signal, indicating the successfully synergistic bioimaging. The ex-vivo X-ray and upconversion fluorescent imaging of various organs revealed that the nanorods were mainly accumulated in liver and lung. More importantly, the blood vessel of the lung can be readily visualized when these ligand-free nanorods are intravenously injected. Apart from the synergistic X-ray and upconversion bioimaging, the ligand-free nanorods can also possess excellent paramagnetic property for potential magnetic resonance imaging contrast agent. Our results have demonstrated the enhanced visualization of blood vessel of lung performed by dual-modal bioimaging of X-ray and upconversion fluorescence, revealing the great promise of these nanoprobes in angiography imaging. Such a new technique enables the integration of the two bioimaging techniques by combining their collective strengths and minimizing their shortcomings.

  4. Femtosecond spectroscopic study of carminic acid DNA interactions

    NASA Astrophysics Data System (ADS)

    Comanici, Radu; Gabel, Bianca; Gustavsson, Thomas; Markovitsi, Dimitra; Cornaggia, Christian; Pommeret, Stanislas; Rusu, Catalin; Kryschi, Carola

    2006-06-01

    Photo-excited carminic acid and carminic acid-DNA complexes in a buffer solution at pH 7 have been examined using a variety of spectroscopy techniques, that are in particular, the femtosecond resolved fluorescence upconversion and transient absorption spectroscopy. The observation of dual fluorescence emission, one peaks at 470 nm and the other at 570 nm, indicates to an excited-state (S 1) intramolecular proton transfer (ESIPT). A detailed analysis of the transient absorption measurements of an aqueous carminic-acid solution at pH 7 yielded four lifetimes for the excited-state (S 1): 8, 15, 33 and 46 ps. On the other hand, only two lifetimes, 34 and 47 ps, were observed by fluorescence upconversion spectroscopy because of the detection limitation to the long wavelength edge of the carminic-acid spectrum. The four S 1 lifetimes were ascribed to the coexistence of respectively two tautomer (normal and tautomer) forms of carminic acid, in the non-dissociated state (CAH) and in the deprotonated state (CA -). The fluorescence upconversion measurements of carminic acid-DNA complexes exhibited a prolongation of the fluorescence lifetimes. This effect was accepted as evidence for the formation of intercalation complexes between the carminic acid and the DNA. The intercalative binding of the carminic acid to DNA was confirmed by the fluorescence titration experiments resulting to a binding constant of 2 × 10 5 M -1 that is typical for anthracycline-DNA complexes.

  5. Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain.

    PubMed

    Silva, W F; Jacinto, C; Benayas, A; Vazquez de Aldana, J R; Torchia, G A; Chen, F; Tan, Y; Jaque, D

    2010-04-01

    We report the formation of optical waveguides in the self-Raman Nd:YVO(4) laser crystal by femtosecond laser inscription. The confocal fluorescence and Raman images have revealed that the waveguide is constituted by a locally compressed area in which the original fluorescence and Raman gains of the Nd:YVO(4) system are preserved. Thus the obtained structures emerge as promising candidates for highly efficient self-Raman integrated laser sources. PMID:20364168

  6. Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain.

    PubMed

    Silva, W F; Jacinto, C; Benayas, A; Vazquez de Aldana, J R; Torchia, G A; Chen, F; Tan, Y; Jaque, D

    2010-04-01

    We report the formation of optical waveguides in the self-Raman Nd:YVO(4) laser crystal by femtosecond laser inscription. The confocal fluorescence and Raman images have revealed that the waveguide is constituted by a locally compressed area in which the original fluorescence and Raman gains of the Nd:YVO(4) system are preserved. Thus the obtained structures emerge as promising candidates for highly efficient self-Raman integrated laser sources.

  7. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  8. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the

  9. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wu, Xuening; Wang, Shuo

    2015-11-01

    A novel fluorescence immunoassay to detect fluoroquinolones in animal-derived foods was developed for the first time by use of upconversion nanoparticles as signal-probe labels. The bioassay system was established by the use of coating-antigen-modified polystyrene particles as immune-sensing probes for separation and anti-norfloxacin monoclonal antibody conjugated with carboxyl-functionalized NaYF4:Yb,Er upconversion nanoparticles which were prepared via a pyrolysis method and a subsequent ligand exchange process as fluorescent-signal probes (emission intensity recorded at 542 nm with excitation at 980 nm). Under optimized conditions, detection of fluoroquinolones was performed easily. The detection limit of this fluorescence immunoassay for norfloxacin, for example, was 10 pg mL(-1), within a wide linear range of 10 pg mL(-1) to 10 ng mL(-1) (R (2)  = 0.9959). For specificity analysis, the data obtained indicate this method could be applied in broad-spectrum detection of fluoroquinolones. The recoveries of norfloxacin-spiked animal-derived foods ranged from 82.37 to 132.22 %, with coefficients of variation of 0.24-25.06 %. The extraction procedure was rapid and simple, especially for milk samples, which could be analyzed directly without any pretreatment. In addition, the results obtained with the method were in good agreement with those obtained with commercial ELISA kits. The fluorescence immunoassay was more sensitive, especially with regard to the detection limit in milk samples (0.01 ng mL(-1) for norfloxacin): it was 50-fold more sensitive than commercial ELISA kits (0.5 ng mL(-1) for norfloxacin). The results show the proposed fluorescence immunoassay was facile, sensitive, and interference free, and is an alternative method for the quantitative detection of fluoroquinolone residues in animal-derived foods.

  10. Homogenous detection of fumonisin B(1) with a molecular beacon based on fluorescence resonance energy transfer between NaYF4: Yb, Ho upconversion nanoparticles and gold nanoparticles.

    PubMed

    Wu, Shijia; Duan, Nuo; Li, Xiangli; Tan, Guiliang; Ma, Xiaoyuan; Xia, Yu; Wang, Zhouping; Wang, Hongxin

    2013-11-15

    In this work, we presented a new aptasensor for fumonisin B1 (FB1) based on fluorescence resonance energy transfer (FRET) between NaYF4: Yb, Ho upconversion fluorescent nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The quenchers (AuNPs) were attached to the 5' end of the molecular beacon (MB), and the donors (UCNPs) were attached to the 3' end of the MB. In the absence of target DNA (DNA complementary to FB1 aptamers), the energy donors and acceptors were placed in close proximity, leading to quenching of the fluorescence of the UCNPs. Due to the combination of FB1 and FB1-specific aptamers, this caused some complementary DNA dissociating from the magnetic nanoparticles (MNPs). In the presence of the complementary DNA, the MBs underwent spontaneous conformational change and caused the UCNPs and AuNPs to detach from each other, resulting in restoration of the upconversion fluorescence. Therefore, the fluorescence of UCNPs was restored in a FB1 concentration-dependent manner, which was the basis of the FB1 quantification. The aptasensors showed a linear relationship from 0.01 to 100 ng mL(-1) for FB1 with a detection limit of 0.01 ng mL(-1) in an aqueous buffer. As a practical application, the aptasensor was used to monitor FB1 levels in naturally contaminated maize samples. The results were consistent with that of a classic ELISA method, indicating that the UCNPs-FRET aptasensor, which benefited from the near infrared excitation of NaYF4: Yb, Ho UCNPs, was effective for directly sensing FB1 in foodstuff samples without optical interference. This work also created the opportunity to develop aptasensors for other targets using this FRET system.

  11. Coupling CARS with multiphoton fluorescence and high harmonic generation imaging modalities using a femtosecond laser source

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Slipchenko, Mikhail N.; Zhu, Jiabin; Buhman, Kimberly K.; Cheng, Ji-Xin

    2009-02-01

    Multimodal nonlinear optical imaging has opened new opportunities and becomes a powerful tool for imaging complex tissue samples with inherent 3D spatial resolution.. We present a robust and easy-to-operate approach to add the coherent anti-stokes Raman scattering (CARS) imaging modality to a widely used multiphoton microscope. The laser source composed of a Mai Tai femtosecond laser and an optical parametric oscillator (OPO) offers one-beam, two-beam and three-beam modalities. The Mai Tai output at 790 nm is split into two beams, with 80% of the power being used to pump the OPO. The idler output at 2036 nm from OPO is doubled using a periodically poled lithium niobate (PPLN) crystal. This frequency-doubled idler beam at 1018 nm is sent through a delay line and collinearly combined with the other Mai Tai beam for CARS imaging on a laser-scanning microscope. This Mai Tai beam is also used for multiphoton fluorescence and second harmonic generation (SHG) imaging. The signal output at 1290 nm from OPO is used for SHG and third-harmonic generation (THG) imaging. External detectors are installed for both forward and backward detection, whereas two internal lamda-scan detectors are employed for microspectroscopy analysis. This new system allows vibrationally resonant CARS imaging of lipid bodies, SHG imaging of collagen fibers, and multiphoton fluorescence analysis in fresh tissues. As a preliminary application, the effect of diacylglycerol acyltransferase 1 (DGAT1) deficiency on liver lipid metabolism in mice was investigated.

  12. Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yeh, Alvin T.

    2012-02-01

    The inverse relationship between two-photon excited fluorescence (TPEF) and laser pulse duration suggests that two-photon microscopy (TPM) performance may be improved by decreasing pulse duration. However, for ultrashort pulses of sub-10 femtosecond (fs) in duration, its spectrum contains the effective gain bandwidth of Ti:Sapphire and its central wavelength is no longer tunable. An experimental study was performed to explore this apparent tradeoff between untuned sub-10 fs transform-limited pulse (TLP) and tunable 140 fs pulse for TPEF. Enhancement factors of 1.6, 6.7, and 5.2 are measured for Indo-1, FITC, and TRITC excited by sub-10 fs TLP compared with 140 fs pulse tuned to the two-photon excitation (TPE) maxima at 730 nm, 800 nm, and 840 nm, respectively. Both degenerate (v1=v2) and nondegenerate (v1≠v2) mixing of sub-10 fs TLP spectral components result in its broad second-harmonic (SH) power spectrum and high spectral density, which can effectively compensate for the lack of central wavelength tuning and lead to large overlap with dye TPE spectra for TPEF enhancements. These pulse properties were also exploited for demonstrating its potential applications in multicolor imaging with TPM.

  13. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  14. Fluorescence Up-Conversion Studies of [2,2'-Bipyridyl]-3,3'-diol in Octyl-β-d-glucoside and Other Micellar Aggregates.

    PubMed

    Satpathi, Sagar; Gavvala, Krishna; Hazra, Partha

    2015-12-24

    In this present work, excited state double proton transfer dynamics (ESIDPT) of 2,2'-bipyridyl-3,3'-diol (BP(OH)2) molecules has been probed in a nontoxic, biocompatible sugar surfactant assembly, namely, octyl-β-d-glucoside (OBG) micelle with the help of steady state and fluorescence up-conversion techniques. Moreover, the ultrafast double proton transfer dynamics in conventional micelles (SDS, CTAB) and bile salts aggregates have been probed and compared. Interestingly, in all these supramolecular aggregates, the ESIDPT dynamics is found to follow sequential pathway; however, the time-scale of proton transfer dynamics varies from 11 to 30 ps. This difference in proton transfer time scale in different supramolecular aggregates has been explained in terms of accessibility of water molecules in the vicinity of probe.

  15. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells.

    PubMed

    Cen, Yao; Wu, Yan-Mei; Kong, Xiang-Juan; Wu, Shuang; Yu, Ru-Qin; Chu, Xia

    2014-07-15

    Phospholipase D (PLD) is a critical component of intracellular signal transduction and has been implicated in many important biological processes. It has been observed that there are abnormalities in PLD expression in many human cancers, and PLD is thus recognized as a potential diagnostic biomarker as well as a target for drug discovery. We report for the first time a phospholipid-modified nanoprobe for ratiometric upconversion fluorescence (UCF) sensing and bioimaging of PLD activity. The nanoprobe can be synthesized by a facile one-step self-assembly of a phospholipid monolayer composed of poly(ethylene glycol) (PEG)ylated phospholipid and rhodamine B-labeled phospholipid on the surface of upconversion nanoparticles (UCNPs) NaYF4: 20%Yb, 2%Er. The fluorescence resonance energy transfer (FRET) process from the UCF emission at 540 nm of the UCNPs to the absorbance of the rhodamine B occurs in the nanoprobe. The PLD-mediated hydrolysis of the phosphodiester bond makes rhodamine B apart from the UCNP surface, leading to the inhibition of FRET. Using the unaffected UCF emission at 655 nm as an internal standard, the nanoprobe can be used for ratiometric UCF detection of PLD activity with high sensitivity and selectivity. The PLD activity in cell lysates is also determined by the nanoprobe, confirming that PLD activity in a breast cancer cell is at least 7-fold higher than in normal cell. Moreover, the nanoprobe has been successfully applied to monitoring PLD activity in living cells by UCF bioimaging. The results reveal that the nanoprobe provides a simple, sensitive, and robust platform for point-of-care diagnostics and drug screening in biomedical applications. PMID:24939283

  16. ``Smart'' theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang

    2014-10-01

    The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j

  17. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy.

    PubMed

    Dong, Haifeng; Tang, Songsong; Hao, Yansong; Yu, Haizhu; Dai, Wenhao; Zhao, Guifeng; Cao, Yu; Lu, Huiting; Zhang, Xueji; Ju, Huangxian

    2016-02-10

    Small size molybdenum disulfide (MoS2) quantum dots (QDs) with desired optical properties were controllably synthesized by using tetrabutylammonium-assisted ultrasonication of multilayered MoS2 powder via OH-mediated chain-like Mo-S bond cleavage mode. The tunable up-bottom approach of precise fabrication of MoS2 QDs finally enables detailed experimental investigations of their optical properties. The synthesized MoS2 QDs present good down-conversion photoluminescence behaviors and exhibit remarkable up-conversion photoluminescence for bioimaging. The mechanism of the emerging photoluminescence was investigated. Furthermore, superior (1)O2 production ability of MoS2 QDs to commercial photosensitizer PpIX was demonstrated, which has great potential application for photodynamic therapy. These early affording results of tunable synthesis of MoS2 QDs with desired photo properties can lead to application in fields of biomedical and optoelectronics.

  18. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy.

    PubMed

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M; Kang, Yuejun

    2016-04-21

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. PMID:27035265

  19. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.

    PubMed

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-10-01

    In this work, we presented a novel dual fluorescence resonance energy transfer (FRET) system for the simultaneous detection of Pb(2+) and Hg(2+). This system employed two color upconversion nanoparticles (UCNPs) as the donors, and controlled gold nanoparticles (AuNPs) as the acceptors. The two donor-acceptor pairs were fabricated by hybridizing the aptamers and their corresponding complementary DNA. Thus, the green and red upconversion fluorescence could be quenched because of a good overlap between the UCNPs fluorescence emission and the AuNPs absorption spectrum. In the presence of Pb(2+) and Hg(2+), the aptamers preferred to bind to their corresponding analytes and formed a G-quadruplexes structure for Pb(2+) and the hairpin-like structure for Hg(2+). As a result, the dual FRET was disrupted, and the green and red upconversion fluorescence was restored. Under optimized experimental conditions, the relative fluorescence intensity increased as the metal ion concentrations were increased, allowing for the quantification of Pb(2+) and Hg(2+). The relationships between the fluorescence intensity and plotting logarithms of ion concentrations were linear in the range from 0.1 to 100 nM for Pb(2+) and 0.5 to 500 nM for Hg(2+), and the detection limits of Pb(2+) and Hg(2+) were 50 pM and 150 pM, respectively. As a practical application, the aptasensor was used to monitor Pb(2+) and Hg(2+) levels in naturally contaminated samples and human serum samples. Ultimately, this type of dual FRET could be used to detect other metal ions or contaminants in food safety analysis and environment monitoring.

  20. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  1. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy

    NASA Astrophysics Data System (ADS)

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M.; Kang, Yuejun

    2016-04-01

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency.A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. Electronic supplementary information (ESI) available: Experimental details and figures. See DOI: 10.1039/c6nr00150e

  2. Processing window for femtosecond laser microsurgery and fluorescence imaging of an arterial tissue hosted in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Li, Jianzhao; Herman, Peter R.

    2016-02-01

    We study the exposure limitations of femtosecond laser microsurgery and multiphoton imaging in a microfluidic chip environment, assessing damage thresholds at various interfaces as well as interference from bubble formation in the hosting solution. Both heat accumulation and incubation effects from multipulse laser exposures at 1-MHz repetition rate were evaluated. For demonstration, three microsurgery approaches of laser scribing, percussion drilling and trepanning were applied to arterial walls loaded in vitro in a lab-on-a-chip device. We report that deleterious effects from interface damage and microbubble formation can be avoided to offer laser processing windows for damage-free fluorescence imaging and precise microsurgery of live tissue hosted inside small microfluidic chambers.

  3. Infrared upconversion for astronomy

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.

    1977-01-01

    The basic theory of upconversion is presented, along with a brief historical summary of upconversion techniques. Upconverters were used in astronomical studies, but have met with only modest success. Upconversion will become a useful detection method for astronomy only if substantial but perhaps forseeable, improvements can be realized.

  4. Valence state change and defect centers induced by infrared femtosecond laser in Yb:YAG crystals

    SciTech Connect

    Wang, Xinshun Liu, Yang; Zhao, Panjuan; Guo, Zhongyi; Li, Yan; Qu, Shiliang

    2015-04-21

    The broad band upconversion luminescence in Yb{sup 3+}:YAG crystal has been observed in experiments under the irradiation of focused infrared femtosecond laser. The dependence of the fluorescence intensity on the pump power shows that the upconversion luminescence is due to simultaneous two-photon absorption process, which indicates that the broad emission bands at 365 and 463 nm could be assigned to the 5d → 4f transitions of Yb{sup 2+} ions and the one at 692 nm could be attributed to the electron-hole recombination process on (Yb{sup 2+}-F{sup +}) centers. The absorption spectra of the Yb:YAG crystal samples before and after femtosecond laser irradiation, and after further annealing reveal that permanent valence state change of Yb ions from Yb{sup 3+} to Yb{sup 2+} and (Yb{sup 2+}-F{sup +}) centers have been induced by infrared femtosecond laser irradiation in Yb{sup 3+}:YAG crystal.

  5. Electric field induced upconversion fluorescence enhancement and its mechanism in Er3+ doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Sun, Enwei; Liu, Ziyi; Zhang, Zhiguo; Zeng, Jiangtao; Ruan, Wei; Li, Guorong; Cao, Wenwu

    2016-09-01

    We have conducted an in-situ upconversion (UC) mechanism study through fluorescence enhancement induced by electric field in the Er3+ doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic. Under the excitation of a 980 nm diode laser, the sample shows a strong green UC fluorescence, which increases with electric field. A maximum enhancement of 150% was achieved in fluorescence intensity by the applied electric field due the lowering of crystal symmetry by the electric field induced strains. Combined with an in-situ analysis of time-resolved spectra, we proved that the dominant UC mechanism in this system should be the energy transfer (ET) process.

  6. Correlation of femtosecond wave packets and fluorescence interference in a conjugated polymer: Towards the measurement of site homogeneous dephasing

    NASA Astrophysics Data System (ADS)

    Milota, F.; Sperling, J.; Szöcs, V.; Tortschanoff, A.; Kauffmann, H. F.

    2004-05-01

    Probing electronic femtosecond (fs) coherence among segmental sites that are congested by static and dynamic site disorder and subject to structural relaxation is a big, experimental challenge in the study of photophysics of poly(p-phenylenevinylene). In this work, fs-wave-packet fluorescence interferometry experiments are presented that measure macroscopic coherent kernels and their phase-relaxation in the low-temperature, bottom-state regime of the density-of-states below the migrational threshold energy where downhill site-to-site transfer is marginal. By using freely propagating and tunable 70 fs excitation/probing pulses and employing narrow-band spectral filtering of wave packets, fluorescence interferograms with strongly damped beatings can be observed. The coherences formally follow the in-phase superpositions of two site-optical free-induction-decays and originate from distinct pairs of coherent doorway-states, different in energy and space, each of them being targeted, by two discrete quantum-arrival-states 1α and 1β, via independent, isoenergetic 0→1 fluorescence transitions. The coherent transients are explained as site-to-site polarization beatings, caused by the interference of two fluorescence correlation signals. The numerical analysis of the damping regime, based upon second-order perturbational solutions, reveals the lower limit value of homogeneous dephasing in the range from T2≃100 fs to T2≃200 fs depending on the site-excitation energy of the bottom-states. The experiments enable to look into the formation of the relaxed state as a special molecular process of electron-phonon coupling and hence open-up a quite new perspective in the puzzle of multichromophore optical dynamics and structural relaxation in conjugated polymers.

  7. Photolytic-interference-free, femtosecond, two-photon laser-induced fluorescence imaging of atomic oxygen in flames

    NASA Astrophysics Data System (ADS)

    Kulatilaka, Waruna D.; Roy, Sukesh; Jiang, Naibo; Gord, James R.

    2016-02-01

    Ultrashort-pulse lasers are well suited for nonlinear diagnostic techniques such as two-photon laser-induced fluorescence (TPLIF) because the signals generated scale as the laser intensity squared. Furthermore, the broad spectral bandwidths associated with nearly Fourier-transform-limited ultrashort pulses effectively contribute to efficient nonlinear excitation by coupling through a large number of in-phase photon pairs, thereby producing strong fluorescence signals. Additionally, femtosecond (fs)-duration amplified laser systems typically operate at 1-10 kHz repetition rates, enabling high-repetition-rate imaging in dynamic environments. In previous experiments, we have demonstrated utilization of fs pulses for kilohertz (kHz)-rate, interference-free imaging of atomic hydrogen (H) in flames. In the present study, we investigate the utilization of fs-duration pulses to photolytic-interference-free TPLIF imaging of atomic oxygen (O). In TPLIF of O, photodissociation of vibrationally excited carbon dioxide (CO2) is known to be the prominent interference that produces additional O atoms in the medium. We have found that through the use of fs excitation, such interferences can be virtually eliminated in premixed laminar methane flames, which paves the way for two-dimensional imaging of O at kHz data rates. Such measurements can provide critical data for validating complex, multidimensional turbulent-combustion models as well as for investigating flame dynamics in practical combustion devices.

  8. Superior optical nonlinearity of an exceptional fluorescent stilbene dye

    SciTech Connect

    He, Tingchao; Sreejith, Sivaramapanicker; Zhao, Yanli; Gao, Yang; Grimsdale, Andrew C.; Lin, Xiaodong E-mail: hdsun@ntu.edu.sg; Sun, Handong E-mail: hdsun@ntu.edu.sg

    2015-03-16

    Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonic generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.

  9. In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb,Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light.

    PubMed

    Li, Hao; Song, Shaoxin; Wang, Wei; Chen, Kezheng

    2015-09-28

    Yb(3+) and Er(3+) co-doped Gd2O3 nanoparticles were synthesized via a simple homogeneous precipitation method followed by subsequent heat treatment. Morphology characterization results showed that these nanoparticles were almost spherical in shape with diameters of 200-400 nm. The particles were further modified by polyethylene glycol (PEG) to improve their suspensibility in water. The sintering temperature was found to greatly influence the fluorescent properties of the products. After calcination at 700-1200 °C, the Gd2O3:Yb,Er nanoparticles could emit bright up-conversion fluorescence under 980 nm near-infrared (NIR) laser light excitation. The mechanism of up-conversion fluorescence was studied in detail and a three-photon process was observed for both green and red up-conversion fluorescence of the Gd2O3:Yb,Er nanoparticles. Different from many other Yb(3+),Er(3+) co-doped up-conversion materials, the prepared Gd2O3:Yb,Er nanoparticles emitted much stronger red light than green light. The reason was investigated and ascribed to the presence of abundant hydroxyl groups on the surface of the nanoparticles as a result of PEGylation. The nanoparticles could be taken up by the human cervical cancer (HeLa) cells and presented low toxicity. Well-selected photodynamic therapy (PDT) drugs, methylene blue (MB) with a UV/Vis absorption maximum (λmax) of 665 nm and 5-aminolevulinic acid (5ALA) which is a precursor of the natural photosensitizer photoporphyrin IX (PpIX) with a λmax of 635 nm, were loaded onto the nanoparticles respectively to obtain Gd2O3:Yb,Er-MB and Gd2O3:Yb,Er-5ALA nanoparticles. Being up-conversion nanoparticles (UCNPs), the taken up Gd2O3:Yb,Er nanoparticles exposed to 980 nm laser light emitted red fluorescence which activated the loaded MB and PpIX, and then killed the HeLa cells via a PDT mechanism. In vitro therapeutic investigation evidenced the prominent PDT effects of Gd2O3:Yb,Er-MB and Gd2O3:Yb,Er-5ALA upon NIR light irradiation. In

  10. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  11. Enhanced two-photon absorption and fluorescence upconversion in Thioflavin T micelle-type aggregates in glycerol/water solution

    NASA Astrophysics Data System (ADS)

    Donnelly, Julie; Vesga, Yuly; Hernandez, Florencio E.

    2016-09-01

    In this article, we report the systematic characterization of the two-photon absorption of ThT in different mixtures of glycerol/water solution. The relationships of TPA peak position and amplitude revealed a dependence on particle size suggesting that the curious trend observed in TPA with changing glycerol content can be attributed to the presence of micelle-type aggregates. Consequently, the relatively strong TPA cross-section (δTPA = 300 GM) obtained in 8.75% glycerol/water solutions could be attributed to the immobilization of dye molecules and the strong coupling of the molecular transition dipoles in micelle-type aggregates. This enhancement of TPA, in addition to the already reported significant fluorescence quantum yield of ThT attached to brain tissue, is expected to boost the application of this compound for in vitro and perhaps in vivo high resolution multiphoton bioimaging of amyloids in brain tissue.

  12. Remarkable enhancement of upconversion fluorescence and confocal imaging of PMMA Opal/NaYF(4):Yb(3+), Tm(3+)/Er(3+) nanocrystals.

    PubMed

    Yin, Ze; Zhu, Yongsheng; Xu, Wen; Wang, Jing; Xu, Sai; Dong, Biao; Xu, Lin; Zhang, Shuang; Song, Hongwei

    2013-05-01

    Novel PMMA opal photonic crystal/NaYF(4):Yb(3+), Tm(3+)/Er(3+) nanocrystal composites were fabricated and tremendous improvement in upconversion luminescence (UCL) was observed under infrared 980 nm excitation. They were also explored to improve brightness of cell images. PMID:23539518

  13. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.

    PubMed

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  14. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  15. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.

    PubMed

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism. PMID:26580697

  16. Primary light-induced reaction steps of reversibly photoswitchable fluorescent protein Padron0.9 investigated by femtosecond spectroscopy.

    PubMed

    Walter, Arne; Andresen, Martin; Jakobs, Stefan; Schroeder, Jörg; Schwarzer, Dirk

    2015-04-23

    The reversible photoswitching of the photochromic fluorescent protein Padron0.9 involves a cis-trans isomerization of the chromophore. Both isomers are subjected to a protonation equilibrium between a neutral and a deprotonated form. The observed pH dependent absorption spectra require at least two protonating groups in the chromophore environment modulating its proton affinity. Using femtosecond transient absorption spectroscopy, we elucidate the primary reaction steps of selectively excited chromophore species. Employing kinetic and spectral modeling of the time dependent transients, we identify intermediate states and their spectra. Excitation of the deprotonated trans species is followed by excited state relaxation and internal conversion to a hot ground state on a time scale of 1.1-6.5 ps. As the switching yield is very low (Φtrans→cis = 0.0003 ± 0.0001), direct formation of the cis isomer in the time-resolved experiment is not observed. The reverse switching route involves excitation of the neutral cis chromophore. A strong H/D isotope effect reveals the initial reaction step to be an excited state proton transfer with a rate constant of kH = (1.7 ps)(-1) (kD = (8.6 ps)(-1)) competing with internal conversion (kic = (4.5 ps)(-1)). The deprotonated excited cis intermediate relaxes to the well-known long-lived fluorescent species (kr = (24 ps)(-1)). The switching quantum yield is determined to be low as well, Φcis→trans = 0.02 ± 0.01. Excitation of both the neutral and deprotonated cis chromophores is followed by a ground state proton transfer reaction partially re-establishing the disturbed ground state equilibrium within 1.6 ps (deuterated species: 5.6 ps). The incomplete equilibration reveals an inhomogeneous population of deprotonated cis species which equilibrate on different time scales.

  17. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    SciTech Connect

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-15

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  18. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process. PMID:26724012

  19. Synthesis of NIR-Responsive NaYF₄:Yb,Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates.

    PubMed

    Wang, Meng; Zhu, Ye; Mao, Chuanbin

    2015-06-30

    Fingerprints at crime scenes are usually latent. The powder-dusting method is the most commonly used procedure for developing latent fingerprints in forensic science. However, the traditional powder-dusting method has characteristics of low sensitivity, low contrast, high background noise, and high autofluorescence interference. To overcome the drawbacks faced by the traditional method, we first optimized an oleic acid-based solvothermal approach for the synthesis of NaYF4:Yb,Er fluorescent upconversion nanoparticles (UCNPs) with the highest possible fluorescence intensity under near-infrared (NIR) irradiation. To optimize the synthesis, we studied the effects of the reaction time, reaction temperature, and volume of oleic acid on the size, phase composition, and UC fluorescence intensity of the UCNPs. We then used the resultant UCNPs to fluorescently label the fingerprints on various smooth substrates to improve the development of latent fingerprints because the UCNPs could undergo excitation under 980 nm NIR light to emit visible light. Latent fingerprints on three major types of smooth substrates were studied, including those with a single background color (transparent glass, white ceramic tiles, and black marbles), with multiple background colors (marbles with different complex surface patterns) and with strong background autofluorescence (note papers, Chinese paper money, and plastic plates). Compared with fingerprint development using traditional powders such as bronze powder, magnetic powder, and green fluorescent powder, our development procedure using UCNPs is facile and exhibits very high sensitivity, high contrast, low background interference, and low autofluorescence interference. This work shows that UCNPs synthesized under optimized conditions are a versatile fluorescent label for the facile development of fingerprints and can find their practical applications in forensic sciences. PMID:26089129

  20. Synthesis of NIR-Responsive NaYF₄:Yb,Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates.

    PubMed

    Wang, Meng; Zhu, Ye; Mao, Chuanbin

    2015-06-30

    Fingerprints at crime scenes are usually latent. The powder-dusting method is the most commonly used procedure for developing latent fingerprints in forensic science. However, the traditional powder-dusting method has characteristics of low sensitivity, low contrast, high background noise, and high autofluorescence interference. To overcome the drawbacks faced by the traditional method, we first optimized an oleic acid-based solvothermal approach for the synthesis of NaYF4:Yb,Er fluorescent upconversion nanoparticles (UCNPs) with the highest possible fluorescence intensity under near-infrared (NIR) irradiation. To optimize the synthesis, we studied the effects of the reaction time, reaction temperature, and volume of oleic acid on the size, phase composition, and UC fluorescence intensity of the UCNPs. We then used the resultant UCNPs to fluorescently label the fingerprints on various smooth substrates to improve the development of latent fingerprints because the UCNPs could undergo excitation under 980 nm NIR light to emit visible light. Latent fingerprints on three major types of smooth substrates were studied, including those with a single background color (transparent glass, white ceramic tiles, and black marbles), with multiple background colors (marbles with different complex surface patterns) and with strong background autofluorescence (note papers, Chinese paper money, and plastic plates). Compared with fingerprint development using traditional powders such as bronze powder, magnetic powder, and green fluorescent powder, our development procedure using UCNPs is facile and exhibits very high sensitivity, high contrast, low background interference, and low autofluorescence interference. This work shows that UCNPs synthesized under optimized conditions are a versatile fluorescent label for the facile development of fingerprints and can find their practical applications in forensic sciences.

  1. Upconversion in solar cells

    PubMed Central

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  2. Upconversion in solar cells.

    PubMed

    van Sark, Wilfried Gjhm; de Wild, Jessica; Rath, Jatin K; Meijerink, Andries; Schropp, Ruud Ei

    2013-02-15

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells.

  3. Spectral superbroadening of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wittmann, M.; Penzkofer, A.

    1996-02-01

    The spectral superbroadening of femtosecond pulses in water, heavy water, ethanol, and fused silica is studied under strong focusing conditions. Efficient transient stimulated Raman scattering, impulsive stimulated Raman scattering, longitudinally phase-matched parametric four-photon interaction, and cascading light up-conversion and down-conversion are responsible for the spectral superbroadening. Self-phase modulation and cross-phase modulation broaden the laser and stimulated Raman lines.

  4. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode.

    PubMed

    Yang, Yanmin; Mi, Chao; Su, Xianyuan; Jiao, Fuyun; Liu, Linlin; Zhang, Jiao; Yu, Fang; Li, Xiaodong; Liu, Yanzhou; Mai, Yaohua

    2014-04-01

    Multiple ultraviolet (UV) emission bands have been obtained in Er3+ doped BaGd2ZnO5 phosphor under the excitation of a 532 nm solid-state laser, and the emission peaks at 217, 254, 278, 296, 314, 348, 374 and 394 nm were determined to stem from the high-energy states 4D(1/2), 4D(7/2), 2H(9/2), 2P(1/2), 2P(3/2), 4G(7/2), 4G(11/2), 4H(9/2) of trivalent erbium, respectively. Some UV emission bands in the UVC region can be observed when the sample was excited by commercial green (529 nm) and blue (460 nm) LED. In view of the small size, low-drive voltage and price of LED, UVC upconversion phosphor BaGd2ZnO5:Er3+ excited by visible LED has potential application in environmental sciences.

  5. Multiple temperature effects on up-conversion fluorescences of Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} and high thermal sensitivity

    SciTech Connect

    Cao, B. S.; Wu, J. L.; Wang, X. H.; He, Y. Y.; Feng, Z. Q.; Dong, B. E-mail: bscao@dlnu.edu.cn; Rino, L.

    2015-08-15

    We report multiple temperature effects on green and red up-conversion emissions in Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} phosphors. With increasing temperature, the decrease of the red emission from {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2}, the increase of green emission from {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and another unchanged green emission from {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (S{sub max}) and optimum operating temperature (T{sub max}) are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  6. Upconversion in Nd{sup 3+}-doped glasses: Microscopic theory and spectroscopic measurements

    SciTech Connect

    Oliveira, S. L.; Sousa, D. F. de; Andrade, A. A.; Nunes, L. A. O.; Catunda, T.

    2008-01-15

    In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd{sup 3+}-doped fluoride glasses. The energy transfer upconversion ({gamma}{sub up}) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar {gamma}{sub up} parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses.

  7. Plasmon enhancement of luminescence upconversion.

    PubMed

    Park, Wounjhang; Lu, Dawei; Ahn, Sungmo

    2015-05-21

    Frequency conversion has always been an important topic in optics. Nonlinear optics has traditionally focused on frequency conversion based on nonlinear susceptibility but with the recent development of upconversion nanomaterials, luminescence upconversion has begun to receive renewed attention. While upconversion nanomaterials open doors to a wide range of new opportunities, they remain too inefficient for most applications. Incorporating plasmonic nanostructures provides a promising pathway to highly efficient upconversion. Naturally, a plethora of theoretical and experimental studies have been published in recent years, reporting enhancements up to several hundred. It is however difficult to make meaningful comparisons since the plasmonic fields are highly sensitive to the local geometry and excitation condition. Also, many luminescence upconversion processes involve multiple steps via different physical mechanisms and the overall output is often determined by a delicate interplay among them. This review is aimed at offering a comprehensive framework for plasmon enhanced luminescence upconversion. We first present quantum electrodynamics descriptions for all the processes involved in luminescence upconversion, which include absorption, emission, energy transfer and nonradiative transitions. We then present a bird's eye view of published works on plasmon enhanced upconversion, followed by more detailed discussion on comparable classes of nanostructures, the effects of spacer layers and local heating, and the dynamics of the plasmon enhanced upconversion process. Plasmon enhanced upconversion is a challenging and exciting field from the fundamental scientific perspective and also from technological standpoints. It offers an excellent system to study how optical processes are affected by the local photonic environment. This type of research is particularly timely as the plasmonics is placing heavier emphasis on nonlinearity. At the same time, efficient upconversion

  8. Upconversion in erbium-doped transparent glass ceramics

    NASA Astrophysics Data System (ADS)

    Jones, Gina Christine

    2005-11-01

    Transparent glass ceramics (TGCs) are a class of materials that are composed of a robust glass matrix which is densely embedded with nanometer-sized fluoride crystals: In bulk, fluoride materials tend to have poor handling and mechanical properties, and can be expensive to produce. In contrast, the forming and handling properties of the TGC are similar to those of the precursor, glass, and are engineered to be robust and mechanically stable. Rare earth ions can be incorporated into the TGC during manufacture and can become partially segregated into the crystalline phase. There they experience the low-phonon energy environment of the fluoride nanocrystallite, which induces long energy level lifetimes and enhanced frequency upconversion. Therefore, rare earth doped TGCs can have the spectroscopic properties of a crystal with the durability of an aluminosilicate glass. Upconversion fluorescence is studied for an aluminosilicate TGC containing LaF3 nanocrystallites and doped with an erbium density of 1.7 x 1020 CM-3. Time gated fluorescence and excitation spectra as well as photoluminescence decays are used to find the nature and origin of this fluorescence. It is determined that energy transfer upconversion occurs only in the nanocrystallite phase and sequential two-photon absorption upconversion occurs in both glass and crystal phases.

  9. Photon upconversion sensitized by a Ru(II)-pyrenyl chromophore

    PubMed Central

    Deng, Fan; Lazorski, Megan S.; Castellano, Felix N.

    2015-01-01

    The near-visible-to-blue singlet fluorescence of anthracene sensitized by a ruthenium chromophore with a long-lived triplet-excited state, [Ru(5-pyrenyl-1,10-phenanthroline)3](PF6)2, in acetonitrile was investigated. Low intensity non-coherent green light was used to selectively excite the sensitizer in the presence of micromolar concentrations of anthracene generating anti-Stokes, singlet fluorescence in the latter, even with incident power densities below 500 μW cm−2. The resultant data are consistent with photon upconversion proceeding from sensitized triplet–triplet annihilation (TTA) of the anthracene acceptor molecules, confirmed through transient absorption spectroscopy as well as static and dynamic photoluminescence experiments. Additionally, quadratic-to-linear incident power regimes for the upconversion process were identified for this composition under monochromatic 488 nm excitation, consistent with a sensitized TTA mechanism ultimately producing the anti-Stokes emission characteristic of anthracene singlet fluorescence. PMID:25987571

  10. The origin of radiationless conversion of the excited state in the kindling fluorescent protein (KFP): femtosecond studies and quantum modeling

    NASA Astrophysics Data System (ADS)

    Shelaev, I.; Mironov, V.; Rusanov, A.; Gostev, F.; Bochenkova, A.; Sarkisov, O.; Nemukhin, A.; Savitsky, A.

    2011-06-01

    The Ala143Gly variant of the chromoprotein asCP from the sea anemony Anemonia sulcata, called the kindling fluorescent protein (KFP), is a promising candidate for the development of novel subdiffraction method of fluorescent microscopy. The pump-probe method with the delay times between the pump and probe pulses up to 5 ps was applied to study dynamics of the primary processes upon excitation of KFP. The differential absorption spectra at 80 fs delay showed the absorption peak in the range 450-510 nm with the maximum wavelength at 490 nm, which diminished almost twice by intensity by 400 fs and practically disappeared by 1.5 ps. The quantum calculations showed that upon photo-excitation of KFP to the first excited state S1, the fast radiationless relaxation occurred to the ground state S0 due to rotation of the phenolic fragment of the chromophore.

  11. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material

    NASA Astrophysics Data System (ADS)

    Cheng, Xuerui; Yang, Kun; Wang, Jiankun; Yang, Linfu; Cheng, Xiaoshuai

    2016-08-01

    Present article report on structural and optical properties of Er3+/Yb3+ codoped CaWO4 phosphors. Structural properties are explored using XRD and Raman technologies. The upconversion emission has been investigated with 980 nm excitation. The upconversion emission intensity is dependent on the concentrations of Yb3+ ions and reaches a maximum at 7%. Logarithmic plots of power dependencies reveal that the green and red emissions originate from a two-photon upconversion process. Based on the photon energy and the emission spectra, the possible upconversion processes and emission mechanisms are discussed. Finally, the optical temperature sensing properties has been performed using the fluorescence intensity ratio technique based on green upconversion emissions. Its temperature sensitivity is found to be above 0.0025 K-1 in the whole temperature range of 300-540 K, revealing this phosphor to be a promising optical temperature sensing material.

  12. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials.

  13. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  14. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    PubMed

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.

  15. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance.

    PubMed

    Tian, Gan; Zheng, Xiaopeng; Zhang, Xiao; Yin, Wenyan; Yu, Jie; Wang, Dongliang; Zhang, Zhiping; Yang, Xiangliang; Gu, Zhanjun; Zhao, Yuliang

    2015-02-01

    Multi-drug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively investigated for overcoming MDR in cancer therapy because of its ability to inhibit P-glycoprotein (P-gp). In this work, TPGS was for the first time used as a new surface modifier to functionalize NaYbF4:Er upconversion nanoparticles (UNCPs) and endowed the as-prepared products (TPGS-UCNPs) with excellent water-solubility, P-gp inhibition capability and imaging-guided drug delivery property. After the chemotherapeutic drug (doxorubicin, DOX) loading, the as-formed composites (TPGS-UCNPs-DOX) exhibited potent killing ability for DOX-resistant MCF-7 cells. Flow-cytometric assessment and Western blot assay showed that the TPGS-UCNPs could potently decrease the P-gp expression and facilitate the intracellular drug accumulation, thus achieving MDR reversal. Moreover, considering that UCNPs process efficient upconversion emission and Yb element contained in UCNPs has strong X-ray attenuation ability, the as-obtained composite could also serve as a dual-modal probe for upconversion luminescence (UCL) imaging and X-ray computed tomography (CT) imaging, making them promising for imaging-guided cancer therapy.

  16. Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd(WO{sub 4}){sub 2}(Nd:KGW) by femtosecond laser writing

    SciTech Connect

    Liu Xiaoyu; Qu Shiliang; Tan Yang; Chen Feng

    2011-02-20

    We report on the preservation of fluorescence and Raman gain in low-repetition-rate femtosecond laser written buried channel waveguides in neodymium-doped KGd(WO{sub 4}){sub 2}. The propagation loss index, profile reconstruction, and calculation of the modal intensity distribution by the beam propagation method of the waveguide are presented. Microluminescence spectra of the waveguides show that the fluorescence properties of Nd{sup 3+} ions are not significantly affected by the waveguide formation processing, which indicates a fairly good potential for further laser actions in a compact device. Micro-Raman spectra are also performed to reveal the preservation of the characteristic 768 and 901 cm{sup -1} Raman mode intensities in the guiding regions.

  17. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  18. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  19. Mid-infrared nonlinear upconversion imaging and sensing

    NASA Astrophysics Data System (ADS)

    Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2016-03-01

    The mid-IR wavelength range is highly relevant for a number of applications related to gas spectroscopy and spectral analysis of complex molecules such as those including CH bounds. The main obstacles for exploitation of mid-IR applications include suitable and affordable mid-IR light sources for excitation of the sample and sensitive mid-IR detectors. With the advent of mid-IR Quantum cascaded lasers and super continuum light sources new possibilities has emerged. However, low-noise, mid-IR (2-15 μm) detection is still challenging requiring cryogenic cooling to gain sensitivities needed for measurements of fluorescence or absorptions signals. Mid-IR upconversion imaging and detection using nonlinear crystals offers good promise as an alternative, sensitive mid-IR imaging and detection technology. In this paper the fundamental properties of upconversion is discussed.

  20. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo.

    PubMed

    Liu, Qian; Yang, Tianshe; Feng, Wei; Li, Fuyou

    2012-03-21

    Water-soluble upconversion luminescent (UCL) nanoparticles based on triplet-triplet annihilation (TTA) were successfully prepared by coloading sensitizer (octaethylporphyrin Pd complex) and annihilator (9,10-diphenylanthracene) into silica nanoparticles. The upconversion luminescence quantum yield of the nanoparticles can be as high as 4.5% in aqueous solution. As determined by continuous kinetic scan, the nanoparticles have excellent photostability. Such TTA-based upconversion nanoparticles show low cytotoxicity and were successfully used to label living cells with very high signal-to-noise ratio. UCL imaging with the nanoparticles as probe is capable of completely eliminating background fluorescence from either endogenous fluorophores of biological sample or the colabeled fluorescent probe. In particular, such blue-emissive upconversion nanoparticles were successfully applied in lymph node imaging in vivo of living mouse with excellent signal-to-noise ratio (>25), upon low-power density excitation of continuous-wave 532 laser (8.5 mW cm(-2)). Such high-contrast and low-power excited bioimaging in vivo with a blue-emissive upconversion nanoparticle as probe may extend the arsenal of currently available luminescent bioimaging in vitro and in vivo.

  1. Femtosecond and temperature-dependent picosecond dynamics of ultrafast excited-state proton transfer in water-dioxane mixtures.

    PubMed

    Freitas, Adilson A; Quina, Frank H; Maçanita, António A L

    2014-11-13

    Synthetic flavylium salts like the 7-hydroxy-4-methylflavylium (HMF) cation have been used as prototypes to study the chemistry and photochemistry of anthocyanins, the major group of water-soluble pigments in the plant kingdom. In this work, a combination of fluorescence upconversion with femtosecond time resolution and time-correlated single photon counting (TCSPC) with picosecond time resolution have been employed to investigate in details the excited-state proton transfer (ESPT) of HMF in water and in binary water/1,4-dioxane mixtures. TCSPC measurements as a function of temperature provide activation parameters for all of the individual rate constants involved in the proton transfer, including those for dissociation and recombination of the geminate excited base-proton pair (A*···H(+)) that can be detected in the water/dioxane mixtures (but not in water). Unlike the other rate constants, the deprotonation rate constant kd shows a non-Arrhenius dependence on temperature in both water and water/dioxane mixtures. At low temperatures kd is close to the dielectric relaxation rate of the solvent with a barrier of ca. 8 kJ mol(-1), suggesting that the solvent reorganization is the rate-limiting step. At higher temperatures (>30 °C) the proton transfer process is nearly barrierless and solvent-dependent. Fluorescence upconversion results in H2O, D2O, and water/dioxane mixtures confirm the two-step model for the ESPT of HMF and provide additional details of the early events prior to the onset of proton transfer, attributed to conformational relaxation and solvent reaccommodation around the initially formed excited state. The results are consistent with DFT calculations that indicate that charge redistribution occurs after rather than prior to the onset of the ESPT process.

  2. Photochemical Upconversion: A Physical or Inorganic Chemistry Experiment for Undergraduates Using a Conventional Fluorimeter

    ERIC Educational Resources Information Center

    Wilke, Bryn M.; Castellano, Felix N.

    2013-01-01

    Photochemical upconversion is a regenerative process that transforms lower-energy photons into higher-energy light through two sequential bimolecular reactions, triplet sensitization of an appropriate acceptor followed by singlet fluorescence producing triplet-triplet annihilation derived from two energized acceptors. This laboratory directly…

  3. Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region.

    PubMed

    Zhu, Jingyi; Mathes, Tilo; Stahl, Andreas D; Kennis, John T M; Groot, Marie Louise

    2012-05-01

    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800cm(-1), using the nonlinear optical crystal AgGaGeS4, realizing an important expansion of the application range of this method. Experiments were demonstrated with a slab of GaAs, in which the upconverted signals cover a window of 120cm(-1), with 1.5cm(-1) resolution. In experiments on the BLUF photoreceptor Slr1694, signals below 1 milliOD were well resolved after baseline correction. Possibilities for further optimization of the method are discussed. We conclude that this method is an attractive alternative for the traditional MCT arrays used in most mid-infrared pump probe experiments.

  4. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ Codoped NaYF4 nanocrystals.

    PubMed

    Schietinger, Stefan; Menezes, Leonardo de S; Lauritzen, Björn; Benson, Oliver

    2009-06-01

    In this Letter we report on the investigation of the upconversion emission of single NaYF(4) nanocrystals codoped with Yb(3+) and Er(3+). Single nanocrystals on a coverslip are excited with continuous wave laser light at 973 nm in a confocal setup and the upconversion fluorescence is analyzed with a spectrometer. With the help of an atomic force microscope the size of the nanocrystals is simultaneously determined. A strong size-dependence of the spectral properties of the upconversion signal of individual nanocrystals is observed. We attribute this to a differing number of available phonons in the individual crystals for multiphonon relaxation processes, depending on their size. We believe that this result provides a new strategy in the synthesis of upconversion nanoparticles with different spectral properties by changing only their size as it is well-known from the case of semiconductor quantum dots.

  5. Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods

    PubMed Central

    Liu, Xin; Yuan Lei, Dang

    2015-01-01

    The geometry and dimension of a gold nanorod (GNR) are optimally designed to enhance the fluorescence intensity of a lanthanide-doped upconversion nanocrystal placed in close proximity to the GNR. A systematic study of the electromagnetic interaction between the upconversion emitter of three energy levels and the GNR shows that the enhancement effect arising from localized electric field-induced absorption can be balanced by the negative effect of electronic transition from an intermediate state to the ground state of the emitter. The dependence of fluorescence enhancement on the emitter-GNR separation is investigated, and the results demonstrate a maximum enhancement factor of 120 folds and 160 folds at emission wavelengths 650 and 540 nm, respectively. This is achieved at the emitter-GNR separation ranging from 5 to 15 nm, depending on the initial quantum efficiency of the emitter. The modified upconversion luminescence behavior by adjusting the aspect ratio of the GNR and the relative position of the emitter indicates the dominate role of excitation process in the total fluorescence enhancement. These findings are of great importance for rationally designing composite nanostructures of metal nanoparticles and upconversion nanocrystals with maximized plasmonic enhancement for bioimaging and sensing applications. PMID:26468686

  6. Photon upconversion with directed emission.

    PubMed

    Börjesson, K; Rudquist, P; Gray, V; Moth-Poulsen, K

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  7. Photon upconversion with directed emission

    PubMed Central

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  8. Photon upconversion with directed emission

    NASA Astrophysics Data System (ADS)

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-08-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix.

  9. Femtosecond upconverted photocurrent spectroscopy of InAs quantum nanostructures

    SciTech Connect

    Yamada, Yasuhiro; Tex, David M.; Kanemitsu, Yoshihiko; Kamiya, Itaru

    2015-07-06

    The carrier upconversion dynamics in InAs quantum nanostructures are studied for intermediate-band solar-cell applications via ultrafast photoluminescence and photocurrent (PC) spectroscopy based on femtosecond excitation correlation (FEC) techniques. Strong upconverted PC-FEC signals are observed under resonant excitation of quantum well islands (QWIs), which are a few monolayer-thick InAs quantum nanostructures. The PC-FEC signal typically decays within a few hundred picoseconds at room temperature, which corresponds to the carrier lifetime in QWIs. The photoexcited electron and hole lifetimes in InAs QWIs are evaluated as functions of temperature and laser fluence. Our results provide solid evidence for electron–hole–hole Auger process, dominating the carrier upconversion in InAs QWIs at room temperature.

  10. Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.

    2014-01-01

    We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.

  11. Photon upconversion in core-shell nanoparticles.

    PubMed

    Chen, Xian; Peng, Denfeng; Ju, Qiang; Wang, Feng

    2015-03-21

    Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications. PMID:25058157

  12. Tuning Crystal Phase and Emission Properties of Upconversion Nanocrystals Through Lanthanide Doping.

    PubMed

    Luo, L; Liu, H B; Yao, L L; Dong, G S; Zhang, W; Wang, Y H; Qiu, Z R; Chen, J

    2016-01-01

    Infrared-to-visible upconversion fluorescent nanocrystals of Yb³⁺/Er³⁺-codoped NaYF₄ and Yb³⁺/Er³⁺/Gd³⁺-tridoped NaYF₄ were synthesized using a modified coprecipitation process. X-ray diffraction and transmission electron diffraction scans of the nanocrystals confirmed that Gd³⁺ doping caused a phase transition to occur in the nanocrystals, changing them from a cubic to a hexagonal phase. Hexagonal phase Yb³⁺/Er³⁺/Gd³⁺-tridoped NaYF₄ nanocrystals displayed much stronger and sharper upconversion luminescence, and larger intensity ratios of red over green emissions relative to their cubic phase counterparts. The influence of the crystal phase on the upconversion emission properties was explored by use of excitation power dependence curves, dynamic fluorescence and Raman spectra. The results suggest that the cubic-to-hexagonal phase transition decreases the crystal field symmetry, and then enhances upconversion luminescence intensity by relaxing forbidden selection rules. The conversion into the hexagonal phase also increases the number of phonon modes, and consequently improves the phonon-assisted energy transfer efficiency from Yb³⁺ to Er³⁺, thus facilitating the output of red emissions. PMID:27398498

  13. Construction of a femtosecond laser microsurgery system

    PubMed Central

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2014-01-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d. PMID:20203659

  14. Superresolved femtosecond laser nanosurgery of cells

    PubMed Central

    Pospiech, Matthias; Emons, Moritz; Kuetemeyer, Kai; Heisterkamp, Alexander; Morgner, Uwe

    2011-01-01

    We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %. PMID:21339872

  15. Blue-green upconversion laser

    DOEpatents

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  16. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  17. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  18. Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Hui, Zhang; Yun-Hua, Yao; Shi-An, Zhang; Chen-Hui, Lu; Zhen-Rong, Sun

    2016-02-01

    We propose a femtosecond laser polarization modulation scheme to control the up-conversion (UC) luminescence in Er3+-doped NaYF4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304396), the National Natural Science Foundation of China (Grant Nos. 11474096 and 51132004), and the Shanghai Municipal Science and Technology Commission, China (Grant No. 14JC1401500).

  19. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells.

    PubMed

    Drees, Christoph; Raj, Athira Naduviledathu; Kurre, Rainer; Busch, Karin B; Haase, Markus; Piehler, Jacob

    2016-09-12

    Upconversion nanoparticles (UCNPs) convert near-infrared into visible light at much lower excitation densities than those used in classic two-photon absorption microscopy. Here, we engineered <50 nm UCNPs for application as efficient lanthanide resonance energy transfer (LRET) donors inside living cells. By optimizing the dopant concentrations and the core-shell structure for higher excitation densities, we observed enhanced UCNP emission as well as strongly increased sensitized acceptor fluorescence. For the application of these UCNPs in complex biological environments, we developed a biocompatible surface coating functionalized with a nanobody recognizing green fluorescent protein (GFP). Thus, rapid and specific targeting to GFP-tagged fusion proteins in the mitochondrial outer membrane and detection of protein interactions by LRET in living cells was achieved. PMID:27510808

  20. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells.

    PubMed

    Drees, Christoph; Raj, Athira Naduviledathu; Kurre, Rainer; Busch, Karin B; Haase, Markus; Piehler, Jacob

    2016-09-12

    Upconversion nanoparticles (UCNPs) convert near-infrared into visible light at much lower excitation densities than those used in classic two-photon absorption microscopy. Here, we engineered <50 nm UCNPs for application as efficient lanthanide resonance energy transfer (LRET) donors inside living cells. By optimizing the dopant concentrations and the core-shell structure for higher excitation densities, we observed enhanced UCNP emission as well as strongly increased sensitized acceptor fluorescence. For the application of these UCNPs in complex biological environments, we developed a biocompatible surface coating functionalized with a nanobody recognizing green fluorescent protein (GFP). Thus, rapid and specific targeting to GFP-tagged fusion proteins in the mitochondrial outer membrane and detection of protein interactions by LRET in living cells was achieved.

  1. Upconversion, size analysis, and fiber filling of NaYF4: Ho3+, Yb3+ crystals and nanocolloids

    NASA Astrophysics Data System (ADS)

    Patel, Darayas; Lewis, Ashley; Wright, Donald; Velentine, Maucus; Lewis, Danielle; Valentine, Ruben; Sarkisov, Sergey

    2014-03-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community. This attention is due to unique physical, chemical and optical properties attributed to nanometer size of the particles. They have great potential of being used in applications spanning from new types of lasers, especially blue and UV ones, phosphorous display monitors, optical communications, and fluorescence imaging. In this paper we investigate the near-infrared upconversion luminescence in bulk crystals and nanocolloid filled photonic crystal fiber with ytterbium and holmium co-doped NaYF4 phosphor. The phosphor is prepared by using simple co-precipitation synthetic method. The initially prepared phosphor has very week upconversion fluorescence. The fluorescence significantly increased after the phosphor was annealed at a temperature of 600 °C. Nanocolloids of this phosphor were obtained using 1-propanol as solvent and they were utilized as laser filling medium in photonic crystal fibers. Under 980 nm diode laser excitation very strong upconversion signals were obtained for ytterbium and holmium co-doped phosphor at 541 nm, 646 nm and 751 nm. Pump power emissions, laser ablation and size analysis of the particles was conducted to understand the upconversion mechanisms. The particle sizes of the nanocolloids were analyzed using Atomic Force Microscope and Malvern Zetasizer instrument. The reported nanocolloids are good candidates for fluorescent biosensing applications and also as a new laser filling medium in fiber laser.

  2. Ultrafast Excited-State Dynamics in the Green Fluorescent Protein Variant S65T/H148D. 2. Unusual Photophysical Properties†

    PubMed Central

    Shi, Xinghua; Abbyad, Paul; Shu, Xiaokun; Kallio, Karen; Kanchanawong, Pakorn; Childs, William; Remington, S. James; Boxer, Steven G.

    2008-01-01

    In the preceding accompanying paper (1), the 1.5 Å resolution crystal structure of GFP variant S65T/H148D is presented and the possible consequences of an unusual short hydrogen bond (≤2.4 Å) between the carboxyl oxygen of Asp148 and phenol oxygen of the chromophore are discussed. In this work, we report the femtosecond time-resolved emission of this variant at pH 5.6 by ultrafast fluorescence upconversion spectroscopy. Following excitation at 400 nm, green fluorescence is observed at 510 nm with a rise on a timescale that is faster than the 170 femtosecond instrument response. Time-resolved emission spectra at 140 K also exhibit the immediate appearance of green fluorescence, and this extremely fast process is hardly affected by deuteration of exchangeable protons. These results appear to be dramatically different from those of wild-type GFP, in which the green fluorescence at 508 nm is produced on the picosecond timescale as a result of excited-state proton transfer from the state that is excited at 400 nm. The unique features observed in S65T/H148D and apparent ultrafast excited-state proton transfer are discussed in light of evidence for multiple states underlying the band at around 415 nm, as suggested by steady-state fluorescence spectra. The behavior of these different states may explain the novel photophysical properties observed for this GFP variant, including the ultrafast green fluorescence and the absence of completely matched decay in blue fluorescence. We speculate that two different orientations of the Asp introduced at position 148, not distinguishable by chromatography, mass spectrometry or x-ray crystallography, give rise to the two functionally distinct populations. PMID:17918960

  3. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-01

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  4. Sensitive Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.

  5. Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine--NaYGdF4:Yb/Er Nanoparticle Conjugate.

    PubMed

    Taylor, Jessica; Litwinski, Christian; Nyokong, Tebello; Antunes, Edith

    2015-05-01

    Using a methanol assisted thermal decomposition approach, sphere shaped NaYGdF4:Yb/Er upconversion nanoparticles (UCNPs) were successfully synthesized. The chemical, spectroscopic and fluorescence properties of the UCNPs were fully characterized. Characteristic upconversion fluorescence emissions were produced by the NPs in the green, red and NIR regions and the NPs were also shown to possess paramagnetic properties. The influence of the UCNPs on the spectroscopic and fluorescence properties of an aluminium octacarboxy phthalocyanine AlOCPc was investigated. Covalent conjugation to an AlOCPc resulted in a large blue shift of the phthalocyanine's Q band, which was accompanied by a decrease in the Pc's fluorescence lifetime in DMSO. By combining the phthalocyanine and upconversion nanoparticle, we present a system capable of multimodal imaging, using both the upconversion nanoparticle's and phthalocyanine's emission, and magnetic resonance imaging (as a result of doping the upconversion nanoparticles with Gd(3+) ions). PMID:25744527

  6. DNA-mediated excitonic upconversion FRET switching

    NASA Astrophysics Data System (ADS)

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-01

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an upconversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy upconversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

  7. Triplet-triplet annihilation upconversion based nanocapsules for bioimaging under excitation by red and deep-red light.

    PubMed

    Wohnhaas, Christian; Mailänder, Volker; Dröge, Melanie; Filatov, Mikhail A; Busko, Dmitry; Avlasevich, Yuri; Baluschev, Stanislav; Miteva, Tzenka; Landfester, Katharina; Turshatov, Andrey

    2013-10-01

    Non-toxic and biocompatible triplet-triplet annihilation upconversion based nanocapsules (size less than 225 nm) were successfully fabricated by the combination of miniemulsion and solvent evaporation techniques. A first type of nanocapsules displays an upconversion spectrum characterized by the maximum of emission at λmax = 550 nm under illumination by red light, λexc = 633 nm. The second type of nanocapsules fluoresces at λmax = 555 nm when excited with deep-red light, λexc = 708 nm. Conventional confocal laser scanning microscopy (CLSM) and flow cytometry were applied to determine uptake and toxicity of the nanocapsules for various (mesenchymal stem and HeLa) cells. Red light (λexc = 633 nm) with extremely low optical power (less than 0.3 μW) or deep-red light (λexc = 708 nm) was used in CLSM experiments to generate green upconversion fluorescence. The cell images obtained with upconversion excitation demonstrate order of magnitude better signal to background ratio than the cell images obtained with direct excitation of the same fluorescence marker.

  8. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  9. Femtosecond laser filamentation for atmospheric sensing.

    PubMed

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  10. Upconversion Luminescence Properties of Y2Mo4O15: Yb3+, Er3+ by Solid State Combustion Method.

    PubMed

    Jiang, Tao; Xing, Mingming; Fu, Yao; Tian, Ying; Luo, Xixian

    2016-04-01

    The Yb3+ and Er3+ co-doped yttrium molybdenum oxide upconversion phosphors were prepared by the solid state combustion method using urea as fuel at ignition temperature of 550 °C. The upconversion phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and photoluminescence spectra XRD results revealed the samples were pure monoclinic Y2Mo4O15 phases when the sintering temperature was 700 °C. SEM micrographs illustrated particle size distribution was almost uniform with an average particle diameter of about 0.5-1.0 µm. The obtained Y2MO4O15: Yb3+, Er3+ presents bright and pure green upconversion luminescence during daylight pumping under 980 nm LD. According to the analysis of upconversion luminescent mechanism, the cross relaxation processes of Er3+ ions restrained the electron population of red emission energy level, which not only increased the green light upconversion emissions fluorescent branching ratio (IGIR = 153:1) but also enhanced the efficiency and purity of green light emissions. PMID:27451756

  11. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  12. Upconversion luminescence tracking of gene delivery via multifunctional nanocapsules.

    PubMed

    Bai, Xilin; Xu, Suying; Liu, Jiali; Wang, Leyu

    2016-04-01

    The real-time fluorescence tracking of gene delivery is very important as it helps to figure out how a vector enters a cell and also to follow its fate within the cell interior. Lanthanide-doped upconversion nanoparticles (UCNPs) have shown great potential in biomedical applications in virtue of their unique optical and biological properties. Herein, we report a simple and versatile strategy to fabricate a multifunctional nanocapsule for effective gene delivery and real-time luminescence tracking. The hydrophobic UCNPs were modified by positively charged amphiphilic polymer together with polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) polymer, affording biocompatible nanocapsules with high gene loading capacity and good stability. Red UC luminescence of UCNPs are able to track the delivery of nanocapsules in cells without background fluorescence interference, in the meantime, the green fluorescence of green fluorescence protein (GFP) expressed by the pDNA could subtly monitor the gene transfection efficacy. The results demonstrated that our nanocapsule has ideal biocompatibility, satisfactory gene loading capacity and great bioimaging ability, which is promising for imaging guided cell therapy and gene engineering. PMID:26838389

  13. Dispersing upconversion nanocrystals in a single silicon microtube

    PubMed Central

    Li, Hanyang; Wang, Yan; Li, Hui; Zhang, Yundong; Yang, Jun

    2016-01-01

    Nanocrystals of Ln3+ (Ln = Yb, Tm and Ho) doped β-NaLuF4 with average diameter about 200 nm are dispersed in silica-based microtube (MT) by a simple flame heating method. The fabricated microtube has a diameter range from 2 μm to 30 μm and lengths up to hundreds microns. The fluorescence of upconversion nanocrystals (UCNCs) can propagate along a single MT and couple into another MT through evanescent field. The guiding performance of the single UCNCs doped MT is measured to prove that it can be used as an active waveguide. Moreover, optical temperature sensing based on the single UCNCs-MT is also demonstrated, and the sensitivity of UCNCs-MT is significantly enough for thermometry applications in the range of 298–383 K. PMID:27779210

  14. Texaphyrin sensitized near-IR-to-visible photon upconversion.

    PubMed

    Deng, Fan; Sun, Wenfang; Castellano, Felix N

    2014-05-01

    Near-IR (NIR) absorption from a Cd(ii) texaphyrin (TXP) has been successfully coupled with rubrene triplet acceptors/annihilators in vacuum degassed dichloromethane to upconvert NIR (670-800 nm) incident photons into yellow fluorescence through sensitized triplet-triplet annihilation. Stern-Volmer analysis of dynamic energy transfer quenching of TXP by rubrene using transient absorption spectroscopy revealed Stern-Volmer and bimolecular quenching constants of 21,000 M(-1) and 5.7 × 10(8) M(-1) s(-1) respectively, for the triplet-triplet energy transfer process. The upconverted emission intensity with respect to the incident excitation power density at 750 nm was shown to vary between quadratic and linear, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Furthermore, with increasing TXP sensitizer concentration, the characteristic quadratic-to-linear crossover point shifted to lower incident photon power density. This is consistent with the notion that stronger photon capture in the sensitizer leads to experimental conditions promoting upconversion under milder excitation conditions. The maximum quantum yield of the TXP-sensitized rubrene upconverted fluorescence was 1.54 ± 0.04% under dilute conditions determined relative to [Os(phen)3](PF6)2 under continuous wave excitation conditions. This saturating quantum efficiency was realized when the incident light power dependence reached the quadratic-to-linear crossover point and was constant over the region where the composition displayed linear response to incident light power density. In pulsed laser experiments at higher sensitizer concentrations, the triplet-triplet annihilation quantum yield was determined to saturate at approximately 13%, corresponding to an upconversion yield of ∼10%, suggesting that the dichloromethane solvent either lowers the T2 state of the rubrene acceptor or is somehow attenuating the annihilation reaction between

  15. Texaphyrin sensitized near-IR-to-visible photon upconversion.

    PubMed

    Deng, Fan; Sun, Wenfang; Castellano, Felix N

    2014-05-01

    Near-IR (NIR) absorption from a Cd(ii) texaphyrin (TXP) has been successfully coupled with rubrene triplet acceptors/annihilators in vacuum degassed dichloromethane to upconvert NIR (670-800 nm) incident photons into yellow fluorescence through sensitized triplet-triplet annihilation. Stern-Volmer analysis of dynamic energy transfer quenching of TXP by rubrene using transient absorption spectroscopy revealed Stern-Volmer and bimolecular quenching constants of 21,000 M(-1) and 5.7 × 10(8) M(-1) s(-1) respectively, for the triplet-triplet energy transfer process. The upconverted emission intensity with respect to the incident excitation power density at 750 nm was shown to vary between quadratic and linear, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Furthermore, with increasing TXP sensitizer concentration, the characteristic quadratic-to-linear crossover point shifted to lower incident photon power density. This is consistent with the notion that stronger photon capture in the sensitizer leads to experimental conditions promoting upconversion under milder excitation conditions. The maximum quantum yield of the TXP-sensitized rubrene upconverted fluorescence was 1.54 ± 0.04% under dilute conditions determined relative to [Os(phen)3](PF6)2 under continuous wave excitation conditions. This saturating quantum efficiency was realized when the incident light power dependence reached the quadratic-to-linear crossover point and was constant over the region where the composition displayed linear response to incident light power density. In pulsed laser experiments at higher sensitizer concentrations, the triplet-triplet annihilation quantum yield was determined to saturate at approximately 13%, corresponding to an upconversion yield of ∼10%, suggesting that the dichloromethane solvent either lowers the T2 state of the rubrene acceptor or is somehow attenuating the annihilation reaction between

  16. Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation.

    PubMed

    Yu, Xue-Feng; Sun, Zhengbo; Li, Min; Xiang, Yang; Wang, Qu-Quan; Tang, Fenfen; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2010-11-01

    We report the development of neurotoxin-mediated upconversion nanoprobes for tumor targeting and visualization in living animals. The nanoprobes were synthesized by preparing polyethylenimine-coated hexagonal-phase NaYF(4):Yb,Er/Ce nanoparticles and conjugating them with recombinant chlorotoxin, a typical peptide neurotoxin that could bind with high specificity to many types of cancer cells. Nanoprobes that specifically targeted glioma cells were visualized by laser scanning upconversion fluorescence microscopy. Good probe biocompatibility was displayed with cellular and animal toxicity determinations. Animal studies were performed using Balb-c nude mice injected intravenously with the nanoprobes. The obtained high-contrast images demonstrated highly specific tumor binding and direct tumor visualization with bright red fluorescence under 980-nm near-infrared irradiation. The high sensitivity and high specificity of the neurotoxin-mediated upconversion nanoprobes and the simplification of the required optical device for tumor visualization suggest an approach that may help improve the effectiveness of the diagnostic and therapeutic modalities available for tumor patients.

  17. Enhanced UV upconversion emission using plasmonic nanocavities.

    PubMed

    El Halawany, Ahmed; He, Sha; Hodaei, Hossein; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Johnson, Noah J J; Christodoulides, Demetrios N; Almutairi, Adah; Khajavikhan, Mercedeh

    2016-06-27

    Upconversion of near infrared (NIR) into ultraviolet (UV) radiation could lead to a number of applications in bio-imaging, diagnostics and drug delivery. However, for bare nanoparticles, the conversion efficiency is extremely low. In this work, we experimentally demonstrate strongly enhanced upconversion emission from an ensemble of β-NaYF4:Gd3+/Yb3+/Tm3+ @NaLuF4 core-shell nanoparticles trapped in judiciously designed plasmonic nanocavities. In doing so, different metal platforms and nanostructures are systematically investigated. Our results indicate that using a cross-shape silver nanocavity, a record high enhancement of 170-fold can be obtained in the UV band centered at a wavelength of 345 nm. The observed upconversion efficiency improvement may be attributed to the increased absorption at NIR, the tailored photonic local density of states, and the light out-coupling characteristics of the cavity. PMID:27410563

  18. Intense upconversion luminescence and effect of local environment for Tm 3+/Yb 3+ co-doped novel TeO 2-BiCl 3 glass system

    NASA Astrophysics Data System (ADS)

    Wang, Guonian; Dai, Shixun; Zhang, Junjie; Wen, Lei; Yang, Jianhu; Jiang, Zhonghong

    2006-05-01

    We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm 3+/Yb 3+ codoped TeO 2-BiCl 3 glass system as a function of the BiCl 3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm 3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl 3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH - groups.

  19. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification

    NASA Astrophysics Data System (ADS)

    Qiu, Peiyu; Zhou, Na; Chen, Hengyu; Zhang, Chunlei; Gao, Guo; Cui, Daxiang

    2013-11-01

    Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.

  20. Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrei V.; Petitet, Jean-Pierre; Museur, Luc; Marine, Vladimir; Solozhenko, Vladimir L.; Zafiropulos, Vassilis

    2004-10-01

    The effect of the femtosecond and nanosecond UV laser irradiation (below the ablation threshold) on graphitelike hexagonal boron nitride (hBN) has been studied. Experiments were carried out with the compacted powder under high vacuum at room temperature using the excimer KrF laser (248nm). In the nanosecond operation mode, the laser-induced fluorescence spectra are found strongly modified depending on the integrated doze, which is attributed to a progressive enrichment of the surface layer by an elemental boron. A slow sample recovery after the laser irradiation has been observed. On the other hand, in the femtosecond mode, the fluorescence spectra depend on the laser fluence, and the changes are reversible: low-energy fluorescence spectra are restored immediately when the laser energy decreases. This effect can be explained by a material bleaching, which favors a bulk centers emission. The ablation threshold has been determined as 78mJ/cm2 in the femtosecond laser operational mode.

  1. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  2. Twisting in the excited state of an N-methylpyridinium fluorescent dye modulated by nano-heterogeneous micellar systems.

    PubMed

    Cesaretti, A; Carlotti, B; Gentili, P L; Germani, R; Spalletti, A; Elisei, F

    2016-04-01

    A push-pull N-methylpyridinium fluorescent dye with a pyrenyl group as the electron-donor portion was investigated within the nano-heterogeneous media provided by some micellar systems. The molecule was studied by stationary and time-resolved spectroscopic techniques in spherical micellar solutions and viscoelastic hydrogels, in order to throw light on the role played by twisting in its excited state deactivation. As proven by femtosecond fluorescence up-conversion and transient absorption experiments, the excited state dynamics of the molecule is ruled by charge transfer and twisting processes, which, from the locally excited (LE) state initially populated upon excitation, progressively lead to twisted (TICT) and planar (PICT) intramolecular charge transfer states. The inclusion within micellar aggregates was found to slow down and/or limit the rotation of the molecule with respect to what had previously been observed in water, while its confinement within the hydrophobic domains of the gel matrixes prevents any molecular torsion. The increasing viscosity of the medium, when passing from water to micellar systems, implies that the detected steady-state fluorescence comes from an excited state which is not fully relaxed, as is the case with the TICT state in micelles or the LE state in hydrogels, where the detected emission changes its usual orange colour to yellow.

  3. Enhancement of the short wavelength upconversion emission in inverse opal photonic crystals.

    PubMed

    Wu, Hangjun; Zhu, Jialun; Yang, Zhengwen; Yan, Dong; Wang, Rongfei; Qiu, Jianbei; Song, Zhiguo; Yu, Xue; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2014-05-01

    Upconversion luminescence properties of Yb-Tb codoped Bi4Ti3O12 inverse opals have been investigated. The results show that the upconversion emission can be modulated by the photonic band gap. More significantly, in the upconversion inverse opals, the excited-state absorption of Tb3+ is greatly enhanced by the suppression of upconversion spontaneous emissions of the intermediate excited state, and thus the short wavelength upconversion emission from Tb3+ is considerably improved. We believe that the present work will be valuable for not only the foundational study of upconversion emission modifications but also new optical devices in upconversion displays and short wavelength upconversion lasers. PMID:24734648

  4. A compact versatile femtosecond spectrometer

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Johnson, E.; Schellenberg, P.; Parson, W.; Windeler, R.

    2002-12-01

    A compact apparatus for femtosecond pump-probe experiments is described. The apparatus is based on a cavity-dumped titanium:sapphire laser. Probe pulses are generated by focusing weak (˜1 nJ) pulses into a microstructure fiber that produces broadband continuum pulses with high efficiency. With the pump pulses compressed and probe pulses uncompressed, the rise time of the pump-probe signals is <100 fs. The 830 nm pump pulses are also frequency doubled to generate light for excitation at 415 nm. The versatility of the spectrometer is demonstrated by exciting molecules at either 830 or 415 nm, and probing at wavelengths ranging from 500 to 950 nm. Some results on the green fluorescent protein are presented.

  5. Monitoring Delamination of Thermal Barrier Coatings by Near-Infrared and Upconversion Luminescence Imaging

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Martin, R. E.; Singh, Jogender; Wolfe, Doug E.

    2008-01-01

    Previous work has demonstrated that TBC delamination can be monitored by incorporating a thin luminescent sublayer that produces greatly increased luminescence intensity from delaminated regions of the TBC. Initial efforts utilized visible-wavelength luminescence from either europium or erbium doped sublayers. This approach exhibited good sensitivity to delamination of electron-beam physical-vapor-deposited (EB-PVD) TBCs, but limited sensitivity to delamination of the more highly scattering plasma-sprayed TBCs due to stronger optical scattering and to interference by luminescence from rare-earth impurities. These difficulties have now been overcome by new strategies employing near-infrared (NIR) and upconversion luminescence imaging. NIR luminescence at 1550 nm was produced in an erbium plus ytterbium co-doped yttria-stabilized zirconia (YSZ) luminescent sublayer using 980-nm excitation. Compared to visible-wavelength luminescence, these NIR emission and excitation wavelengths are much more weakly scattered by the TBC and therefore show much improved depth-probing capabilities. In addition, two-photon upconversion luminescence excitation at 980 nm wavelength produces luminescence emission at 562 nm with near-zero fluorescence background and exceptional contrast for delamination indication. The ability to detect TBC delamination produced by Rockwell indentation and by furnace cycling is demonstrated for both EB-PVD and plasma-sprayed TBCs. The relative strengths of the NIR and upconversion luminescence methods for monitoring TBC delamination are discussed.

  6. Photon upconversion with hot carriers in plasmonic systems

    SciTech Connect

    Naik, Gururaj V.; Dionne, Jennifer A.

    2015-09-28

    We propose a scheme of photon upconversion based on harnessing the energy of plasmonic hot carriers. Low-energy photons excite hot electrons and hot holes in a plasmonic nanoparticle, which are then injected into an adjacent semiconductor quantum well where they radiatively recombine to emit a photon of higher energy. We theoretically study the proposed upconversion scheme using Fermi-liquid theory and determine the internal quantum efficiency of upconversion to be as high as 25% in 5 nm silver nanocubes. This upconversion scheme is linear in its operation, does not require coherent illumination, offers spectral tunability, and is more efficient than conventional upconverters.

  7. IRRS, UV-Vis-NIR absorption and photoluminescence upconversion in Ho 3+-doped oxyfluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Karmakar, Basudeb

    2005-09-01

    Infrared reflection spectroscopic (IRRS), ultraviolet-visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the oxyfluorophosphate (oxide incorporated fluorophosphates) glasses of the Ba(PO 3) 2-AlF 3-CaF 2-SrF 2-MgF 2-Ho 2O 3 system have been studied with different concentrations (0.1, 0.3 and 1.0 mol%) of Ho 2O 3. IRRS spectral band position and intensity of Ho 3+ ion doped oxyfluorophosphate glasses have been discussed in terms of reduced mass and force constant. UV-Vis-NIR absorption band position has been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 892 nm at room temperature. Three upconverted bands originated from the 5F 3→ 5I 8, ( 5S 2, 5F 4)→ 5I 8 and 5F 5→ 5I 8 transitions have found to be centered at 491 nm (blue, medium), 543 nm (green, very strong) and 658 nm (red, weak), respectively. These bands have been justified from the evaluation of the absorption, normal (down conversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross relaxation (CR) mechanisms involving population of the metastable (storage) energy levels by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in oxyfluorophosphate glasses owing to their high intense low phonon energy (˜600 cm -1) which is very close to that of fluoride glasses (500-600 cm -1).

  8. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect

    Castellano, Felix N.

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  9. Tuning upconversion through energy migration in core-shell nanoparticles.

    PubMed

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.

  10. Photon upconversion sensitized nanoprobes for sensing and imaging of pH

    NASA Astrophysics Data System (ADS)

    Arppe, Riikka; Näreoja, Tuomas; Nylund, Sami; Mattsson, Leena; Koho, Sami; Rosenholm, Jessica M.; Soukka, Tero; Schäferling, Michael

    2014-05-01

    Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an upconverting nanoparticle (UCNP) and a fluorogenic pH-dependent dye pHrodo™ Red that was covalently bound to the aminosilane surface of the nanoparticles. The sensitized fluorescence of the pHrodo™ Red dye increases strongly with decreasing pH. By referencing the pH-dependent emission of pHrodo™ Red with the pH-insensitive upconversion photoluminescence of the UCNP, we developed a pH-sensor which exhibits a dynamic range from pH 7.2 to 2.5. The applicability of the introduced pH nanosensor for pH imaging was demonstrated by imaging the two emission wavelengths of the nanoprobe in living HeLa cells with a confocal fluorescence microscope upon 980 nm excitation. This demonstrates that the presented pH-nanoprobe can be used as an intracellular pH-sensor due to the unique features of UCNPs: excitation with deeply penetrating near-infrared light, high photostability, lack of autofluorescence and biocompatibility due to an aminosilane coating.Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an

  11. Fluorescence excitation by enhanced plasmon upconversion under continuous wave illumination

    NASA Astrophysics Data System (ADS)

    Tasgin, Mehmet Emre; Salakhutdinov, Ildar; Kendziora, Dania; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Lazzarino, Marco; Bek, Alpan

    2016-09-01

    We demonstrate effective background-free continuous wave nonlinear optical excitation of molecules that are sandwiched between asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that near infrared photons are converted to visible photons through efficient plasmonic second harmonic generation. Our theoretical model and simulations demonstrate that Fano resonances may be responsible for being able to observe nonlinear conversion using a continuous wave light source. We show that nonlinearity enhancement of plasmonic nanostructures via coupled quantum mechanical oscillators such as molecules can be several orders larger as compared to their classical counterparts.

  12. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  13. Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior.

    PubMed

    Xu, Wei; Gao, Xiaoyang; Zheng, Longjiang; Zhang, Zhiguo; Cao, Wenwu

    2012-07-30

    Ho(3+)/Yb(3+) codoped glass ceramic was prepared by melt-quenching and subsequent thermal treatment. Under a 980 nm diode laser excitation, upconversion emissions from Ho(3+) ions centered at 540, 650, and 750 nm were greatly enhanced compared with those in the precursor glass. Especially, the short-wavelength upconversion emissions centered at 360, 385, 418, 445, and 485 nm were successfully obtained in the glass ceramic. An explanation for this phenomenon is given based on the fluorescence decay curve measurements. In addition, an optical temperature sensor based on the blue upconversion emissions from (5)F(2,3)/(3)K(8)→(5)I(8) and (5)F(1)/(5)G(6)→(5)I(8) transitions in Ho(3+)/Yb(3+) codoped glass ceramic has been developed. It was found that by using fluorescence intensity ratio technique, appreciable sensitivity for temperature measurement can be achieved by using the Ho(3+)/Yb(3+) codoped glass ceramic. This result makes the Ho(3+)/Yb(3+) codoped glass ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good accuracy.

  14. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    PubMed

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  15. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  16. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  17. Tuning Upconversion Emission of β-NaGdF4:Yb+/Ho3+ Nanorods Through Yb3+.

    PubMed

    Gao, Fangqi; Gao, Wei; Wang, Ruibo; Yan, Longxiang; Li, Jinping; Zheng, Hairong

    2016-04-01

    Yb3+/Ho3+ doped hexagonal NaGdF4 nanocrystals are synthesized through solvothermal method, for which pure hexagonal phased nanorods are presented. The concentration influence of Yb3+ ions on the sample morphology and fluorescence emission of Ho3+ is investigated. It is found that the sample size is changed from 25 nm to 125 nm and the upconversion emission is tuned from green to yellow when the concentration of Yb3+ ions is increased from 5.0 mol% to 50.0 mol%. The possible upconversion mechanism and the improvement of crystallinity are carefully investigated. It is suggested that the cross-relaxation process between Ho3+ ions promotes the red emission and quenches the green emission. PMID:27451703

  18. Folic acid-functionalized up-conversion nanoparticles: toxicity studies in vivo and in vitro and targeted imaging applications

    NASA Astrophysics Data System (ADS)

    Sun, Lining; Wei, Zuwu; Chen, Haige; Liu, Jinliang; Guo, Jianjian; Cao, Ming; Wen, Tieqiao; Shi, Liyi

    2014-07-01

    Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents.Folate receptors (FRs) are overexpressed on a variety of human cancer cells and tissues, including cancers of the breast, ovaries, endometrium, and brain. This over-expression of FRs can be used to target folate-linked imaging specifically to FR-expressing tumors. Fluorescence is emerging as a powerful new modality for molecular imaging in both the diagnosis and treatment of disease. Combining innovative molecular biology and chemistry, we prepared three kinds of folate-targeted up-conversion nanoparticles as imaging agents (UCNC-FA: UCNC-Er-FA, UCNC-Tm-FA, and UCNC-Er,Tm-FA). In vivo and in vitro toxicity studies showed that these nanoparticles have both good biocompatibility and low toxicity. Moreover, the up-conversion luminescence imaging indicated that they have good targeting to HeLa cells and can therefore serve as potential fluorescent contrast agents. Electronic supplementary information (ESI) available: Up-conversion luminescence spectra of UCNC-Er and UCNC-Er-FA, UCNC-Tm and UCNC-Tm-FA. Confocal luminescence imaging data collected as a series along the Z optical axis. See DOI: 10.1039/c4nr02312a

  19. Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue

    PubMed Central

    Nadort, Annemarie; Sreenivasan, Varun K. A.; Song, Zhen; Grebenik, Ekaterina A.; Nechaev, Andrei V.; Semchishen, Vladimir A.; Panchenko, Vladislav Y.; Zvyagin, Andrei V.

    2013-01-01

    The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs), enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm) depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein) dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement. PMID:23691012

  20. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors.

    PubMed

    Wang, Chengli; Li, Xiaomin; Zhang, Fan

    2016-06-21

    Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching. These properties make UCNPs promising candidates as luminescent bioprobes in biomedicine and biotechnology. In this review, we focus on the recent progress in the development of UCNP-based nanoprobes for biosensing. Firstly, as the FRET process is a widely used method for biosensing to improve the sensitivity, we summarize recent research studies about UCNP-based nanocomposites utilizing the FRET process for biosensing. Different energy acceptors (organic dyes, noble metal nanoparticles, carbon nanomaterials and semiconductor nanomaterials) with their own advantages and limitations are well summarized in this review. Secondly, since UCNPs have been utilized for the detection of different kinds of analytes, we introduce recent research studies about UCNPs for ions, gas molecules, biomolecules and thermal sensing. Finally, we highlight the typical detection techniques and UCNP based devices for bioapplications.

  1. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    PubMed

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy.

  2. Non-collinear upconversion of infrared light.

    PubMed

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2014-11-17

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid-infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which includes non-collinear interaction. We derive here a general theory providing the far field of the upconverted light when two arbitrary fields interact inside a nonlinear crystal. Theoretical predictions are experimentally verified for incoherent radiation and subsequently applied to previously published data with good agreement.

  3. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  4. Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics.

    PubMed

    Deng, Fan; Blumhoff, Jörg; Castellano, Felix N

    2013-05-30

    Noncoherent sensitized green-to-near-visible upconversion has been achieved utilizing palladium(II) octaethylporphyrin (PdOEP) as the triplet sensitizer and anthracene as the energy acceptor/annihilator in vacuum degassed toluene. Selective 547 nm excitation of PdOEP with incident irradiance as low as 600 μW/cm(2) results in the observation of anthryl fluorescence at higher energy. Stern-Volmer analysis of the dynamic phosphorescence quenching of PdOEP by anthracene possesses an extremely large K(SV) of 810,000 M(-1), yielding a triplet-triplet energy transfer quenching constant of 3.3 × 10(9) M(-1) s(-1). Clear evidence for the subsequent triplet-triplet annihilation (TTA) of anthracene was afforded by numerous experiments, one of the most compelling was an excitation scan illustrating that the Q-band absorption features of PdOEP are solely responsible for sensitizing the anti-Stokes fluorescence. The upconverted emission intensity with respect to the excitation power was shown to vary between quadratic and linear using either coherent or noncoherent light sources, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Time-resolved experiments directly comparing the total integrated anthracene intensity/time fluorescence data produced through upconversion (λ(ex) = 547 nm, delayed signal) and with direct excitation (λ(ex) = 355 nm, prompt signal) under conditions where the laser pulse is completely absorbed by the sample reveal annihilation efficiencies of approximately 40%. Similarly, the delayed fluorescence kinetic analysis reported by Schmidt and co-workers (J. Phys. Chem. Lett. 2010, 1, 1795-1799) was used to reveal the maximum possible efficiency from a model red-to-yellow upconverting composition and this treatment was applied to the anthryl triplet absorption decay transients of anthracene measured for the PdOEP/anthracene composition at 430 nm. From this analysis approximately 50% of the

  5. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  6. Photonic crystal cavity-assisted upconversion infrared photodetector.

    PubMed

    Gan, Xuetao; Yao, Xinwen; Shiue, Ren-Jye; Hatami, Fariba; Englund, Dirk

    2015-05-18

    We describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W. The integrated upconversion photodetector also functions as a compact autocorrelator with sub-ps resolution for measuring pulse width and chirp.

  7. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine

    PubMed Central

    González-Béjar, María; Francés-Soriano, Laura; Pérez-Prieto, Julia

    2016-01-01

    Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given. PMID:27379231

  8. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  9. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  10. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  11. View from... UPCON 2016: Bright future for upconversion

    NASA Astrophysics Data System (ADS)

    Jin, Dayong

    2016-09-01

    The synthesis of more efficient upconversion nanomaterials that absorb multiple low-energy photons in the near-infrared and then re-emit in the visible or ultraviolet was a key theme at the first UPCON conference.

  12. Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA

    NASA Astrophysics Data System (ADS)

    Li, Baoshun; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Noble metal (e.g., gold and silver) nanomaterials possess unique physical and chemical properties. In present work, silver nanoclusters (also known as silver quantum clusters or silver quantum dots) were synthesized by bovine serum albumin (BSA) biomineralization. The synthesized silver nanoclusters were characterized by UV-VIS absorption spectroscopy, fluorescence spectroscopy, upconversion emission spectroscopy, TEM, HRTEM and FTIR spectroscopy. TEM results showed that the average size of the silver nanoclusters was 2.23 nm. Fluorescence results showed that these silver nanoclusters could emit weak near-infrared (NIR) fluorescence (the central emission wavelength being about 765 nm). And the central excitation wavelength was about 395 nm, in the UV spectral region. These silver nanoclusters showed an extraordinarily large gap (about 370 nm) between the central excitation wavelength and central emission wavelength. In addition, it was found that these silver nanoclusters possess upconversion emission property. Upconversion emission results showed that the upconversion emission spectrum of the silver nanoclusters agreed well with their normal fluorescence emission spectrum. The synthesized silver nanoclusters showed high stability in aqueous solution and it was considered that they might be confined in BSA molecules. It was found that silver nanoclusters might enhance and broaden the absorption of proteins, and the protein absorption peak showed an obvious red shift (being 7 nm) after the formation of silver nanoclusters.

  13. Upconversion luminescence in Yb 3+-doped yttrium aluminum garnets

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Zhao, Zhiwei; Song, Pingxin; Jiang, Benxue; Zhou, Guoqing; Xu, Jun; Deng, Peizhen; Bourdet, Gilbert; Christophe Chanteloup, Jean; Zou, Ji-Ping; Fulop, Annabelle

    2005-03-01

    In this paper, we present results on upconversion luminescence performed on Yb 3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb 3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb 3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%.

  14. Enhanced upconversion luminescence through core/shell structures and its application for detecting organic dyes in opaque fishes.

    PubMed

    Hu, Pan; Wu, Xiaofeng; Hu, Shigang; Chen, Zenghui; Yan, Huanyuan; Xi, Zaifang; Yu, Yi; Dai, Gangtao; Liu, Yunxin

    2016-02-01

    Here, we report the enhanced upconversion luminescence of NaLuF4:18%Yb(3+),2%Er(3+) through core/shell structures. Among NaYF4, NaGdF4, and NaLuF4 shells, the first one presents the highest efficiency. These upconversion fluorescent nanoprobes with an oleic acid/PEG hybrid ligand can efficiently capture Rhodamine B (RB) and sodium fluorescein (SF) in opaque fishes to present their residues in vivo through luminescence resonant energy transfer (LRET) processes. It can be confirmed based on LRET technology that no RB is absorbed by opaque fishes after incubating in the aqueous solution of 1 μg ml(-1) RB for one day, while SF residue can be obviously detected after incubating in the aqueous solution of 1 μg ml(-1) SF for one day. The merit of this LRET technology with the upconversion nanoparticle (UCNP) donor is ascribed to the deep penetration depth of the infrared pumping laser and high signal to noise ratio.

  15. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  16. Advances in femtosecond laser technology.

    PubMed

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures.

  17. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2016-10-01

    To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer. PMID:27376560

  18. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2016-10-01

    To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer.

  19. Up-conversion emission in triply-doped Ho3+/Yb3+/Tm3+ KGd(WO4)2 single crystals

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Majchrowski, A.; Michalski, E.; Głuchowski, P.

    2011-06-01

    Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.

  20. Fabrication and upconversion luminescence properties of YF3:Er3+ hollow nanofibers via monoaxial electrospinning combined with fluorination method.

    PubMed

    Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2014-06-01

    YF3:Er3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Er3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Er(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence spectrometer. YF3:Er3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 172 +/- 23 nm, and YF3:Er3+ hollow nanofibers were composed of nanoparticles with the diameter ranging from 30 nm to 50 nm. Upconversion emission spectrum analysis manifested that YF3:Er3+ hollow nanofibers emitted strong green and weak red upconversion emission centering at 524 nm, 543 nm and 653 nm, respectively. The green emissions and the red emission were respectively originated from 2H11/2/4S3/2 --> 4I15/2 and 4F9/2 --> 4I15/2 energy levels transitions of the Er3+ ions. Moreover, the emitting colors of YF3:Er3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Er3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Er3+ ions. The possible formation mechanism of YF3:Er3+ upconversion luminescence hollow nanofibers was also discussed. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.

  1. Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating

    PubMed Central

    Li, Ruibin; Ji, Zhaoxia; Dong, Juyao; Chang, Chong Hyun; Wang, Xiang; Sun, Bingbing; Wang, Meiying; Liao, Yu-Pei; Zink, Jeffrey I.; Nel, Andre E.; Xia, Tian

    2015-01-01

    Upconversion nanoparticles (UCNPs), which are generated by doping with rare earth (RE) metals, are increasingly used for bio-imaging because of the advantages they hold over conventional fluorophores. However, because pristine RE nanoparticles (NPs) are unstable in acidic physiological fluids (e.g., lysosomes), leading to intracellular phosphate complexation with the possibility of the lysosomal injury, it is important to ensure that UCNPs are safe designed. In this study, we used commercially available NaYF4: Er/Yb UCNPs to study their stability in lysosomes and simulated lysosomal fluid. We demonstrate that phosphate complexation leads to REPO4 deposition on the particle surfaces and morphological transformation. This leads to a decline in upconversion fluorescence efficiency as well as inducing pro-inflammatory effects at cellular level and in the intact lung. In order to preserve the imaging properties of the UCNPs as well as improve their safety, we experimented with a series of phosphonate chemical moieties to passivate particle surfaces through the strong coordination of the organophosphates with RE atoms. Particle screening and physicochemical characterization revealed that ethylenediaminetetra methylenephosphonic acid (EDTMP) surface coating provides the most stable UCNPs, which maintain their imaging intensity and do not induce pro-inflammatory effects in vitro and in vivo. In summary, phosphonate coating presents a safer design method that preserves and improves the bio-imaging properties of UCNPs, thereby enhancing their biological use. PMID:25727446

  2. Polyacrylic acid modified upconversion nanoparticles for simultaneous pH-triggered drug delivery and release imaging.

    PubMed

    Jia, Xuekun; Yin, Jinjin; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Chen, Mian; Li, Yuhong

    2013-12-01

    A poly(acrylicacid)-modified NaYF4:Yb, Er upconversion nanoparticles (PAA-UCNPs) with dual functions of drug delivery and release imaging have been successfully developed. The PAA polymer coated on the surface of UCNPs serve as a pH-sensitive nanovalve for loading drug molecules via electrostatic interaction. The drug-loading efficiency of the PAA-UCNPs was investigated by using doxorubicin hydrochloride (DOX) as a model anticancer drug to evaluate their potential as a delivery system. Results showed loading and releasing of DOX from PAA-UCNPs were controlled by varying pH, with high encapsulation rate at weak alkaline conditions and an increased drug dissociation rate in acidic environment, which is favorable for construct a pH-responsive controlled drug delivery system. The in vitro cytotoxicity test using HeLa cell line indicated that the DOX loaded PAA-UCNPs (DOX@PAA-UCNPs) were distinctly cytotoxic to HeLa cells, while the PAA-UCNPs were highly biocompatible and suitable to use as drug carriers. Furthermore, the upconversion fluorescence resonance energy transfer (UFRET) imaging through the two-photon laser scanning microscopy (TLSM) revealed the time course of intracellular delivery of DOX from DOX@PAA-UCNPs. Thus, PAA-UCNPs are effective for constructing pH-responsive controlled drug delivery systems for multi-functional cancer therapy and imaging. PMID:24266261

  3. Fluorophore discrimination by tracing quantum interference in fluorescence microscopy

    SciTech Connect

    De, Arijit Kumar; Roy, Debjit; Goswami, Debabrata

    2011-01-15

    We show fluorescence-detected quantum interference in a microscope setup and demonstrate selective enhancement or suppression of fluorophores using femtosecond pulse-pair excitation with periodic modulation of the interpulse phase.

  4. Energy pooling upconversion in organic molecular systems.

    PubMed

    LaCount, Michael D; Weingarten, Daniel; Hu, Nan; Shaheen, Sean E; van de Lagemaat, Jao; Rumbles, Garry; Walba, David M; Lusk, Mark T

    2015-04-30

    A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems, stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways. For stilbene-fluorescein, the results are consistent with data generated in an earlier experimental investigation. Exercising these model systems facilitated the development of a set of design rules for the optimization of energy pooling. PMID:25793313

  5. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.

  6. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  7. Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors

    NASA Astrophysics Data System (ADS)

    Qin, Xiao; Yokomori, Takeshi; Ju, Yiguang

    2007-02-01

    Rare-earth doped yttria upconversion nanophosphors were synthesized using a single-step gas-phase flame synthesis method. The phosphors were characterized by x-ray diffractometry, transmission electron microscopy, and fluorescence spectroscopy. The dependence of multiphoton emissions on excitation power was examined. The results show that particle size, morphology, and photoluminescence intensity are strongly affected by flame temperature. The as-prepared nanophosphors are mostly single crystallites with an average size less than 30nm. Under laser diode excitation, bright blue, green, and red emissions are visible from these phosphors which show potential applications in biological imaging and photodynamic therapy.

  8. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite

    NASA Astrophysics Data System (ADS)

    Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou

    2015-02-01

    Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in

  9. Femtosecond damage resistance of femtosecond multilayer and hybrid mirrors.

    PubMed

    Csajbók, Viktória; Szikszai, Lőrinc; Nagy, Benedek J; Dombi, Péter

    2016-08-01

    Improving the laser-induced damage threshold of optical components is a basic endeavor in femtosecond technology. By testing more than 30 different femtosecond mirrors with 42 fs laser pulses at 1 kHz repetition rate, we found that a combination of high-bandgap dielectric materials and improved design and coating techniques enable femtosecond multilayer damage thresholds exceeding 2  J/cm2 in some cases. A significant ×2.5 improvement in damage resistance can also be achieved for hybrid Ag-multilayer mirrors exhibiting more than 1  J/cm2 threshold with a clear anticorrelation between damage resistance and peak field strength in the stack. Slight dependence on femtosecond pulse length and substantial decrease for high (megahertz) repetition rates are also observed.

  10. Theory of femtosecond stimulated Raman spectroscopy.

    PubMed

    Lee, Soo-Y; Zhang, Donghui; McCamant, David W; Kukura, Philipp; Mathies, Richard A

    2004-08-22

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique that produces high-resolution (time-resolved) vibrational spectra from either the ground or excited electronic states of molecules, free from background fluorescence. FSRS uses simultaneously a narrow bandwidth approximately 1-3 ps Raman pump pulse with a continuum approximately 30-50 fs Stokes probe pulse to produce sharp Raman gains, at positions corresponding to vibrational transitions in the sample, riding on top of the continuum Stokes probe spectrum. When FSRS is preceded by a femtosecond actinic pump pulse that initiates the photochemistry of interest, time-resolved Raman spectroscopy can be carried out. We present two theoretical approaches to FSRS: one is based on a coupling of Raman pump and probe light waves with the vibrations in the medium, and another is a quantum-mechanical description. The latter approach is used to discuss the conditions of applicability and limitations of the coupled-wave description. Extension of the quantum-mechanical description to the case where the Raman pump beam is on resonance with an excited electronic state, as well as when FSRS is used to probe a nonstationary vibrational wave packet prepared by an actinic pump pulse, is also discussed. PMID:15303930

  11. A facile method for high-performance multicolor upconversion microrods for biological encoding.

    PubMed

    Su, Lin; Gong, Xiaoqun; Wang, Sheng; Li, Xue; Zhang, Ying; Dou, Yan; Yang, Wentao; Wang, Hanjie; Chang, Jin

    2015-11-13

    In this paper, we demonstrate a facile method for preparing high-performance multicolor upconversion (UC) microrods for biological encoding. Multicolor UC microrods were prepared through a one-step facile hydrothermal method. The as-prepared UC microrods were uniform in shape and size (about 2 μm in length). For bioconjugation, the UC microrods were functionalized by coating with an amino-terminated silica shell. In order to magnify the bioactive sites, poly (acrylic acid) was introduced to the surface of UC microrods. The optical micrographs displayed that the carboxylated UC microrods were bright enough for observation of single crystals by a conventional microscope. They also exhibited excellent fluorescence stability against time expansion and pH change. Furthermore, a conventional optical microscope can readout the results of a sandwich immunoassay that was conducted by the UC microrods. All the results indicated that the UC microrods exhibited great potential to be new encoding particles for biological molecules.

  12. Regiospecific Hetero-Assembly of DNA-Functionalized Plasmonic Upconversion Superstructures.

    PubMed

    Li, Le-Le; Lu, Yi

    2015-04-29

    We report a novel strategy for regiospecific hetero-assembly of DNA-modified gold nanoparticles (DNA-AuNPs) onto upconversion nanoparticles (UCNPs) into hybrid lab-on-a-particle systems. The DNA-AuNPs have been assembled onto the hexagonal plate-like UCNPs with well-regulated stoichiometry and controlled organization onto the different facets of UCNP, forming various addressable superstructures. The fine-tuning of stoichiometry and organization is realized by biorecognition specificity of DNA toward specific crystal facets of UCNPs. Such a hetero-assembled DNA-AuNP/UCNP system maintains both plasmonic resonance of AuNPs and fluorescent properties of UCNPs, allowing targeted dual-modality imaging of cancer cells using an aptamer.

  13. Regiospecific Hetero-Assembly of DNA-Functionalized Plasmonic Upconversion Superstructures

    PubMed Central

    2015-01-01

    We report a novel strategy for regiospecific hetero-assembly of DNA-modified gold nanoparticles (DNA-AuNPs) onto upconversion nanoparticles (UCNPs) into hybrid lab-on-a-particle systems. The DNA-AuNPs have been assembled onto the hexagonal plate-like UCNPs with well-regulated stoichiometry and controlled organization onto the different facets of UCNP, forming various addressable superstructures. The fine-tuning of stoichiometry and organization is realized by biorecognition specificity of DNA toward specific crystal facets of UCNPs. Such a hetero-assembled DNA-AuNP/UCNP system maintains both plasmonic resonance of AuNPs and fluorescent properties of UCNPs, allowing targeted dual-modality imaging of cancer cells using an aptamer. PMID:25853565

  14. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    SciTech Connect

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Nann, Thomas; Fischer, Joachim; Wegener, Martin

    2015-03-30

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  15. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  16. Quench-Shield Ratiometric Upconversion Luminescence Nanoplatform for Biosensing.

    PubMed

    Wu, Yong-Xiang; Zhang, Xiao-Bing; Zhang, Dai-Liang; Zhang, Cui-Cui; Li, Jun-Bin; Wu, Yuan; Song, Zhi-Ling; Yu, Ru-Qin; Tan, Weihong

    2016-02-01

    Upconversion nanoparticles (UCNPs) possess several unique features, but they suffer from surface quenching effects caused by the interaction between the UCNPs and fluorophore. Thus, the use of UCNPs for target-induced emission changes for biosensing and bioimaging has been challenging. In this work, fluorophore and UCNPs are effectively separated by a silica transition layer with a thickness of about 4 nm to diminish the surface quenching effect of the UCNPs, allowing a universal and efficient luminescence resonance energy transfer (LRET) ratiometric upconversion luminescence nanoplatform for biosensing applications. A pH-sensitive fluorescein derivative and Hg(2+)-sensitive rhodamine B were chosen as fluoroionphores to construct the LRET nanoprobes. Both showed satisfactory target-triggered ratiometric upconversion luminescence responses in both solution and live cells, indicating that this strategy may find wide applications in the design of nanoprobes for various biorelated targets. PMID:26744211

  17. A paradigm shift in the excitation wavelength of upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayakumar, Muthu Kumara Gnanasammandhan; Idris, Niagara Muhammad; Huang, Kai; Zhang, Yong

    2014-07-01

    The past two decades witnessed the emergence of upconversion nanoparticles as promising luminophores finding multifarious uses from biological studies to solar cells. Progress in their practical use, however, has been hampered by requirements to be excited within a narrow absorption band at around 980 nm. Since the main constituent of biological tissue - water - absorbs strongly in this region, significant reduction in the penetration depth is anticipated as the 980 nm light gets attenuated travelling through tissues, besides also risking tissue damage from the overheating effect. Just recently, remarkable efforts to engineer the excitation of upconversion nanoparticles to a more suitable wavelength for biological applications were reported. This article gives an insightful view on the different ingenious designs that have been reported and their progression towards the development of upconversion nanoparticles with biologically friendlier excitation wavelength.

  18. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  19. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Jin, Limin; Kong, Wei; Sun, Tianying; Zhang, Wenfei; Liu, Xinhong; Fan, Jun; Yu, Siu Fung; Wang, Feng

    2016-01-01

    Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show that confining energy migration constitutes a general and versatile strategy to manipulating multiphoton upconversion, demonstrating an efficient five-photon upconversion emission of Tm3+ in a stoichiometric Yb lattice without suffering from concentration quenching. The high emission intensity is unambiguously substantiated by realizing room-temperature lasing emission at around 311 nm after 980-nm pumping, recording an optical gain two orders of magnitude larger than that of a conventional Yb/Tm-based system operating at 650 nm. Our findings thus highlight the viability of realizing diode-pumped lasing in deep ultraviolet regime for various practical applications.

  20. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Chandra, Prakash; Rhee, Seog Woo; Kim, Jinkwon

    2013-08-01

    The visible green and red upconversion emissions in Er3+/Yb3+ doped β-NaGdF4 nanoparticles were enhanced by tridoping with Fe3+ ions (0-40 mol%). XRD, XPS, ICP-AES and EDS data demonstrated successful incorporation of Fe3+ ions in NaGdF4:Yb3+/Er3+ nanoparticles. The effect of Fe3+ tridoping on the upconversion luminescence in NaGdF4:Yb3+/Er3+ NPs was investigated in detail. The green and red emission intensities were enhanced by 34 and 30 times, respectively. The maximum emission was observed in a sample containing 30 mol% Fe3+ ions. A possible mechanism for the enhanced upconversion emission is proposed. In addition, a layer of silica was coated onto the surface of UCNPs to improve the biocompatibility. Folic acid was covalently linked to the silica coated UCNPs to form UCNP@SiO2-FA nanoprobes, which have been successfully applied to the fluorescent imaging HeLa cells.The visible green and red upconversion emissions in Er3+/Yb3+ doped β-NaGdF4 nanoparticles were enhanced by tridoping with Fe3+ ions (0-40 mol%). XRD, XPS, ICP-AES and EDS data demonstrated successful incorporation of Fe3+ ions in NaGdF4:Yb3+/Er3+ nanoparticles. The effect of Fe3+ tridoping on the upconversion luminescence in NaGdF4:Yb3+/Er3+ NPs was investigated in detail. The green and red emission intensities were enhanced by 34 and 30 times, respectively. The maximum emission was observed in a sample containing 30 mol% Fe3+ ions. A possible mechanism for the enhanced upconversion emission is proposed. In addition, a layer of silica was coated onto the surface of UCNPs to improve the biocompatibility. Folic acid was covalently linked to the silica coated UCNPs to form UCNP@SiO2-FA nanoprobes, which have been successfully applied to the fluorescent imaging HeLa cells. Electronic supplementary information (ESI) available: EDS spectrum, mechanism of enhanced UC emission, XPS data, and TEM images and PL spectra of UCNPs@SiO2 NPs. See DOI: 10.1039/c3nr01608k

  1. An experimental design approach for hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microcrystal: UV emission optimization

    NASA Astrophysics Data System (ADS)

    Kaviani Darani, Masoume; Bastani, Saeed; Ghahari, Mehdi; Kardar, Pooneh

    2015-11-01

    Ultraviolet (UV) emissions of hydrothermally synthesized NaYF4: Yb3+, Tm3+ upconversion crystals were optimized using the response surface methodology experimental design. In these experimental designs, 9 runs, two factors namely (1) Tm3+ ion concentration, and (2) pH value were investigated using 3 different ligands. Introducing UV upconversion emissions as responses, their intensity were separately maximized. Analytical methods such as XRD, SEM, and FTIR could be used to study crystal structure, morphology, and fluorescent spectroscopy in order to obtain luminescence properties. From the photo-luminescence spectra, emissions centered at 347, 364, 452, 478, 648 and 803 nm were observed. Some results show that increasing each DOE factor up to an optimum value resulted in an increase in emission intensity, followed by reduction. To optimize UV emission, as a final result to the UV emission optimization, each design had a suggestion.

  2. Infrared hyperspectral upconversion imaging using spatial object translation.

    PubMed

    Kehlet, Louis Martinus; Sanders, Nicolai; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Pedersen, Christian

    2015-12-28

    In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators and an image is recorded for each position. A sequence of such images is post-processed into a series of monochromatic images in a wavelength range defined by the phasematch condition and numerical aperture of the upconversion system. A standard USAF resolution target and a polystyrene film are used to impart spatial and spectral information unto the source. PMID:26832059

  3. Investigation on up-conversion luminescence properties of novel transparent Ho3+-Tm3+-Yb3+ co-doped oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bo; Han, Wan-lei; Xu, Fang; Song, Ying-lin

    2011-06-01

    In the present letter, the transparent oxyfluoride glass ceramics containing Ho3+-Tm3+-Yb3+:NaYF4 were successfully prepared by melt-quenching at 1400°C and subsequent heating at 650-680°C for 1~2 hours . X-ray diffraction (XRD) with Cu Kα radiation (λ=0.154nm) investigation revealed that NaYF4 nano-crystals in the glass ceramics was fabricated. Their sizes were determined by Sherrer's equation. The emission spectra red green and blue up-conversion (UC) under 980nm laser diode (LD) pumping and absorption spectra were measured. Luminescence measurements confirmed the partition of RE ions in nano-crystals NaYF4. The blue red and green UC radiations correspond to the transitions 1G4-3H6, 1G4-3H4 of Tm3+, 5F4, 5S2-5I8, 5F5-5I8, of Ho3+ ions, respectively. This is similar to that in Tm3+-Yb3+ and/or Ho3+-Yb3+ co-doped glass ceramics. To obtain upconversion fluorescence mechanisms, upconversion fluorescence intensity versus LD pump power were analyzed in view of energy levels of rare earth. Up-conversion mechanisms were discussed and the ratio between red, green and blue UC emission bands was found to be varied as a function of temperature of heat treatment and pump power. This result could be mainly attributed to the cross-relaxation between Ho3+ ions. The excellent optical properties and its convenient, low-cost synthesis of the present glass ceramic imply that it is an excellent substitution material for the unobtainable bulk NaYF4 crystal and may have potentially applications in tunable visible laser or many other fields.

  4. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  5. Pr3+/Yb3+ co-doped beta-phase NaYF4 microprisms: controlled synthesis and upconversion luminescence.

    PubMed

    Gao, Wei; Zheng, Hairong; Gao, Dangli; He, Enjie; Li, Jiao; Tu, Yinxun

    2014-06-01

    Pr3+/Yb3+ co-doped hexagonal NaYF4(beta-NaYF4) microprisms were synthesized by the hydrothermal method, and ethylenediaminetetraacetic acid (EDTA) was introduced to control the size of the microcrystal samples. Bright upconverted fluorescence emission was observed when the samples were excited with an infrared (IR) laser at 976.4 nm. The emission was found to originate from the transitions of 3P0-3F2, 3P0-3H6 or 1G4-3H4, 3P1-3H6, 3P0-3H5, 3P1-3H5, and 3P0-3H4 of Pr3+ ions. Possible mechanisms for upconversion fluorescence and concentration dependence as well as the crystal structure and its formation of NaYF4:Yb3+/Pr3+ microprisms were explored and discussed based on the experimental observations.

  6. Pr3+/Yb3+ co-doped beta-phase NaYF4 microprisms: controlled synthesis and upconversion luminescence.

    PubMed

    Gao, Wei; Zheng, Hairong; Gao, Dangli; He, Enjie; Li, Jiao; Tu, Yinxun

    2014-06-01

    Pr3+/Yb3+ co-doped hexagonal NaYF4(beta-NaYF4) microprisms were synthesized by the hydrothermal method, and ethylenediaminetetraacetic acid (EDTA) was introduced to control the size of the microcrystal samples. Bright upconverted fluorescence emission was observed when the samples were excited with an infrared (IR) laser at 976.4 nm. The emission was found to originate from the transitions of 3P0-3F2, 3P0-3H6 or 1G4-3H4, 3P1-3H6, 3P0-3H5, 3P1-3H5, and 3P0-3H4 of Pr3+ ions. Possible mechanisms for upconversion fluorescence and concentration dependence as well as the crystal structure and its formation of NaYF4:Yb3+/Pr3+ microprisms were explored and discussed based on the experimental observations. PMID:24738388

  7. Visible upconversion lasers in praseodymium-ytterbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Zellmer, H.; Riedel, P.; Tünnermann, A.

    We report on a ZBLAN-fiber-based praseodymium-ytterbium-doped upconversion fiber laser operating in the blue-green with diffraction-limited beam quality. cw output powers of more than 150 mW at 491 nm are achieved for several hours without degradation. The spectroscopic data of the active material and laser parameters including the amplitude noise are discussed.

  8. Development of Pressure sensing Particles through SERS and Upconversion

    NASA Astrophysics Data System (ADS)

    Widejko, Ryan; Wang, Fenglin; Anker, Jeff

    2012-03-01

    With the increasing distance of space travel, there is a critical need for non-invasive point-of-care diagnostic techniques. According to the NASA Human Research Roadmap, the ``lack of non-invasive diagnostic imaging capability and techniques to diagnose identified Exploration Medical Conditions involving internal body parts,'' is a critical capability gap for long distance space travel. To address this gap, we developed a novel technique for non-invasive monitoring of strain on implanted devices. We constructed a prototype tension-indicating washer with an upconversion spectrum that depended upon strain. The washer was made of a polydimethylsiloxane (PDMS) mixture with upconversion particles embedded in it. This mixture was cured onto a lenticular lens. Methylene blue dye solution was sealed between the lenticular lens and PDMS so that pressure on the washer displaced the dye and uncovered the upconversion particles. We also began work on a tension-indicating screw based upon surface enhanced Raman spectroscopy (SERS). Future work for this project is to quantitatively correlate the spectral intensity with pressure, further develop SERS washers, and construct SERS and/or upconversion screws or bolts. Non-invasive tension-indicating devices and techniques such as these can be applied to orthopedics, used as a general technique for measuring micro-strain, verifying proper assembly of equipment, and observing/studying bolt loosening.

  9. Blue Pr{sup 3+}-doped ZBLAN fiber upconversion laser

    SciTech Connect

    Baney, D.M.; Rankin, G.; Chang, K.

    1996-09-01

    We demonstrate blue laser emission from a direct semiconductor laser-diode-pumped Pr{sup 3+}-doped upconversion fiber laser. This laser produced more than 1 mW of power at a wavelength of 492 nm from pump lasers operating at 830 and 1020 nm. {copyright} {ital 1996 Optical Society of America.}

  10. Femtosecond photography lessons

    NASA Astrophysics Data System (ADS)

    Fanchenko, S. D.

    1999-06-01

    Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.

  11. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  12. Single-cell optoporation and transfection using femtosecond laser and optical tweezers

    PubMed Central

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell. PMID:24049675

  13. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors.

    PubMed

    Liu, Guokui

    2015-03-21

    Photon upconversion in rare earth activated phosphors involves multiple mechanisms of electronic transitions. Stepwise optical excitation, energy transfer, and various nonlinear and collective light-matter interaction processes act together to convert low-energy photons into short-wavelength light emission. Upconversion luminescence from nanomaterials exhibits additional size and surface dependencies. A fundamental understanding of the overall performance of an upconversion system requires basic theories on the spectroscopic properties of solids containing rare earth ions. This review article surveys the recent progress in the theoretical interpretations of the spectroscopic characteristics and luminescence dynamics of photon upconversion in rare earth activated phosphors. The primary aspects of upconversion processes, including energy level splitting, transition probability, line broadening, non-radiative relaxation and energy transfer, are covered with an emphasis on interpreting experimental observations. Theoretical models and methods for analyzing nano-phenomena in upconversion are introduced with detailed discussions on recently reported experimental results.

  14. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.

    PubMed

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. Here, we achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb(3+)) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.

  15. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.

    PubMed

    Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; Bilsel, Osman; Li, Zhanjun; Lee, Hyungseok; Zhang, Zijiao; Li, Dongsheng; Fan, Wei; Duan, Chunying; Chan, Emory M; Lois, Carlos; Xiang, Yang; Han, Gang

    2016-01-26

    Near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. Here, we achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb(3+)) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogenetic neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model. PMID:26736013

  16. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  17. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  18. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    PubMed

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. PMID:24751781

  19. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles.

    PubMed

    Zhao, Yafei; Wei, Ruoyan; Feng, Xin; Sun, Lining; Liu, Panpan; Su, Yongxiang; Shi, Liyi

    2016-08-24

    Ultrathin graphite-like carbon nitride (g-C3N4) nanosheets have attracted considerable attention due to the enhanced intrinsic photoabsorption and photoresponse with respect to bulk g-C3N4. For the first time, a dual-mode of down- and upconversion luminescent g-C3N4 nanopaper with high optical transparency and mechanical robustness was successfully fabricated through a simple thermal evaporation process using chitosan as a green cross-linking agent. The dual-mode of down- and upconversion fluorescence emission originated from the amino terminated ultrathin g-C3N4 nanosheets functionalized with carboxylic acid modified multicolored rare-earth upconversion nanoparticles (cit-UCNPs) via EDC/NHS coupling chemistry. The homogeneously distributed cit-UCNPs@g-C3N4 nanoconjugates with excellent hydrophilicity displayed good film-forming ability and structural integrity; thus, the photoluminescence of each ingredient was substantially maintained. Results indicated that the freestanding chitosan cross-linked cit-UCNPs@g-C3N4 luminescent nanopaper possessed high transmittance, excellent mechanical properties, and remarkable dual-mode emission. The smart design of high performance luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with multicolored UCNPs offers a potential strategy to immobilize other multifunctional luminescent materials for easily recognizable and hardly replicable anticounterfeiting fields.

  20. Enhancement of femtosecond laser-induced nucleation of protein in a gel solution

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Maruyama, Mihoko; Sugiyama, Shigeru; Sazaki, Gen; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke

    2010-01-01

    We found that the use of a gel solution with agarose enhanced femtosecond laser-induced nucleation and produced hen egg white lysozyme crystals at three to five times lower supersaturation than those by the femtosecond laser or agarose alone. The fast fluorescence imaging of the protein in the gel solution revealed that cavitation bubbles created high-concentration regions at the focal point, which could be the trigger for protein nucleation. The lower diffusions of protein molecules in agarose gel retained the high-concentration regions for a longer time, and facilitated the nucleation.

  1. IRRS, UV-Vis-NIR absorption and photoluminescence upconversion in Ho{sup 3+}-doped oxyfluorophosphate glasses

    SciTech Connect

    Karmakar, Basudeb . E-mail: basudebk@cgcri.res.in

    2005-09-15

    Infrared reflection spectroscopic (IRRS), ultraviolet-visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the oxyfluorophosphate (oxide incorporated fluorophosphates) glasses of the Ba(PO{sub 3}){sub 2}-AlF{sub 3}-CaF{sub 2}-SrF{sub 2}-MgF{sub 2}-Ho{sub 2}O{sub 3} system have been studied with different concentrations (0.1, 0.3 and 1.0 mol%) of Ho{sub 2}O{sub 3}. IRRS spectral band position and intensity of Ho{sup 3+} ion doped oxyfluorophosphate glasses have been discussed in terms of reduced mass and force constant. UV-Vis-NIR absorption band position has been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 892 nm at room temperature. Three upconverted bands originated from the {sup 5}F{sub 3}{yields}{sup 5}I{sub 8} ({sup 5}S{sub 2}, {sup 5}F{sub 4}){yields}{sup 5}I{sub 8} and {sup 5}F{sub 5}{yields}{sup 5}I{sub 8} transitions have found to be centered at 491 nm (blue, medium), 543 nm (green, very strong) and 658 nm (red, weak), respectively. These bands have been justified from the evaluation of the absorption, normal (down conversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross relaxation (CR) mechanisms involving population of the metastable (storage) energy levels by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in oxyfluorophosphate glasses owing to their high intense low phonon energy ({approx}600 cm{sup -1}) which is very close to that of fluoride glasses (500-600 cm{sup -1})

  2. Synthesis of Gd2O3:Ho3+/Yb3+ upconversion nanoparticles for latent fingermark detection on difficult surfaces

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tiwari, S. P.; Singh, A. K.; Kumar, K.

    2016-07-01

    Infrared to visible upconversion fluorescent nanoparticles of Gd2O3 codoped with Ho3+/Yb3+ ions are synthesized via thermal decomposition process. The X-ray diffraction analysis of as-synthesized nanoparticles and annealed sample at 1000 °C has shown body-centered cubic phase of Gd2O3. The synthesized phosphor has shown intense green emission upon 980-nm excitation. High-contrast latent fingermarks on some difficult semi-porous and non-porous surfaces under 980-nm diode laser excitation were developed through powder dusting and colloidal solution spraying techniques and the results are compared with the commercial green luminescent fingermark powder. The latent fingermarks were developed on transparent (biological glass slides), single-color (aluminum foil) and multicolor (plywood, plastic bottle and book cover page) background surfaces. The present study depicts that the upconversion-based latent fingermarks detection using Gd2O3:Ho3+/Yb3+ phosphor material is suitable over the other conventional powders and has potential for practical applications in forensic science.

  3. NIR to NIR upconversion in KYb2F7: RE3+ (RE = Tm, Er) nanoparticles for biological imaging

    NASA Astrophysics Data System (ADS)

    Pedraza, F.; Yust, B.; Tsin, A.; Sardar, D.

    2014-03-01

    Until recently, many contrast agents widely used in biological imaging have absorbed and emitted in the visible region, limiting their usefulness for deeper tissue imaging. In order to push the boundaries of deep tissue imaging with non-ionizing radiation, contrast agents in the near infrared (NIR) regime, which is not strongly absorbed or scattered by most tissues, are being sought after. Upconverting nanoparticles (UCNPs) are attractive candidates since their upconversion emission is tunable with a very narrow bandwidth and they do not photobleach or blink. The upconversion produced by the nanoparticles can be tailored for NIR to NIR by carefully choosing the lanthanide dopants and dopant ratios such as KYb2F7: RE3+ (RE = Tm, Er). Spectroscopic characterization was done by analyzing absorption, fluorescence, and quantum yield data. In order to study the toxicity of the nanoparticles Monkey Retinal Endothelial Cells (MREC) were cultivated in 24 well plates and then treated with nanoparticles at different concentrations in triplicate to obtain the optimal concentration for in vivo experiments. It will be shown that these UCNPs do not elicit a strong toxic response such as quantum dots and some noble metal nanoparticles. 3-D optical slices of nanoparticle treated fibroblast cells were imaged using a confocal microscope where the nucleus and cytoplasm were stained with DAPI and Alexa Fluor respectively. These results presented support the initial assumption, which suggests that KYb2F7: RE3+ would be excellent candidates for NIR contrast agents.

  4. One-pot template-free synthesis of NaYF4 upconversion hollow nanospheres for bioimaging and drug delivery.

    PubMed

    Tian, Gan; Duan, Longsheng; Zhang, Xiao; Yin, Wenyan; Yan, Liang; Zhou, Liangjun; Liu, Xiaodong; Zheng, Xiaopeng; Li, Jinxia; Gu, Zhanjun; Zhao, Yuliang

    2014-06-01

    Hollow-structured nanomaterials with fluorescent properties are extremely attractive for image-guided cancer therapy. In this paper, sub-100 nm and hydrophilic NaYF4 upconversion (UC) hollow nanospheres (HNSs) with multicolor UC luminescence and drug-delivery properties were successfully prepared by a facile one-pot template-free hydrothermal route using polyetherimide (PEI) polymer as the stabilizing agent. XRD, SEM, TEM, and N2-adsorption/desorption were used to characterize the as-obtained products. The growth mechanism of the HNSs has been systematically investigated on the basis of the Ostwald ripening. Under 980 nm excitation, UC emissions of HNSs can be tuned by a simple change of the concentration or combination of various upconverters. As a result, the PEI-coated HNSs could be used as efficient probes for in vitro upconversion luminescence (UCL) cell imaging. Furthermore, a doxorubicin storage/release behavior and cancer-cell-killing ability investigation reveal that the product has the potential to be a drug carrier for cancer therapy.

  5. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    PubMed Central

    Cao, Baosheng; Wu, Jinlei; Wang, Xuehan; He, Yangyang; Feng, Zhiqing; Dong, Bin

    2015-01-01

    Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I)/2H11/2(II), 4S3/2(I)/4S3/2(II), 4F9/2(I)/4F9/2(II), and 2H11/2(I) + 2H11/2(II)/4S3/2(I) + 4S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system. PMID:26690431

  6. Femtosecond Beam Sources and Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru

    2004-12-01

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera, coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled "Femtosecond Beam Science" is published by Imperial College Press

  7. Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser

    SciTech Connect

    Meshalkin, Yu P; Myachin, A Yu; Bakhareva, S S; Svetlichnyi, Valerii A; Kopylova, T N; Reznichenko, A V; Dolotov, S M; Ponomarenko, E P

    2003-09-30

    Two-photon fluorescence was observed for 18 organic dyes in a polymethyl methacrylate (PMMA) matrix excited by a femtosecond Ti:sapphire laser. The product of the cross section for two-photon absorption by the quantum yield of fluorescence (two-photon fluorescence cross section) is estimated by comparing it with fluorescence of Rhodamine 6G in ethanol. Using this parameter, dyes are selected that exhibit the most intense fluorescence in PMMA and their concentrations in PMMA are optimised. Coumarin and rhodamine dyes in polymer matrices are proposed for using as visualisers of femtosecond radiation of a Ti:sapphire laser and as detectors in self-triggering systems. (active media. lasers)

  8. Functionalized Upconversion Nanoparticles: Versatile Nanoplatforms for Translational Research

    PubMed Central

    Chen, Feng; Bu, Wenbo; Cai, Weibo; Shi, Jianlin

    2013-01-01

    The design, application, and translation of targeted multimodality molecular imaging probes based on nanotechnology has attracted increasing attentions during the last decade and will continue to play vital roles in cancer diagnosis and personalized medicine. With the growing awareness of drawbacks of traditional organic dyes and quantum dots, biocompatible lanthanide ion doped upconversion nanoparticles have emerged as promising candidates for clinically translatable imaging probes, owing to their unique features that are suitable for future targeted multimodal imaging in living subjects. In this review, we summarized the recent advances in the field of functionalized upconversion nanoparticles (f-UCNP) for biological imaging and therapy in vivo, and discussed the future research directions, obstacles ahead, and the potential use of f-UCNP in translational research. PMID:24206131

  9. Upconversion imaging using an all-fiber supercontinuum source.

    PubMed

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter; Leick, Lasse; Pedersen, Christian

    2016-06-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 μm with upconversion detection. The infrared signal is used to probe a sample and mixed with a synchronized 1550 nm laser pulse inside a lithium niobate (LiNbO3) crystal. The signal is thus upconverted to the 860-970 nm range and acquired on a standard silicon CCD array at a rate of 22 frames per second. In our implementation, spatial features in the sample plane as small as 55 μm could be resolved. PMID:27244390

  10. Subwavelength imaging through ion-beam-induced upconversion

    PubMed Central

    Mi, Zhaohong; Zhang, Yuhai; Vanga, Sudheer Kumar; Chen, Ce-Belle; Tan, Hong Qi; Watt, Frank; Liu, Xiaogang; Bettiol, Andrew A.

    2015-01-01

    The combination of an optical microscope and a luminescent probe plays a pivotal role in biological imaging because it allows for probing subcellular structures. However, the optical resolutions are largely constrained by Abbe's diffraction limit, and the common dye probes often suffer from photobleaching. Here we present a new method for subwavelength imaging by combining lanthanide-doped upconversion nanocrystals with the ionoluminescence imaging technique. We experimentally observed that the ion beam can be used as a new form of excitation source to induce photon upconversion in lanthanide-doped nanocrystals. This approach enables luminescence imaging and simultaneous mapping of cellular structures with a spatial resolution of sub-30 nm. PMID:26560858

  11. Multispectral mid-infrared imaging using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-03-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version of the infrared object field, with a bandwidth corresponding given by the acceptance parameter of the conversion process, and a center frequency given by the phase-match condition. Tuning of the phase-matched wavelengths has previously been demonstrated by changing the temperature [2] or angle [3 Keywords: Infrared imaging, nonlinear frequency conversion, diode lasers, upconversion ] of the nonlinear material. Unfortunately, temperature tuning is slow, and angle tuning typically results in alignment issues. Here we present a novel approach where the wavelength of the mixing field is used as a tuning parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled feedback grating. The output from a tunable laser is used as seed for a fiber amplifier system, boosting the power to approx. 3 W over the tuning range from 1025 to 1085 nm. Using a periodically poled lithium niobate crystal, the infrared wavelength that can be phase-matched is tunable over more than 200 nm. Using a crystal with multiple poling periods allows for upconversion within the entire transparency range of the nonlinear material.

  12. Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor.

    PubMed

    Yadav, R S; Verma, R K; Bahadur, A; Rai, S B

    2015-02-25

    We report the structural and optical properties of Yb(3+), Pr(3+) co-doped Y2O3 nano-phosphor synthesized through solution combustion method. The structural studies reveal the nano-crystalline structure of the sample. The energy dispersive spectroscopy (EDS) measurements confirm the presence of Y, O, Pr and Yb elements in the sample. Fourier transform infrared studies show the vibrational features of the samples. The fluorescence spectra of the samples have been monitored on excitation with 976 nm and the intense green upconversion emission observed at 552 nm is due to (3)P0→(3)H5 electronic transition. The concentration of Pr(3+) ion in the sample is optimized and the fluorescence intensity is maximum at 0.08 mol% of Pr(3+). The power dependence studies reveal the involvement of two photons in the emission process. The possible mechanism of upconversion has been discussed on the basis of schematic energy level diagram. The sample annealed at higher temperature enhances the fluorescence intensity up to 8 times and this enhancement is discussed in terms of the removal of optical quenching centers. The nano-phosphor can be applicable in the field of display devices and green laser.

  13. Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor.

    PubMed

    Yadav, R S; Verma, R K; Bahadur, A; Rai, S B

    2015-02-25

    We report the structural and optical properties of Yb(3+), Pr(3+) co-doped Y2O3 nano-phosphor synthesized through solution combustion method. The structural studies reveal the nano-crystalline structure of the sample. The energy dispersive spectroscopy (EDS) measurements confirm the presence of Y, O, Pr and Yb elements in the sample. Fourier transform infrared studies show the vibrational features of the samples. The fluorescence spectra of the samples have been monitored on excitation with 976 nm and the intense green upconversion emission observed at 552 nm is due to (3)P0→(3)H5 electronic transition. The concentration of Pr(3+) ion in the sample is optimized and the fluorescence intensity is maximum at 0.08 mol% of Pr(3+). The power dependence studies reveal the involvement of two photons in the emission process. The possible mechanism of upconversion has been discussed on the basis of schematic energy level diagram. The sample annealed at higher temperature enhances the fluorescence intensity up to 8 times and this enhancement is discussed in terms of the removal of optical quenching centers. The nano-phosphor can be applicable in the field of display devices and green laser. PMID:25233026

  14. Structural characterizations and intense green upconversion emission in Yb3+, Pr3+ co-doped Y2O3 nano-phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, R. S.; Verma, R. K.; Bahadur, A.; Rai, S. B.

    2015-02-01

    We report the structural and optical properties of Yb3+, Pr3+ co-doped Y2O3 nano-phosphor synthesized through solution combustion method. The structural studies reveal the nano-crystalline structure of the sample. The energy dispersive spectroscopy (EDS) measurements confirm the presence of Y, O, Pr and Yb elements in the sample. Fourier transform infrared studies show the vibrational features of the samples. The fluorescence spectra of the samples have been monitored on excitation with 976 nm and the intense green upconversion emission observed at 552 nm is due to 3P0 → 3H5 electronic transition. The concentration of Pr3+ ion in the sample is optimized and the fluorescence intensity is maximum at 0.08 mol% of Pr3+. The power dependence studies reveal the involvement of two photons in the emission process. The possible mechanism of upconversion has been discussed on the basis of schematic energy level diagram. The sample annealed at higher temperature enhances the fluorescence intensity up to 8 times and this enhancement is discussed in terms of the removal of optical quenching centers. The nano-phosphor can be applicable in the field of display devices and green laser.

  15. Excitonic luminescence upconversion in a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Dery, Hanan; Yao, Wang; Xu, Xiaodong

    2016-04-01

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. This phenomenon lies at the heart of optical refrigeration in solids, where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities or exciton-phonon coupling. Here, we demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors. Since the charged exciton binding energy closely matches the 31 meV A1' optical phonon, we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. In addition, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.

  16. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing

    PubMed Central

    Chen, Xian; Jin, Limin; Kong, Wei; Sun, Tianying; Zhang, Wenfei; Liu, Xinhong; Fan, Jun; Yu, Siu Fung; Wang, Feng

    2016-01-01

    Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show that confining energy migration constitutes a general and versatile strategy to manipulating multiphoton upconversion, demonstrating an efficient five-photon upconversion emission of Tm3+ in a stoichiometric Yb lattice without suffering from concentration quenching. The high emission intensity is unambiguously substantiated by realizing room-temperature lasing emission at around 311 nm after 980-nm pumping, recording an optical gain two orders of magnitude larger than that of a conventional Yb/Tm-based system operating at 650 nm. Our findings thus highlight the viability of realizing diode-pumped lasing in deep ultraviolet regime for various practical applications. PMID:26739352

  17. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  18. High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N.

    2013-02-01

    Upconversion in rare-earth ions is a sequential multiphoton process that efficiently converts two or more low-energy photons, which are generally near infrared (NIR) light, to produce anti-Stokes emission of a higher energy photon (e.g., NIR, visible, ultraviolet) using continuous-wave (cw) diode laser excitation. Here, we show the engineering of novel, efficient, and biocompatible NIRin-to-NIRout upconversion nanoparticles for biomedical imaging with both excitation and emission being within the "optical transparency window" of tissues. The small animal whole-body imaging with exceptional contrast (signal-to-noise ratio of 310) was shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles. An imaging depth as deep as 3.2-cm was successfully demonstrated using thick animal tissue (pork) under cw laser excitation at 980 nm.

  19. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2009-10-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators.

  20. IR-stimulated visible fluorescence in pink and brown diamond.

    PubMed

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.

  1. Near-Infrared Upconversion Chemodosimeter for In Vivo Detection of Cu(2+) in Wilson Disease.

    PubMed

    Liu, Yi; Su, Qianqian; Chen, Min; Dong, Yi; Shi, Yibing; Feng, Wei; Wu, Zhi-Ying; Li, Fuyou

    2016-08-01

    Near-infrared upconversion chemodosimetry is a promising detection method by virtue of the frequency upconversion technique, which shows very high sensitivity and selectivity for the detection of Cu(2+) ions in vitro and in vivo. This method offers a new opportunity for noninvasive diagnosis of Wilson disease associated with Cu(2+) detection in clinical medicine.

  2. Infrared-to-visible upconversion luminescence in neodymium-doped bismuth-borate glass

    NASA Astrophysics Data System (ADS)

    Oprea, Isabella-Ioana; Hesse, Hartmut; Betzler, Klaus

    2005-10-01

    The upconversion luminescence in Nd3+-doped bismuth-borate glass, excited by 0.8 μm light, was studied in the visible spectral region. Four distinct emission bands were found. From their kinetics, two mechanisms can be shown to be responsible for all four lines: energy-transfer upconversion, slightly dominating, and excited state absorption.

  3. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  4. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  5. Nanoflow electrospinning serial femtosecond crystallography

    SciTech Connect

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  6. Modulation of a double-line frequency up-conversion process in cesium vapor

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Cao, Rui; Xia, Xusheng; Hu, Shu; Liu, Jinbo; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2016-06-01

    We have observed frequency up-conversion in Cs vapor. The pulsed pumping laser beam of 767.2 nm was converted to simultaneous collinear ultraviolet and blue radiation of wavelengths 387.7 and 455.6 nm, respectively (double-line frequency up-conversion). We examined properties of this up-conversion such as energy efficiency and pulse widths. An infrared laser of ~2.4 μm was successful in modulating the laser beam of the frequency up-conversion. The modulation shifts the wavelength of the blue radiation and the intensities of both the blue and ultraviolet radiation. At nanosecond grade, such modulations are expected to have applications in near-infrared up-conversion and optical communications.

  7. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect

    Not Available

    2011-06-22

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  8. Design and implementation of an advanced three-dimensional volumetric display based on up-conversion phosphors

    NASA Astrophysics Data System (ADS)

    Cao, Jianying; Parasuraman, Usha; Liu, Jianqiang; Sun, Ted

    2005-05-01

    We present a two-step two-frequency up-conversion (TSTF-UC) fluorescent material based crossed-beam display (CBD) apparatus. 3D voxels are addressed by two IR laser beams, which are driven by fast acousto-optic light deflectors (AOLD). The compact scanning system can cover a display volume of 100mmx100mmx100mm. Initial demonstration was carried out with a piece of 0.5-mol % Er3+-doped ZBLAN glass (23mmx23mmx17mm). It was found that the 3D image brightness dropped dramatically when refresh rate was increased. Also "ghost" voxels appeared with increasing refresh rate. A simplified rate-equation analysis was performed to address the issues.

  9. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Cao, Wenbin; Li, Shunbo; Wen, Weijia

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF4:Yb3+, Er3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  10. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  11. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment

    SciTech Connect

    Li, Haitao; He, Xiaodie; Liu, Yang; Yu, Hang; Kang, Zhenhui; Lee, Shuit-Tong

    2011-01-15

    Water-soluble fluorescent carbon nanoparticles were synthesized directly from active carbon by a one-step hydrogen peroxide-assisted ultrasonic treatment. The carbon nanoparticles were characterized by transmission electron microscopy, optical fluorescent microscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer. The results showed that the surface of carbon nanoparticles was rich of hydroxyl groups resulting in high hydrophilicity. The carbon nanoparticles could emit bright and colorful photoluminescence covering the entire visible-to-near infrared spectral range. Furthermore, these carbon nanoparticles also had excellent up-conversion fluorescent properties.

  12. In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Jae-Goo; Whang, Kyoung-Hyun; Choi, Kyeong-Sook; Sohn, Seong-Hyang

    2008-03-01

    The photo-bleaching of single living cells excited by femtosecond laser irradiation was observed in situ to study the nonlinear interaction between ultrafast laser pulses and living human breast MDA-MB-231 cells. We conducted a systematic study of the energy dependence of plasma-mediated photo-disruption of fluorescently labeled subcellular structures in the nucleus of living cells using near-infrared (NIR) femtosecond laser pulses through a numerical aperture objective lens (0.75 NA). The behavior of photo-bleached living cells with fluorescently labeled nuclei was observed for 18 h after femtosecond laser irradiation under a fluorescence microscope. The photo-bleaching of single living cells without cell disruption occurred at between 470 and 630 nJ. To study the photo-disruption of subcellular organelles in single living cells using the nonlinear absorption excited by a NIR femtosecond laser pulse, the process of photo-bleaching without photo-disruption provides key information for clarifying the nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent fluorescently labeled living cells.

  13. The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Prorok, Katarzyna; Bednarkiewicz, Artur; Cichy, Bartlomiej; Gnach, Anna; Misiak, Malgorzata; Sobczyk, Marcin; Strek, Wieslaw

    2014-01-01

    Lanthanide doped, up-converting nanoparticles have found considerable interest as luminescent probes in the field of bio-detection. Although the nanoparticles (NPs) have already been successfully applied for fluorescent bio-imaging and bio-assays, the efficiency of the up-conversion process seems to be the bottle-neck in rigorous applications. In this work, we have shown enhancement of the up-conversion in colloidal α-NaYF4:Yb3+, Tb3+ doped nanocrystals owing to passivation of their surface. We have studied quantitatively the influence of the shell type (NaYF4 and CaF2), its thickness, as well as the shell deposition method (i.e. single thick shell vs. multi-layer shell) on the luminescent properties of the nanoparticles. The results showed that up to 40-fold up-conversion intensity enhancement may be obtained for the core-shell nanoparticles in comparison with the bare core nanoparticles, irrespective of the shell type and deposition method. Moreover, the suitability of the NaYF4:Yb3+, Tb3+ core-shell NPs for multi-color emission and spectral multiplexing has been presented.Lanthanide doped, up-converting nanoparticles have found considerable interest as luminescent probes in the field of bio-detection. Although the nanoparticles (NPs) have already been successfully applied for fluorescent bio-imaging and bio-assays, the efficiency of the up-conversion process seems to be the bottle-neck in rigorous applications. In this work, we have shown enhancement of the up-conversion in colloidal α-NaYF4:Yb3+, Tb3+ doped nanocrystals owing to passivation of their surface. We have studied quantitatively the influence of the shell type (NaYF4 and CaF2), its thickness, as well as the shell deposition method (i.e. single thick shell vs. multi-layer shell) on the luminescent properties of the nanoparticles. The results showed that up to 40-fold up-conversion intensity enhancement may be obtained for the core-shell nanoparticles in comparison with the bare core nanoparticles

  14. Upconversion Nanoparticle-Based Förster Resonance Energy Transfer for Detecting DNA Methylation.

    PubMed

    Kim, Seockjune; Hwang, Sang-Hyun; Im, Su-Gyeong; Lee, Min-Ki; Lee, Chang-Hun; Son, Sang Jun; Oh, Heung-Bum

    2016-01-01

    Aberrant methylation of a crucial CpG island is the main mechanism for the inactivation of CDKN2A in the early stages of carcinogenesis. Therefore, the detection of DNA methylation with high sensitivity and specificity is important, and various detection methods have been developed. Recently, upconversion nanoparticles (UCNPs) have been found to display a high signal-to-noise ratio and no photobleaching, making them useful for diagnostic applications. In this pilot study, we applied UCNPs to the detection of CDKN2A methylation and evaluated the feasibility of this system for use in molecular diagnostics. DNA PCR was performed using biotinylated primers, and the PCR amplicon was then intercalated with SYTOX Orange dye, followed by incubation with streptavidin-conjugated UCNPs. Fluorescence detection of the Förster resonance energy transfer (FRET) of the UCNPs (MS-UC-FRET) was then performed, and the results were compared to those from real-time PCR (RQ-PCR) and pyrosequencing. Detection by MS-UC-FRET was more sensitive than that by either RQ-PCR or pyrosequencing. Our results confirmed the success of our MS-UC-FRET system for detecting DNA methylation and demonstrated the potential application of this system in molecular diagnostics. PMID:27517925

  15. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    PubMed

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. PMID:26302361

  16. Temperature-Sensing Behavior Based on Upconversion Luminescence at the Rhombohedral-Tetragonal Phase Boundary

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Hu, Yifeng; Zhu, Xiaoqin; Zhang, Jianhao; Wang, Xusheng; Song, Zhitang

    2016-10-01

    In this work, (1- x)(K0.48Na0.52)(Nb0.95Sb0.05)O3- x - xEr0.5(Na0.82K0.18)0.5ZrO3 ( x = 0-0.05) ceramics were fabricated by solid-state reaction techniques. The rhombohedral-tetragonal (R-T) phase boundary of the ceramics was identified at 0.04 ≤ x, thus providing an opportunity to investigate the upconversion emission derived from the Er3+ ions at the R-T phase boundary. Under 980 nm laser excitation, the R-T phase ceramics exhibited a strong green emission. In addition, the fluorescence intensity ratios of green emissions at 530 nm and 550 nm were investigated in a temperature range of 180-510 K, and maximum sensing sensitivity was found to be 0.0037 K-1. The results indicate that Er3+-doped ceramics with R-T phase boundaries can be applied to new multifunctional electro-optical temperature sensors. Laser excitation heating effects were also observed in detail.

  17. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    PubMed

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml.

  18. Upconversion effective enhancement by producing various coordination surroundings of rare-Earth ions.

    PubMed

    Huang, Qingming; Yu, Han; Ma, En; Zhang, Xinqi; Cao, Wenbing; Yang, Chengang; Yu, Jianchang

    2015-03-16

    In this manuscript, we present a simple route to enhance upconversion (UC) emission by producing two different coordination sites of trivalent cations in a matrix material and adjusting crystal field asymmetry by Hf(4+) co-doping. A cubic phase, Y3.2Al0.32Yb0.4Er0.08F12, with these structural characteristics was synthesized successfully by introducing a small ion (Al(3+)) into YF3. X-ray diffraction (XRD), nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), X-ray spectroscopy (XPS), and fluorescence spectrophotometry (FS) were employed for its crystalline structure and luminescent property analysis. As a result, the coordination environments of the rare-earth ions were varied more obviously than a hexagonal NaYF4 matrix with the same Hf(4+) co-doping concentration, with vertical comparison, UC luminescent intensities of cubic Y3.2Al0.32Yb0.4Er0.08F12 were largely enhanced (∼32-80 times greater than that of different band emissions), while the maximum enhancement of hexagonal NaYF4 was by a factor of ∼12. According to our experimental results, the mechanism has been demonstrated involving the crystalline structure, crystal field asymmetry, luminescence lifetime, hypersensitive transition, and so on. The study may be helpful for the design and fabrication of high-performance UC materials.

  19. Upconversion Nanoparticle-Based Förster Resonance Energy Transfer for Detecting DNA Methylation

    PubMed Central

    Kim, Seockjune; Hwang, Sang-Hyun; Im, Su-Gyeong; Lee, Min-Ki; Lee, Chang-Hun; Son, Sang Jun; Oh, Heung-Bum

    2016-01-01

    Aberrant methylation of a crucial CpG island is the main mechanism for the inactivation of CDKN2A in the early stages of carcinogenesis. Therefore, the detection of DNA methylation with high sensitivity and specificity is important, and various detection methods have been developed. Recently, upconversion nanoparticles (UCNPs) have been found to display a high signal-to-noise ratio and no photobleaching, making them useful for diagnostic applications. In this pilot study, we applied UCNPs to the detection of CDKN2A methylation and evaluated the feasibility of this system for use in molecular diagnostics. DNA PCR was performed using biotinylated primers, and the PCR amplicon was then intercalated with SYTOX Orange dye, followed by incubation with streptavidin-conjugated UCNPs. Fluorescence detection of the Förster resonance energy transfer (FRET) of the UCNPs (MS-UC-FRET) was then performed, and the results were compared to those from real-time PCR (RQ-PCR) and pyrosequencing. Detection by MS-UC-FRET was more sensitive than that by either RQ-PCR or pyrosequencing. Our results confirmed the success of our MS-UC-FRET system for detecting DNA methylation and demonstrated the potential application of this system in molecular diagnostics. PMID:27517925

  20. Time-Resolved Down-Conversion of 2-Aminopurine in a DNA Hairpin: Fluorescence Anisotropy and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Tourón Touceda, Patricia; Gelot, Thomas; Crégut, Olivier; Léonard, Jérémie; Haacke, Stefan

    2013-03-01

    Femtosecond fluorescence anisotropy decay measured by type II difference frequency generation provides new insight into the local structural dynamics of ΔP(-)PBS fragments of the HIV- 1 DNA primary binding sequence, labeled with 2-aminopurine.

  1. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2016-03-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  2. Structural and optical properties of thermal decomposition assisted Gd2O3:Ho3 +/Yb3 + upconversion phosphor annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Tiwari, S. P.; Kumar, K.; Rai, V. K.

    2016-10-01

    The infrared to visible upconversion fluorescent nanoparticles of Ho3 +/Yb3 + codoped Gd2O3 phosphor is synthesized via thermal decomposition route. The as-synthesized sample was annealed at 800, 1000 and 1200 °C for 3 h and then structural and optical properties were studied. The Rietveld refinement of X-ray diffraction (XRD) data was analyzed to probe the effect of Ho3 +/Yb3 + dopant on the structural parameters of Gd2O3 host. The upconversion emission spectra of as-synthesized and annealed samples are compared using 980 nm diode laser excitation and five emission bands noticed at 490, 539, 550, 667 and 757 nm corresponding to the 5F3 → 5I8, 5F4 → 5I8, 5S2 → 5I8,5F5 → 5I8 and 5I4 → 5I8 manifolds, respectively. The local temperature induced by laser light is also calculated. The fluorescence intensity ratio (FIR) of two thermally coupled transitions 5F4 → 5I8 and 5S2 → 5I8 is plotted against the sample temperature and sensor sensitivity of sample is calculated.

  3. Structural and optical properties of thermal decomposition assisted Gd2O3:Ho(3+)/Yb(3+) upconversion phosphor annealed at different temperatures.

    PubMed

    Kumar, A; Tiwari, S P; Kumar, K; Rai, V K

    2016-10-01

    The infrared to visible upconversion fluorescent nanoparticles of Ho(3+)/Yb(3+) codoped Gd2O3 phosphor is synthesized via thermal decomposition route. The as-synthesized sample was annealed at 800, 1000 and 1200°C for 3h and then structural and optical properties were studied. The Rietveld refinement of X-ray diffraction (XRD) data was analyzed to probe the effect of Ho(3+)/Yb(3+) dopant on the structural parameters of Gd2O3 host. The upconversion emission spectra of as-synthesized and annealed samples are compared using 980nm diode laser excitation and five emission bands noticed at 490, 539, 550, 667 and 757nm corresponding to the (5)F3→(5)I8, (5)F4→(5)I8, (5)S2→(5)I8,(5)F5→(5)I8 and (5)I4→(5)I8 manifolds, respectively. The local temperature induced by laser light is also calculated. The fluorescence intensity ratio (FIR) of two thermally coupled transitions (5)F4→(5)I8 and (5)S2→(5)I8 is plotted against the sample temperature and sensor sensitivity of sample is calculated. PMID:27284763

  4. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  5. Reversibly tunable upconversion luminescence by host-guest chemistry.

    PubMed

    Taniguchi, Takaaki; Murakami, Tomoaki; Funatsu, Asami; Hatakeyama, Kazuto; Koinuma, Michio; Matsumoto, Yasumichi

    2014-09-01

    Tuning upconversion (UPC) luminescence using external stimuli and fields, as well as chemical reactions, is expected to lead to novel and efficient optical sensors. Herein, highly tunable UPC luminescence was achieved through a host-guest chemistry approach. Specifically, interlayer ion exchange reactions reversibly tuned the emission intensity and green-red color of Er/Yb-codoped A2La2Ti3O10 layered perovskite, where A corresponds to proton and alkali metal ions, enabling the visualization of host-guest interactions and reactions. PMID:25122035

  6. [C70] fullerene-sensitized triplet-triplet annihilation upconversion.

    PubMed

    Moor, Kyle; Kim, Jae-Hyuk; Snow, Samuel; Kim, Jae-Hong

    2013-11-28

    We herein report the first instance of using pristine C70 as a heavy-atom free organic sensitizer for efficient triplet-triplet annihilation upconversion (UC) for both green-to-blue and red-to-green UC using 9,10-bis(phenylethynyl)anthracene and perylene as acceptors, respectively. C70 achieved quantum yields of 8% and 0.8% for green-to-blue and red-to-green UC, 25 to 35 times higher than C60, and showed improved stability under continuous laser irradiation compared to the benchmark platinum(II)-octaethylporphyrin.

  7. Attenuated total reflectance spectroscopy with chirped-pulse upconversion.

    PubMed

    Shirai, Hideto; Duchesne, Constance; Furutani, Yuji; Fuji, Takao

    2014-12-01

    Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm(-1) were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within ∼ 10 ms. PMID:25606893

  8. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  9. Metallophthalocyanines as triplet sensitizers for highly efficient photon upconversion based on sensitized triplet-triplet annihilation.

    PubMed

    Han, J L; You, J; Yonemura, H; Yamada, S; Wang, S R; Li, X G

    2016-08-01

    Soluble palladium and platinum phthalocyanines with coumarin moieties were synthesized with Q bands in the red and near-IR regions, in which the molar extinction coefficients were up to 1.01 × 10(5) cm(-1) mol(-1). These metallophthalocyanines were coupled with rubrene and applied in photon upconversion systems based on triplet-triplet annihilation. The highest upconversion efficiency of the palladium phthalocyanine was 5.6%, which is higher than that of the platinum phthalocyanine-rubrene system. The larger molar extinction coefficient resulted in high upconversion capability (>10(5) cm(-1) mol(-1)) and low saturation incident power (<20 mW cm(-2)). PMID:27431880

  10. Dynamics of the up-conversion emission in holmium doped ZBLAN fiber

    NASA Astrophysics Data System (ADS)

    Wnuk, A.; Kaczkan, M.; Piramidowicz, R.; Mahiou, R.; Bertrand, G.; Joubert, M. F.; Malinowski, M.

    2003-01-01

    The dynamics of up-conversion, green emission under excitation at different infra-red wavelength in Ho3+ doped ZBLAN fiber is reported. Under infrared, 890 nm quasi cw pumping the complicated temporal behavior of the up-conversion signal is strongly influenced by the intermediate I-5(5) state cross relaxation. The mechanisms of the observed up-conversion processes are proposed and the time evolution of the S-5(2) population is described by the rate equation model. Parameters of the model are determined and numerical simulations of the excited state dynamics are performed.

  11. Infrared upconversion for astronomical applications. [laser applications to astronomical spectroscopy of infrared spectra

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Ogilvie, K. W.

    1975-01-01

    The performance of an upconversion system is examined for observation of astronomical sources in the low to middle infrared spectral range. Theoretical values for the performance parameters of an upconversion system for astronomical observations are evaluated in view of the conversion efficiencies, spectral resolution, field of view, minimum detectable source brightness and source flux. Experimental results of blackbody measurements and molecular absorption spectrum measurements using a lithium niobate upconverter with an argon-ion laser as the pump are presented. Estimates of the expected optimum sensitivity of an upconversion device which may be built with the presently available components are given.

  12. Mercaptopropionic acid-capped Mn(2+):ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications.

    PubMed

    Zhao, Bingxia; Yao, Yulian; Yang, Kai; Rong, Pengfei; Huang, Peng; Sun, Kang; An, Xiao; Li, Zhiming; Chen, Xiaoyuan; Li, Wanwan

    2014-11-01

    Doped quantum dots (d-dots) can serve as fluorescent biosensors and biolabels for biological applications. Our study describes a synthesis of mercaptopropionic acid (MPA)-capped Mn(2+):ZnSe/ZnO d-dots through a facile, cost-efficient hydrothermal route. The as-prepared water-soluble d-dots exhibit strong emission at ca. 580 nm, with a photoluminescence quantum yield (PLQY) as high as 31%, which is the highest value reported to date for such particles prepared via an aqueous route. They also exhibit upconversion emission when excited at 800 nm. With an overall diameter of around 6.7 nm, the d-dots could gain access to the cell nucleus without any surface decoration, demonstrating their promising broad applications as fluorescent labels. PMID:25189675

  13. Towards sub-femtosecond emission

    NASA Astrophysics Data System (ADS)

    Bach, Roger; Hansen, Peter; Batelaan, Herman; Hilbert, Shawn

    2010-03-01

    To manipulate femtosecond pulses of electrons new electron optical elements are needed. For example, if a source has a lower limit in the duration of the electron pulses that it generates, then aan electron optical element that can reduce the pulse duration could be useful. An example of this is the proposed ``temporal lens '' [1]. To detect the short electron pulses one also needs new elements. Attempts to use the ponderomotive interaction between the electron pulse and a second laser pulse will be presented [2]. Alternatively, we have started to explore a plasmonics structure provided by the Capasso group to make a fast electron switch. This has the potential to be useful both for switching, shaping and detecting the electron pulse. Finally, the experimental parameters and detection ideas for quantum degeneracy will be discussed. [1] S. Hilbert, B. Barwick, K. Uiterwaal, H. Batelaan, A. Zewail, ``Temporal lenses for attosecond and femtosecond electron pulses'', Proceedings of the National Academy of Sciences, p. 10558, vol. 106, (2009). [2] L. Kreminskaya, C. Corder, V. Engquist, O. Golovin, P. Hansen, H. Batelaan, A. I. Khizhnyak, G. A. Swartzlander, Jr., ``Laser Beam Shaping: Donut Mode Formation by Interference.'' Laser Beam Shaping X (Proceedings Volume) Proceedings of SPIE Volume: 7430.

  14. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti{sup 3+}:Sapphire

    SciTech Connect

    Apostolopoulos, V.; Laversenne, L.; Colomb, T.; Depeursinge, C.; Salathe, R.P.; Pollnau, M.; Osellame, R.; Cerullo, G.; Laporta, P.

    2004-08-16

    We have employed femtosecond laser writing in order to induce refractive-index changes and waveguides in Ti{sup 3+}-doped sapphire. Doping the sapphire crystal with an appropriate ion significantly reduces the threshold for creating structural changes, thus enabling the writing of waveguide structures. Passive and active buried channel waveguiding is demonstrated and images of the guided modes, propagation-loss values, fluorescence spectra, and output efficiencies are presented. The guiding area is located around the laser-damaged region, indicating that the guiding effect is stress induced. Refractive-index changes are measured by digital holography. Proper active doping should enable femtosecond processing and waveguide writing in various crystalline materials.

  15. Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding.

    PubMed

    Huang, Kai; Idris, Niagara Muhammad; Zhang, Yong

    2016-02-17

    Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Due to their sharp excitation and emission bands, excellent photo- and chemical stability, low autofluorescence, and high tissue penetration depth of the NIR light used for excitation, UCNPs have surpassed conventional fluorophores in many bioapplications. A better understanding of the mechanism of upconversion, as well as the development of better approaches to preparing UCNPs, have provided more opportunities to explore their use for optical encoding, which has the potential for applications in multiplex detection and imaging. With the current ability to precisely control the microstructure and properties of UCNPs to produce particles of tunable emission, excitation, luminescence lifetime, and size, various strategies for optical encoding based on UCNPs can now be developed. These optical properties of UCNPs (such as emission and excitation wavelengths, ratiometric intensity, luminescence lifetime, and multicolor patterns), and the strategies employed to engineer these properties for optical encoding of UCNPs through homogeneous ion doping, heterogeneous structure fabrication and microbead encapsulation are reviewed. The challenges and potential solutions faced by UCNP optical encoding are also discussed. PMID:26681103

  16. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.

    PubMed

    Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang

    2015-11-01

    We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. PMID:26358961

  17. WDM up-conversion employing frequency quadrupling in optical modulator.

    PubMed

    Shih, Po-Tsung; Lin, Chun-Ting; Jiang, Wen-Jr; Chen, Jason Jyehong; Huang, Han-Sheng; Chen, Yu-Hung; Peng, Peng-Chun; Chi, Sien

    2009-02-01

    This work presents an optical up-conversion system with frequency quadrupling for wavelength-division-multiplexing (WDM) communication systems using a dual-parallel Mach-Zehnder modulator without optical filtering. Four-channel 1.25-Gb/s wired fiber-to-the-x (FTTx) and wireless radio-over-fiber (RoF) signals are generated and transmitted simultaneously. Moreover, the decline in receiver sensitivities due to Mach-Zehnder modulator bias drifts is also investigated. Receiver power penalties of the 20-GHz up-converted WDM signals and baseband (BB) FTTx signals are less than 1 dB when bias deviation voltage is less the 20% of the half-wave voltage. After transmission over a 50-km SSMF, the receiver power penalties of both the BB and 20-GHz RF OOK signals are less than 1 dB. Notably, 60-GHz optical up-conversion can be achieved using 15-GHz radio frequency (RF) components and equipment. PMID:19189002

  18. Frequency Up-Conversion Photon-Type Terahertz Imager.

    PubMed

    Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  19. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  20. Vector-based nonlinear upconversion applying center-weighted medians

    NASA Astrophysics Data System (ADS)

    Blume, Holger

    1996-03-01

    One important task in the field of digital video signal processing is the conversion of one standard into another with different field and scan rates. Therefore we have developed a vector based nonlinear upconversion algorithm which applies nonlinear center weighted median filters (CWM). Assuming a 2-channel model of the human visual system with different spatio temporal characteristics, there are contrary demands for the CWM filters. We can meet these demands by a vertical band separation and an application of so-called temporally and spatially dominated CWMs. Hereby errors of the separated channels can be orthogonalized and avoided by an adequate splitting of the spectrum. By this we have achieved a very robust vector error tolerant up-conversion method which significantly improves the interpolation quality. By an appropriate choice of the CWM filter root structures main picture elements are interpolated correctly also if faulty vector fields occur. In order to demonstrate correctness of the deduced interpolation scheme picture content is classified. These classes are distinguished by correct or incorrect vector assignment and correlated or noncorrelated picture content. The mode of operation of the new algorithm is portrayed for each class. Whereas the mode of operation for correlated picture content can be shown by object models this is shown for noncorrelated picture content by the distribution function of the applied CWM filters. The new algorithm has been verified as well by an objective evaluation method the PSNR (peak signal to noise ratio) measurement as by a comprehensive subjective test series.

  1. Frequency Up-Conversion Photon-Type Terahertz Imager

    NASA Astrophysics Data System (ADS)

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-05-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  2. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  3. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2010-03-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators. Project as part of a Research Experience for Undergraduates program funded by the National High Magnetic Field Laboratory, Florida State University and the National Science Foundation under supervision of Jianming Cao, PhD., Florida State University.

  4. Materials micro-processing using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Zamfirescu, M.; Anghel, I.; Jipa, F.

    2013-06-01

    Nonlinear optical phenomena which dominate the interaction of tightly focused femtosecond laser beams with materials are discussed. Different femtosecond laser based techniques for material processing such as laser ablation, two-photon photo-polymerization, and material surface nano-structuring are described. For the computer controlled micro-processing of materials, near-infrared Ti:sapphire femtosecond lasers, with nano-Joule/micro-Joule pulse energy, were coupled with direct laser writing workstations. Laser fabricated micro-nanostructures and their applications are presented.

  5. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  6. Metal-Organic Frameworks Modulated by Doping Er(3+) for Up-Conversion Luminescence.

    PubMed

    Zhang, Xindan; Li, Bin; Ma, Heping; Zhang, Liming; Zhao, Haifeng

    2016-07-13

    Here we present metal-organic frameworks prepared by a one-step synthesis method, possessing both architectural properties of MOF building and up-conversion luminescence of rare earth Er(3+) (hereafter denoted as Up-MOFs). Up-MOFs have characteristic up-conversion emissions at 520, 540, and 651 nm under the excitation of 980 nm owing to the multiple photon absorption. The up-conversion mechanism of these Up-MOFs has been discussed, and it can be attributed to the excited state absorption process. The design and synthesis of Up-MOF materials possessing near-infrared region excitation and up-conversion luminescence are fully expected to be candidates for the advancement of applications in bioimaging, sensors, optoelectronics, and energy conversion/storage devices.

  7. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display. PMID:27451700

  8. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  9. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  10. A Pr 3+-doped ZBLAN fibre upconversion laser pumped by an Yb 3+-doped silica fibre laser

    NASA Astrophysics Data System (ADS)

    Pask, H. M.; Tropper, A. C.; Hanna, D. C.

    1997-02-01

    An Yb 3+-doped silica fibre laser pumped at 840 nm has been used to provide the two pump wavelengths, 840 nm and 1020 nm, required for pumping a Pr 3+-doped ZBLAN fibre upconversion laser. The performance of the upconversion laser at 491, 520 and 635 nm is presented, with measurements of fibre loss at 635 nm and 520 nm which indicate that fibre losses are an important factor limiting the performance of the upconversion laser.

  11. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  12. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam.

    PubMed

    He, Fei; Zeng, Bin; Chu, Wei; Ni, Jielei; Sugioka, Koji; Cheng, Ya; Durfee, Charles G

    2014-04-21

    We report on experimental examination of two-photon fluorescence excitation (TPFE) at the focus of a spatially chirped femtosecond laser beam, which reveals an unexpected tilted peak intensity distribution in the focal spot. Our theoretical calculation shows that the tilting of the peak intensity distribution originates from the fact that along the optical axis of objective lens, the spatiotemporally focused pulse reaches its shortest duration exactly at the focal plane. However, when moving away from the optical axis along the direction of spatial chirp of the incident pulse, the pulse reaches its shortest duration either before or after the focal plane, depending on whether the pulse duration is measured above or below the optical axis as well as the sign of the spatial chirp. The tilting of the peak intensity distribution in the focal spot of the spatiotemporally focused femtosecond laser beam can play important roles in applications such as femtosecond laser micromachining and bio-imaging. PMID:24787858

  13. Femtosecond laser tuning of silicon microring resonators.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Prabhu, Ashok M; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2011-12-01

    Femtosecond laser modification is demonstrated as a possible method for postfabrication tuning of silicon microring resonators. Single 400 nm femtosecond laser pulses were used to modify the effective index of crystalline silicon microring waveguides by either amorphization or surface nanomilling depending on the laser fluence. Both blue- and redshifts in the microring resonance could be achieved without imparting significant degradation to the device quality factor.

  14. One-Step Hydrothermal Synthesis of Butanetetracarboxylic Acid-Coated NaYF₄:Yb³⁺, Er³⁺ Upconversion Phosphors with Enhancement Upconversion Luminescence.

    PubMed

    Zhang, Liming; Mao, Lanlan; Lu, Zhuoxuan; Deng, Yan; He, Nongyue

    2016-01-01

    Butanetetracarboxylic acid (BTCA)/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have been successfully synthesized by a one-step hydrothermal method. The SEM and XRD results show the as-prepared phosphors exhibit main hexagonal lattice structures and uniform morphologies. FT-IR spectra confirm that the surface of as-prepared phosphors is inherently modified with the carboxyl groups. Under the excitation of 980 nm, it has been observed that BTCA/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have a higher upconversion luminescence efficiency than that coated with citrate, ethylenediamine tetraacetic acid (EDTA), or polyacrylic acid (PAA). These results indicate that the BTCA/NaYF₄:Yb³⁺, Er³⁺ phosphors may have superior optical properties, and thus have great potential for biological applications. PMID:27398591

  15. [Initial research of one-beam pumping up-conversion 3D volumetric display based on Er:ZBLAN glass].

    PubMed

    Chen, Xiao-bo; Li, Mei-xian; Wen, Ou; Zhang, Fu-chu; Song, Zeng-fu

    2003-06-01

    This paper investigates one-beam pumping up-conversion three-dimensional volumetric display, which is based on a Er:ZBLAN fluoride glass. The light-length of the facula of one-beam up-conversion luminescence was studied by a 966 nm semiconductor laser. The up-conversion luminescence spectrum was also obtained. It was found that the property of one-beam pumping three-dimensional volumetric display can be improved significantly by 1.52 microns LD laser multi-photon up-conversion, this finding has not been reported.

  16. Femtosecond optical studies of cuprates

    NASA Astrophysics Data System (ADS)

    Schneider, Michael L.; Rast, S.; Onellion, Marshall; Demsar, Jure; Taylor, Antoinette J.; Glinka, Yu D.; Tolk, Norman H.; Ren, Yuhang; Luepke, Gunter; Klimov, A.; Xu, Ying; Sobolewski, Roman; Si, Weidong; Zeng, X. H.; Soukiassian, A.; Xi, Xiaoxing; Abrecht, M.; Ariosa, Daniel; Pavuna, Davor; Manzke, Recardo; Printz, J. O.; Parkhurst, D. K.; Downum, K. E.; Guptasarma, P.; Bozovic, Ivan

    2002-11-01

    Femtosecond optical reflectivity measurements of La2-xSrxCuO4, La2CuO4+y, Bi2Sr2CuO6+z and Bi2Sr2CaCu2O8+δ thin films and single crystal samples indicate qualitative changes with fluence. At the lowest fluencies, there is a power law divergence in the relaxation time. The divergence has an onset temperature of 55+/-15K, independent of whether the sample is in the superconducting or normal states. At slightly higher fluencies, still perturbative, the additional response does not exhibit this power law divergence. At quite high fluencies- no longer perturbative- the metallic samples exhibit oscillations in the reflectivity amplitude. The period of these oscillations varies with the probe wavelength but not with the pump wavelength. The oscillations exhibit a decay time as long as 10 nsec.

  17. High energy femtosecond pulse compression

    NASA Astrophysics Data System (ADS)

    Lassonde, Philippe; Mironov, Sergey; Fourmaux, Sylvain; Payeur, Stéphane; Khazanov, Efim; Sergeev, Alexander; Kieffer, Jean-Claude; Mourou, Gerard

    2016-07-01

    An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

  18. Hybrid high power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Resan, Bojan

    2016-03-01

    There is a growing demand for ultrafast laser systems with high average power and repetition rate. We present two hybrid master oscillator power amplifier (MOPA) architectures employing variety of available technologies to achieve 100 W average power femtosecond pulses. We achieved 120 W 820 fs pulses using solid-state oscillator and fiber amplifiers and chirped pulse amplification (CPA) technique (10 μJ pulse energy at 10 MHz and 100 μJ at 400 kHz). In the second experiment, we achieved 160 W 800 fs pulses in a compact system without the standard CPA using solidstate oscillator and single crystal fiber amplifiers. As currently every component experiences some limitations, it is a challenge to choose the optimal architecture with associated components to achieve a desired combination of laser output parameters.

  19. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  20. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells.

    PubMed

    Zhou, Yi; Pei, Wenbo; Wang, Chenyuan; Zhu, Jixin; Wu, Jiansheng; Yan, Qinyu; Huang, Ling; Huang, Wei; Yao, Cheng; Loo, Joachim Say Chye; Zhang, Qichun

    2014-09-10

    Hypochlorous acid (HOCl), a reactive oxygen species (ROS) produced by myeloperoxidase (MPO) enzyme-mediated peroxidation of chloride ions, acts as a key microbicidal agent in immune systems. However, misregulated production of HOCl could damage host tissues and cause many inflammation-related diseases. Due to its biological importance, many efforts have been focused on developing fluorescent probes to image HOCl in living system. Compared with those conventional fluorescent probes, up-conversion luminescence (UCL) detection system has been proven to exhibit a lot of advantages including no photo-bleaching, higher light penetration depth, no autofluorescence and less damage to biosamples. Herein, we report a novel water-soluble organic-nano detection system based on rhodamine-modified UCNPs for UCL-sensing HOCl. Upon the interaction with HOCl, the green UCL emission intensity in the detection system were gradually decreased, but the emissions in the NIR region almost have no change, which is very important for the ratiometric UCL detection of HOCl in aqueous solution. More importantly, RBH1-UCNPs could be used for the ratiometric UCL visualization of HOCl released by MPO-mediated peroxidation of chloride ions in living cells. This organic-nano system could be further developed into a novel next-generation imaging technique for bio-imaging HOCl in living system without background noise. PMID:24497481

  1. Supra-nanosecond dynamics of a red-to-blue photon upconversion system.

    PubMed

    Singh-Rachford, Tanya N; Castellano, Felix N

    2009-03-16

    Blue-green upconverted emission from 2-chloro-bis-phenylethynylanthracene (2CBPEA) sensitized by the red-absorbing platinum(II)tetraphenyltetrabenzoporphyrin (PtTPBP) has been investigated in N,N-dimethylformamide (DMF). The upconverted singlet fluorescence of 2CBPEA resulting from its sensitized triplet-triplet annihilation (TTA) is observed following selective excitation of PtTPBP at 635 +/- 5 nm. Stern-Volmer analysis of the photoluminescence quenching of PtTPBP by 2CBPEA yields a bimolecular quenching constant of 1.62 x 10(9) M(-1) s(-1), slightly below the diffusion limit in DMF at room temperature. The TTA process was confirmed by the quadratic dependence of the integrated upconverted singlet fluorescence emission profile of 2CBPEA measured as a function of 635 nm incident laser power. Time-resolved emission spectra following 630 nm nanosecond laser pulses illustrate the prompt nature of porphyrin phosphorescence quenching and the delayed nature of the upconverted singlet fluorescence from 2CBPEA. Transient absorption decays monitored at the peak of the characteristic 2CBPEA triplet-triplet excited-state absorption (490 nm) measured as a function of incident nanosecond 630 nm pump laser fluence recovered the rate constant for the sensitized TTA process, k(TT) = 5.64 +/- 0.08 x 10(9) M(-1) s(-1). To calculate this rate constant, we determined the triplet-triplet extinction coefficient of 2CBPEA (12,500 M(-1) cm(-1) at 490 nm) utilizing triplet energy transfer from donors with known excited-state extinction coefficients, namely [Ru(bpy)(3)](2+) and 2-acetonaphthone and averaged these values. The current work, to the best of our knowledge, represents the first example of red-to-blue upconversion thus demonstrating another viable sensitized TTA process, as well as providing the first measurements of k(TT) in a photon upconverting scheme. As 2CBPEA is stable under ambient conditions, this chromophore represents an almost ideal candidate for light

  2. Photon avalanche up-conversion in holmium doped fluoride glasses

    SciTech Connect

    Chen, Y.H.; Liu, G.K.; Beitz, J.V.; Jie Wang

    1996-08-01

    Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

  3. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles.

    PubMed

    Yang, Dongmei; Li, Chunxia; Lin, Jun

    2015-01-01

    Multimodal nanoprobes that integrate different imaging modalities in one nano-system could offer synergistic effect over any modality alone to satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research. Upconversion nanoparticles (UCNPs), particularly lanthanide (Ln)-based NPs have been regarded as an ideal building block for constructing multimodal bioprobes due to their fascinating properties. In this review, we first summarize recent advances in the optimizations of existing UCNPs. In particular, we highlight the applications of Ln-based UCNPs for multimodal cancer imaging in vitro and in vivo. The explorations of UCNPs-based multimodal nanoprobes for targeting diagnosis and imaging-guided therapeutics are also presented. Finally, the challenges and perspectives of Ln-based UCNPs in this rapid growing field are discussed. PMID:26293416

  4. Quantum frequency up-conversion of continuous variable entangled states

    SciTech Connect

    Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin

    2015-12-07

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.

  5. Synchronous detection in monolithically integrated AM upconversion receivers

    NASA Astrophysics Data System (ADS)

    Vanderplas, Jacob

    1990-01-01

    The design of a synchronous detector for an integrated AM (Amplitude Modulated) upconversion receiver with a tuning range from 150 kHz to 30 MHz is addressed. The following are described: synchronous detector architecture; design of the synchronous detector HF circuits; design of the on-chip continuous time audio low pass filter; and design of the synchronous detector LF circuits. The results of the calculations combined with the results of the prototypes confirm the technical feasibility of a synchronous detector that guarantees at least 50 dB additional channel selectivity. However, the relatively large amount of overhead circuitry for the regeneration of the carrier makes the economic feasibility for the consumer market doubtful.

  6. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery

    NASA Astrophysics Data System (ADS)

    Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogel, Alfred

    2016-07-01

    The wavelength dependence of the threshold for femtosecond optical breakdown in water provides information on the interplay of multiphoton, tunneling, and avalanche ionization and is of interest for parameter selection in laser surgery. We measured the bubble threshold from ultraviolet to near-infrared wavelengths and found a continuous decrease of the irradiance threshold with increasing wavelength λ . Results are compared to the predictions of a numerical model that assumes a band gap of 9.5 eV and considers the existence of a separate initiation channel via excitation of valence band electrons into a solvated state followed by rapid upconversion into the conduction band. Fits to experimental data yield an electron collision time of ≈1 fs and an estimate for the capacity of the initiation channel. Using that collision time, the breakdown dynamics were explored up to λ = 2 μ m . The irradiance threshold first continues to decrease but levels out for wavelengths longer than 1.3 μ m . This opens promising perspectives for laser surgery at wavelengths around 1.3 and 1.7 μ m , which are attractive because of their large penetration depth into scattering tissues.

  7. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence.

    PubMed

    Adhikari, Aniruddha; Sahu, Kalyanasis; Dey, Shantanu; Ghosh, Subhadip; Mandal, Ujjwal; Bhattacharyya, Kankan

    2007-11-01

    Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL. PMID:17944511

  8. Upconversion nanoparticles with a strong acid-resistant capping

    NASA Astrophysics Data System (ADS)

    Recalde, Ileana; Estebanez, Nestor; Francés-Soriano, Laura; Liras, Marta; González-Béjar, María; Pérez-Prieto, Julia

    2016-03-01

    Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases.Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases. Electronic supplementary information (ESI) available: Additional spectra and data of HEMA, AMPS, COP, UCNP@oleate, UCNP@COP, and UCNP@COP@MB. See DOI: 10.1039/c5nr06653k

  9. Excitation-Selectable Nanoprobe for Tumor Fluorescence Imaging and Near-Infrared Thermal Therapy.

    PubMed

    Wei, Yanchun; Chen, Qun; Wu, Baoyan; Xing, Da

    2016-01-01

    The combination of diagnostics and therapeutics is growing rapidly in cancer treatment. Here, using upconversion nanoparticles coated with chitosan conjugated with a targeting molecule and loaded with indocyanine green (ICG), we develop an excitation-selectable nanoprobe with highly integrated functionalities, including the emission of visible and near-infrared (NIR) light, strong optical absorption in the NIR region and high photostability. After intravenous injection in tumor bearing mice, the nanoprobes target to the tumor vascular system. NIR lasers (980 and 808 nm) are then selectively applied to the mice. The results show that the emitted upconversion fluorescence and NIR fluorescence can be used in a complementary manner for high signal/noise ratio and sensitive tumor imaging for more precise tumor localization. Highly effective photothermal therapy is realized using 808 nm laser irradiation, and the upconversion fluorescence at 654 nm can be used for monitoring treatment effect during the thermal therapy. In summary, using the nanoprobes, outstanding therapeutic efficacy could be realized through flexible excitation control, precise tumor localization, highly effective photothermal conversion and real-time treatment monitoring. The nanofabrication strategy highlights the promise of nanoparticles in cancer theranostics. PMID:27301175

  10. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  11. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  12. Two-photon excited quantum dots with compact surface coatings of polymer ligands used as an upconversion luminescent probe for dopamine detection in biological fluids.

    PubMed

    Jin, Hui; Gui, Rijun; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi

    2015-03-21

    Water-soluble multidentate polymer coated CdTe quantum dots (QDs) were prepared via a stepwise addition of raw materials in a one-pot aqueous solution under ambient conditions. Just by adjusting the compositions of raw materials, different sized CdTe QDs were achieved within a short time. The as-prepared QDs showed compact surface coating (1.6-1.8 nm) of polymer ligands and photoluminescence (PL) emitted at 533-567 nm, as well as high colloidal/photo-stability and quantum yields (58-67%). Moreover, these QDs exhibited significant upconversion luminescence (UCL) upon excitation using an 800 nm femtosecond laser. Experimental results confirm that the UCL was ascribed to the two-photon assisted process via a virtual energy state. Then, the two-photon excited QDs were further developed as a novel UCL probe of dopamine (DA) due to self-assembled binding of DA molecules with QDs via non-covalent bonding. As a receptor, the DA attached onto the QD surface induced an electron transfer from QDs to DA, triggering UCL quenching of QDs. This UCL probe of DA presented a low limit of detection (ca. 5.4 nM), and high selectivity and sensitivity in the presence of potential interferences. In particular, it was favorably applied to the detection of DA in biological fluids, with quantitative recoveries (96.0-102.6%). PMID:25684191

  13. Rational design of a thermalresponsive-polymer-switchable FRET system for enhancing the temperature sensitivity of upconversion nanophosphors

    NASA Astrophysics Data System (ADS)

    Xiao, Qingbo; Li, Yanfang; Li, Fujin; Zhang, Mengxin; Zhang, Zhijun; Lin, Hongzhen

    2014-08-01

    Here we propose a thermoresponsive polymer PNIPAM modulated fluorescence resonance energy transfer (FRET) system to enhance the temperature sensitivity of upconversion nanophosphors (UCNPs). By utilizing red/near-infrared dual emitting NaLuF4:Mn2+,Ln3+ (Ln3+ = Yb3+, Er3+, Tm3+) UCNPs as the energy donor and Au nanoparticles as the acceptor, the temperature resolution of the UCNPs is significantly increased from 3.1 °C to 0.9 °C in the physiological temperature range. Conjugating the UCNPs and acceptors into discrete nanocomposites in our samples facilitates reversible regulation of the emission intensity of UCNPs, which thus would extend their application range in biosensing, especially for probing the dynamic changes of local micro-environments in biological tissues. As there are a broad variety of stimuli to which smart polymers can reversibly respond, our experiments are also extendable to various external conditions in local micro-environments, such as pH values, metal ions, glucose, and tissue-specific enzymes.Here we propose a thermoresponsive polymer PNIPAM modulated fluorescence resonance energy transfer (FRET) system to enhance the temperature sensitivity of upconversion nanophosphors (UCNPs). By utilizing red/near-infrared dual emitting NaLuF4:Mn2+,Ln3+ (Ln3+ = Yb3+, Er3+, Tm3+) UCNPs as the energy donor and Au nanoparticles as the acceptor, the temperature resolution of the UCNPs is significantly increased from 3.1 °C to 0.9 °C in the physiological temperature range. Conjugating the UCNPs and acceptors into discrete nanocomposites in our samples facilitates reversible regulation of the emission intensity of UCNPs, which thus would extend their application range in biosensing, especially for probing the dynamic changes of local micro-environments in biological tissues. As there are a broad variety of stimuli to which smart polymers can reversibly respond, our experiments are also extendable to various external conditions in local micro

  14. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  15. Sequential femtosecond X-ray imaging

    NASA Astrophysics Data System (ADS)

    Günther, C. M.; Pfau, B.; Mitzner, R.; Siemer, B.; Roling, S.; Zacharias, H.; Kutz, O.; Rudolph, I.; Schondelmaier, D.; Treusch, R.; Eisebitt, S.

    2011-02-01

    Recording a `molecular movie' with atomic spatial resolution on the femtosecond timescale set by atomic motion can be considered the ultimate goal of dynamic real-space imaging. Free-electron X-ray lasers, with their (sub)nanometre wavelength, femtosecond pulse duration and high brilliance, fuel the hope that this may ultimately become possible. Single-shot still pictures with sub-100 nm resolution achieved during femtosecond exposures have recently been demonstrated. A femtosecond time-lapse movie requires a sequence of independent images taken with a controllable time delay. As a key step towards achieving a molecular movie, we demonstrate a holographic imaging approach capable of recording two fully independent images with a variable time delay over the entire femtosecond regime. The concept overcomes the fundamental readout time limitations of two-dimensional area detectors, as two subsequent X-ray holograms of a sample can be superimposed within one detector exposure and yet be unambiguously disentangled to reconstruct two independent images.

  16. Er{sup 3+}/Yb{sup 3+}co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Cho, Sung Hun; Narro-García, R.; Sekino, Tohru; Lee, Soo Wohn

    2014-01-15

    In this paper, we report the microwave hydrothermal synthesis of Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst. Crystal structure, morphology, elemental composition, optical properties and BET surface area were analyzed in detail. Infrared to visible upconversion luminescence at 532 nm and 546 nm of the co-doped samples was investigated under excitation at 980 nm. The results revealed that the co-doping of Er{sup 3+}/Yb{sup 3+} into Bi{sub 2}MoO{sub 6} exhibited enhanced photocatalytic activity for the decomposition of rhodamine B under simulated solar light irradiation. Enhanced photocatalytic activity can be attributed to the energy transfer between Er{sup 3+}/Yb{sup 3+} and Bi{sub 2}MoO{sub 6} via infrared to visible upconversion from Er{sup 3+}/Yb{sup 3+} ion and higher surface area of the Bi{sub 2}MoO{sub 6} nanosheets. Therefore, this synthetic approach may exhibit a better alternative to fabricate upconversion photocatalyst for integral solar light absorption. - Graphical abstract: Schematic illustration of the upconversion photocatalysis. Display Omitted - Highlights: • Er{sup 3+}/Yb{sup 3+} co-doped Bi{sub 2}MoO{sub 6} upconversion photocatalyst is successfully synthesized. • We obtained the nanosheets having high surface area. • Upconversion of IR to visible light was confirmed. • Upconversion phenomena can be utilized for effective photocatalysis.

  17. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  18. A femtosecond electron diffraction system

    NASA Astrophysics Data System (ADS)

    Zhao, Baosheng; Zhang, Jie; Tian, Jinshou; Wang, Junfeng; Wu, Jianjun; Liu, Yunquan; Liu, Hulin

    2007-01-01

    The femtosecond electron diffraction (FED) is a unique method for the study of the changes of complex molecular structures, and has been specifically applied in the investigations of transient-optics, opto-physics, crystallography, and other fields. The FED system designed by the present group, consists of a 35nm Ag photocathode evaporated on an ultraviolet glass, an anode with a 0.1mm aperture, two pairs of deflection plate for the deflection of electron beams in X and Y directions, and the Y deflection plate can be used as a scanning plate while measuring the pulse width of electron beams, the double MCPs detector for the enhancing and detecting of electron image. The magnetic lens was used for the focusing of the electron beams, and the focal length is 125mm. The distance between the object(the photocathode) and the image(the sample) is 503mm, and the size of electron beams is smaller than 17microns after focusing, the convergence angle is of -0.075~0.075°, and the temporal resolution is better than 350fs.

  19. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  20. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. Massively parallel femtosecond laser processing.

    PubMed

    Hasegawa, Satoshi; Ito, Haruyasu; Toyoda, Haruyoshi; Hayasaki, Yoshio

    2016-08-01

    Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation. PMID:27505815

  2. Femtosecond dynamics of cluster expansion

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2010-03-01

    Noble gas clusters irradiated by intense ultrafast laser expand quickly and become typical plasma in picosecond time scale. During the expansion, the clustered plasma demonstrates unique optical properties such as strong absorption and positive contribution to the refractive index. Here we studied cluster expansion dynamics by fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The refractive index measured by frequency domain interferometry (FDI) shows the transient positive peak of refractive index due to clustered plasma. By separating it from the negative contribution of the monomer plasma, we are able to determine the cluster fraction. The absorption measured by a delayed probe shows the contribution from clusters of various sizes. The plasma resonances in the cluster explain the enhancement of the absorption in our isothermal expanding cluster model. The cluster size distribution can be determined. A complete understanding of the femtosecond dynamics of cluster expansion is essential in the accurate interpretation and control of laser-cluster experiments such as phase-matched harmonic generation in cluster medium.

  3. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  4. (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging

    NASA Astrophysics Data System (ADS)

    Debasu, Mengistie L.; Ananias, Duarte; Pinho, Sonia L. C.; Geraldes, Carlos F. G. C.; Carlos, Luís D.; Rocha, João

    2012-07-01

    Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal, photoluminescence-magnetic resonance, imaging.Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal

  5. Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor

    NASA Astrophysics Data System (ADS)

    Pires, Ana Maria; Serra, Osvaldo Antonio; Heer, Stephan; Güdel, Hans Ulrich

    2005-09-01

    This work reports on the structural characterization and on the low-temperature upconversion spectroscopy of the Y2O3:2%Er,1%Yb nanophosphor prepared by thermal decomposition of a polymeric resin (Pechini's method [U.S. Patent No. 3,330,697 (July 11 1967)]). The average particle size evaluated from transmission electron microscopy lies in the range of 05-25 nm. The high-resolution upconversion luminescence spectrum at 10 K in the ultraviolet to near infrared (UV-NIR) spectral regions shows narrow lines, characteristic of Er3+ transitions occupying both Y3+ sites with point symmetries C2 and C3i in the oxide cubic system. The excitation spectrum at 10 K in the IR region was used to monitor the green upconversion and IR luminescences and it displayed Er and Yb lines. Power dependence measurements at 298 and 10 K indicate that the main upconversion mechanism is a two-photon excitation process. The temperature dependence of the upconversion luminescence shows a decrease in the emission intensity with increasing temperature, and such decrease is much more evident for the emission in the violet than in the green and the red regions.

  6. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%

    NASA Astrophysics Data System (ADS)

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-11-01

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb3+-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

  7. Photon-phonon anti-stokes upconversion of a photonically, electronically, and thermally isolated opal

    NASA Astrophysics Data System (ADS)

    Stem, Michelle R.

    2016-05-01

    The purpose of the present research was to investigate an intense violet shift displayed by a non-toxic, natural silicate material with a highly ordered nanostructure. The material displayed an unexpected, nonlinear 2:3 photon-phonon anti-Stokes upconversion while photonically, electronically, and thermally isolated. Conducted aphotonically and at ambient temperatures, the specimen upconverted a low-power, 650 nm constant wave red laser to an internally highly dispersed 433 nm violet wavelength. The strong dispersion was largely due to nearly total internal reflection of the laser. The upconversion had an efficiency of about 78 %, based on specimen volume, with no detectable thermal variance. The 2:3 anti-Stokes upconversion displayed by this material is likely the result of a previously unknown photon-phonon evanescence response that amplified the energy of a portion of the incident laser photons. Thus, a portion of the incident laser photons were upconverted, and the material converted another portion into an amplified energy that caused the upconversion. Internal micro-lasing appeared to be a means of photon-phonon evanescent energy redistribution, enabling dispersed photonic upconversion. Additional analyses also found an unexpectedly rhythmic photonic structure in spectrophotometric scans, polariscopic color changing, and previously undocumented ultraviolet responses.

  8. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-11-28

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices.

  9. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-01-01

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices. PMID:25430519

  10. NIR-induced highly sensitive detection of latent finger-marks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state

    PubMed Central

    Wang, Meng; Li, Ming; Yang, Mingying; Zhang, Xiaomei; Yu, Aoyang; Zhu, Ye; Qiu, Penghe; Mao, Chuanbin

    2016-01-01

    The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb,Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.

  11. Multi-functionality of fluorescent nanocrystals in glass ceramics

    PubMed Central

    Schweizer, S.; Henke, B.; Miclea, P.T.; Ahrens, B.; Johnson, J.A.

    2012-01-01

    Thermal processing of as-made fluorozirconate glasses, which were additionally doped with rare-earth and chlorine ions, results in the formation of fluorescent nanocrystals therein. For medical applications, the glasses were doped with divalent europium ions as the fluorescent rare-earth ion, while trivalent neodymium was used to develop up-conversion systems. The samples were annealed up to 290 °C to initiate the growth of hexagonal or orthorhombic phase BaCl2 nanocrystals therein. Upon annealing some of the rare-earth ions were incorporated into the BaCl2 nanocrystals leading to enhanced fluorescence properties. The particle diameters were in the range of a few nanometers to several tens of nanometers. PMID:23637567

  12. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koch, Juergen; Tanabe, Takasumi; Korte, Frank; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2004-10-01

    Micro- and nanostructuring are very important for the fabrication of new materials and multifunctional devices. Existing photo-lithographic technologies can only be applied to a limited number of materials and used on plane surfaces. Whereas, microstructuring with femtosecond laser pulses has established itself as an excellent and universal tool for micro-processing, it is still unclear what are the limits of this technology. It is of great interest to use this technique also for nanostructuring. With tightly focused femtosecond laser pulses one can produce sub-micrometer holes and structures whose quality depends on the material. We present new results on nanostructuring of different materials with femtosecond laser pulses in an attempt to make this an universal technology, and discuss its reproducibility, and further prospects for quality control.

  13. Femtosecond fabricated surfaces for cell biology

    NASA Astrophysics Data System (ADS)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  14. Drug delivery function of carboxymethyl-β-cyclodextrin modified upconversion nanoparticles for adamantine phthalocyanine and their NIR-triggered cancer treatment.

    PubMed

    Wang, Ao; Jin, Weiwei; Chen, Enyi; Zhou, Jiahong; Zhou, Lin; Wei, Shaohua

    2016-03-01

    Near-infrared (NIR) light triggered photodynamic therapy (PDT), based on upconversion nanoparticles (UCNPs), has attracted great attention because of its high tissue penetration and low photodamage to living organisms. However, most UCNPs cannot be stably dispersed in aqueous solution and cannot carry photosensitive drugs directly. Besides, UCNP mediated PDT is a fluorescence resonance energy transfer (FRET) process from the UCNPs to the attached photosensitive drugs. So the drug and UCNPs must be stably connected and close enough. In this manuscript, carboxymethyl-β-cyclodextrin (COOH-β-CD) was used to connect UCNPs and adamantine modified phthalocyanine (Ad-ZnPc) through a self-assembly process followed by a host-guest interaction. COOH-β-CD can provide good water solubility of the system and short-distance linking between the UCNPs and Ad-ZnPc. Most importantly, the system has a strong NIR light triggered PDT activity toward cancer cells. PMID:26824705

  15. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  16. Femtosecond pulse mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Quarterman, A. H.; Wilcox, K. G.

    2014-03-01

    Femtosecond pulse mode-locked VECSELs have become a significant focus of research in the VECSEL community, with recent progress being made in several directions including power scaling. Power scaling advances in femtosecond VECSELs have included increasing the average power to over 5W [1], producing 3.3W average power with 400 fs pulses [2]. Here I report our recent work reducing the pulse duration of Watt-level VECSELs to 355 fs, and also developing approaches to reach sub-250-fs pulse durations using coherent broadening in photonic crystal fiber in the normal dispersion regime and a grating pulse compressor.

  17. Synthesis aperture femtosecond-pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Zhu, Linwei; Sun, Meiyu; Chen, Jiannong; Yu, Yongjiang; Zhou, Changhe

    2013-09-01

    A new aperture-synthesis approach in femtosecond-pulse digital holography for obtaining a high-resolution and a whole field of view of the reconstructed image is proposed. The subholograms are recorded only by delay scanning holograms that have different delay times between the object and reference beams. In addition, by using image processing techniques, the synthesis aperture digital hologram can be superposed accurately. Analysis and experimental results show that the walk-off in femtosecond off-axis digital holography caused by low coherent can be well eliminated. The resolution and the field of view of the reconstructed image can be improved effectively.

  18. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Peng Hui; Salcedo, Walter J.; Pichaandi, Jothirmayanantham; van Veggel, Frank C. J. M.; Brolo, Alexandre G.

    2015-10-01

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold

  19. Up-conversion in rare earth-doped silica hollow spheres

    NASA Astrophysics Data System (ADS)

    Fortes, Luís M.; Li, Yigang; Réfega, Ricardo; Clara Gonçalves, M.

    2012-06-01

    In the present work, Er/Yb co-doped silica hollow spheres are prepared in a two-step process. In a first step, polystyrene-core is silica coated in situ by a modified Stöber sol-gel method and in the second one, the sacrificial polystyrene core is thermally removed. The core-shell and the hollow spheres are characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). PL measurements show up-conversion phenomena upon excitation at 975 nm, through the emission of blue (˜490 nm), green (˜523 nm and ˜536 nm) and red (˜655 nm) light. The up-conversion phenomena are discussed and modelled. The developed model explains the up-conversion phenomena of Er/Yb co-doped silica hollow spheres, with special agreement for high Yb/Er ratio.

  20. General synthesis route to fabricate uniform upconversion luminescent gadolinium oxide hollow spheres.

    PubMed

    Jia, Guang; Zhang, Cuimiao; Ding, Shiwen; Wang, Liyong

    2011-08-01

    Uniform upconversion luminescent gadolinium oxide hollow spheres were successfully synthesized via a homogeneous precipitation method with carbon spheres as template followed by a calcination process. During the annealing process, the carbon spheres template can be effectively removed and the amorphous precursor has converted to crystalline Gd2O3, which can be confirmed by the XRD and TG-DSC analysis. SEM and TEM images indicate that the Gd2O3 hollow spheres with diameters of 300-400 nm are uniform in size and distribution. The rare earth activator ions Ln3+-doped Gd2O3 hollow spheres exhibit intense upconversion luminescence with different colors under 980 nm light excitation, which may find potential applications in the fields such as drug delivery or biological labeling. Moreover, the upconversion luminescent mechanisms of the hollow spherical phosphors were investigated in detail.

  1. Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

    PubMed

    Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang

    2011-04-25

    This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction.

  2. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  3. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers

    PubMed Central

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-01-01

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology. PMID:25907226

  4. Analysis of upconversion processes in germanate and tellurite glasses codoped with Yb3+/Ho3+

    NASA Astrophysics Data System (ADS)

    Iwanowicz, Kamil; Ragiń, Tomasz; Wyrwas, Marek; Żmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik; Dorosz, Jan

    In this paper the analysis of upconversion luminescence dynamics in tellurite and germanate glasses doped with Ho3+ and sensitized by Yb3+ in 8:1 molar ratio was presented. Population of energy levels was calculated using Runge-Kutta method. The influence of pump power (976 nm) radiation on population of excited levels and the possible upconversion mechanisms were analyzed. The energy transfer coefficient in tellurite glass CD2 = 5,0 x 10-18 cm3/s, CD3 = 1,5 x 10-17 cm3/s and CD4 = 9,0 x 10-17 cm3/s and in germanate glass CD2 = 2,80 x 10-18 cm3/s, CD3 = 6,35 x 10-18 cm cm3/s and CD4 = 3,56 x 10-17 cm3/s were used to analyze dynamics of upconversion processes.

  5. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Wang, Rui; Yao, Chi; Li, Xiaomin; Wang, Chengli; Zhang, Xiaoyan; Xu, Congjian; Zeng, Aijun; Zhao, Dongyuan; Zhang, Fan

    2015-04-01

    The identification of potential diagnostic markers and target molecules among the plethora of tumour oncoproteins for cancer diagnosis requires facile technology that is capable of quantitatively analysing multiple biomarkers in tumour cells and tissues. Diagnostic and prognostic classifications of human tumours are currently based on the western blotting and single-colour immunohistochemical methods that are not suitable for multiplexed detection. Herein, we report a general and novel method to prepare single-band upconversion nanoparticles with different colours. The expression levels of three biomarkers in breast cancer cells were determined using single-band upconversion nanoparticles, western blotting and immunohistochemical technologies with excellent correlation. Significantly, the application of antibody-conjugated single-band upconversion nanoparticle molecular profiling technology can achieve the multiplexed simultaneous in situ biodetection of biomarkers in breast cancer cells and tissue specimens and produce more accurate results for the simultaneous quantification of proteins present at low levels compared with classical immunohistochemical technology.

  6. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution.

    PubMed

    Wang, Yu; Deng, Renren; Xie, Xiaoji; Huang, Ling; Liu, Xiaogang

    2016-03-28

    Optical tuning of lanthanide-doped upconversion nanoparticles has attracted considerable attention over the past decade because this development allows the advance of new frontiers in energy conversion, materials science, and biological imaging. Here we present a rational approach to manipulating the spectral profile and lifetime of lanthanide emission in upconversion nanoparticles by tailoring their nonlinear optical properties. We demonstrate that the incorporation of energy distributors, such as surface defects or an extra amount of dopants, into a rare-earth-based host lattice alters the decay behavior of excited sensitizers, thus markedly improving the emitters' sensitivity to excitation power. This work provides insight into mechanistic understanding of upconversion phenomena in nanoparticles and also enables exciting new opportunities of using these nanomaterials for photonic applications.

  7. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  8. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior.

    PubMed

    Zhao, Bing; Qi, Ning; Zhang, Ke-Qin; Gong, Xiao

    2016-06-01

    Solar cells containing upconversion nanoparticles (UCNPs) used as a power source in biomedical nanosystems have attracted great interest. However, such solar cells further need to be developed because their substrate materials should be biocompatible, flexible and highly luminescent. Here, we report that freestanding silk fibroin (SF) films containing a mesh of silver nanowires (AgNWs) and β-NaYF4:Yb,Er nanocrystals with metal-enhanced fluorescence behavior can be fabricated. The freestanding composite films exhibit properties such as good optical transparency, conductivity and flexibility. Furthermore, they show significantly enhanced upconversion fluorescence due to surface plasmon polaritons (SPPs) of AgNWs compared to the SF-UCNP films without AgNWs. The freestanding composite films with metal-enhanced fluorescence behavior show great promise for future applications in self-powered nanodevices such as cardiac pacemakers, biosensors and nanorobots.

  9. Femtosecond laser fabricated microfluorescence-activated cell sorter for single cell recovery

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Nava, G.; Yang, T.; Minzioni, P.; Martinez Vazquez, R.; Bellini, N.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2014-03-01

    Manipulation, sorting and recovering of specific live cells from samples containing less than a few thousand cells is becoming a major hurdle in rare cell exploration such as stem cell research or cell based diagnostics. Moreover the possibility of recovering single specific cells for culturing and further analysis would be of great impact in many biological fields ranging from regenerative medicine to cancer therapy. In recent years considerable effort has been devoted to the development of integrated and low-cost optofluidic devices able to handle single cells, which usually rely on microfluidic circuits that guarantee a controlled flow of the cells. Among the different microfabrication technologies, femtosecond laser micromachining (FLM) is ideally suited for this purpose as it provides the integration of both microfluidic and optical functions on the same glass chip leading to monolithic, robust and portable devices. Here a new optofluidic device is presented, which is capable of sorting and recovering of single cells, through optical forces, on the basis of their fluorescence and. Both fluorescence detection and single cell sorting functions are integrated in the microfluidic chip by FLM. The device, which is specifically designed to operate with a limited amount of cells but with a very high selectivity, is fabricated by a two-step process that includes femtosecond laser irradiation followed by chemical etching. The capability of the device to act as a micro fluorescence-activated cell sorter has been tested on polystyrene beads and on tumor cells and the results on the single live cell recovery are reported.

  10. Fluorescence advantages with microscopic spatiotemporal control

    NASA Astrophysics Data System (ADS)

    Goswami, Debabrata; Roy, Debjit; De, Arijit K.

    2013-03-01

    We present a clever design concept of using femtosecond laser pulses in microscopy by selective excitation or de-excitation of one fluorophore over the other overlapping one. Using either a simple pair of femtosecond pulses with variable delay or using a train of laser pulses at 20-50 Giga-Hertz excitation, we show controlled fluorescence excitation or suppression of one of the fluorophores with respect to the other through wave-packet interference, an effect that prevails even after the fluorophore coherence timescale. Such an approach can be used both under the single-photon excitation as well as in the multi-photon excitation conditions resulting in effective higher spatial resolution. Such high spatial resolution advantage with broadband-pulsed excitation is of immense benefit to multi-photon microscopy and can also be an effective detection scheme for trapped nanoparticles with near-infrared light. Such sub-diffraction limit trapping of nanoparticles is challenging and a two-photon fluorescence diagnostics allows a direct observation of a single nanoparticle in a femtosecond high-repetition rate laser trap, which promises new directions to spectroscopy at the single molecule level in solution. The gigantic peak power of femtosecond laser pulses at high repetition rate, even at low average powers, provide huge instantaneous gradient force that most effectively result in a stable optical trap for spatial control at sub-diffraction limit. Such studies have also enabled us to explore simultaneous control of internal and external degrees of freedom that require coupling of various control parameters to result in spatiotemporal control, which promises to be a versatile tool for the microscopic world.

  11. Recent Progress on Plasmon-Enhanced Fluorescence

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Zhang, Zhenglong; Zheng, Hairong; Sun, Mentao

    2015-12-01

    The optically generated collective electron density waves on metal-dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle's surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

  12. Near-infrared (NIR) up-conversion optogenetics.

    PubMed

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-01-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system. PMID:26552717

  13. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  14. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    PubMed Central

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-01-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions. PMID:27731350

  15. Basic understanding of the lanthanide related upconversion emissions

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Sun, Ling-Dong; Yan, Chun-Hua

    2013-06-01

    With abundant energy levels of 4f electron configurations, trivalent lanthanide ions (Ln3+) are endowed with unique and fascinating luminescent properties. Inheriting the native transition behaviour of the lanthanide ions, Ln3+ based nanomaterials have aroused great interest for a wide range of applications, including lighting and displays, optical fibers and amplifiers, responsive luminescent stains for biomedical analysis, in vivo and in vitro imaging, and enhancement for silicon solar cell devices. It should be noted that the application depends completely on the corresponding luminescent behaviour. To deepen the understanding of the luminescent mechanism is important for the developing of the field and the design of new Ln3+ based luminescent materials toward applications. In this review, we focused mainly on the recent developments on upconversion (UC) emission studies. Firstly, the emphasis was put on the introduction of basic luminescent properties of Ln3+ with f-f transitions, and then the corresponding mechanisms and properties of UC emission were discussed in detail, the potential researches with respect to UC mechanisms and properties were finally outlined.

  16. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  17. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    PubMed Central

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  18. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    PubMed Central

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  19. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-01-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light. PMID:25652742

  20. Background free imaging of upconversion nanoparticle distribution in human skin

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Anissimov, Yuri G.; Zhao, Jiangbo; Nechaev, Andrei V.; Nadort, Annemarie; Jin, Dayong; Prow, Tarl W.; Roberts, Michael S.; Zvyagin, Andrei V.

    2013-06-01

    Widespread applications of nanotechnology materials have raised safety concerns due to their possible penetration through skin and concomitant uptake in the organism. This calls for systematic study of nanoparticle transport kinetics in skin, where high-resolution optical imaging approaches are often preferred. We report on application of emerging luminescence nanomaterial, called upconversion nanoparticles (UCNPs), to optical imaging in skin that results in complete suppression of background due to the excitation light back-scattering and biological tissue autofluorescence. Freshly excised intact and microneedle-treated human skin samples were topically coated with oil formulation of UCNPs and optically imaged. In the first case, 8- and 32-nm UCNPs stayed at the topmost layer of the intact skin, stratum corneum. In the second case, 8-nm nanoparticles were found localized at indentations made by the microneedle spreading in dermis very slowly (estimated diffusion coefficient, Dnp=3-7×10-12 cm2.s-1). The maximum possible UCNP-imaging contrast was attained by suppressing the background level to that of the electronic noise, which was estimated to be superior in comparison with the existing optical labels.

  1. Near-infrared (NIR) up-conversion optogenetics

    PubMed Central

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-01-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650–1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system. PMID:26552717

  2. Scale-aware saliency for application to frame rate upconversion.

    PubMed

    Jacobson, Natan; Nguyen, Truong Q

    2012-04-01

    Our understanding of human visual perception has been paramount in the development of tools for digital video processing. For this reason, saliency detection, i.e., the determination of visual importance in a scene, has come to the forefront in recent literature. In the proposed work, a new method for scale-aware saliency detection is introduced. Scale determination is afforded through a scale-space model utilizing color and texture cues. Scale information is fed back to a discriminant saliency engine by automatically tuning center-surround parameters through a soft weighting. Excellent results are demonstrated for the proposed method through its performance against a database of measured human fixations. Further evidence of the proposed algorithm's performance is demonstrated through an application to frame rate upconversion. The ability of the algorithm to detect salient objects at multiple scales allows for class-leading performance both objectively, in terms of peak signal-to-noise ratio/structural similarity index, and subjectively. Finally, the need for operator tuning of saliency parameters is dramatically reduced by the inclusion of scale information. The proposed method is well suited for any application requiring automatic saliency determination for images or video. PMID:22167626

  3. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.

    PubMed

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed.

  4. Near-infrared (NIR) up-conversion optogenetics

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  5. Near-infrared (NIR) up-conversion optogenetics.

    PubMed

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-10

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  6. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Khaydukov, E. V.; Mironova, K. E.; Semchishen, V. A.; Generalova, A. N.; Nechaev, A. V.; Khochenkov, D. A.; Stepanova, E. V.; Lebedev, O. I.; Zvyagin, A. V.; Deyev, S. M.; Panchenko, V. Ya.

    2016-10-01

    Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable in vivo in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF4:Yb3+:Tm3+/NaYF4) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.

  7. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles.

    PubMed

    Wang, Peng Hui; Salcedo, Walter J; Pichaandi, Jothirmayanantham; van Veggel, Frank C J M; Brolo, Alexandre G

    2015-11-21

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb(3+)/Er(3+)) nanoparticles (UC NPs) at ∼665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ∼550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions. PMID:26487270

  8. Sensing using rare-earth-doped upconversion nanoparticles.

    PubMed

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  9. Integrated optical modulator for signal up-conversion over radio-on-fiber link.

    PubMed

    Kim, Woo-Kyung; Kwon, Soon-Woo; Jeong, Woo-Jin; Son, Geun-Sik; Lee, Kwang-Hyun; Choi, Woo-Young; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young

    2009-02-16

    An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.

  10. Upconversion-based receivers for quantum hacking-resistant quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jain, Nitin; Kanter, Gregory S.

    2016-07-01

    We propose a novel upconversion (sum frequency generation)-based quantum-optical system design that can be employed as a receiver (Bob) in practical quantum key distribution systems. The pump governing the upconversion process is produced and utilized inside the physical receiver, making its access or control unrealistic for an external adversary (Eve). This pump facilitates several properties which permit Bob to define and control the modes that can participate in the quantum measurement. Furthermore, by manipulating and monitoring the characteristics of the pump pulses, Bob can detect a wide range of quantum hacking attacks launched by Eve.

  11. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  12. Controllable synthesis and upconversion emission of ultrasmall lanthanide-doped Sr2GdF7 nanocrystals

    NASA Astrophysics Data System (ADS)

    Xiang, Lijun; Ren, Guozhong; Mao, Yifu; He, Jin; Su, Rui

    2015-11-01

    The effect of rare-earth ions content on the phase structure, crystal size and morphology of SrF2-GdF3 system were studied under solvothermal conditions. By tuning the molar ratio of reactants, tetragonal phase Sr2GdF7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of reaction conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were investigated. The results reveal that apropos Gd3+ ions content (0.30-0.45 mmol) is favorable to the formation of pure phase Sr2GdF7 NCs with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. Following Yb3+, Er3+, Tm3+ and Ho3+ ions doping, the Sr2GdF7 NCs show intense green, yellow, and white-color UC emission under the excitation of a 980 nm laser, and the doping concentration of lanthanide ions was optimized, which makes the NCs show maximum intensities under the excitation of a 980 nm laser.

  13. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Peng, Dengfeng; Wang, Xusheng; Xu, Chaonan; Yao, Xi; Lin, Jian; Sun, Tiantuo

    2012-05-01

    Er3+ doped CaBi2Ta2O9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er3+ doped CBT ceramics were investigated as a function of Er3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4S3/2 and 4F9/2 to 4I15/2, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  14. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Korte, Frank; Koch, Juergen; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2003-04-01

    The development of a simple laser-based technology for the fabrication of two-dimensional nanostructures with a structure size down to one hundred nanometers is reported. The ability to micro- and nano-structure is very important for the fabrication of new materials and multifunctional microdevices. Photolithographic technologies can be applied only for plane surfaces. Using femtosecond laser pulses one can fabricate 100 nm structures on arbitrary 3D-surfaces of metals and dielectrics. In principle, the minimum achievable structure size is determined by the diffraction limit of the optical system and is of the order of the radiation wavelength. However, this is different for material processing with ultrashort laser pulses. Due to a well-defined threshold character of material processing with femtosecond lasers one can beat the diffraction limit by using tightly focused femtosecond laser pulses and by adjusting laser parameters slightly above the processing threshold. In this case only the central part of the beam can modify the material and it becomes possible to produce sub-wavelength structures. In this presentation, sub-wavelength microstructuring of metals and fabrication of periodic nanostructures in transparent materials are demonstrated as promising femtosecond laser-based nanofabrication technologies.

  15. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  16. NaYF4:Yb,Tm nanocrystals and TiO2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin.

    PubMed

    Xu, Sai; Xu, Wen; Wang, Yunfeng; Zhang, Shuang; Zhu, Yongsheng; Tao, Li; Xia, Lei; Zhou, Pingwei; Song, Hongwei

    2014-06-01

    Upconversion luminescence (UCL) detection based on rare-earth doped upconversion nanocrystals (UCNCs) as probes has been proved to exhibit a large anti-Stokes shift, no autofluorescence from biological samples, and no photobleaching. However, it is still a challenge to achieve a stable, reproducible solid-based UCL biosensor because of ineffective UCL of the UCNCs. In this work, we fabricated TiO2 inverse opal photonic crystals (IOPCs)/NaYF4:Yb(3+),Tm(3+) (Er(3+)) UCNC composite films, which can tremendously improve the overall UCL of Tm(3+) as high as 43-fold. Based on the fluorescence resonance energy transfer (FRET) and the specific interaction between biotin and avidin, a novel solid-based UC biosensor is presented for sensing avidin. This solid-based detection system is convenient for detection, and also can offer two parameters for detecting trace amounts of avidin, namely, the emission intensity and the fluorescence decay time. The sensor has a high sensitivity of 34 pmol(-1), a good linear relationship of 0.996 and a low detection limit of 48 pmol. It also exhibits excellent long-time photostability, and the absence of autofluorescence, and thus may have great potential for versatile applications in biodetection. PMID:24752220

  17. Up-conversion emission in KGd(WO 4 ) 2 single crystals triply-doped with Er 3+ /Yb 3+ /Tm 3+ , Tb 3+ /Yb 3+ /Tm 3+ and Pr 3+ /Yb 3+ /Tm 3+ ions

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Majchrowski, A.; Michalski, E.; Głuchowski, P.

    2011-09-01

    Triply-doped single crystals KGd(WO 4) 2:Er 3+/Yb 3+/Tm 3+, KGd(WO 4) 2:Tb 3+/Yb 3+/Tm 3+ and KGd(WO 4) 2:Pr 3+/Yb 3+/Tm 3+ were grown by the Top Seeded Solution Growth (TSSG) method, with an aim of getting efficient up-converted multicolored luminescence, which subsequently can be used for generation of white light. Such an aim determined the choice of the triply doped compounds: excitation of the Yb 3+ ions in the infrared spectral region is followed by red, green and blue emission from other dopants. It was shown that all these systems exhibit multicolor up-conversion fluorescence under 980 nm laser irradiation. Detailed spectroscopic studies of their absorption and luminescence spectra were performed. From the analysis of the dependence of the intensity of fluorescence on the excitation power the conclusion was made about significant role played by the host's conduction band and other possible defects of the KGd(WO 4) 2 crystal lattice in the up-conversion processes.

  18. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  19. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

    PubMed Central

    Kieu, K.; Mehravar, S.; Gowda, R.; Norwood, R. A.; Peyghambarian, N.

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption. PMID:24156074

  20. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber.

    PubMed

    Kieu, K; Mehravar, S; Gowda, R; Norwood, R A; Peyghambarian, N

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er(3+)-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption.

  1. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    SciTech Connect

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan; Liu, Yang; Tong, Cuiyan; Zhang, Xing; Kang, Zhenhui

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  2. Stand-off detection and classification of CBRNe using a Lidar system based on a high power femtosecond laser

    NASA Astrophysics Data System (ADS)

    Izawa, Jun; Yokozawa, Takeshi; Kurata, Takao; Yoshida, Akihiro; Mastunaga, Yasushi; Somekawa, Toshihiro; Eto, Shuzo; Manago, Naohiro; Horisawa, Hideyuki; Yamaguchi, Shigeru; Fujii, Takashi; Kuze, Hiroaki

    2014-10-01

    We propose a stand-off system that enables detection and classification of CBRNe (Chemical, Biological, Radioactive, Nuclear aerosol and explosive solids). The system is an integrated lidar using a high-power (terawatt) femtosecond laser. The detection and classification of various hazardous targets with stand-off distances from several hundred meters to a few kilometers are achieved by means of laser-induced breakdown spectroscopy (LIBS) and two-photon fluorescence (TPF) techniques. In this work, we report on the technical considerations on the system design of the present hybrid lidar system consisting of a nanosecond laser and a femtosecond laser. Also, we describe the current progress in our laboratory experiments that have demonstrated the stand-off detection and classification of various simulants. For the R and N detection scheme, cesium chloride aerosols have successfully been detected by LIBS using a high-power femtosecond laser. For the B detection scheme, TPF signals of organic aerosols such as riboflavin have clearly been recorded. In addition, a compact femtosecond laser has been employed for the LIBS classification of organic plastics employed as e-simulants.

  3. Upconversion luminescence in BaMoO{sub 4}:Pr{sup 3+} phosphor for display devices

    SciTech Connect

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2015-08-28

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO{sub 4}:Pr{sup 3+} powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  4. UPCONVERSION LUMINESCENCE ENHANCEMENT OF NaYF4:Yb3+, Er3+ NANOPARTICLES ON INVERSE OPAL SURFACE

    NASA Astrophysics Data System (ADS)

    Liao, Jiayan; Yang, Zhengwen; Wu, Hangjun; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2014-01-01

    LaPO4 inverse opal photonic crystals with different photonic band gaps were fabricated by template-assisted method. The Yb3+/Er3+ co-doped NaYF4 nanoparticles were deposited on the surfaces of the inverse opals, and their up-conversion emission properties were investigated. The upconversion emissions of Yb3+/Er3+ co-doped NaYF4 nanoparticles on the inverse opal surfaces have been enhanced when the upconversion emission bands of the nanoparticles are in the range of photonic band gaps of the inverse opals, which is attributed to an efficient and selective reflection of photonic band gaps.

  5. Near-infrared (NIR) optogenetics using up-conversion system

    NASA Astrophysics Data System (ADS)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Yawo, Hiromu

    2015-03-01

    Non-invasive remote control technologies designed to manipulate neural functions for a comprehensive and quantitative understanding of the neuronal network in the brain as well as for the therapy of neurological disorders have long been awaited. Recently, it has become possible to optically manipulate the neuronal activity using biological photo-reactive molecules such as channelrhodopsin-2 (ChR2). However, ChR2 and its relatives are mostly reactive to visible light which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light penetrates deep into the tissues because biological systems are almost transparent to light within this so-called `imaging window'. Here we used lanthanide nanoparticles (LNPs), which are composed of rare-earth elements, as luminous bodies to activate channelrhodopsins (ChRs) since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Neuron-glioma-hybrid ND-7/23 cells were cultured with LNP(NaYF4:Sc/Yb/Er) particles (peak emission, 543 nm) and transfected to express C1V1 (peak absorbance, 539 nm), a chimera of ChR1 and VChR1. The photocurrents were generated in response to NIR laser light (976 nm) to a level comparable to that evoked by a filtered Hg lamp (530-550 nm). NIR light pulses also evoked action potentials in the cultured neurons that expressed C1V1. It is suggested that the green luminescent light emitted from LNPs effectively activated C1V1 to generate the photocurrent. With the optimization of LNPs, acceptor photo-reactive biomolecules and optics, this system could be applied to non-invasively actuate neurons deep in the brain.

  6. In Vivo Near-Infrared Photodynamic Therapy Based on Targeted Upconversion Nanoparticles.

    PubMed

    Zhou, Aiguo; Wei, Yanchun; Chen, Qun; Xing, Da

    2015-11-01

    Upconversion nanoparticles have shown to be a promising prospect for biological detection and photodynamic therapy (PDT). The focus of this study was to develop an upconversion nanoparticle modified with a targeting peptide and photosensitizer for near-infrared photodynamic therapy. To produce a tumor-targeting nanophotosensitizer with near-infrared excitation, NaYF4:Yb/Er upconversion nanoparticles were first wrapped with O-carboxymethyl chitosan to develop an upconversion rianoplatform and then chemically conjugated with the photosensitizer pyropheophorbide-a (Ppa) and RGD peptide c(RGDyK). The nanoparticle exhibited low dark toxicity and high biocompatibility. When injected into the tail vein of tumor-bearing U87-MG mice, UCNP-Ppa-RGD revealed an enhanced tumor-specific biodistribution and successful therapeutic effect following near-infrared laser irradiation. It possessed a significantly deeper therapeutic depth compared with conventional visible light triggered PDT using Ppa. The results suggest that the nanoplatform has advantages in the spectral application, and the constructed tumor-specific nanoparticle shows high clinical potential to serve not only as a photodynamic imaging reagent but also as a therapeutic agent for the treatment of large or deeply seated tumors. PMID:26554158

  7. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  8. Visible upconversion emission of Pr3+ doped gadolinium gallium garnet nanocrystals.

    PubMed

    Naccache, R; Vetrone, F; Boyer, J C; Capobianco, J A; Speghini, A; Bettinelli, M

    2004-11-01

    The luminescence properties of a Pr3+-doped gadolinium gallium garnet (GGG, Gd3Ga5O12) nanocrystalline host were investigated. Dominant blue/green emission was observed emanating from the 3P0 --> 3H4 transition after excitation using a wavelength of 457.9 nm. Continuous wave excitation into the 1D2 level of the Pr3+ ion at 606.9 nm transition produced blue upconversion luminescence spectra, ascribed to emission from the 3P1 --> 3H4 and 3P0 --> 3H4 transitions. The increase in the decay times of the observed transitions following excitation with 606.9 nm is indicative of the dominance of an energy transfer upconversion (ETU) mechanism relative to excited state absorption (ESA). Furthermore, blue, green and red upconversion emission was observed from the 3P0, 3P1 and 1D2 states following excitation into the 1G4 energy level with 980 nm. No change in the decay times of the emitting states was observed following excitation with a wavelength of 980 or 457.9 nm; hence, upconversion was determined to primarily occur through ESA. The luminescence properties of the nanocrystals are compared to a single crystal of GGG:Pr3+ (bulk) with an identical Pr3+ concentration (1%).

  9. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    NASA Astrophysics Data System (ADS)

    Corr, L. R.; Ma, D. T.

    2016-08-01

    Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact) area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system) dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  10. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    SciTech Connect

    Smits, K. Sarakovskis, A.; Grigorjeva, L.; Millers, D.; Grabis, J.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonal or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.

  11. Effects of femtosecond laser radiation on the skin

    NASA Astrophysics Data System (ADS)

    Rogov, P. Yu; Bespalov, V. G.

    2016-08-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems.

  12. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization

    NASA Astrophysics Data System (ADS)

    Pominova, D. V.; Ryabova, A. V.; Linkov, K. G.; Romanishkin, I. D.; Kuznetsov, S. V.; Rozhnova, J. A.; Konov, V. I.; Loschenov, V. B.

    2016-08-01

    Emission spectral properties and quantum efficiency of upconversion particles NaYF4, SrF2, LaF3, BaF2 и CaF2, doped with rare earth ions pair Yb3+–Er3+ were studied using continuous wave (CW) and pulsed periodic excitation modes in the near infrared (NIR) spectral range. Analysis of the obtained results showed that the intensity ratio of upconversion luminescence in green and red spectral ranges depends on excitation pulse duration. Thus, by changing the pulse duration the spectral properties of upconversion luminescence can be controlled. Crystals with higher phonon energy are more sensitive to the change of pumping mode. Interpretation of results was performed on the rate equation model basis. Using numerical methods for all energy levels involved in the upconversion process the population and depopulation dynamics were obtained with respect to the duration of the excitation pulses. It was shown that about 30 ms was required for the complete population of 4F9/2 state, from which the luminescence in the red spectral range occurs. When the pulse duration was less than 30 ms, the 4F9/2 population did not reach a steady state and the intensity of the luminescence in the red part of the spectrum was reduced. The theoretical dependence of the upconversion luminescence intensity in the green and red ranges of the excitation pulse duration for NaYF4:Yb0.2–Er0.02 composition was obtained and demonstrates good agreement with the experimental results.

  13. 1.5-μm optical up-conversion: wafer fusion and related issues

    NASA Astrophysics Data System (ADS)

    Ban, Dayan; Luo, Hui; Liu, Hui-Chun; SpringThorpe, Anthony J.; Wasilewski, Zbigniew R.; Bezinger, Andrew; Bogdanov, Alexei; Buchanan, Margaret

    2004-11-01

    Imaging devices working in the near infrared (NIR), especially in the so-called eye-safe range, i.e., around 1.5 mm, have become increasingly important in many military and commercial applications; these include night vision, covert surveillance, range finding and semiconductor wafer inspection. We proposed a new approach in which a wafer-fused optical up-converter, combined with a commercially available charged coupled device (CCD), functions as an infrared camera. The optical up-converter converts incoming infrared light into shorter wavelength radiation that can be efficiently detected by the silicon CCD (cutoff wavelength about 1 mm). An optical up-converter with high efficiency at room-temperature is critical for low cost and large-area infrared imaging applications. A prototype 1.5 mm optical up-converter based on wafer fusion technology has been successfully fabricated. The device consists of an InGaAs/InP pin photodetector and a GaAs/AlGaAs light emitting diode. Experimental results show that the end-to-end up-conversion efficiency is 0.0177 W/W at room-temperature, corresponding to an internal quantum up-conversion efficiency of 76%. In this paper, the design, fabrications and characterization of the optical up-conversion devices is presented. Issues related to device optimization, such as improving internal and external up-conversion efficiency, are addressed. Preliminary results demonstrate the room-temperature up-conversion imaging operation of a pixelated wafer-fused device.

  14. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.

    PubMed

    Li, Chunxia; Yang, Dongmei; Ma, Ping'an; Chen, Yinyin; Wu, Yuan; Hou, Zhiyou; Dai, Yunlu; Zhao, Jihong; Sui, Changping; Lin, Jun

    2013-12-20

    Incorporating the agents for magnetic resonance imaging (MRI), optical imaging, and therapy in one nanostructured matrix to construct multifunctional nanomedical platform has attracted great attention for simultaneous diagnostic and therapeutic applications. In this work, a facile methodology is developed to construct a multifunctional anticancer drug nanocarrier by combining the special advantages of upconversion nanoparticles and mesoporous silica. β-NaYF4 :Yb(3+) , Er(3+) @β-NaGdF4 :Yb(3+) is chosen as it can provide the dual modality of upconversion luminescence and MRI. Then mesoporous silica is directly coated onto the upconversion nanoparticles to form discrete, monodisperse, highly uniform, and core-shell structured nanospheres (labeled as UCNPs@mSiO2 ), which are subsequently functionalized with hydrophilic polymer poly(ethylene glycol) (PEG) to improve the colloidal stability and biocompatibility. The obtained multifunctional nanocomposites can be used as an anticancer drug delivery carrier and applied for imaging. The anticancer drug doxorubicin (DOX) is absorbed into UCNPs@mSiO2 -PEG nanospheres and released in a pH-sensitive pattern. In vitro cell cytotoxicity tests on cancer cells verify that the DOX-loaded UCNPs@mSiO2 -PEG has comparable cytotoxicity with free DOX at the same concentration of DOX. In addition, the T1 -weighted MRI that measures in aqueous solutions reveals that the contrast brightening increases with the concentration of Gd(3+) component. Upconversion luminescence images of UCNPs@mSiO2 -PEG uptaken by cells show green emission under 980 nm infrared laser excitation. Finally, the nanocomposites show low systematic toxicity and high in vivo antitumor therapy efficacy. These findings highlight the fascinating features of upconversion-mesoporous nanocomposites as multimodality imaging contrast agents and nanocarrier for drug molecules.

  15. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization

    NASA Astrophysics Data System (ADS)

    Pominova, D. V.; Ryabova, A. V.; Linkov, K. G.; Romanishkin, I. D.; Kuznetsov, S. V.; Rozhnova, J. A.; Konov, V. I.; Loschenov, V. B.

    2016-08-01

    Emission spectral properties and quantum efficiency of upconversion particles NaYF4, SrF2, LaF3, BaF2 i CaF2, doped with rare earth ions pair Yb3+-Er3+ were studied using continuous wave (CW) and pulsed periodic excitation modes in the near infrared (NIR) spectral range. Analysis of the obtained results showed that the intensity ratio of upconversion luminescence in green and red spectral ranges depends on excitation pulse duration. Thus, by changing the pulse duration the spectral properties of upconversion luminescence can be controlled. Crystals with higher phonon energy are more sensitive to the change of pumping mode. Interpretation of results was performed on the rate equation model basis. Using numerical methods for all energy levels involved in the upconversion process the population and depopulation dynamics were obtained with respect to the duration of the excitation pulses. It was shown that about 30 ms was required for the complete population of 4F9/2 state, from which the luminescence in the red spectral range occurs. When the pulse duration was less than 30 ms, the 4F9/2 population did not reach a steady state and the intensity of the luminescence in the red part of the spectrum was reduced. The theoretical dependence of the upconversion luminescence intensity in the green and red ranges of the excitation pulse duration for NaYF4:Yb0.2-Er0.02 composition was obtained and demonstrates good agreement with the experimental results.

  16. Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF5:Ln(3+) (Ln = Yb/Er/Eu) nanophosphors.

    PubMed

    Li, Honglan; Liu, Guixia; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2016-08-01

    A series of Yb(3+), Er(3+), and Eu(3+) ions doped BaGdF5 dual-mode (down-conversion (DC) and upconversion (UC)) luminescent nanophosphors were successfully prepared by a simple one-step hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometry (EDS), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime measurements, and vibrating sample magnetometry (VSM) were utilized to characterize the samples. Under 274 nm UV light excitation, BaGd0.78-zF5:0.2Yb(3+),0.02Er(3+),zEu(3+) phosphors emitted orange emission. Under 980 nm NIR irradiation, intense up-converted visible green emissions were observed in BaGdF5:Yb(3+),Er(3+)/Eu(3+) samples. The mechanism of UC emissions involved two-photon absorption. In the Yb(3+),Er(3+),Eu(3+) co-doped BaGdF5 phosphors, the energy transfer processes from Gd(3+) to Eu(3+) and from Yb(3+) to Er(3+) were discussed. Tunable colors were visualised with the help of the Commission Internationale de L'Eclairage (CIE) chromaticity diagram and the processes responsible for the DC and UC emissions were discussed in detail. The enhanced up-conversion luminescence of Yb(3+),Er(3+)/Eu(3+) co-doped BaGdF5 nanophosphors (NPs) was realized by modifying the trisodium citrate (Cit(3-)) surfactant. Moreover, the as-prepared samples exhibited paramagnetic properties at room temperature. This type of multifunctional orange-green emitting nanophosphor has promising applications in solid state lasers, lighting, MRI, anti-counterfeiting, biolabels, and so on.

  17. Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF5:Ln(3+) (Ln = Yb/Er/Eu) nanophosphors.

    PubMed

    Li, Honglan; Liu, Guixia; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2016-08-01

    A series of Yb(3+), Er(3+), and Eu(3+) ions doped BaGdF5 dual-mode (down-conversion (DC) and upconversion (UC)) luminescent nanophosphors were successfully prepared by a simple one-step hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometry (EDS), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, fluorescence lifetime measurements, and vibrating sample magnetometry (VSM) were utilized to characterize the samples. Under 274 nm UV light excitation, BaGd0.78-zF5:0.2Yb(3+),0.02Er(3+),zEu(3+) phosphors emitted orange emission. Under 980 nm NIR irradiation, intense up-converted visible green emissions were observed in BaGdF5:Yb(3+),Er(3+)/Eu(3+) samples. The mechanism of UC emissions involved two-photon absorption. In the Yb(3+),Er(3+),Eu(3+) co-doped BaGdF5 phosphors, the energy transfer processes from Gd(3+) to Eu(3+) and from Yb(3+) to Er(3+) were discussed. Tunable colors were visualised with the help of the Commission Internationale de L'Eclairage (CIE) chromaticity diagram and the processes responsible for the DC and UC emissions were discussed in detail. The enhanced up-conversion luminescence of Yb(3+),Er(3+)/Eu(3+) co-doped BaGdF5 nanophosphors (NPs) was realized by modifying the trisodium citrate (Cit(3-)) surfactant. Moreover, the as-prepared samples exhibited paramagnetic properties at room temperature. This type of multifunctional orange-green emitting nanophosphor has promising applications in solid state lasers, lighting, MRI, anti-counterfeiting, biolabels, and so on. PMID:27424659

  18. Femtosecond laser controlled wettability of solid surfaces.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Hou, Xun

    2015-12-14

    Femtosecond laser microfabrication is emerging as a hot tool for controlling the wettability of solid surfaces. This paper introduces four typical aspects of femtosecond laser induced special wettability: superhydrophobicity, underwater superoleophobicity, anisotropic wettability, and smart wettability. The static properties are characterized by the contact angle measurement, while the dynamic features are investigated by the sliding behavior of a liquid droplet. Using different materials and machining methods results in different rough microstructures, patterns, and even chemistry on the solid substrates. So, various beautiful wettabilities can be realized because wettability is mainly dependent on the surface topography and chemical composition. The distinctions of the underlying formation mechanism of these wettabilities are also described in detail. PMID:26415826

  19. Vibration assisted femtosecond laser machining on metal

    NASA Astrophysics Data System (ADS)

    Park, Jung-Kyu; Yoon, Ji-Wook; Cho, Sung-Hak

    2012-06-01

    We demonstrate a novel approach to improve laser machining quality on metals by vibrating the optical objective lens with a frequency (of 500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process. The laser used in this experiment is an amplified Ti:sapphire fs laser system that generates 100 fs pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm. It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved, compared to those derived via laser machining without vibration assistance. This is the first report of low frequency vibration of an optical objective lens in the femtosecond laser machining process being exploited to obtain significantly improved surface roughness of machined side walls and increased aspect ratios.

  20. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  1. Welding of transparent polymers using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Roth, Gian-Luca; Rung, Stefan; Hellmann, Ralf

    2016-02-01

    Based on nonlinear absorption, we report on laser welding of cycloolefin copolymers without any additional absorption layer employing infrared femtosecond laser. To the best of our knowledge, this is the first report of ultrashort laser welding of this material class, revealing a remarkable high processing speed of 20 mm/s in a single pass mode. Using a 1028 nm laser having a pulse duration of 220 fs at a repetition rate of 571 kHz leads to a welding seam width between 38 and 137 μm, depending on the applied laser average power. The welded joint is characterized by a maximum shear strength of 40 MPa. The experimental results are compared to those reported for femtosecond laser welding of PMMA and to those published for using a Thulium fiber laser.

  2. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  3. Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms.

    PubMed

    Wang, Zhaofeng; Zeng, Songshan; Yu, Jingfang; Ji, Xiaoming; Zeng, Huidan; Xin, Shuangyu; Wang, Yuhua; Sun, Luyi

    2015-06-01

    In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er(3+),Yb(3+) nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er(3+),Yb(3+) nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications.

  4. Temperature and impurity concentration effects on upconversion luminescence in LaInO3 doped with Er3+

    NASA Astrophysics Data System (ADS)

    Sarakovskis, A.; Grube, J.; Strals, K.; Krieke, G.; Springis, M.; Mironova-Ulmane, N.; Skvortsova, V.; Yukhno, E. K.; Bashkirov, L. A.

    2016-07-01

    In this paper a novel method for synthesis of LaInO3:Er3+ is reported and upconversion luminescence properties of the synthesized material at different temperatures (9-300 K) are studied. The samples were prepared by co-precipitation and subsequent heat treatment of lanthanum, indium and erbium hydroxides. It is shown that the excitation at 980 nm leads to a strong green upconversion luminescence in the material. At the concentrations above 0.1 mol. % of Er3+ the energy transfer upconversion mechanism of the luminescence becomes evident. Further increase of Er3+ content in the material leads to higher red-to-green upconversion luminescence intensity ratio. The mechanisms responsible for the observed variation are discussed.

  5. Green emission from Eu{sup 2+}/Dy{sup 3+} codoped SrO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass-ceramic by ultraviolet light and femtosecond laser irradiation

    SciTech Connect

    Zeng, Huidan; Lin, Zhenyu; Zhang, Qiang; Chen, Danping; Liang, Xiaoluan; Xu, Yinsheng; Chen, Guorong

    2011-02-15

    A spectroscopic investigation of Eu{sup 2+}/Dy{sup 3+} codoped SrO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass-ceramic is presented. The sample exhibits green emission excited by ultraviolet (UV) light and near-IR femtosecond (fs) laser. The emission profile obtained by near-IR fs laser irradiation is similar to that by UV excitation, indicating that both of the emissions come from 5d {yields} 4f transition of the Eu{sup 2+} ions. The relationship between the upconversion luminescence (UCL) intensity and pump power reveals a two-photon process in the conversion of near-IR radiation to the green emission. The possible mechanism of UCL from such glass-ceramic is proposed.

  6. Evaluation of parameters influencing the molecular delivery by biodegradable microsphere-mediated perforation using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Tatsuki; Terakawa, Mitsuhiro

    2014-01-01

    The parameters critically influencing the delivery rate on the biodegradable microsphere-mediated femtosecond (fs) laser perforation are investigated in detail with the aim of developing efficient molecular delivery. Cell membrane was perforated by the irradiation of weakly focused fs laser pulses to the spherical polylactic acid microspheres conjugated to the cell membrane. The delivery of fluorescein isothiocyanate-dextran and fluorescent silica particles to A431 cells is investigated in detail. The increase in the number of irradiated laser pulses had resulted in the increase of delivery rate. The delivery rate depends on the size and functionalization of fluorescent silica particles in which silica particles of 100 nm in diameter were able to be delivered into 20% of the irradiated cells, suggesting that the pore sizes are large enough for the delivery of therapeutic agents into cells. These findings contribute to the development of an efficient and safe phototherapy and drug delivery.

  7. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation

    PubMed Central

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu SM; Blandin, Pierre; Chon, James WM; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew HA; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed. PMID:23888114

  8. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation.

    PubMed

    Kubiliūtė, Reda; Maximova, Ksenia A; Lajevardipour, Alireza; Yong, Jiawey; Hartley, Jennifer S; Mohsin, Abu S M; Blandin, Pierre; Chon, James W M; Sentis, Marc; Stoddart, Paul R; Kabashin, Andrei; Rotomskis, Ričardas; Clayton, Andrew H A; Juodkazis, Saulius

    2013-01-01

    Aqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution. We show that surface-enhanced Raman scattering of rhodamine 6G on gold nanoparticles can be detected with high fidelity down to micromolar concentrations using the nanoparticles. Application potential of pure gold nanoparticles with polydispersed and nearly monodispersed size distributions are discussed.

  9. Multimodal light-sheet microscopy for fluorescence live imaging

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Kajiura-Kobayashi, H.; Nonaka, S.

    2012-03-01

    Light-sheet microscopy, it is known as single plane illumination microscope (SPIM), is a fluorescence imaging technique which can avoid phototoxic effects to living cells and gives high contrast and high spatial resolution by optical sectioning with light-sheet illumination in developmental biology. We have been developed a multifunctional light-sheet fluorescence microscopy system with a near infrared femto-second fiber laser, a high sensitive image sensor and a high throughput spectrometer. We performed that multiphoton fluorescence images of a transgenic fish and a mouse embryo were observed on the light-sheet microscope. As the results, two photon images with high contrast and high spatial resolution were successfully obtained in the microscopy system. The system has multimodality, not only mutiphoton fluorescence imaging, but also hyperspectral imaging, which can be applicable to fluorescence unmixing analysis and Raman imaging. It enables to obtain high specific and high throughput molecular imaging in vivo and in vitro.

  10. Lipidic phase membrane protein serial femtosecond crystallography

    PubMed Central

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; DePonte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-01-01

    X-ray free electron laser (X-feL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-feL beam using a sponge phase micro-jet. PMID:22286383

  11. Lipidic phase membrane protein serial femtosecond crystallography.

    PubMed

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; Deponte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-03-01

    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.

  12. Lipidic phase membrane protein serial femtosecond crystallography.

    PubMed

    Johansson, Linda C; Arnlund, David; White, Thomas A; Katona, Gergely; Deponte, Daniel P; Weierstall, Uwe; Doak, R Bruce; Shoeman, Robert L; Lomb, Lukas; Malmerberg, Erik; Davidsson, Jan; Nass, Karol; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Maia, Filipe R N C; Marchesini, Stefano; Martin, Andrew V; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond G; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wahlgren, Weixiao Y; Wang, Xiaoyu; Weidenspointner, Georg; Wunderer, Cornelia; Fromme, Petra; Chapman, Henry N; Spence, John C H; Neutze, Richard

    2012-03-01

    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet. PMID:22286383

  13. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  14. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  15. Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase.

    PubMed

    Wu, Xiaoling; Xu, Liguang; Ma, Wei; Liu, Liqiang; Kuang, Hua; Kotov, Nicholas A; Xu, Chuanlai

    2016-07-01

    Propeller-like nanoscale assemblies with exceptionally intense chiroptical activity and strong luminescence are prepared using gold nanorods and upconversion nanoparticles. The circular dichroism intensity of the tetramer reached 80.9 mdeg, with g-factor value of 2.1 × 10(-2) . The enhancement factor of upconversion luminescence is as high as 21.3 in aqueous phase. Attomolar bioanalysis of a cancer biomarker with two model is also achieved, showing potential for early disease diagnosis and environmental monitoring.

  16. Energy Migration Engineering of Bright Rare-Earth Upconversion Nanoparticles for Excitation by Light-Emitting Diodes.

    PubMed

    Zhong, Yeteng; Rostami, Iman; Wang, Zihua; Dai, Hongjie; Hu, Zhiyuan

    2015-11-01

    A novel Nd(3+) -sensitized upconversion nanoparticle (UCNP) that can be excited by near-infrared 740 nm light-emitting diode (LED) lamps with bright upconversion luminescence is designed. Yb(3+) ion distribution is engineered to increase the energy migration efficiency. The benefit of the novel LED-excited UCNPs is demonstrated by imaging of breast cancer cells and enabling an economic handheld semiquantitative visual measurement device. PMID:26393770

  17. The impact of shell host (NaYF₄/CaF₂) and shell deposition methods on the up-conversion enhancement in Tb³⁺, Yb³⁺ codoped colloidal α-NaYF₄ core-shell nanoparticles.

    PubMed

    Prorok, Katarzyna; Bednarkiewicz, Artur; Cichy, Bartlomiej; Gnach, Anna; Misiak, Malgorzata; Sobczyk, Marcin; Strek, Wieslaw

    2014-01-01

    Lanthanide doped, up-converting nanoparticles have found considerable interest as luminescent probes in the field of bio-detection. Although the nanoparticles (NPs) have already been successfully applied for fluorescent bio-imaging and bio-assays, the efficiency of the up-conversion process seems to be the bottle-neck in rigorous applications. In this work, we have shown enhancement of the up-conversion in colloidal α-NaYF₄:Yb(3+), Tb(3+) doped nanocrystals owing to passivation of their surface. We have studied quantitatively the influence of the shell type (NaYF₄ and CaF₂), its thickness, as well as the shell deposition method (i.e. single thick shell vs. multi-layer shell) on the luminescent properties of the nanoparticles. The results showed that up to 40-fold up-conversion intensity enhancement may be obtained for the core-shell nanoparticles in comparison with the bare core nanoparticles, irrespective of the shell type and deposition method. Moreover, the suitability of the NaYF₄:Yb(3+), Tb(3+) core-shell NPs for multi-color emission and spectral multiplexing has been presented. PMID:24356665

  18. Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency.

    PubMed

    Yu, Jia; Yang, Yulin; Fan, Ruiqing; Liu, Danqing; Wei, Liguo; Chen, Shuo; Li, Liang; Yang, Bin; Cao, Wenwu

    2014-08-01

    New near-infrared (NIR)-to-green upconversion nanoparticles of Ho(3+)-Yb(3+)-F(-) tridoped TiO2 (UC-F-TiO2) were designed and fabricated via the hydrosol-hydrothermal method. Under 980 nm NIR excitation, UC-F-TiO2 emit strong green upconversion fluorescence with three emission bands at 543, 644, and 751 nm and convert the NIR light in situ to the dye-sensitive visible light that could effectively reduce the distance between upconversion materials and sensitizers; thus, they minimize the loss of the converted light. Our results show that this UC-F-TiO2 offers excellent opportunities for the other types of solar cells applications, such as organic solar cells, c-Si solar cells, multijunction solar cells, and so on. When integrating the UC-F-TiO2 into dye-sensitized solar cells (DSSCs), superior total energy conversion efficiency was achieved. Under AM1.5G light, open-circuit voltage reached 0.77 ± 0.01 V, short-circuit current density reached 21.00 ± 0.69 mA cm(-2), which resulted in an impressive overall energy conversion efficiency of 9.91 ± 0.30%, a 37% enhancement compared to DSSCs with pristine TiO2 photoanode.

  19. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism.

  20. Upconversion luminescence of lanthanide-doped mixed CaMoO4-CaWO4 micro-/nano-materials.

    PubMed

    Liu, Jing; Kaczmarek, Anna M; Billet, Jonas; Van Driessche, Isabel; Van Deun, Rik

    2016-08-14

    Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism. PMID:27396395

  1. Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing.

    PubMed

    Savchuk, Ol A; Haro-González, P; Carvajal, J J; Jaque, D; Massons, J; Aguiló, M; Díaz, F

    2014-08-21

    Non-contact thermometry is essential in biomedical studies requiring thermal sensing and imaging with high thermal and spatial resolutions. In this work, we report the potential use of Er:Yb:NaYF4 and Er:Yb:NaY2F5O up-conversion nanoparticles as thermal sensors by means of lifetime based luminescent thermometry. We demonstrate how Er:Yb:NaY2F5O nanocrystals present a higher thermal sensitivity than the Er:Yb:NaYF4 ones and that their lifetime thermal coefficient is comparable to those corresponding to other nano-sized luminescent systems already used for high resolution lifetime fluorescence thermal sensing. We evaluate the potential use of Er:Yb:NaY2F5O nanoparticles as lifetime based thermal probes by providing the first experimental evidence on sub-tissue lifetime fluorescence thermal sensing by using up-conversion nanoparticles in an ex vivo experiment.

  2. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses.

  3. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses. PMID:17099748

  4. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  5. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  6. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  7. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Peng, Xiao; Qi, Jing; Gao, Jian; Fan, Shunping; Wang, Qi; Qu, Junle; Niu, Hanben

    2014-11-01

    We report a dynamic fluorescence lifetime imaging (D-FLIM) system that is based on a pair of acousto-optic deflectors for the random regions of interest (ROI) study in the sample. The two-dimensional acousto-optic deflector devices are used to rapidly scan the femtosecond excitation laser beam across the sample, providing specific random access to the ROI. Our experimental results using standard fluorescent dyes in live cancer cells demonstrate that the D-FLIM system can dynamically monitor the changing process of the microenvironment in the ROI in live biological samples.

  8. Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO-Ga2O3-XO2 (X = Ge, Si) glasses

    NASA Astrophysics Data System (ADS)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Ryba-Romanowski, Witold

    2016-09-01

    Up-conversion luminescence spectra of Er3+ ions in PbO-Ga2O3-GeO2 and PbO-Ga2O3-SiO2 glasses have been examined as a function of temperature in the 298-650 K range. The relative emission intensities of green bands corresponding to 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ were determined with temperature. Based on up-conversion luminescence spectra of Er3+, the fluorescence intensity ratio and temperature sensitivity for glasses based on PbO-Ga2O3-XO2 (X = Ge, Si) were calculated. The maximum sensitivity is equal to 20.4 × 10-4 K-1 at T = 620 K (X = Ge) and 26.4 × 10-4 K-1 at T = 590 K (X = Si) suggesting potential application in optical sensor thermometry.

  9. Observation of ultrafast Q-band fluorescence in horse heart cytochrome c in reduced and oxidized forms.

    PubMed

    Suemoto, Tohru; Ebihara, Hideaki; Nakao, Hiroyuki; Nakajima, Makoto

    2011-01-21

    The dynamics of fluorescence from horse heart cytochrome c is investigated in reduced (ferrous) and oxidized (ferric) forms by a streak camera and an up-conversion technique under B-band excitation at 415 nm. In the reduced form, we found the Q-band emission at 550 and 600 nm originated from the S(1) state in a short time range. A very broad continuum observed from 440 to 660 nm had only shown a slow component and was assigned to impurity. In the reduced form, the lifetime of S(1) was determined to be 120 fs by using the up-conversion technique. In the oxidized form, the S(1) lifetime was estimated to be 21 fs. These values are consistent with the values estimated from the quantum yield in order of their magnitude.

  10. Near-IR phosphorescent metalloporphyrin as a photochemical upconversion sensitizer.

    PubMed

    Deng, Fan; Sommer, Jonathan R; Myahkostupov, Mykhaylo; Schanze, Kirk S; Castellano, Felix N

    2013-08-28

    The phosphorescent metalloporphyrin sensitizer PtTPTNP (TPTNP = tetraphenyltetranaphtho[2,3]porphyrin) has been successfully coupled with perylenediimide (PDI) or rubrene utilized as triplet acceptors/annihilators to upconvert 690 nm incident photons into yellow fluorescence through sensitized triplet-triplet annihilation at overall efficiencies in the 6-7% range while exhibiting exceptional photostability. PMID:23857114

  11. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    PubMed

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  12. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  13. Near-Infrared-to-Visible Photon Upconversion Enabled by Conjugated Porphyrinic Sensitizers under Low-Power Noncoherent Illumination.

    PubMed

    Olivier, Jean-Hubert; Bai, Yusong; Uh, Hyounsoo; Yoo, Hyejin; Therien, Michael J; Castellano, Felix N

    2015-06-01

    We report four supermolecular chromophores based on (porphinato)zinc(II) (PZn) and (polypyridyl)metal units bridged via ethyne connectivity (Pyr1RuPZn2, Pyr1RuPZnRuPyr1, Pyr1RuPZn2RuPyr1, and OsPZn2Os) that fulfill critical sensitizer requirements for NIR-to-vis triplet-triplet annihilation upconversion (TTA-UC) photochemistry. These NIR sensitizers feature: (i) broad, high oscillator strength NIR absorptivity (700 nm < λ(max(NIR)) < 770 nm; 6 × 10(4) M(-1) cm(-1) < extinction coefficient (λ(max(NIR))) < 1.6 × 10(5) M(-1) cm(-1); 820 cm(-1) < fwhm < 1700 cm(-1)); (ii) substantial intersystem crossing quantum yields; (iii) long, microsecond time scale T1 state lifetimes; and (iv) triplet states that are energetically poised for exergonic energy transfer to the molecular annihilator (rubrene). Using low-power noncoherent illumination at power densities (1-10 mW cm(-2)) similar to that of terrestrial solar photon illumination conditions, we demonstrate that Pyr1RuPZn2, Pyr1RuPZn2RuPyr1, and Pyr1RuPZnRuPyr1 sensitizers can be used in combination with the rubrene acceptor/annihilator to achieve TTA-UC: these studies represent the first examples whereby a low-power noncoherent NIR light source drives NIR-to-visible upconverted fluorescence centered in a spectral window within the bandgap of amorphous silicon. PMID:25961428

  14. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    PubMed Central

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-01-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1–2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane. PMID:26924009

  15. Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    NASA Astrophysics Data System (ADS)

    Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.

    Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise

  16. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals.

    PubMed

    Mauser, Nina; Piatkowski, Dawid; Mancabelli, Tobia; Nyk, Marcin; Mackowski, Sebastian; Hartschuh, Achim

    2015-04-28

    We present tip-enhanced upconversion photoluminescence (PL) images of Er(3+)- and Yb(3+)-doped NaYF4 nanocrystals on glass substrates with subdiffraction spatial resolution. Tip-sample distance dependent measurements clearly demonstrate the near-field origin of the image contrast. Time-resolved PL measurements show that the tip increases the spontaneous emission rate of the two emission channels of Er(3+) in the visible region. Very efficient enhancement of upconversion PL is discussed in the context of the two-photon nature of the excitation process and homoenergy transfer between the ions within the nanocrystals. Comparison between different nanocrystals and tips shows a strong influence of the tip shape on the image contrast that becomes particularly relevant for the larger dimensions of the investigated nanocrystals.

  17. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect.

    PubMed

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-02-29

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb(3+)/Er(3+) microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser.

  18. Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber.

    PubMed

    Lee, Kwang-Hyun; Choi, Woo-Young

    2007-06-15

    Harmonic signal generation and frequency upconversion at millimeter-wave bands are experimentally demonstrated by using selective sideband Brillouin amplification induced by stimulated Brillouin scattering in a single-mode fiber. The harmonic signals and frequency upconverted signals are simultaneously generated by the beating of optical sidebands, one of which is Brillouin amplified. By using this method, we successfully demonstrate generation of third-harmonic millimeter waves at 32.55 GHz with f(LO) of 10.85 GHz and upconversion of 10 Mbps quadrature-shift keyed data at f(IF) of 1.55 GHz into a 30 GHz band with more than 17 dB RF power gain.

  19. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection

    NASA Astrophysics Data System (ADS)

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-02-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1-2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane.

  20. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    NASA Astrophysics Data System (ADS)

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-02-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser.

  1. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy.

  2. Multifunctional Nd3+-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yinyin; Liu, Bei; Deng, Xiaoran; Huang, Shanshan; Hou, Zhiyao; Li, Chunxia; Lin, Jun

    2015-04-01

    Core-shell structured Nd3+-sensitized NaYF4:Yb/Nd/Er@NaYF4:Nd@mSiO2 nanoparticles (NPs) were designed and synthesized. The NaYF4:Yb/Nd/Er@NaYF4:Nd core imparts the nanomaterials with luminescence properties for upconversion optical imaging under 808 nm laser irradiation, whereas the mesoporous SiO2 shell allows the nanomaterials to be loaded with anticancer drug doxorubicin (DOX). In vivo toxicity assessment has confirmed that the NPs have low systematic toxicity in healthy mice. In vivo antitumor activity shows that the nanocomposites exhibit greater antitumor efficacy than pure DOX. As a result, the composite nanomaterials can serve as nanotheranostic materials for synchronous upconversion luminescence imaging under 808 nm laser irradiation, and as anticancer drug delivery vehicles, so as to integrate the diagnosis and treatment of cancers in vivo.

  3. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly

    PubMed Central

    Ye, Xingchen; Collins, Joshua E.; Kang, Yijin; Chen, Jun; Chen, Daniel T. N.; Yodh, Arjun G.; Murray, Christopher B.

    2010-01-01

    We report a one-pot chemical approach for the synthesis of highly monodisperse colloidal nanophosphors displaying bright upconversion luminescence under 980 nm excitation. This general method optimizes the synthesis with initial heating rates up to 100 °C/minute generating a rich family of nanoscale building blocks with distinct morphologies (spheres, rods, hexagonal prisms, and plates) and upconversion emission tunable through the choice of rare earth dopants. Furthermore, we employ an interfacial assembly strategy to organize these nanocrystals (NCs) into superlattices over multiple length scales facilitating the NC characterization and enabling systematic studies of shape-directed assembly. The global and local ordering of these superstructures is programmed by the precise engineering of individual NC’s size and shape. This dramatically improved nanophosphor synthesis together with insights from shape-directed assembly will advance the investigation of an array of emerging biological and energy-related nanophosphor applications. PMID:21148771

  4. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.

    PubMed

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  5. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions.

    PubMed

    Shan, Shu-Nan; Wang, Xiu-Ying; Jia, Neng-Qin

    2011-01-01

    An interface-controlled reaction in normal microemulsions (water/ethanol/sodium oleate/oleic acid/n-hexane) was designed to prepare NaYF4:Yb3+, Er3+ upconversion nanoparticles. The phase diagram of the system was first studied to obtain the appropriate oil-in-water microemulsions. Transmission electron microscopy and X-ray powder diffractometer measurements revealed that the as-prepared nanoparticles were spherical, monodisperse with a uniform size of 20 nm, and of cubic phase with good crystallinity. Furthermore, these nanoparticles have good dispersibility in nonpolar organic solvents and exhibit visible upconversion luminescence of orange color under continuous excitation at 980 nm. Then, a thermal treatment for the products was found to enhance the luminescence intensity. In addition, because of its inherent merit in high yielding and being economical, this synthetic method could be utilized for preparation of the UCNPs on a large scale. PMID:21968102

  6. A facile one-pot method to synthesize ultrasmall core-shell superparamagnetic and upconversion nanoparticles.

    PubMed

    Cheng, Qian; Guo, Hongxuan; Li, Yu; Liu, Shouxin; Sui, Jiehe; Cai, Wei

    2016-08-01

    Ultrasmall core-shell Fe3O4@NaYF4:Yb(3+)/Er(3+) nanoparticles with bifunctional properties have been successfully synthesized via one pot thermolysis method using oleylamine as both solvent and stabilizer. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), upconversion (UC) luminescence spectra and the physical properties measurement system (PPMS) were used to characterize the resulting samples. The synthesized samples have uniform morphology with a mean size of 14.5nm and excellent dispersibility. Moreover, these nanoparticles exhibit superparamagnetic behaviour with saturation magnetization of 8.45emμ/g and efficient up-conversion emission with a two-photon induced process when excited by a 980nm laser. These results suggest that the synthesized ultrasmall bifunctional nanoparticles may find many biomedical applications, such as clinical diagnosis and treatment of cancers.

  7. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    PubMed Central

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-01-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491

  8. Up-conversion dynamics for temporally entangled two-photon pulses

    SciTech Connect

    Nakatani, Masatoshi; Shimizu, Ryosuke; Koshino, Kazuki

    2011-01-15

    We analyze the up conversion of a two-photon pulse having temporal entanglement on the basis of a full quantum formalism that treats both photons and optical media quantum mechanically. We derive a formula of the up-converted photon wave function, which is applicable to arbitrary input two-photon states for a three-level system, as the simplest second-order nonlinear optical system. As the input, we employ three kinds of temporally entangled two-photon pulses: correlated, uncorrelated, and anticorrelated. We observe the up-conversion efficiency and the temporal profile of the up-converted photon. Our results reveal the crossover behavior of the up conversion from anticorrelation to correlation and show how the temporal correlation in the input is reflected in the up-conversion process.

  9. Temporal full-colour tuning through non-steady-state upconversion

    NASA Astrophysics Data System (ADS)

    Deng, Renren; Qin, Fei; Chen, Runfeng; Huang, Wei; Hong, Minghui; Liu, Xiaogang

    2015-03-01

    Developing light-harvesting materials with tunable emission colours has always been at the forefront of colour display technologies. The variation in materials composition, phase and structure can provide a useful tool for producing a wide range of emission colours, but controlling the colour gamut in a material with a fixed composition remains a daunting challenge. Here, we demonstrate a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core-shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams. Our mechanistic investigations suggest that the unprecedented colour tunability from these nanocrystals is governed by a non-steady-state upconversion process. These findings provide keen insights into controlling energy transfer in out-of-equilibrium optical processes, while offering the possibility for the construction of true three-dimensional, full-colour display systems with high spatial resolution and locally addressable colour gamut.

  10. Enhanced up-conversion of entangled photons and quantum interference under a localized field in nanostructures.

    PubMed

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Nakatani, Masatoshi; Ishihara, Hajime

    2014-04-01

    We theoretically investigate the up-conversion process of two entangled photons on a molecule, which is coupled by a cavity or nanoscale metallic structure. Within one-dimensional input-output theory, the propagators of the photons are derived analytically and the up-conversion probability is calculated numerically. It is shown that the coupling with the nanostructure clearly enhances the process. We also find that the enhancement becomes further pronounced for some balanced system parameters, such as the quantum correlation between photons, radiation decay, and coupling between the nanostructure and molecule. The nonmonotonic dependencies are reasonably explained in view of quantum interference between the coupled modes of the whole system. This result indicates that controlling quantum interference and correlation is crucial for few-photon nonlinearity, and provides a new guidance to wide variety of fields, e.g., quantum electronics and photochemistry.

  11. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection.

    PubMed

    Xu, Shihan; Zhang, Xinran; Xu, Hongwei; Dong, Biao; Qu, Xuesong; Chen, Boting; Zhang, Shuang; Zhang, Tianxiang; Cheng, Yu; Xu, Sai; Song, Hongwei

    2016-01-01

    Herein, we report a facile route to synthesize silane coated upconversion nanoparticles (UCNPs@silane) with an ultrathin layer (the thickness: 1-2 nm), which not only provides good biocompatibility, but also affords hydrophobic interspace to load organic molecules to realize multifunctions. Besides the function of upconversion imaging of UCNPs, cancer therapy and oxygen level detection can also be realized by the addition of chemotherapy drug, PTX, and oxygen sensitive molecules, Platinum (II) octaethylporphine (PtOEP). In bio-experiments, besides the MTT assays, therapy efficacy of UCNPs@PTX@silane can also be detected with the confocal laser scanning microscopy (CLSM) by staining methods. UCNPs@PtOEP@silane can afford minimally invasive analysis of dissolved oxygen and then respond sensitively to the variance of intracellular oxygen concentration affected by therapeutic UCNPs@PTX@silane.

  12. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

    PubMed Central

    Xing, Yadong; Li, Luoyuan; Ai, Xicheng; Fu, Limin

    2016-01-01

    In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL−1). Blood analysis and histological experiments demonstrated that the UCNPs-PANPs exhibited no apparent toxicity in mice in vivo. Besides their efficacy in photothermal cancer cell ablation, the UCNP-PANP nanosystem was found to achieve an effective in vivo tumor ablation effect after irradiation using an 808 nm laser. These results demonstrate the potential of the hybrid nanocomposites for use in imaging-guided photothermal therapy. PMID:27621625

  13. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions

    NASA Astrophysics Data System (ADS)

    Shan, Shu-Nan; Wang, Xiu-Ying; Jia, Neng-Qin

    2011-10-01

    An interface-controlled reaction in normal microemulsions (water/ethanol/sodium oleate/oleic acid/ n-hexane) was designed to prepare NaYF4:Yb3+, Er3+ upconversion nanoparticles. The phase diagram of the system was first studied to obtain the appropriate oil-in-water microemulsions. Transmission electron microscopy and X-ray powder diffractometer measurements revealed that the as-prepared nanoparticles were spherical, monodisperse with a uniform size of 20 nm, and of cubic phase with good crystallinity. Furthermore, these nanoparticles have good dispersibility in nonpolar organic solvents and exhibit visible upconversion luminescence of orange color under continuous excitation at 980 nm. Then, a thermal treatment for the products was found to enhance the luminescence intensity. In addition, because of its inherent merit in high yielding and being economical, this synthetic method could be utilized for preparation of the UCNPs on a large scale.

  14. Upconversion emission properties of CeO2: Tm3+, Yb3+ inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo

    2014-10-01

    The ordered and disordered templates were assembled by vertical deposition of polystyrene microspheres. The CeO2: Tm3+, Yb3+ precursor solution was used to infiltrate into the voids of the ordered and disordered templates, respectively. Then the ordered and disordered templates were calcined at 950°C in an air furnace, and the CeO2: Tm3+, Yb3+ inverse opals were obtained. The upconversion emissions from CeO2: Tm3+, Yb3+ inverse opals were suppressed due to the photon trapping caused by Bragg reflection of lattice planes when the upconversion emission band was in the range of the photonic band gaps in the inverse opals.

  15. Femtosecond Isomerization Dynamics in the Ethylene Molecule

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali

    2009-05-01

    The ethylene molecule plays a fundamental and prototypical role for the understanding of photo-isomerizaton processes and particularly for ultrafast energy conversion through nonadiabatic transitions and state crossing via conical intersections. We have developed a high power femtosecond laser based pump-probe system to study femtosecond isomerization dynamics in various model molecules. By focusing 25-mJ laser pulses into a 5-cm-long xenon-filled gas cell, we can deliver about 10^9 photons per harmonic per pulse onto a target gas, with the photons ranging in energy from 8 to 40 eV. In this talk I will present the results of our studies of the dynamics in the excited ethylene cation (C2H4^+) using a high intensity high harmonic source. The dynamics in the excited ethylene cation leads, among other channels, to isomerization to the ethyledene configuration (CH3CH^+), which is predicted to be a transient configuration for electronic relaxation. With an intense femtosecond EUV pulse as pump, and a NIR (near infra-red) pulse as probe, we measure a time scale of 45±10 fs for formation of the transient ethylidene configuration (lifetime of 60±15 fs ) through detection of the NIR-induced fragmentation to CH3^+ and CH^+. Also, a H2-stretch transient configuration (believed to succeed ethylidene), yielding H2^+, is found to be populated after 100±10 fs. These studies were also extended to excited state dynamics in the neutral ethylene using a recently developed split mirror technique enabling XUV pump - XUV probe capability. In order to achieve this we optimized our high harmonic system for high power in order to produce a very intense source of high harmonics that allows multiphoton (XUV) absorption by a single molecule. In particular, we were able to measure two-photon double-ionization of Ethelyne and argon and three-photon double ionization of neon.

  16. Ultraviolet upconversion luminescence of Gd{sup 3+} and Eu{sup 3+} in nano-structured glass ceramics

    SciTech Connect

    Lin, Hang; Chen, Daqin; Yu, Yunlong; Yang, Anping; Zhang, Rui; Wang, Yuansheng

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Ultraviolet upconversion emissions of Eu{sup 3+} and Gd{sup 3+} are rarely studied. Black-Right-Pointing-Pointer Nanostructured glass ceramic is developed as a host for ultraviolet upconversion. Black-Right-Pointing-Pointer Ultraviolet upconversion signal are found greatly enhanced after crystallization. Black-Right-Pointing-Pointer It is promising for fabricating novel ultraviolet upconversion lasers. -- Abstract: Ultraviolet multiphoton upconversion emissions of Eu{sup 3+} ({sup 5}H{sub 3-7}, {sup 5}G{sub 2-6}, {sup 5}L{sub 6} {yields} {sup 7}F{sub 0}) and Gd{sup 3+} ({sup 6}I{sub J}, {sup 6}P{sub J} {yields} {sup 8}S{sub 7/2}) are studied in the Eu{sup 3+} (or Gd{sup 3+}) doped SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} precursor glasses and glass ceramics containing {beta}-YF{sub 3} nanocrystals, under continuous-wavelength 976 nm laser pumping. It is experimentally demonstrated that energy transfer from Yb{sup 3+} to Tm{sup 3+}, then further to Eu{sup 3+} or Gd{sup 3+} is responsible for the upconversion process. Compared to those in the precursor glasses, the upconversion emission intensities in the glass ceramics are greatly enhanced, owing to the participation of rare earth ions into the low-phonon-energy environment of {beta}-YF{sub 3} nanocrystals. Hopefully, the studied glass ceramics may find potential applications in the field of ultraviolet solid-state lasers.

  17. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  18. Multifunctional surfaces produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2015-01-01

    In this study, we create a multifunctional metal surface by producing a hierarchical nano/microstructure with femtosecond laser pulses. The multifunctional surface exhibits combined effects of dramatically enhanced broadband absorption, superhydrophobicity, and self-cleaning. The superhydrophobic effect is demonstrated by a falling water droplet repelled away from a structured surface with 30% of the droplet kinetic energy conserved, while the self-cleaning effect is shown by each water droplet taking away a significant amount of dust particles on the altered surface. The multifunctional surface is useful for light collection and water/dust repelling.

  19. Cell biology: Targeted transfection by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Tirlapur, Uday K.; König, Karsten

    2002-07-01

    The challenge for successful delivery of foreign DNA into cells in vitro, a key technique in cell and molecular biology with important biomedical implications, is to improve transfection efficiency while leaving the cell's architecture intact. Here we show that a variety of mammalian cells can be directly transfected with DNA without perturbing their structure by first creating a tiny, localized perforation in the membrane using ultrashort (femtosecond), high-intensity, near-infrared laser pulses. Not only does this superior optical technique give high transfection efficiency and cell survival, but it also allows simultaneous evaluation of the integration and expression of the introduced gene.

  20. Ultrafast femtosecond laser ablation of graphite

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Mel'nik, N. N.; Saltuganov, Pavel N.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.

    2015-06-01

    Fluence dependences of IR and UV reflectivity of femtosecond laser pulses on a HOPG surface demonstrate their saturation in a certain fluence range, starting from 0.2 J cm-2, where single-shot non-linear plasma emission is detected by electric probe measurements. This correlation between prompt solid-state optical/electronic dynamics and electron-ion plasma emission indicates prompt ‘freezing’ of surface electronic dynamics via its plasma-emission cooling and simultaneous ultrafast shallow laser ablation of the surface. Strong HOPG disordering is observed in Raman spectra for laser fluences, exceeding the plasma emission threshold.

  1. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  2. Femtosecond pulses propagation through pure water

    NASA Astrophysics Data System (ADS)

    Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George

    2007-10-01

    Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.

  3. Serial Femtosecond Crystallography of Membrane Proteins.

    PubMed

    Zhu, Lan; Weierstall, Uwe; Cherezov, Vadim; Liu, Wei

    2016-01-01

    Membrane proteins, including G protein-coupled receptors (GPCRs), constitute the most important drug targets. The increasing number of targets requires new structural information, which has proven tremendously challenging due to the difficulties in growing diffraction-quality crystals. Recent developments of serial femtosecond crystallography at X-ray free electron lasers combined with the use of membrane-mimetic gel-like matrix of lipidic cubic phase (LCP-SFX) for crystal growth and delivery hold significant promise to accelerate structural studies of membrane proteins. This chapter describes the development and current status of the LCP-SFX technology and elaborates its future role in structural biology of membrane proteins. PMID:27553241

  4. Colorizing metals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  5. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  6. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  7. Colorizing metals with femtosecond laser pulses

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-28

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  8. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  9. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  10. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    PubMed Central

    Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  11. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking.

    PubMed

    Sun, Yun; Liu, Qian; Peng, Juanjuan; Feng, Wei; Zhang, Yingjian; Yang, Pengyuan; Li, Fuyou

    2013-03-01

    Lanthanide based upconversion nanophosphors (UCNPs) attracted increasing attention for potential applications in bioimaging, while its in vivo behaviors are not clear until now due to no available quantification imaging tools. Herein, we developed a unique rare-earth cation-exchange-based postlabelling method to introduce (153)Sm into the lattice of UCNPs, providing this (153)Sm-postlabeling UCNP having bifunction of radioactive property and upconversion luminescence under excitation at 980 nm laser. This (153)Sm-postlabelling method shows rapid treatment time of <1 min, high labeling yield of >99%, and without usage of organic solvents. More importantly, this (153)Sm-postlabelling method is also suitable for most of rare earth nanoparticles to track their in vivo behaviors. The dynamic quantification studies of the in vivo fate of the rare-earth nanoparticles were further investigated by radioactive detection method such as single-photon emission computed tomography (SPECT) and gamma counter. The imaging results revealed that UCNPs were mainly captured by the mononuclear phagocyte system (liver and spleen). The amount of nanoparticles in liver arrived at its peak quicker and was about 15 fold of that in spleen. And the nanoparticles will be slowly excreted with the bile. Therefore, the concept of postlabeling (153)Sm onto lanthanide-based UCNPs may serve as a facile strategy of fabricating multifunctional nanoprobes for upconversion luminescence (UCL) and SPECT dual-modality imaging.

  12. White light upconversion emissions in Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoping; Xu, Wei; Zhu, Shuang; Song, Qiutong; Wu, Xijun; Liu, Hailong

    2015-10-01

    Rare earth ions doped glasses producing visible upconversion emissions are of great interest due to their potential applications in the photonics filed. In fact, practical application of upconversion emissions has been used to obtain color image displays and white light sources. However, there are few reports on the thermal effect on tuning the emission color of the RE doped materials. In this work, the Er3+/Tm3+/Yb3+ tridoped oxyfluoride glasses were prepared through high temperature solid-state method. Under a 980 nm diode laser excitation, the upconversion emissions from the samples were studied. At room-temperature, bright white luminescence, whose CIE chromaticity coordinate was about (0.28, 0.31), can be obtained when the excitation power was 120 mW. The emission color was changed by varying the intensity ratios between RGB bands, which are strongly dependent on the rare earth ions concentration. The temperature dependent color emissions were also investigated. As temperature increased, the intensities for the emission bands presented different decay rates, finally resulting in the changing of the CIE coordinate. When the temperature was 573 K, white light with color coordinate of (0.31, 0.33) was achieved, which matches well with the white reference (0.33, 0.33). The color tunability, high quality of white light and intense emission intensity make the transparent oxyfluoride glasses excellent candidates for applications in solid-state lighting.

  13. Demonstration of Passive W-Band Millimeter Wave Imaging Using Optical Upconversion Detection Methodology with Applications

    NASA Astrophysics Data System (ADS)

    Samluk, Jesse P.; Schuetz, Christopher A.; Dillon, Thomas; Martin, Richard D.; Stein, E. Lee; Mackrides, Daniel G.; Wilson, John; Robbins, Andrew; Shi, Shouyuan; Chen, Caihua; Yao, Peng; Shireen, Rownak; Macario, Julien; Prather, Dennis W.

    2012-11-01

    Millimeter wave (mmW) imaging has enjoyed a measure of success due to the unique properties of imaging in this spectral region, some of which are still being discovered. For example, a key advantage of mmW imaging is the ability to penetrate through various atmospheric obscurants, including fog, dust, sand, and smoke, due to its longer wavelengths as compared to visible or infrared imaging. Various methods of imaging with mmW energy exist, such as direct detection, downconversion, and upconversion, where this manuscript focuses on the latter. Until now, passive imaging using an optical upconversion method was limited to Q-band frequencies due to the lack of commercially available parts, namely a sufficiently high frequency optical modulator. To overcome this limitation, a custom-built modulator using in-house fabrication facilities was realized to allow imaging within the W-band frequency range (75-110 GHz). Therefore, in this manuscript we report new results of passive imaging in the W-band frequency range using a unique optical upconversion technique, where the higher frequency operation allows for greater detail in the imagery thus collected.

  14. The effect of surface coating on energy migration-mediated upconversion.

    PubMed

    Su, Qianqian; Han, Sanyang; Xie, Xiaoji; Zhu, Haomiao; Chen, Hongyu; Chen, Chih-Kai; Liu, Ru-Shi; Chen, Xueyuan; Wang, Feng; Liu, Xiaogang

    2012-12-26

    Lanthanide-doped upconversion nanoparticles have been the focus of a growing body of investigation because of their promising applications ranging from data storage to biological imaging and drug delivery. Here we present the rational design, synthesis, and characterization of a new class of core-shell upconversion nanoparticles displaying unprecedented optical properties. Specifically, we show that the epitaxial growth of an optically inert NaYF(4) layer around a lanthanide-doped NaGdF(4)@NaGdF(4) core-shell nanoparticle effectively prevents surface quenching of excitation energy. At room temperature, the energy migrates over Gd sublattices and is adequately trapped by the activator ions embedded in host lattices. Importantly, the NaYF(4) shell-coating strategy gives access to tunable upconversion emissions from a variety of activators (Dy(3+), Sm(3+), Tb(3+), and Eu(3+)) doped at very low concentrations (down to 1 mol %). Our mechanistic investigations make possible, for the first time, the realization of efficient emissions from Tb(3+) and Eu(3+) activators that are doped homogeneously with Yb(3+)/Tm(3+) ions. The advances on these luminescent nanomaterials offer exciting opportunities for important biological and energy applications.

  15. Simultaneous MMW generation and up-conversion for WDM-ROF systems based on FP laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chan; Ning, TiGang; Li, Jing; Li, Chao; He, Xueqing; Pei, Li

    2016-10-01

    A new wavelength division multiplexing radio-over-fiber (WDM-ROF) scheme based on Fabry-Perot (FP) laser is proposed and demonstrated for simultaneous millimeter-wave (MMW) generation and up-conversion. The tunable optical comb generated by FP laser is served as a cost-effective WDM optical source in central station (CS) and it makes all-optical up-conversion process for all channels simple compared with using a DFB array. All modes from the FP laser are modulated simultaneously by a LiNbO3 Mach-Zehnder modulator (LN-MZM) then. We have systematically compared the performances of MMW generation and up-conversion using LN-MZM based on different modulation schemes. A reflective semiconductor optical amplifiers (RSOA) is used both for the downstream modulation of each channel and for the reduction of mode partition noise (MPN) induced from FP laser. In the scheme, the multiple optical carrier suppression (OCS) modulation shows the highest receiver sensitivity and smallest power penalty over long-distance delivery. In the numerical simulation, 7 WDM channels each carrying 2.5 Gb/s baseband signal have been up-converted to 60 GHz simultaneously with good performance over 25 km single mode fiber (SMF) transmission.

  16. The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays.

    PubMed

    Wei, Liping; Doughan, Samer; Han, Yi; DaCosta, Matthew V; Krull, Ulrich J; Ho, Derek

    2014-09-10

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.

  17. Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals.

    PubMed

    Zhang, Hua; Li, Yujing; Lin, Yungchen; Huang, Yu; Duan, Xiangfeng

    2011-03-01

    Single crystal hexagonal NaYF4:Yb/Tm nanocrystals have been synthesized with uniform size, morphology and controlled chemical composition. Spectroscopic studies show that these nanocrystals exhibit strong energy upconversion emission when excited with a 980 nm diode laser, with two primary emission peaks centered around 452 nm and 476 nm. Importantly, the overall and relative emission intensity at these wavelengths can be readily tuned by controlling the concentration of the trivalent rare earth element dopants at the beginning of the synthesis which has been confirmed by EDX for the first time. Through systematic studies, the optimum rare earth ion doping concentration can be determined for the strongest emission intensity at the selected peak(s). Confocal microscopy studies show that the upconversion emission from individual NCs can be readily visualized. These studies demonstrate a rational approach for fine tuning the upconversion properties in rare-earth doped nanostructures and can broadly impact areas ranging from energy harvesting, energy conversion to biomedical imaging and therapeutics. PMID:21264435

  18. Multicolor upconversion emissions in Tm 3+/Er3+ codoped tellurite photonic microwire between silica fiber tapers.

    PubMed

    Chen, Nan-Kuang; Kuan, Pei-Wen; Zhang, Junjie; Zhang, Liyan; Hu, Lili; Lin, Chinlon; Tong, Limin

    2010-12-01

    We report multicolor upconversion emissions including the blue-violet, green, and red lights in a Tm 3+/Er3+codoped tellurite glass photonic microwire between two silica fiber tapers. A silica fiber is tapered until its evanescent field is exposed and then angled-cleaved at the tapered center to divide the tapered fibers into two parts. A tellurite glass is melted by a gas flame to cluster into a sphere at the tip of one tapered fiber. The other angled-cleaved tapered fiber is blended into the melted tellurite glass. When the tellurite glass is melted, the two silica fiber tapers are simultaneously moving outwards to draw the tellurite glass into a microwire in between. The advantage of angled-cleaving on fiber tapers is to avoid cavity resonances in high index photonic microwire. Thus, the broadband white light can be transmitted between silica fibers and a special optical property like high intensity upconversion emission can be achieved. A cw 1064 nm Nd:YAG laser light is launched into the Tm 3+/Er3+ codoped tellurite microwire through a silica fiber taper to generate the multicolor upconversion emissions, including the blue-violet, green, and red lights, simultaneously. PMID:21164907

  19. Origin of the infrared to visible upconversion mechanisms in Nd 3+-doped potassium lead chloride crystal

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Balda, R.; Al-Saleh, M.; Fernández, J.

    2005-10-01

    The infrared to visible upconversion mechanisms of Nd3+ ions in potassium lead chloride crystal have been investigated at liquid nitrogen temperature (LNT). We have observed upconversion luminescence when pumping into both 4F3/2 and 4F5/2 bands and off-resonance, at 851 and 856 nm. The main bands appearing in the emission spectra are two blue bands located at 420 and 435 nm, corresponding to transitions 4D3/2 → 4I13/2 and 2P1/2 → 4I9/2 respectively, and green, orange and red emissions, located at 535, 595 and 668 nm, corresponding to 4G7/2-4G9/2 → 4I9/2, 4I11/2, 4I13/2 transitions, respectively. The results show that, upon excitation of either the 4F3/2 or 4F5/2 band at LNT, two- and three-body energy transfer upconversion process are responsible for the emissions coming from levels 4G7/2-4G9/2 (535, 595, and 668 nm) and 4D3/2 (420 nm), respectively. However, the experimental data indicate that the mechanisms leading to the luminescence coming from level 2P1/2 depend on the pumping wavelength and sample temperature.

  20. Two-color two-photon excitation using femtosecond laser pulses.

    PubMed

    Quentmeier, Stefan; Denicke, Stefan; Ehlers, Jan-Eric; Niesner, Raluca A; Gericke, Karl-Heinz

    2008-05-01

    The use of two-color two-photon (2c2p) excitation easily extends the wavelength range of Ti:sapphire lasers to the UV, widening the scope of its applications especially in biological sciences. We report observation of 2c2p excitation fluorescence of p-terphenyl (PTP), 2-methyl-5-t-butyl-p-quaterphenyl (DMQ) and tryptophan upon excitation with 400 and 800 nm wavelengths using the second harmonic and fundamental wavelength of a mode-locked Ti:sapphire femtosecond laser. This excitation is energetically equivalent to a one-photon excitation wavelength at 266 nm. The fluorescence signal is observed only when both wavelengths are spatially and temporally overlapping. Adjustment of the relative delay of the two laser pulses renders a cross correlation curve which is in good agreement with the pulse width of our laser. The fluorescence signal is linearly dependent on the intensity of each of the two colors but quadratically on the total incident illumination power of both colors. In fluorescence microscopy, the use of a combination of intense IR and low-intensity blue light as a substitute for UV light for excitation can have numerous advantages. Additionally, the effect of differently polarized excitation photons relative to each other is demonstrated. This offers information about different transition symmetries and yields deeper insight into the two-photon excitation process. PMID:18407711